江苏省南通市如东县2019-2020学年高一上学期期末数学试题
- 格式:docx
- 大小:122.08 KB
- 文档页数:5
【校级联考】江苏省南通市如东县【最新】高一上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.设全集U ={0,1,2,3},集合A ={1,2},B ={1,3},则U (A)B ⋂=_______. 2.已知点A(﹣1,2),B(1,3),则向量AB 的坐标为_______.3.函数()ln f x x =的定义域是_______. 4.函数1tan ()1tan x f x x-=+的最小正周期为_______. 5.已知幂函数()f x x α=,其中α∈{﹣1,0,12,1,2,3},则使()f x 为偶函数,且在区间(0,+∞)上是单调增函数的α的值为_______.6.已知函数0()ln 0x e x f x x x ⎧≤=⎨>⎩,,,其中e 为自然对数的底数,则1(())f f e =_______. 7.已知函数2()2cos sin 21f x x x =+-,将函数()y f x =图像向右平移4π个单位后与函数()y g x =图像重合,则函数()y g x =在区间[0,π]上的单调减区间为_______.8.已知函数()f x 是定义在[﹣2,2]上的奇函数,且在区间[0,2]上是单调减函数,若(21)f x +(1)0f +<,则x 的取值范围是_______.9.如图,将矩形纸片ABCD 的右下角折起,使得该角的顶点落在矩形的左边上(BC 足够长),那么折痕EF 的长度取决于角∠BFE 的大小,若sin∠BFE=35,AB =6,则折痕EF 的长度为_______.10.河水的流速为2m/s ,一艘小船想以垂直于河岸方向10m/s 的速度驶向对岸,则小船的静水速度大小为_______m/s .11.在平面直角坐标系xOy 中,已知单位圆上动点P(sin(150°﹣2t ),cos(150°﹣2t )),当t 由0°增大到60°时,动点P 轨迹的长度为_______.12.如图:已知A 、B 是单位圆上的两点,O 为圆心,且∠AOB=120°,MN 是圆O 的一条直径,点C 在圆内,且满足OC OA (1)OB λλ=+-(0<λ<1),则CM CN ⋅的取值范围是_______.13.定义在[1,+∞)上的函数()f x 满足:①当x ∈[1,3)时,()12f x x =--,②(3)f x =3()f x ,设关于x 的函数()()3x F x f x a -=--仅有有限个零点,则实数a 的取值范围为_______.二、解答题14.已知向量a ⃑=(sin θ,cos θ﹣2sin θ),b⃑⃑=(2,1),其中0<θ<π. (1)若a⃑∥b ⃑⃑,求sin θ·cos θ的值; (2)若|a ⃑|=|b⃑⃑|,求θ的值. 15.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为r 1、r 2米,圆心角为θ(弧度).(1)若23πθ=,r 1=3,r 2=6,求花坛的面积; (2)根据公司要求扇环形状的花坛面积为32平方米,已知扇环花坛的直线部分的装饰费用为45元/米,弧线部分的装饰费用为90元/米,求当装饰费用最低时线段AD 的长.16.已知函数()f x 满足:(lg )f x x =.(1)若1()2()f x f x -=,求x 的值; (2)对于任意实数1x ,2x ,试比较12()()2f x f x +与12()2x x f +的大小; (3)若方程2()100f ax x -=在区间[1,2]上有解,求实数a 的取值范围.17.若函数()f x 和()g x 满足:①在区间[],a b 上均有定义;②函数()()y f x g x =-在区间[],a b 上至少有一个零点,则称()f x 和()g x 在[],a b 上具有关系W . ()1若()f x lnx =,()g x sinx =,判断()f x 和()g x 在7,66ππ⎡⎤⎢⎥⎣⎦上是否具有关系W ,并说明理由; ()2若()22f x x =-和()21g x mx =-在[]1,4上具有关系W ,求实数m 的取值范围.参考答案1.{}3【解析】【分析】根据补集的概念得到U A={0,3},再由交集的概念得到结果. 【详解】全集U ={0,1,2,3},集合A ={1,2},U A={0,3},则{}U (A)B=3⋂. 故答案为:{}3.【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集.(2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.2.()2,1【分析】根据向量的坐标运算得到结果即可.【详解】已知点A(﹣1,2),B(1,3),则向量AB =(2,1).故答案为()2,1.【点睛】本题考查了向量的坐标运算,较为简单.3.()(]0,11,2【分析】根据函数f (x )的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】函数f(x),∴20021xx lnxxx-≥⎧<≤⎧⎪≠⇒⎨⎨≠⎩⎪>⎩∴f(x)的定义域为{x|0<x≤2且x≠1}.故答案为(0,1)(1,2]⋃.【点睛】本题考查了根据函数的解析式求定义域的应用问题,是基础题目.求函数定义域的注意点:(1)不要对解析式进行化简变形,以免定义域变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.4.π【分析】利用两角差的正切公式化简函数的解析式,再利用正切函数的周期性,得出结论.【详解】函数f(x)=1tan1tanxx-+=tan(4π﹣x)=﹣tan(x﹣4π)的最小正周期为π,故答案为π.【点睛】本题主要考查两角差的正切公式,正切函数的周期性,属于基础题.5.2【解析】【分析】根据幂函数f(x)=xα,f(x)为偶函数,则α为偶数,在区间(0,+∞)上是单调增,则0α>,可得答案.【详解】由题意α∈{﹣1,0,12,1,2,3}, 幂函数f (x )=x α,f (x )为偶函数,则α为偶数,在区间(0,+∞)上是单调增,则0α>,综上可得2α=.故答案为2.【点睛】本题考查了幂函数的单调性和奇偶性的应用.属于基础题.在()0,1上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数的图象与坐标轴相交,则交点一定是原点.6.1e【解析】【分析】根据题意,由函数的解析式先求出f (1e)的值,结合函数的解析式计算可得答案. 【详解】 根据题意,函数()00x e x f x lnx x ⎧≤=⎨>⎩,,,则f (1e )=ln (1e)=﹣1, 则f (f (1e ))=f (﹣1)=e ﹣1=1e, 故答案为:1e . 【点睛】本题考查分段函数的求值,注意分段函数分段讨论,属于基础题.求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现()()f f a 的形式时,应从内到外依次求值;求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7.3π7π,88⎛⎫ ⎪⎝⎭【分析】利用倍角公式降幂,再由辅助角公式化积,再由平移变换得到g (x ),由复合函数的单调性求函数y=g (x )在区间[0,π]上的单调减区间.【详解】f (x )=2cos 2x+sin2x ﹣24x π⎛⎫+⎪⎝⎭ , 将函数y=f (x )图象向右平移4π个单位后,得2())444y x x πππ⎡⎤=-+=-⎢⎥⎣⎦,则g (x )24x π⎛⎫- ⎪⎝⎭ . 由3+222242k x k πππππ≤-≤+,可得37+,Z 88k x k k ππππ≤≤+∈. 取k=0,可得函数y=g (x )在区间[0,π]上的单调减区间为3π7π,88⎛⎫⎪⎝⎭. 故答案为3π7π,88⎛⎫⎪⎝⎭. 【点睛】 本题考查三角函数的恒等变换应用,考查y=Asin (ωx+φ)型函数的图象和性质,是基础题.考查了三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x 的系数提出来,针对x 本身进行加减和伸缩.8.1-12⎛⎤ ⎥⎝⎦,【分析】由函数f (x )是奇函数,可得f (2x+1)<f (﹣1).根据单调性脱去“f ”,求解即可.【详解】函数f (x )是定义在[﹣2,2]上的奇函数,且在区间[0,2]上是单调减函数.∴函数f(x)在[﹣2,0]上为单调减函数;由f (2x+1)+f (1)<0,即f (2x+1)<﹣f (1).∴f(2x+1)<f(﹣1).则-22x+12 211 x≤≤⎧⎨+>-⎩解得:1-12⎛⎤ ⎥⎝⎦,.则x的取值范围是1 -12⎛⎤ ⎥⎝⎦,故答案为1-12⎛⎤ ⎥⎝⎦,.