变频器使用注意事项
- 格式:docx
- 大小:34.46 KB
- 文档页数:18
变频器使用注意事项
变频器的构成----变频器主要是由主电路、控制电路组成。
主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。
它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。
(1)整流器:最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。
也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。
(2)平波回路:在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。
为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。
装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。
(3)逆变器:同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。
以电压型PWM逆变器为例示出开关时间和电压波形。
控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。
(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。
(3)驱动电路:驱动主电路器件的电路。
它与控制电路隔离使主
电路器件导通、关断。
(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
(5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。
变频器使用注意事项
变频器使用不当,不但不能很好地发挥其优良的功能,而且还有可能损坏变频器及其设备,
或造成干扰影响等,因此在使用中应注意以下注意事项:
. 1、必须正确选择变频器。
. 2、认真阅读产品使用说明书,并按说明书的要求接线、安装和使用。
. 3、变频器装置应可靠接地,以抑制射频干扰,防止变频器内因漏电而引起电击。
. 4、用变频器控制电机转速时,电机的温升及噪声会比用网电(工频)时高;在低速运转时,因电机风叶转速低,应注意通风冷却或适当减低负载,以免电机温升超过允许值。
. 5、供电线路的阻抗不能太小。
变频器接入低压电网,当配电变压器容量超过500KV A,或配电变压器容量大于变频器容量10倍时,或变频器接在离配电变压器很近的地方时,由于回路阻抗小,投入瞬间对变频器产生很大的涌流,会损坏变频器的整流元件。
. 当线路阻抗较优小时,应的变压器和变频器间加装交流电抗器。
. 6、当电网三相电压不平衡度大于3%时,变频器输入电流的峰值就很大,会造成变频器及连接线过热或损坏电子元件,这时也需加装交流电抗器。
特别是变压器为V形接法时更为严重,除在交流侧加装电抗器外,还需在直流侧加装直流电抗器。
. 7、不能因为提高功率因数而在进线侧装设过大的电容器,也不能在电机与变频器间装设电容器,否则会使线路阻抗下降,产生过流
而损坏变频器。
. 8、变频器出线侧不能并联补偿电容,也不能为了减少变频器的输出电压的高次谐波而并联电容器,否则可能损坏变频器。
为了减少谐波,可以串联电抗器。
. 9、用变频器调速的起动和停止,不能用断路器及接触器直接操作,而应用变频器的控制端子来操作,否则会造成变频器失控,并可能造成严惩后果。
. 10、变频器与电机间一般不宜加装交流接触器,以免断流瞬间产生过电压而损坏变频器。
若需加装,
在变频器运行前,输出接触器应先闭合;而在断开前,变频器应先停止输出。
. 11、对于变频器驱动普通电机做恒转矩运行的场合,应尽量避免长期低速运行,否则电机散热效果变差,发热严重。
如果需要以低速恒转矩长期运行,就必须选用变频电机。
. 12、对于提升负载、频繁起停的场合,会有负转矩产生,需适当参数的制动电阻,否则变频器将因过电流或过电压故障而跳闸。
. 13、当电机另有制动器时,变频器应工作于自由停机方式,且制动的动作信号应在变频器发出停车指令后再发出。
14、变频器外接制动电阻的阻值不能小于变频器允许所带制动电阻的要求。
在满足制动要求的前提下,制动电阻宜大些。
切不可将应接制动电阻的端子答非短接,否则,在制动
时会通过开关管发生短路事故。
15、变频器与电机相连时,不允许用兆欧表测量电机的绝缘电阻,否则,兆欧表输出的高电压会损坏变频器。
16、正确处理升速与减速的问题。
变频器设定的加、减速时间过短,容易受到“电冲击”而损坏变频器。
因此使用变频器时,在负载设备允许的前提下,应尽量延长加、减速时间
(1)如果负载重,则应增加加、减速时间;反之,可适当减少加、减速时间;
. (2)如果负载设备需要短时间内加、减速,则必须考虑加大变
频器的容量,以免出现太大的电流,超过变频器的额定电流;
. (3)如果负载设备需要很短的加、减速时间(如1s内),则应考虑在变频器上采用刹车系统。
一般较大容量的变频器都配有刹车系统。
.17、避开负载设备的机械共振点。
因为电机在一定的频率范围内,可能会遇到负载设备的机械共振点,产生机械谐振,影响系统的运行。
为此,需对变频器设置跳跃频率(或回避频率),把该频率跳过去(回避掉)以避开共振点。
.18、电机首次使用或长时间放置后再接入变频器使用之前,必须对电机进行绝缘电阻测量(用500V或1000V兆欧表,测量值不应小于5MΩ。
