- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数
我国著名数学家华罗庚指出:
“宇宙之大,粒子之微,火箭之速,化工之巧, 地球之变,生物之谜,日用之繁,无处不用 数学。”
创设情境,导入课题:
平度人杰地灵,物产丰富,大泽山的葡萄更是闻名遐尔。
请同学们阅读以下材料并思考问题:
问题1:如果小明购买了价格为1元的葡萄包装盒x个,那
么他支付的钱数y= ?(元)
人教版-幂函数PPT教学课件
幂函数的图象与性质:
在同一坐标系中画
y y x3
y x , y x 2 , y x 1,
y x2 y x1
1
y x3,y x2,
1
y x2
五个幂函数的图象.
1.自 主 学 习 :
1 O1
y x1
x
请同学们画出
1
y x3, y x2
两个幂函数的图象.
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
练习: 比较各组值的大小
> (1)
2 3
0 .5
1 2
0 .5
< (2) 5 . 1 2
5.09 2
≤ (3)( 2
a
2
)
2 3
2
23
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
思考:
如果函数 f(x)(m 2m 1)xm 22m 3是幂函数,且在
【小试牛刀】
1.下列函数是幂函数的有(__1_)__(__3_)__(__5_)_.
(1) y=x4
(2) y 2x
1 (3) y x2
(4) y=3x2 (5) y= x0
2.幂 函 数 f(x)的 图 象 经 过 点 ( 2, 1 2) ,
则 函 数 f(x)的 解 析 式 为 _ f _ ( _ x)___x_2_____.
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
练习:图中曲线是幂函数 y x n 在第一象限的图象,已
知n取 2 ,
1 2
四个值,则相应于曲线C1,C2,C3,C4
的n依次为
(A)
2,
1 2
,1 2
,2
(B)2,1 2
,
1 2
,2
(C)
1 2
,2,2,12
(D)2,1 2
,2,
1 2
(3) 如果a<0,则图象都只过点(1,1), 在第一象限内,图象都向上无限接近y轴,向右 无限接近x轴; (4)图象分布:第Ⅰ象限都有图象;第Ⅳ象限都 没有图象;二三象限可能有,也可能没有图象;
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
幂函数的性质
幂函数的定义域、奇偶性、单调性, 因解析式中指数a的不同而各异.
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
典例解析:
例1. 如图所示,曲线是幂函数 y = xk 在第一象限
内的图象,已知 k分别取 1 , 1 , 2 , 1 四个值,
则相应图象依次为:_C_4__C_2_C_1_ C3
2
1
思维升华:幂函数图象在直线x=1的右侧时:图象越高, 指数越大;图象越低,指数越小。在Y轴与直线x =1之 间正好相反。
问 题 2 : 这 五 个 幂 函 数 的 指 数 有 何 特 点 ?
问题3:这五个幂函数的图象位置有何特点?奇偶性有何特点? 问题4:这五个幂函数的单调性有何特点?
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
幂函数的图象分布规律
(1) 所有的幂函数在(0,+∞)都有定义,并且图象 都通过点(1,1); (2) 如果a>0,则图象都过点(0,0)和(1,1);
yx
问题2:如果一块正方形的葡萄地边长为x,那么葡萄地的
面积y= ?
y x2
问题3:如果正方体的葡萄包装盒棱长为x,那么包装盒的
体积y= ?
y x3
问题4:如果正方形葡萄地的面积为x,那么葡萄地的1
边长 y= ?
y x x2
问题5:如果小丽去买葡萄,x秒内骑车行进1千米,那么
她骑车的平均速度y= ?(千米/秒) y 1 x 1
人教版-幂函数PPT教学课件
观察幂函数图象,将你发现的结论写在下表: 人教版-幂函数PPT教学课件
1
y=x
y=x2
y=x3 y=x 2
y=x-1
定义域 R
R
R [0,+∞) {x|x≠0}
值域 R
奇偶性 奇
[0,+∞)
偶
R [0,+∞) {y|y≠0}
非奇
奇 非偶
奇
单调性
在R 上增
在(-∞,0]上减, 在R上 在[0,+∞)上增,增
x
yx
y x2 y x3
1
y x2
y x1
这五个函数可以统一写成个 一般形式
yx(R)
幂函数的定义
一 般 地 ,函 数 y x 叫 做 幂 函 数 ,其 中 x 是 自 变 量 ,
是 常 量 .
观察:表达式的结构有什么特点?
y x
x (1) 底数为自变量 ;
(2) 指数为常数;
(3) 幂的系数为1 .
1.单调性:
①如果a>0,则幂函数在(0,+∞)上为增函数;
②如果a<0,则幂函数在(0,+∞)上为减函数.
a>1
a<0
0<a<1
2.奇偶性: ①当a为奇数时,幂函数为奇函数; ②当a为偶数时,幂函数为偶函数.
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
幂函数的图象与性质 (三字经)
定义域,根式求;一象限,都有图; 四象限,都没有;二和三,看奇偶; 正递增,负递减;都过1,正过0; 奇偶性,看指数;指奇奇,指偶偶。
人教版-幂函数PPT教学课件
人教版-幂函数PPT教学课件
例2.比较下列各组数的大小:
思考:
1
1
(1)1.32 和1.42
两个数比较 大小时,何
(2)0.261和 0.271 1
(3)0.72 和0.72
时用幂函数 模型,何时 用指数函数
模型?
思维升华: 指数相同的幂,构造幂函数, 底数相同的幂,构造指数函数, 然后利用单调性进行大小比较。
在[0, 在(-∞,0)上减, +∞)上增在,(0,+∞)上减
公共点
人教版-幂函数PPT教学课件
图象都过点(1,1)
人教版-幂函数PPT教学课件
合作探究:学习小组合作讨论
请同学们根据五个特殊幂函数的图象和性质,总结归纳出一
般的幂函数y = x 图象的特点与性质,它的图象和性质与什
么因素有关系?你发现了哪些规律? 1 问 题 1 : 从 解 析 式 出 发 , 五 个 幂 函 数 y x ,y x 2 ,y x 3 ,y x 2 ,y x 1 最 大 的 区 别 是 什 么 ? 研 究 他 们 的 共 同 点 应 该 从 他 们 的 指 数 开 始 , 对 指 数 进 行 归 类 。