【点睛】本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.9.125 16【分析】设EF=x,由题意可得△BEF≌△GEF,可得EG=EB,即有AE,运用二倍角公式和诱导公式,结合解直角三角形即可得到所求值.【详解】设EF=x,由题意可得△BEF≌△GEF,可得EG=EB=EFsin∠BFE=35 x,AE=AB﹣EB=6﹣35 x,∠BEF=∠GEF=90°﹣∠BFE,可得∠AEG=180°﹣2(90°﹣∠BFE)=2∠BFE,可得cos∠AEG=cos2∠BFE=1﹣2sin2∠BFE=1﹣2×925=725,即有107125 AEGE x=-=解得x=125 16.故答案为125 16.【点睛】本题考查三角形的全等的判断和性质的运用,考查三角函数的恒等变换和方程思想、运算能力,属于中档题.10.【分析】“垂直于河岸方向10m/s的速度”是实际的速度,在数学中相当是和向量.“河水的流速为2m/s”是其中一个分向量,静水速度是另一个分向量.即10是和向量,是对角线,另外两个分向量是平行四边形的边长为2的边与对角线垂直,求另一边就是本题的静水速度.【详解】为了使航向垂直河岸,船头必须斜向上游方向,即:静水速度v1斜向上游方向,河水速度v2=2m/s平行于河岸;静水速度与河水速度的合速度v=10m/s指向对岸.∴静水速度v1==.故答案为【点睛】本题考查小船的静水速度的求法,是基础题,解题时要认真审题,注意向量的加法法则的合理运用.11.2π3【分析】由已知可求范围150°﹣2t∈[30°,150°],进而可求∠POP′=120°,利用弧长公式即可计算得解.【详解】∵t ∈[0°,60°],∴150°﹣2t ∈[30°,150°],∴∠POP′=120°,∴由题意,如图所示,动点P 轨迹'PP =1×23π=23π. 故答案为23π. 【点睛】 本题主要考查了弧长公式的应用,考查了数形结合思想,属于基础题.12.3,04⎡-⎫⎪⎢⎣⎭【分析】利用向量的数量积运算可得 CM CN ⋅=()()()22ON +-1OM OC ON OC OM ON OC OM OC OC --=⋅-+=+.由于∠AOB=120°,且满足()OC OA 1OB λλ=+-(0<λ<1),所以点C 在线段AB 上,可得1,12OC ⎡⎫∈⎪⎢⎣⎭即可得出. 【详解】CM CN ⋅=()()()22ON +-1OM OC ON OC OM ON OC OM OC OC --=⋅-+=+ ∵∠AOB=120°,且满足()OC OA 1OB λλ=+-(0<λ<1),点C 在线段AB 上;∴1,12OC⎡⎫∈⎪⎢⎣⎭,∴3CM CN,04⎡⎫⋅-⎪⎢⎣⎭的范围是.故答案为3,04⎡⎫-⎪⎢⎣⎭.【点睛】(1)向量的运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.(2)以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.(3)向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.13.1-0 3⎡⎫⎪⎢⎣⎭,【分析】根据题意,分析作出函数f(x)的草图,分析可得若函数F(x)=f(x)﹣3﹣x﹣α仅有有限个零点,则函数y=f(x)与函数y=3﹣x+α=(13)x+a的图象有有限个交点,结合指数函数的图象分析可得a的取值范围,即可得答案.【详解】根据题意,当x∈[1,3)时,f(x)=1﹣|x﹣2|=1,12 3,23 x xx x-≤≤⎧⎨-<<⎩又由f(3x)=3f(x),分析可得函数f (x )在[1,+∞)上的图象为:函数F (x )=f (x )﹣3﹣x ﹣α的仅有有限个零点,则函数y=f (x )与函数y=3﹣x +α=(13)x +a 的图象有有限个交点, 分析可得函数y=(13)x +a 的图象与x 轴必有交点, 则有a <0,因为零点个数是有限个,必须存在零点,故得到当函数y=(13)x +a 过(1,0)时,是临界 此时a=-13, 即a 的取值范围为[-13,0); 故答案为[-13,0). 【点睛】 已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x ==的交点个数的图象的交点个数问题.14.(1)1029;(2)π2或34π.【分析】(1)根据平面向量的共线定理的坐标表示即可解题;(2)由|a ⃑|=|b⃑⃑|,化简得cos 2θ+sinθcosθ=0再由θ∈(0,π)可解出θ的值.【详解】(1)因为 ∥,所以sinθ=2cosθ﹣4sinθ,显然cosθ≠0,所以tanθ=25.所以sinθ•cosθ===1029,(2)因为||=||,所以=,所以cos2θ+sinθcosθ=0,cosθ=0,或sinθ=﹣cosθ.又0<θ<π,所以θ=或θ=.【点睛】本题主要考查平面向量的共线定理的坐标表示以及向量的求模运算.向量和三角函数的综合题是高考的热点问题,每年必考,属于中档题.15.(1)9 ;(2)8.【分析】(1)设花坛的面积为S,则S=12r22θ﹣12r12θ,即可得出结论;(2)记r2﹣r1=x,则x>0,装饰总费用为y,则y=90(x+64x),根据函数的单调性即可求出.【详解】(1)设花坛的面积为S,则S=12r22θ﹣12r12θ=12×36×﹣×9×=9π所以花坛的面积为9π(m2)(2)的长为r1θ米,的长为r2θ米,线段AD的长为(r2﹣r1)米由题意知S=12r22θ﹣12r12θ=(r1θ+r2θ)(r2﹣r1)=32,则r1θ+r2θ=,记r2﹣r1=x,则x>0,装饰总费用为y,则y=45×2(r2﹣r1)+90(r1θ+r2θ)=90(x+)根据均值不等式得到当x=8时,y有最小值为1440,故当线段AD的长为8米时,花坛的装饰费用最小.【点睛】本题考查利用数学知识解决实际问题,考查扇形的面积,考查配方法的运用,属于中档题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.16.(1)lg 1x =(;(2)见解析;(3)[1,3] 【分析】(1)先求出函数的解析式,再分情况解方程即可;(2)利用均值不等式求证即可;(3)原式转化为222111,,1,22a t a t t x x x ⎡⎤=+=∈=+⎢⎥⎣⎦有解即可,从而可求出a 的取值范围. 【详解】(1)函数()f x 满足:()lg f x x =,设t=lg x ,则()()10,10,10t t x x f t f x ===. ()()1f x f x -=110210x x -= 当x>0时,原式化为x 2x x 1102102101010x -=⇒-⨯-=x 101lg 1x ⇒=+⇒=+( 当x<0时,原式子不成立.故得到lg 1x =+(.(2)()()122f x f x +=121212*********x x x x x x f +++⎛⎫≥== ⎪⎝⎭,当且仅当12x x =取等号.(3)()2100f ax x -= 222=10=10=2ax x ax x -⇒-在[1,2]上有解,转化为222111,,1,22a t a t t x x x ⎡⎤=+=∈=+⎢⎥⎣⎦有解即可, ∵[]2213t t +∈, []13a ∴∈,【点睛】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;17.(1)见解析;(2)134⎡⎤⎢⎥⎣⎦, .【分析】(1)根据[a,b]上至少有一个零点,则称f(x)和g(x)在区间[a,b]上具有关系G.利用特殊值但判断出即可;(2)根据在区间[a,b]上具有关系G的性质,结合x∈[1,4],利用二次函数的性质,讨论m即可.【详解】(1)f(x)和g(x)在[1,3]具有关系G.令h(x)=f(x)﹣g(x)=lnx+x﹣2,∵h(1)=﹣1<0,h(2)=ln2>0;故h(1)•h(2)<0,又h(x)在[1,2]上连续,故函数y=f(x)﹣g(x)在区间[1,2]上至少有一个零点,故f(x)和g(x)在[1,3]上具有关系G;(2)令h(x)=f(x)﹣g(x)=2|x﹣2|+1﹣mx2,当m≤0时,易知h(x)在[1,4]上不存在零点,当m>0时,h(x)=,当1≤x≤2时,由二次函数知h(x)在[1,2]上单调递减,故,故m∈[,3],当m∈(0,)∪(3,+∞)时,若m∈(0,),则h(x)在(2,4]上单调递增,而h(2)>0,h(4)>0;故没有零点;若m∈(3,+∞),则h(x)在(2,4]上单调递减,此时,h(2)=﹣4m+1<0;故没有零点;综上所述,若f(x)=2|x﹣2|+1和g(x)=mx2在[1,4]上具有关系G,则m∈[,3].【点睛】本题主要考查函数新定义的理解以及不等式的求解,二次函数的性质讨论,属于中档偏难的题.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个非常函数,注意让非常函数式子尽量简单一些.。