如果绝缘电阻过低,会损坏变频器。
.19、变频器应垂直安装,留有通风空间,并控制环境温度不超过40℃。
.20、必须采用抗干扰措施,以免变频器受干扰而影响其正常工作,或变频器产生的高次谐波干扰其它电子设备的正常工作。
.21、注意电机的热保护。
如果电机与变频器容量匹配,则变频器内部的热保护能有效保护电机。
如果两者容量不匹配,须调整其保护值或采取其它保护措施以保证电机的安全运行,变频器电子热保护值(电机过载检测),可在变频器额定电流的25%~105%范围内设定。
变频器的基本问题解析
1,变频器接的电机是一般的电机还是特定的变频电机
2,如果接的是一般的电机那变频器可以接变频电机吗
3,变频电机可以直接接到电源上吗
4,频率变化的范围是多少啊
调频技术对电机的要求主要是三个方面:第一,绝缘等级;第二,强制冷却;第三,转子轴承。
如果超过基频向上调速,还要考虑电机结构的机械强度。
笼统地说,将普通电机代替调频电机,采用调频传动。
从原理上说,行。
从实际产品上说,可能行可能不行。
即不可靠。
现在国外的品牌的电机已经不分了,国内的还分,但是国内的一些名牌电机制造商也已经把
普通的电机的绝缘等级提高到了“F”级。
打引号是说这个F级是相当于F级。
不是真正意义的F级绝缘。
其目的也是为了电机能适应变频器的控制应用。
所以说,普通电机能不能代替变频电机,关键还是看电机制造商的技术条件是不是满足变频控制要求。
而不是一概而论地说YES或者NO。
普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。
以下为变频器对电机的影响1、电动机的效率和温升的问题:不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。
拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。
高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
因
为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。
除此之外,还需考虑因集肤效应所产生的附加铜耗。
这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。
2、电动机绝缘强度问题:目前中小型变频器,不少是采用PWM 的控制方式。
他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。
另外,由PWM 变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与震动:普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。
变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。
当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。
由于电动
机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。
4、电动机对频繁启动、制动的适应能力:由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
5、低转速时的冷却问题:首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。
其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。
变频器运转中故障分析
变频器在运转中都有哪些故障呢?又如何维修变频器所出现的故障呢?
第一:启动之后操作显示面板有正常的输出频率指示,但无三相输出电压。
分析:可驱动电路光耦合器输入侧的+5V供电丢失能出现的因素:前级脉冲电路的缓冲器损坏;CPU的相关控制信号不确定或相关控制引脚损坏;故障保护电路误动,使脉冲前级电路被故障信号锁定。
第二:输出的三相电压不平衡
分析:可能逆变模块导通内阻变大,三只上臂IGBT模块有导通不良现象;驱动电路的光电耦合器损坏;脉冲前级电路或CPU逆变脉冲输出引脚不良,致使逆变脉冲缺失一路或两路。
第三:跳OC故障
这种情况又分三类:1、一按起动按键,即跳OC故障。
2、运行中跳OC故障。
3、轻载运行正常,带载电机跳动或跳OC故障第一种跳OC故障有可能是,后级驱动电路本身不良或者逆变模块不良;电源带负载能力不足。
第二种跳OC故障,驱动电路的带负载能力、逆变模块的导通内阻检测;三相输出电流检测电路;故障检测电路中的基准电压电路。
第三种跳OC故障,逆变模块不良,导通内阻偏大;电机损坏;驱动电路的电流(功率)输出能力不足。
新的变频器怎么调试
一、变频器的空载通电检验
1.将变频器的接地端子接地。
2.将变频器的电源输入端子经过漏电保护开关接到电源上。
3.检查变频器显示窗的出厂显示是否正常,如果不正确,应复位,否则要求退换。
4.熟悉变频器的操作键。
一般的变频器均有运行(RUN)、停止(STOP)、编程(PROG)、数据/确认(DA TA/ENTER)、增加(UP、▲)、减少(DOWN、▼)等6个键,不同变频器操作键的定义基本相同。
此外有的变频器还有监视(MONTTOR/DISPLAY)、复位(RESET)、寸动(JOG)、移位(SHIFT)等功能键。
二、变频器带电机空载运行
1.设置电机的功率、极数,要综合考虑变频器的工作电流。
2.设定变频器的最大输出频率、基频、设置转矩特性。