2019-2020学年高一数学上学期期末试卷一、选择题1.已知函数()sin()(0,0)f x x ωϕωπϕ=+>-<<的部分图象如图所示,则函数()f x 在[6,10]上的最大值为( )A.22B.32C.12D.12.函数y =2log 4(1-x)的图象大致是A. B. C. D.3.如图,A ,B 是半径为1的圆周上的定点,P 为圆周上的动点且APB β∠=,02πβ<<,则图中阴影区域面积的最大值为( )A.cos ββ+B.sin ββ+C.22cos ββ+D.44sin ββ+4.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为()3,0F ,过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为()1,1-,则E 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=5.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于( ) A .2sin1B .2cos1C .1sin2D .2sin26.下列函数中是奇函数的是( ) A.3log y x =B.2y x =-C.1()3xy = D.2y x =7.若实数,x y 满足223x y +=,则2yx -的取值范围是( ) A .(33-B .(),33,-∞-⋃+∞C .33⎡-⎣D .(),33,⎡-∞-⋃+∞⎣8.已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( )A .(1,1)-B .(1,)-+∞C .(,1)-∞D .(,1)(1,)-∞-+∞U9.已知函数()ln ln(2)f x x x =+-,则 A.()f x 在(0,2)单调递增 B.()f x 在(0,2)单调递减C.()y =f x 的图像关于直线x=1对称D.()y =f x 的图像关于点(1,0)对称 10.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积1(2=弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为23π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )A.6平方米B.9平方米C.12平方米D.15平方米11.在ABC ∆中,“1sin 2A =”是“6A π=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件12.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( ) A.43-B.34-C.3D.2二、填空题13.已知ABC ∆的三个顶点分别是(5,0)A -,(3,3)B -,(0,2)C ,则BC 边上的高所在直线的斜截式方程为______.14.如图,在ABC ∆中,已知1AB =,3AC =,D 是BC 的中点,则AD BC ⋅=u u u r u u u r___.15.已知函数 在上存在最小值,则m 的取值范围是________.16.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________. 三、解答题17.已知()f x 在x ∈R 是恒有22[()]()f f x x x f x x x -+=-+.(1)若(2)3f =,求(1)f ;(2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析式.18.已知,,a b c r r r 是同一平面内的三个向量,其中13a =v (,), ,b c r r 为单位向量. (Ⅰ)若a r / /c r ,求 c r的坐标;(Ⅱ)若2a b +r r 与 2a b -r r 垂直,求a r 与 b r的夹角q.19.辽宁号航母纪念章从2012年10月5日起开始上市.通过市场调查,得到该纪念章每1枚的市场价y (单位:元)与上市时间x (单位:天)的数据如下:上市时间x 天 4 10 36 市场价y 元905190(1)根据上表数据,从下列函数中选取一个恰当的函数描述辽宁号航母纪念章的市场价y 与上市时间x的变化关系:①y ax b =+;②2y ax bx c =++;③log b y a x =;(2)利用你选取的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价格;(3)设你选取的函数为()f x ,若对任意实数k ,方程()2120f x kx m =++恒有两个相异的零点,求m 的取值范围.20.已知,且.(1)由的值;(2)求的值.21.已知函数()f x ,对任意a ,b R ∈恒有()()()f a b f a f b 1+=+-,且当x 0>时,有()f x 1>.(Ⅰ)求()f 0;(Ⅱ)求证:()f x 在R 上为增函数;(Ⅲ)若关于x 的不等式(()222f[2log x)4f 4t 2log x 2⎤-+-<⎦对于任意11x ,82⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.22.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()(sin sin )(sin sin )a c A C b A B -+=-.(1)求角C 的大小;(2)求22cos cos A B +的取值范围。
2019-2020学年高一上学期期末考试数学试题(附解析版)一、选择题(本大题共12小题,共60.0分)1.若集合,,则A. B. C. D.【答案】D【解析】解:集合,,.故选:D.先分别求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.函数的定义域为A. B.C. D. ,【答案】C【解析】解:要使函数有意义则解得且函数的定义域为故选:C.根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.3.运行如图所示的程序,若输出y的值为2,则可输入实数x值的个数为A. 0B. 1C. 2D. 3【答案】B【解析】解:模拟程序运行,可得程序的功能是求的值,故时,,解得:舍去;时,,解得:舍,或,综上,可得可输入x的个数为1.故选:B.模拟程序运行,可得程序的功能是求的值,分类讨论即可得可输入x的个数.本题的考点是函数零点几何意义和用导函数来画出函数的图象,考查了数学结合思想和计算能力,属于基础题.4.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A. B. C. D.【答案】B【解析】解:设20个数分别为,,,,求出的平均数为,实际平均数,求出的平均数与实际平均数的差:.故选:B.求出的平均数与实际平均数的差:,由此能求出结果.本题考查求出的平均数与实际平均数的差的求法,考查平均数的性质等基础知识,考查运算求解能力,是基础题.5.已知函数,那么的值为A. 9B.C.D.【答案】B【解析】解:,,而,..故选:B.首先判断自变量是属于哪个区间,再代入相应的解析式,进而求出答案.正确理解分段函数在定义域的不同区间的解析式不同是解题的关键.6.某单位有职工160人,其中业务员104人,管理人员32人,其余为后勤服务人员,现用分层抽样方法从中抽取一容量为20的样本,则抽取后勤服务人员A. 3人B. 4人C. 7人D. 12人【答案】A【解析】解:根据分层抽样原理知,应抽取后勤服务人员的人数为:.故选:A.根据分层抽样原理求出应抽取的后勤服务人数.本题考查了分层抽样原理应用问题,是基础题.7.已知函数,若对任意实数,且都有成立,则实数a的取值范围是A. B. C. D.【答案】A【解析】解:根据题意,满足对任意实数,且都有成立,则函数为减函数,又由,则有,解可得,即a的取值范围为;故选:A.根据题意,分析可得函数为减函数,结合函数的解析式可得,解可得a的取值范围,即可得答案.本题考查函数的单调性的判定以及应用,涉及分段函数的应用,关键是掌握函数单调性的定义.8.函数的部分图象大致是如图所示的四个图象中的一个,根据你的判断,a可能的取值是A. B. C. 2 D. 4【答案】D【解析】解:函数为偶函数,图象关于原点对称,排除,又指数型函数的函数值都为正值,排除,故函数的图象只能是,当时,函数为减函数,则,得,故只有4满足故选:D.根据函数奇偶性和单调性的性质先确定对应的图象,然后结合指数函数的图象特点确定底数的大小即可.本题主要考查函数图象的识别和判断,根据函数奇偶性和函数值的符号确定对应的图象是解决本题的关键.9.一直以来,由于长江污染加剧以及滥捕滥捞,长江刀鱼产量逐年下降为了了解刀鱼数量,进行有效保护,某科研机构从长江中捕捉a条刀鱼,标记后放回,过了一段时间,再从同地点捕捉b条,发现其中有c条带有标记,据此估计长江中刀鱼的数量为A. B. C. D.【答案】D【解析】解:设长江中刀鱼的数量为x条,根据随机抽样的等可能性,得:,解得.故选:D.设长江中刀鱼的数量为x条,根据随机抽样的等可能性,列出方程能求出结果.本题考查长江中刀鱼的数量的估计,考查随机抽样的性质等基础知识,考查运算求解能力,是基础题.10.已知偶函数在区间上是单调递增函数,若,则实数m的取值范围是A. B.C. D.【答案】C【解析】解:偶函数在区间上是单调递增函数,则在上为减函数,若,则,即,求得,故选:C.由题意利用函数的奇偶性和单调性可得,由此求得实数m的取值范围.本题主要考查函数的奇偶性和单调性,属于基础题.11.如图程序框图是为了求出满足的最小偶数n,那么在和两个空白框中,可以分别填入A. 和B. 和C. 和D. 和【答案】D【解析】解:因为要求时输出,且框图中在“否”时输出,所以“”内不能输入“”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.通过要求时输出且框图中在“否”时输出确定“”内不能输入“”,进而通过偶数的特征确定.本题考查程序框图,属于基础题,意在让大部分考生得分.12.已知函数,,若方程有且只有三个不同的实数根,则实数a的取值范围为A. B. C. D.【答案】C【解析】解:当时,方程可化为,解得:或,又,所以当时,此时方程有一个实数根,当时,方程可化为,由题意有此方程必有两不等实数根,设,由二次方程区间根问题有:,解得:或,综合可得:实数a的取值范围为:,故选:C.含参、含绝对值的二次函数的解的个数问题先通过讨论:当时,当时去绝对值符号,再结合区间根问题求解二次方程的根的个数即可.本题考查了含参、含绝对值的二次函数的解的个数问题及区间根问题,属中档题.二、填空题(本大题共4小题,共20.0分)13.已知函数,那么______.【答案】3【解析】解:由得,,即,故答案为:3由,求出,直接代入即可.本题主要考查函数值的计算,根据函数解析式直接转化是解决本题的关键.14.《少年中国说》是清朝末年梁启超所作的散文,写于戊戌变法失败后的1900年,文中极力歌颂少年的朝气蓬勃,其中“少年智则国智,少年富则国富;少年强则国强,少年独立则国独立”等优秀文句激励一代又一代国人强身健体、积极竞技年,甲、乙、丙、丁四人参加运动会射击项目选拔赛,四人的平均成绩和方差如表:则参加运动会的最佳人选应为______.【答案】丙【解析】解:从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定,故最佳人选应该是丙.故答案为:丙.从表格中可以看出乙和丙的平均成绩优于甲和丁的平均成绩,但是两的成绩发挥的最稳定.本题考查最佳人选的判断,考查平均数、方差的性质等基础知识,考查运算求解能力,是基础题.15.某汽车4S店销售甲品牌A型汽车,在2019年元旦期间,进行了降价促销活动,根据以往数据统计,该型汽车的价格与月销售量之间有如下关系:已知A型汽车的销售量y与价格x符合线性回归方程:,若A型汽车价格降到19万元,预测它的销售量大约是______辆【答案】42【解析】解:由图表可得,,.代入线性回归方程,得.,当时,.预测它的销售量大约是42辆.故答案为:42.由已知求得,代入线性回归方程求得b,得到线性回归方程,取求得y值得答案.本题考查线性回归方程的求法,考查计算能力,是基础题.16.已知函数有唯一零点,则______.【答案】【解析】解:与的图象均关于直线对称,的图象关于直线对称,的唯一零点必为,,,.故答案为:.判断函数与的图象的对称性,结合函数的对称性进行判断即可.本题主要考查函数零点个数的判断,根据条件判断函数的对称性是解决本题的关键.三、解答题(本大题共6小题,共70.0分)17.已知集合,.Ⅰ当时,求;Ⅱ若,求实数k的取值范围.【答案】解:Ⅰ当时,,则,分Ⅱ,则分当时,,解得;分当时,由得,即,解得分综上,分【解析】Ⅰ直接根据并集的定义即可求出由,得,由此能求出实数k的取值范围.本题考查集合的求法,考查实数的取值范围的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.计算下列各式的值:;.【答案】解:原式;原式.【解析】进行分数指数幂的运算即可;进行对数的运算即可.考查分数指数幂和对数的运算,以及对数的运算性质.19.已知是奇函数.求a的值并判断的单调性,无需证明;若对任意,不等式恒成立,求实数k 的取值范围.【答案】解:是奇函数,定义域为R,,解得,验证:,,即为奇函数,,在R上为增函数,对任意,不等式恒成立,,在R上为增函数,,,即对任意,恒成立,令,,,,对于,当时取最大值,最大值为3,,,故实数k的取值范围为.【解析】由奇函数的性质可得,在判断函数的单调性;利用的奇偶性和单调性,将不等式转化为:在上恒成立,然后转化为最值,最后构造函数求出最大值即可.本题考查了奇偶函数定义、函数的单调性、恒成立问题转化为最值、二次函数求最值属中档题.20.张先生和妻子李女士二人准备将家庭财产100万元全部投资兴办甲、乙两家微型企业,计划给每家微型企业投资50万元,张先生和妻子李女士分别担任甲、乙微型企业的法人根据该地区以往的大数据统计,在10000家微型企业中,若干年后,盈利的有5000家,盈利的有2x家,持平的有2x家,亏损的有x家.求x的值,并用样本估计总体的原理计算:若干年后甲微型企业至少盈利的可能性用百分数示;张先生加强了对企业的管理,预计若干年后甲企业一定会盈利,李女士由于操持家务,预计若干年后盈利情况与该地区以往的大数据统计吻合求若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半.【答案】解:,,用样本估计总体计算得:若干年后甲微型企业至少盈利的可能性为:.由题意得若干年后,两人家庭财产的总数量为:万元.由于婚姻期间家庭财产为共同财产,若干年后李女士拥有的家庭财产数量的期望值婚姻期间财产各占一半为:万元.【解析】由,求出,用样本估计总体,能求出若干年后甲微型企业至少盈利的可能性.由题意求出若干年后,两人家庭财产的总数量,由此能求出若干年后李女士拥有的家庭财产数量的期望值.本题考查实数值、至少盈利的可能性、期望值的求法,考查用样本特征估计总体特征等基础知识,考查运算求解能力,是基础题.21.当今的学校教育非常关注学生身体健康成长,某地安顺小学的教育行政主管部门为了了解小学生的体能情况,抽取该校二年级的部分学生进行两分钟跳绳次数测试,测试成绩分成,,,四个部分,并画出频率分布直方图如图所示,图中从左到右前三个小组的频率分别为,,,且第一小组从左向右数的人数为5人.求第四小组的频率;求参加两分钟跳绳测试的学生人数;若两分钟跳绳次数不低于100次的学生体能为达标,试估计该校二年级学生体能的达标率用百分数表示【答案】解:第四小组的频率为:.设参加两分钟跳绳测试的学生有x人,则,解得,参加两分钟跳绳测试的学生人数为50人.由题意及频率分布直方图知:样本数据参加两分钟跳绳次数测试体体能达标率为:,估计该校二年级学生体能的达标率为.【解析】由频率分布直方图能求出第四小组的频率.设参加两分钟跳绳测试的学生有x人,则,由此能求出参加两分钟跳绳测试的学生人数.由题意及频率分布直方图知样本数据参加两分钟跳绳次数测试体体能达标率为,由此能估计该校二年级学生体能的达标率.本题考查频率、频数、达标率的求法,考查频率分布直图的性质等基础知识,考查运算求解能力,是基础题.22.已知函数,其最小值为.求的表达式;当时,是否存在,使关于t的不等式有且仅有一个正整数解,若存在,求实数k的取值范围;若不存在,请说明理由.【答案】解:函数的对称轴为,当时,区间为增区间,可得;当,可得;当时,区间为减区间,可得.则;当时,即,可得,令,,可得在递减,在递增,在的图象如右图:,,由图可得,即,关于t的不等式有且仅有一个正整数解2,所以k的范围是【解析】求得的对称轴,讨论对称轴和区间的关系,结合单调性可得最小值;由题意可得,令,求得单调性,画出图象,可得整数解2,即可得到所求范围.本题考查二次函数的最值求法,注意运用对称轴和区间的关系,考查不等式有解的条件,注意运用参数分离和对勾函数的单调性,考查运算能力和推理能力,属于中档题.。