V/f类型的选择包括最高频率、基本频率和转矩类型等项目。
最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。
基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。
转矩类型指的是负载是恒转矩负载还是变转矩负载。
用户根据变频器使用说明书中的V/f 类型图和负载特点,选择其中的一种类型。
通用变频器均备有多条V/f曲线供用户选择,用户在使用时应根据负载的性质选择合适的V/f曲线。
如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。
为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。
在异步电机变频调速系统中,转矩的控制较复杂。
在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持V/f为常数,则磁通将减小,进而减小了电机的输出转矩。
为此,在低频段要对电压进行适当补偿以
提升转矩。
一般变频器均由用户进行人工设定补偿。
日立J300变频器则为用户提供两种选择:自行设定和自动转矩提升。
3.将变频器设置为自带的键盘操作模式,按运行键、停止键,观察电机是否能正常地启动、停止。
4.熟悉变频器运行发生故障时的保护代码,观察热保护继电器的出厂值,观察过载保护的设定值,需要时可以修改。
变频器的使用人员可以按变频器的使用说明书对变频器的电子热继电器功能进行设定。
电子热继电器的门限值定义为电动机和变频器两者的额定电流的比值,通常用百分数表示。
当变频器的输出电流超过其容许电流时,变频器的过电流保护将切断变频器的输出。
因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。
三、带载试运行
1.手动操作变频器面板的运行停止键,观察电机运行停止过程及变频器的显示窗,看是否有异常现象。
2.如果启动.停止电机过程中变频器出现过流保护动作,应重新设定加速
、减速时间。
电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。
若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。
因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。
检查此项设定是否合理的方法是先按经验选定加、减速时间进行设定,若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间。
另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。
3.如果变频器在限定的时间内仍然保护,应改变启动/停止的运行曲线,从直线改为S形、U形线或反S形、反U形线。
电机负载惯性较大时,应该采用更长的启动停止时间,并且根据其负载特性设置运
行曲线类型。
4.如果变频器仍然存在运行故障,应尝试增加最大电流的保护值,但是不能取消保护,应留有至少10%-20%的保护余量。
5.如果变频器运行故障还是发生,应更换更大一级功率的变频器。
6.如果变频器带动电机在启动过程中达不到预设速度,可能有两种情况:
(1)系统发生机电共振,可以从电机运转的声音进行判断。
采用设置频率跳跃值的方法,可以避开共振点。
一般变频器能设定三级跳跃点。
V/f控制的变频器驱动异步电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动惯量较小时更为严重。
普通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在V/f曲线上设置跨跳点及跨跳宽度。
当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。
(2)电机的转矩输出能力不够,不同品牌的变频器出厂参数设置不同,在相同的条件下,带载能力不同,也可能因变频器控制方法不同,造成电机的带载能力不同;或因系统的输出效率不同,造成带载能力会有所差异。
对于这种情况,可以增加转矩提升量的值。
如果达不到,可用手动转矩提升功能,不要设定过大,电机这时的温升会增加。
如果仍然不行,应改用新的控制方法,比如日立变频器采用V/f比值恒定的方法,启动达不到要求时,改用无速度传感器空间矢量控制方法,它具有更大的转矩输出能力。
对于风机和泵类负载,应减少降转矩的曲线值。
四、变频器与上位机相连进行系统调试
在手动的基本设定完成后,如果系统中有上位机,将变频器的控制线直接与上位机控制线相连,并将变频器的操作模式改为端子控制。
根据上位机系统的需要,调定变频器接收频率信号端子的量程0-5V或0-10V,以及变频器对模拟频率信号采样的响应速度。
如果需要另外的监视表头,应选择模拟输出的监视量,并调整变频器输出监视量端子的量程。
普传变频器安装和保养
普传变频器典型客户使用问题的建议及处理方法
一、变频器的安装与保养
1. 正确接地
问题:变频器”E”端没有正确接入大地,导致变频器偶尔受干扰或出现故障,机壳带电或受瞬间高电压(如电网波动,雷击等)炸机.
建议:客户一定要将”E”端接入独立的大地,释放高电压对机器的冲击,保护人员及设备安全.
2、螺栓打紧
问题: 变频器R、S、T、U、V、W接线端没有打紧,导致接线处接触电阻大端子过热使用一段时间端子损坏或炸机.
建议:客户接线时一定要确认将接线螺丝拧紧,如螺丝滑丝一定要更换.