2019—2020学年度第一学期期末质量检测高一数学答案一、选择题二、填空题13.21614.115.3216.25三、解答题17.(满分10分)(1)由2log 1log 22=<x 得:{}20|<<=x x A 3分由011e e x =≥-得:{}1|≥=x x B 4分(){}10|<<=∴x x B C A R 5分(2)由A C A = 得,CA ⊆6分⎪⎩⎪⎨⎧≥+≤+<∴230232a a a a 解得:01≤≤-a .10分18.(满分12分)(1)直线1-=x 的倾斜角为090则直线l 的倾斜角为045,即斜率为1由点斜式可得直线l 的方程为1+=x y .(2)当A 、B 两点在直线l 的同侧时有AB l //则1==AB l k k ,由点斜式可得直线l 的方程为01=+-y x ;当A 、B 两点在直线l 的两侧时则l 过线段AB 的中点()0,2,由两点式可得直线l 的方程为042=-+y x .直线l 的方程为01=+-y x 或042=-+y x .12分19.(满分12分)(1)设)0()(2≠++=a c bx ax x f 则()()cx b x a x f ++++=+11)1(2由42)()1(2+=++x x f x f 可得:42)2()(2222+=+++++x c b a x b a ax ⎪⎩⎪⎨⎧=++=+=∴420)(222c b a b a a 解得1=a ,1-=b ,2=c 2)(2+-=∴x x x f (2)2)(2+-=x x x f 的对称轴为21=x 题号123456789101112答案CBCACBBDAACB6分1分4分11分8分5分2分7分9分当21>m 时,)(x f 在区间⎥⎦⎤⎢⎣⎡21,0上单调递减,在区间⎥⎦⎤⎢⎣⎡m ,21上单调递增故)(x f 的最小值为4721(=f 当210≤<m 时,)(x f 在区间[]m ,0上单调递减故)(x f 的最小值为2)(2+-=m m m f 所以当210≤<m 时,2)(2min +-=m m x f20.(满分12分)(1)证明:由题可得222AB BC AC =+即BCAC ⊥由直三棱柱111C B A ABC -可得⊥1CC 面ABCACCC ⊥∴1又C CC BC =1 11C CBB AC 面⊥∴故1BC AC ⊥(2)证明:设11BC CB 和的交点为O ,连接ODO 为矩形11C CBB 两条对角线1CB 和1BC 的交点,则O 为1BC 中点又D 为AB 中点则OD 为1ABC ∆的中位线,即OD AC //1则1AC /⊆面1CDB ,OD ≠⊂面1CDB 1AC ∴//面1CDB 21.(满分12分)(1)由题知直线l 的方程为2+=kx y 联立方程()⎩⎨⎧=+-+=11222y x kx y 得()(*)04)24(122 =+-++x k x k 由于直线l 与圆C 交于B A 、两点()()4142422>⨯+⨯--=∆∴k k 解得43-<k .(2)设交点()11,y x A ,()22,y x B 由韦达定理可得124221+--=+k k x x 14221+=k x x ()()2121212121122121122211)(2222x x x x x kx x x kx x kx x x x y x y x x yx y k k OB OA ++=+++=+=+=+将两根之和和两根之积代入可得:1=+OB OA k k 2分3分6分9分5分12分10分6分1分4分9分8分12分22.(满分12分)(1)矩形的周长为8cm,则()cm x AD -=4,()cmy x EC AE -==在ADE ∆中,有222AE DE AD =+即()()2224y x y x -=+-由于AD AB >得x x ->4即2>x 又0>AD 则4<x 故()42,84<<-=x x y .(2)()⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛--=⋅=x x x x DE AD S 82128442121(3)由于24242282≥+⎪⎪⎭⎫⎝⎛-=+x x x x 当且仅当xx 22=即()4,222∈=x 时取""=号.所以当长为cm 22,宽为()cm 224-时,S 最大.12分8分6分10分。
如东中学2019-2020学年第一学期数学阶段性测试高一数学一、单项选择题1.设全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()U A C B =I ( ) A .{}0,1,3 B.{}1,3 C.{}1,2,3 D.{}0,1,2,32.利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是( ) A.()0,1 B.()1,2 C.()2,3 D.()3,43.函数lncos y x =在,22ππ⎛⎫-⎪⎝⎭上的大致图象是( )4.函数()2f x x x =- ) A.R B.[2,)+∞ C.(,2]-∞ D.[0,)+∞5.已知△ABC 中,D 为BC 中点,E 为AD 中点,则BE =u u u r( )A.3144AB AC -+u u u r u u u rB. 3144AB AC -u u u r u u u rC. 1344AB AC -+u u u r u u u rD. 1344AB AC -u u ur u u u r6.已知()sin sin f x x x =+,那么()f x 的定义域为( ) A.R B.[1,0)(0,1]-U C.[]1,1- D.{}1,1- 7.函数()()21580,1x x f x aa a a -=-+->≠在[2,)+∞上单调递减,则实数a 的取值范围为( )A.()50,1[,)2+∞U B.()4[,1)1,5+∞U C.()50,1(1,]2U D.5(1,]28.设函数()21,25,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数,,a b c 满足()()()f a f b f c ==,则222a b c++的取值范围是( )A.()16,32B.()18,34C.()17,35D.()6,7 二、多项选择题9.已知集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,那么a 的值为()A.-1B.1C.53D.0 10.对于函数()()3sin ,,f x ax b x c a b R c Z =++∈∈,选取,,a b c 的一组值去计算()1f -和()1f ,所得出的正确结论可能是( )A.2和6B.3和9C.4和11D.5和1311.关于函数()sin sin f x x x =+有下述四个结论,其中正确的结论是( ) A.()f x 是偶函数 B. ()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 C. ()f x 在[],ππ-有四个零点 D. ()f x 的最大值为2 12.已知函数())22019ln120191x x f x x x -=++-+,下列说法正确的是( )A.函数()f x 是奇函数B.关于x 的不等式()()2122f x f x -+>的解集为1,4⎛⎫+∞ ⎪⎝⎭C.函数()f x 在R 上式增函数D.函数()f x 的图象的对称中心是()0,1 三、填空题13.计算)2lg13558log 3log 152127-⎛⎫+--= ⎪⎝⎭。
江苏省南通市如东县2020-2021学年高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}|11M x x =-<<,{}02|N x x =≤<,则M N ⋃等于( ) A .{}|12x x -<<B .{}|01x x ≤<C .{}1|0x x <<D .{}|10x x -<< 2.cos960︒等于( )A. B.2 C .12- D .123.已知点()1,2A ,()3,4B ,则与AB 共线的单位向量为( )A.22⎛⎫ ⎪ ⎪⎝⎭ B.22⎛⎫-- ⎪ ⎪⎝⎭C.22⎛⎫ ⎪ ⎪⎝⎭或22⎛⎫-- ⎪ ⎪⎝⎭D .()2,24.已知函数1123,0()log (1),0x x f x x x -⎧≤⎪=⎨+>⎪⎩,则[(3)]f f 等于( ) A .27- B .127 C .3 D .95.在ABC 中,D 为边BC 上的一点,且3BD DC =,则AD =( )A .3144AB AC + B .1344AB AC + C .1344AB AC -D .3144AB AC - 6.已知幂函数y =f (x )的图象过点(2,则()2log 2f 的值为( ) A .12 B .1 C .12- D .1- 7.已知角α的终边过点()1,1P -,则sin 2cos 2sin cos αααα+-等于( ) A .13B .13-C .3D .3- 8.求值:222sin sin cos 33ππααα⎛⎫⎛⎫-++-= ⎪ ⎪⎝⎭⎝⎭( )A .12-B .12C .0D .1-9.函数()y f x =是定义域为R ,周期为2的函数,且当[)1,1x ∈-时,()21f x x =-;已知函数()lg ||g x x =,则函数()()y f x g x =-在区间[]7,10-内的零点个数为( ) A .11 B .13 C .15 D .1710.