3. 远离热源
问题:机器安装在发热源处导致机器过热,变形,炸机
建议:安装变频器时远离热源,辐射源等
变频器运转中故障分析
变频器在运转中都有哪些故障呢?又如何维修变频器所出现的故障呢?
第一:启动之后操作显示面板有正常的输出频率指示,但无三相输出电压。
分析:
可驱动电路光耦合器输入侧的+5V供电丢失能出现的因素:前级脉冲电路的缓冲器损坏;CPU的相关控制信号不确定或相关控制引脚损坏;故障保护电路误动,使脉冲前级电路被故障信号锁定。
第二:输出的三相电压不平衡
分析:
可能逆变模块导通内阻变大,三只上臂IGBT模块有导通不良现象;驱动电路的光电耦合器损坏;脉冲前级电路或CPU逆变脉冲输出引脚不良,致使逆变脉冲缺失一路或两路。
第三:跳OC故障
这种情况又分三类:1、一按起动按键,即跳OC故障。
2、运行中跳OC故障。
3、轻载运行正常,带载电机跳动或跳OC故障第一种跳OC故障有可能是,后级驱动电路本身不良或者逆变模块不良;电源带负载能力不足。
第二种跳OC故障,驱动电路的带负载能力、逆变模块的导通内阻检测;三相输出电流检测电路;故障检测电路中的基准电压电路。
第三种跳OC故障,逆变模块不良,导通内阻偏大;电机损坏;驱动电路的电流(功率)输出能力不足。
软起动器常见故障
1、在调试过程中出现起动报缺相故障,软起动器故障灯亮,电机没反应。
出现故障的原因可能是:
a-起动方式采用带电方式时,操作顺序有误(正确操作顺序应为先送主电源,后送控制电源)。
b-电源缺相,软起动器保护动作(检查电源)
c-软起动器的输出端未接负载(输出端接上负载后软起动器才能正常工作)
2、用户在使用过程中出现起动完毕,旁路接触器不吸合现象。
故障原因可能是:
a-在起动过程中,保护装置因整定偏小出现误动作。
(将保护装置重新整定即可)
b-在调试时,软起动器的参数设置不合理。
(主要针对的是55KW以下的软起动器,对软起动器的参数重新设置)
c-控制线路接触不良(检查控制线路)
3、用户在起动过程中,偶尔有出现跳空气开关的现象。
故障原因有:
a-空气开关长延时的整定值过小或者是空气开关选型和电机不配。
(空气开关的参数适量放大或者空气开关重新选型)
b-软起动器的起始电压参数设置过高或者起动时间过长。
(根据负载情况将起始电压适当调小或者起动时间适当缩短。
)
c-在起动过程中因电网电压波动比较大,易引起软起动器发出错误指令。
出现提前旁路现象。
(建议用户不要同时起动大功率的电机,)
d-起动时满负载起动(起动时尽量减轻负载)
4、用户在使用软起动器时出现显示屏无显示或者是出现乱码,软起动器不工作。
故障原因可能是:
a-软起动器在使用过程中因外部元件所产生的震动使软起动器内部连线震松(打开软起动器的面盖将显示屏连线重新插紧即可)b-软起动器控制板故障(和厂家联系更换控制板)
5、软起动器在起动时报故障,软起动器不工作,电机没有反应。
故障原因可能为:
a-电机缺相(检查电机和外围电路)
b-软起动器内主元件可控硅短路(检查电机以及电网电压是否有异常。
和厂家联系更换可控硅)
c-滤波板击穿短路(更换滤波板即可)
6、软起动器在起动负载时,出现起动超时现象。
软起动器停止工作,电机自由停车。
故障原因有:
a-参数设置不合理(重新整定参数,起始电压适当升高,时间适当加长)
b-起动时满负载起动,(起动时应尽量减轻负载)
7、在起动过程中,出现电流不稳定,电流过大。
原因可能有:
a-电流表指示不准确或者与互感器不相匹配(更换新的电流表)b-电网电压不稳定,波动比较大,引起软起动器误动作(和厂家联系更换控制板)
c-软起动器参数设置不合理。
(重新整定参数)
8、软起动器出现重复起动。
故障原因有:
a-在起动过程中外围保护元件动作,接触器不能吸合,导致软起动器出现重复起动(检查外围元件和线路)9、在起动时出现过热故障灯亮,软起动器停止工作:
a-起动频繁,导致温度过高,引起软起动器过热保护动作。
(软。