平行四边形ABCD 中,已知4AB =,3AD =,60BAD ∠=︒,点E ,F 分别满足AE ED λ=,DF FC =,若6AF BE ⋅=-,则λ等于( )A .23B .13C .1D .2二、多选题11.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C .32D .32- 12.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,ϕπ<)的部分图象如图所示,则下列结论正确的是( )A .函数()f x 的图象关于2x π=直线对称B .函数()f x 的图象关于点,012π⎛⎫- ⎪⎝⎭对称 C .函数()f x 在区间36ππ⎡⎤-⎢⎥⎣⎦,上单调递增 D .1y =与图象()231212y f x x ππ⎛⎫=-≤≤ ⎪⎝⎭的所有交点的横坐标之和为83π三、填空题13.函数1()ln(1)1f x x x =++-的定义域是________. 14.已知函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,则()()2f x f ≤的解集是________.15.若函数sin()(0)y x ωϕω=+>的部分图象如图所示,则ω的值为_______________.16.矩形ABCD 中,2AB =,1AD =,点P 为矩形ABCD 内(包括边界)一点,则PA PB +的取值范围是________.四、解答题17.已知()1,2a =,()3,2b =-.(1)求a b -;(2)当k 为何值时,ka b +与3a b -垂直?18.已知函数2()sin cos f x x x x =+. (1)求6f π⎛⎫ ⎪⎝⎭的值;(2)若3225f α⎛⎫=+ ⎪⎝⎭,54,63ππα⎛⎫∈ ⎪⎝⎭,求sin α的值. 19.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围;(2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值.20.如图,半径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AOB θ∠=.(1)将十字形的面积S 表示为θ的函数;(2)求十字形的面积S 的最大值.21.设函数32()32x xx x a f x -⋅=+为奇函数. (1)求实数a 的值;(2)当[1,)x ∈+∞时,求()f x 的值域.22.如果函数()f x 在定义域的某个区间[],m n 上的值域恰为[],m n ,则称函数()f x 为[],m n 上的等域函数,[],m n 称为函数()f x 的一个等域区间.(1)若函数2()f x x =,x ∈R ,则函数()f x 存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由(2)已知函数()()x f x a a k x b =+-+,其中0a >且1a ≠,0k >,b ∈R .(ⅰ)当a k =时,若函数()f x 是[]0,1上的等域函数,求()f x 的解析式;(ⅱ)证明:当01a <<,1k a ≥+时,函数()f x 不存在等域区间.参考答案1.A【解析】【分析】根据集合并集运算,即可求解.【详解】{}|11M x x =-<<,{}02|N x x =≤<∴{}12M N x x ⋃=-<<故选:A【点睛】本题考查集合的交集运算,属于基础题.2.C【分析】根据三角函数诱导公式,化简求值.【详解】 由题意1cos960cos(720240)cos(18060)cos602=+=+=-=- 故选:C【点睛】本题考查三角函数诱导公式,属于基础题.3.C【分析】由题意写出()2,2AB =.可设与AB 共线的单位向量(),e m m =,由1e =,即可求解.【详解】由题意()2,2AB =设与AB 共线的单位向量(),e m m =,又1e =1=解得212m =,m =故2,22e ⎛⎫= ⎪ ⎪⎝⎭或2,22e ⎛⎫=-- ⎪ ⎪⎝⎭故选:C【点睛】 本题考查向量共线的坐标运算,属于基础题.4.B【分析】由分段函数代入即可求解【详解】由题意()()11223log 31log 42f =+==-()()21132327f f f --⎡⎤=-==⎣⎦ 故选:B【点睛】本题考查分段函数求值,属于基础题.5.B【分析】D 为边BC 上的一点,且3BD DC =,D 是四等分点,结合AD AB BD =+,最后得到答案.【详解】 ∵D 为边BC 上的一点,且3BD DC =,∴D 是四等分点,()33134444AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, 故选:B .【点睛】本题考查了向量的线性运算及平面向量基本定理的应用,属于基础题.6.A【分析】先求幂函数的表达式,进而求值即可.【详解】设幂函数f (x )=x α,因为幂函数的图象经过点(2,所以2α=α12=,则幂函数的解析式为()f x =∴()2f =,()21log 2log ,2f = 故选:A【点睛】本题考查幂函数的求法,考查函数值的求法及对数运算,属于基础题.7.B【分析】由题意,根据三角函数定义,可知tan 1α=-,再将分式上下同除cos α,即可求解.【详解】由题意,角α终边过点()1,1P -tan 1α∴=- 原式sin cos 2sin cos αααα+=-tan 22tan 1αα+=-121213-+==--- 故选:B【点睛】本题考查齐次式求值,属于基础题.8.B【分析】由题意,先根据三角函数两角和与差的正弦公式,化简,即可求值.【详解】222sin sin cos 33ππααα⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭22211sin sin cos 22ααααα⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 222132sin cos cos 44ααα⎡⎤=+-⎢⎥⎣⎦ 22213sin cos cos 22ααα=+- 2211sin cos 22αα=+ 12= 故选:B【点睛】本题考查两角和与差的正弦公式,三角函数的化简与求值,考察计算能力,属于中等题型. 9.C【分析】根据函数的周期性,作出函数()f x 和()g x 的图象,观察图像,即可得到两个函数公共点的个数.【详解】函数()y f x =是定义域为R ,周期为2的函数,且当[)1,1x ∈-时,()21f x x =-; ∴作出函数()f x 的图象如图:()lg ||g x x =,定义域()(),00,-∞⋃+∞∴在同一直角坐标系内,作出函数()g x 的图象如图:当910x ≤≤时,1100x -≤-≤则()()()210110f x f x x =-=--此时()()101,101f g == ()()90,9lg9f g ==故由图象可知两个图象的交点个数为15个.故选:C【点睛】本题考查函数周期性、对数函数运算,考查函数与方程思想、数形结合思想,综合性较强,有一定难度.10.D【分析】利用平行四边形法则,将AF BE ⋅分别利用平行四边形的相邻两边表示,然后利用已知计算向量的数量积,列出方程求解参数.【详解】由题意4AB =,3AD =,60BAD ∠=︒216AB ∴=,29AD =,43cos606AB AD ⋅=⨯⋅= 由图知12AF AD DF AD AB =+=+ AE ED λ= 1AE AD λλ∴=+1BE BA AE AB AD λλ∴=+=-++ 则121AF BE AB AD AB AD λλ⎛⎫⎛⎫⋅=+-+ ⎪⎪+⎝⎭⎝⎭()221262121AB AD AB AD λλλλ--=-++⋅=-++ 代入,得()92866121λλλλ+-+-⋅=-++ 解得2λ=故选:D【点睛】考查几何图形中的向量表达,化成同一组基底进行数量积的运算,典型题,考查热点,本题属于中等题型.11.BCD【分析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解.【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =- 若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k ==()1,3BC k ∴=--2390k ∴-+-=解得113k = 若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k ==()1,3BC k ∴=--()130k k ∴-+-=解得k =综合可得,k 的值可能为21133,,3322--故选:BCD【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型. 12.BCD【分析】根据图象求出函数解析式,再判断各选项.【详解】由题意2A =,254312T πππ⎛⎫=⨯-=⎪⎝⎭,∴22πωπ==,又22sin 223πϕ⎛⎫⨯+=- ⎪⎝⎭,42,32k k Z ππϕπ+=-∈,又ϕπ<,∴6π=ϕ, ∴()2sin(2)6f x x π=+.∵72266πππ⨯+=,∴2x π=不是对称轴,A 错;sin 20126ππ⎡⎤⎛⎫⨯-+= ⎪⎢⎥⎝⎭⎣⎦,∴,012π⎛⎫- ⎪⎝⎭是对称中心,B 正确;36x ππ⎡⎤∈-⎢⎥⎣⎦,时,2,622x πππ⎡⎤+∈-⎢⎥⎣⎦,∴()f x 在,36ππ⎡⎤-⎢⎥⎣⎦上单调递增,C 正确;2sin 216x π⎛⎫+= ⎪⎝⎭,1sin 262x π⎛⎫+= ⎪⎝⎭,2266x k πππ+=+或522,66x k k Z πππ+=+∈,即x k π=或3x k ππ=+,k Z ∈,又231212x ππ-≤≤,∴40,,,33x πππ=,和为83π,D 正确. 故选:BCD . 【点睛】关键点点睛:本题考查三角函数的图象与性质,解题关键是掌握“五点法”,通过五点法求出函数解析式,然后结合正弦函数性质确定函数()f x 的性质.本题方法是代入法,整体思想,即由已知求出26x π+的值或范围,然后结合正弦函数得出结论.13.(1,1)(1,)-+∞【分析】由题意分析,使函数成立需满足真数大于0、分母不为0,然后取交集,即可求解. 【详解】要使函数1()ln(1)1f x x x =++-有意义,需满足10x +>且10x -≠, 得1x >-且1x ≠故答案为:(1,1)(1,)-+∞【点睛】本题考查函数定义域求法,属于基础题.14.(][)22-∞-⋃+∞,, 【分析】由题意先确定函数()f x 在(),0-∞上是增函数,再将不等式转化为()()112f f ⨯≤即可求得x 的取值范围. 【详解】函数()f x 是定义在R 上的偶函数,且()f x 在区间[0,)+∞上是减函数,∴函数()f x 在区间(),0-∞上是增函数()()2f x f ≤()()2f x f ∴≤2x ∴≥2x ∴≥或2x -≤∴解集为(][),22,-∞-+∞ 故答案为:(][),22,-∞-+∞【点睛】本题考查偶函数与单调性结合解抽象函数不等式问题,直观想象能力,属于中等题型. 15.=4ω. 【分析】由所给函数图像 过点05(,)24y π,011(,)24y π-,列式115sin()sin()2424ππωϕωϕ+=-+,利用诱导公式可得.【详解】由函数图像过点05(,)24y π,011(,)24y π-,得05sin()24y πωϕ=+,011sin()24y πωϕ-=+,所以115sin()sin()2424ππωϕωϕ+=-+,又两点在同一周期,所以115()2424ππωϕπωϕ+=++,4ω=.故答案为4. 【点睛】本题考查三角函数的图像与性质,考查简单三角方程的解,考查图形识别与运算求解能力,属于基础题.16.[0, 【分析】由题意,取AB 中点为M ,则有=2PA PB PM +,可知求解2PM 的范围就是PA PB +的范围. 【详解】由题意,取AB 中点为M ,则有=2PA PB PM +,=2PA PB PM ∴+,如图所示,当P 点与D 点或者C 点重合时,=2PA PB PM +取最大值当P 点与M 点重合时,=2PA PB PM +取最小值0故答案为:[0, 【点睛】本题考查向量计运算,属于基础题. 17.(1)4(2)19 【分析】(1)由题意,先求(4,0)a b -=,再求模长;(2)根据向量垂直,推出数量积为零,求解参数. 【详解】解:(1)因为()4,0a b -=,所以||4a b -=; (2)因为1(3)221a b ⋅=⋅-+⋅=,所以22()(3)(13)32380ka b a a ka k a b b k +⋅-=+-⋅-=-=, 解得19k =. 【点睛】本题考查(1)向量模长的求法;(2)垂直关系的向量表示;本题考查转化与化归思想,属于基础题.18.(1)6f π⎛⎫= ⎪⎝⎭(2)sin α= 【分析】(1)根据三角函数恒等变换,化简函数()sin 232f x x π⎛⎫=-+ ⎪⎝⎭,再求值;(2)由(1)代入3225f α⎛⎫=+⎪⎝⎭,可知3sin 35πα⎛⎫-= ⎪⎝⎭,由角的范围,求出4cos 35πα⎛⎫-=- ⎪⎝⎭,由组合角sin sin 33ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,即可求解.【详解】解:(1)因为21cos 21()sin cos sin 222x f x x x x x -=+=+sin 23x π⎛⎫=-+⎪⎝⎭所以6f π⎛⎫=⎪⎝⎭(2)因为3sin 23225f απα⎛⎫⎛⎫=-+=+⎪ ⎪⎝⎭⎝⎭, 所以3sin 35πα⎛⎫-= ⎪⎝⎭,又因为54,63ππα⎛⎫∈⎪⎝⎭,所以,32ππαπ⎛⎫-∈ ⎪⎝⎭, 所以cos 03πα⎛⎫-< ⎪⎝⎭,所以4cos 35πα⎛⎫-==- ⎪⎝⎭, 因此sin sin sin cos cos sin 333333ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,314sin 525α⎛⎫=⨯+-=⎪⎝⎭ 【点睛】本题考查(1)三角函数恒等变换;(2)配凑组合角求值问题;注意角的取值范围,考察计算能力,属于中等题型.19.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m = 【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值. 【详解】解:(1)对于函数()f x ,开口向上,对称轴2mx =, 当()f x 在[]1,1x ∈-上单调递增时,12m≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m≥,解得2m ≥,综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值, 当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去; 当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =. 【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.20.(1)28sin cos4sin 222S θθθ=-(2)max 2S =.【分析】(1)由题意,根据三角函数和圆的半径表达2sin 2AB θ=,2cos2BE θ=,再计算十字形的面积;(2)由(1)中十字形的面积28sin cos4sin 222S θθθ=-,根据三角恒等变换,化简函数解析式,即可求解最大值. 【详解】解:(1)由题意,2sin 2AB θ=,2cos2BE θ=,因为AB BE <,所以0,2πθ⎛⎫∈ ⎪⎝⎭. 所以222sin 2cos 2sin 222S θθθ⎛⎫⎛⎫=⋅- ⎪ ⎪⎝⎭⎝⎭. 即28sincos4sin 222S θθθ=-,0,2πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)得:4sin 2cos 2S θθ=+-1)2tan 2θϕϕ⎛⎫=+-= ⎪⎝⎭所以max 2S =. 答:(1)28sincos4sin 222S θθθ=-;(2)max 2S =. 【点睛】本题考查(1)三角函数在几何图形中的应用;(2)三角恒等变换求最值问题;考察计算能力,实际操作能力,综合性较强,有一定难度.21.(1)1(2)1,15⎡⎫⎪⎢⎣⎭【分析】(1)由题意,根据奇函数(0)0f =,即可求解;(2)由(1),将函数化简为31322()32312xx xx x x y f x ⎛⎫- ⎪-⎝⎭===+⎛⎫+ ⎪⎝⎭,导出3121x y y +⎛⎫= ⎪-⎝⎭,再根据指数函数有界性,求解y 的范围,即可求解值域. 【详解】解:(1)因为函数()f x 为奇函数,且函数()f x 的定义域为(,)-∞+∞,所以0000321(0)0322a a f -⋅-===+,所以1a =. 证明:函数32()32x xx xf x -=+,其定义域为R ,3223()()3223x x x xx x x xf x f x -------===-++,故()f x 为奇函数, 故所求实数a 的值为1.(2)因为函数31322()32312xx x x x x y f x ⎛⎫- ⎪-⎝⎭===+⎛⎫+ ⎪⎝⎭,所以3121x y y +⎛⎫= ⎪-⎝⎭, 又[1,)x ∈+∞时,3322x⎛⎫≥ ⎪⎝⎭,所以1312y y +≥-, 解得115y ≤<, 故所求函数的值域为1,15⎡⎫⎪⎢⎣⎭. 【点睛】本题考查(1)奇函数定义(2)函数值域求法:反函数法;考查直观想象能力,考查计算能力,技巧性强,有一定难度.22.(1)[]0,1;见解析(2)(ⅰ)()21xf x =-(ⅱ)见解析【分析】(1)由题意,分析等域区间定义,写出函数2()f x x =的等域区间; (2)(ⅰ)当a k =时,分析函数单调性,分类讨论等域区间,即可求解;(ⅱ)由题意,根据01a <<,1k a ≥+,判断函数()()xf x a a k x b =+-+为减函数,再由反证法,假设函数存在等域区间[,]m n ,推导出矛盾,即可证明不存在等域区间. 【详解】解:(1)函数2()f x x =存在等域区间,如[]0,1;(2)已知函数()()xf x a a k x b =+-+,其中0a >且1a ≠,0k >,b ∈R D (ⅰ)当a k =时,()xf x a b =+若函数()f x 是[]0,1上的等域函数, 当1a >时,()f x 为增函数,则(0)10(1)1f b f a b =+=⎧⎨=+=⎩得21a b =⎧⎨=-⎩,此时()21xf x =-.当01a <<时,()f x 为减函数,则(0)11(1)0f b f a b =+=⎧⎨=+=⎩,得00a b =⎧⎨=⎩,不满足条件.即()21xf x =-.(ⅱ)证明:当01a <<,1k a ≥+时,1k a -≤--,即10a k -≤-<, 则()()xf x a a k x b =+-+为减函数, 假设函数存在等域区间[,]m n ,则()()()()m nf m a a k m b n f n a a k n b m⎧=+-+=⎨=+-+=⎩, 两式作差()()mna a a k m n n m -+--=-,即()()()(1)()mn a a a k m n n m k a m n -=---+-=---,01a <<,1k a ≥+,0m n a a ∴->,0m n -<,10k a --≥,则(1)()0k a m n ---<,等式不成立,即函数()f x 不存在等域区间. 【点睛】本题考查(1)函数新定义概念辨析(2)函数单调性、最值问题分析;考察计算能力,考查分析问题的能力,探究问题本质为单调性对值域的分析,综合性较强,属于难题.。
2019-2020学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合,,则等于A. B. C. D.【答案】A【解析】解:集合,,则.故选:A.化简集合A、B,根据交集的定义写出.本题考查了解不等式与交集的运算问题,是基础题.2.若一个圆锥的表面积为,侧面展开图是半圆,则此圆锥的高为A. 1B.C.D. 2【答案】C【解析】解:设圆锥的母线长为l,底面半径为r,高为h,则,又,由解得,,高.故选:C.设圆锥的母线长为l,底面半径为r,高为h,列方程组求得r、l和h的值.本题考查了圆锥的侧面展开图应用问题,是基础题.3.函数的定义域为A. B.C. D. ,【答案】B【解析】解:由,解得.函数的定义域为.故选:B.由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组求解.本题考查函数的定义域及其求法,是基础题.4.已知直线与直线垂直,则a的值为A. 0B.C. 1D.【答案】C【解析】解:时,两条直线不垂直.,由,解得:.综上可得:.故选:C.对a分类讨论L利用两条直线相互垂直的充要条件即可得出.本题考查了直线垂直的充要条件、分类讨论方法,考查了推理能力与计算能力,属于基础题.5.若幂函数的图象过点,则函数的零点为A. 1B. 2C. 3D. 4【答案】D【解析】解:设幂函数为常数.幂函数的图象过点,,解得.,令,即,解得:,,故选:D.求出幂函数的解析式,解方程求出函数的零点即可.本题考查了求幂函数的解析式问题,考查方程问题,是一道常规题.6.设,表示两个不同平面,m表示一条直线,下列命题正确的是A. 若,,则B. 若,,则C. 若,,则D. 若,,则【答案】D【解析】解:A中缺少的情况;B中,也可能相交;C中缺少的情况;故选:D.前三个选项都漏掉了一种情况,最后一项有定理作保证,故选D.此题考查了直线,平面之间的位置关系,难度不大.7.一个几何体的三视图如图所示,则这个几何体的体积是A. 2B. 4C. 6D. 8【答案】C【解析】解:由题意可知几何体是放倒的四棱柱,底面是直角梯形,所以几何体的体积为:.故选:C.判断几何体的形状,利用三视图的数据求解几何体的体积.本题考查空间几何体的体积的求法,三视图的应用,考查计算能力.8.已知,,,则a,b,c的大小关系为A. B. C. D.【答案】A【解析】解:,;.故选:A.容易得出,,从而得出a,b,c的大小关系.考查对数函数和指数函数的单调性,增函数的定义,以及对数的换底公式.9.已知直线l:与圆交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则A. B. 4 C. D. 6【答案】B【解析】解:圆心到直线l的距离,圆的半径,,设直线l的倾斜角为,则,,过C作l的平行线交BD于E,则,,.故选:B.利用垂径定理计算弦长,计算直线l的倾斜角,利用三角函数的定义计算CD.本题考查了直线与圆的位置关系,直线方程,属于中档题.10.关于x的方程的所有实数解的和为A. 2B. 4C. 6D. 8【答案】B【解析】解:方程,可得或,即有或,可得或,则关于x的方程的所有实数解的和为4.故选:B.由绝对值的意义和对数的运算性质解方程即可得到所求和.本题考查方程的解的和的求法,注意绝对值的定义和对数的运算性质,考查运算能力,属于基础题.11.在四棱锥中,底面ABCD,底面ABCD为正方形,,点E是PB的中点,异面直线PC与AE所成的角为,则该四棱锥的体积为A. B. C. 2 D. 3【答案】A【解析】解:在四棱锥中,底面ABCD,底面ABCD为正方形,,点E是PB的中点,异面直线PC与AE所成的角为,作,垂足为F,连结AF,则F是BC的中点,平面ABCD,,,,设,则,解得,该四棱锥的体积.故选:A.作,垂足为F,连结AF,则F是BC的中点,平面ABCD,,,,设,则,解得,由此能求出该四棱锥的体积.本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.已知函数且,若函数的值域为R,则实数a的取值范围是A. B. C. D.【答案】B【解析】解:函数且,当时,当时,有,而二次函数开口向下,此时函数的值域不可能为R;当时,当时,,当时,,若的值域为R,只需,可得.综上可得a的取值范围是故选:B.对a讨论,分和,结合指数函数的单调性和值域,以及二次函数的值域求法,解不等式即可得到所求范围.本题考查分段函数的运用,考查函数的值域的求法,注意运用指数函数的单调性和值域,考查分类讨论思想方法和运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知点2,,点4,,线段AB中点为M,O为坐标原点,则______.【答案】【解析】解:点2,,点4,,线段AB中点为M,O为坐标原点,3,,.故答案为:.利用线段中点坐标公式求出3,,再由两点间距离公式能求出的值.本题考查线段长的求法,考查中点坐标公式、两点间距离公式等基础知识,考查运算求解能力,考查数形结合思想,是基础题.14.若,则______.【答案】【解析】解:,则,,,,故答案为:.先求出,即可求出答案.本题考查了指数幂和对数的运算,属于基础题.15.一等腰直角三角形,绕其斜边旋转一周所成几何体体积为,绕其一直角边旋转一周所成几何体体积为,则______.【答案】【解析】解:一等腰直角三角形,绕其斜边旋转一周所成几何体体积为,绕其一直角边旋转一周所成几何体体积为,设斜边长为2,则直角边长为,,,.答案为:.设斜边长为2,则直角边长为,从而,,由此能求出.本题考查两个旋转体的体积的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16.定义域为的减函数是奇函数,若,则对所有的,及都成立的实数a的取值范围为______.【答案】【解析】解:根据题意,为定义域为的奇函数,则,则有,当时,即恒成立,令,必有,解可得:,则a的取值范围为;故答案为:.根据题意,由函数的奇偶性与单调性可得,进而可得当时,即恒成立,令,分析可得,解可得a的取值范围,即可得答案.本题考查函数的奇偶性与单调性的综合应用,涉及函数的恒成立问题,属于综合题.三、解答题(本大题共6小题,共70.0分)17.已知函数,,.求函数的解析式;求函数在上的值域.【答案】解:,;;解得,;;在上单调递增;;在上的值域为.【解析】根据,即可求出,,从而得出;容易判断在上是增函数,从而求出即可得出在上的值域.考查函数值域的概念及求法,一次函数和反比例函数的单调性,增函数的定义.18.如图,在四棱锥中,底面ABCD,底面ABCD是平行四边形,,,垂足为E.证明:平面ABE;若,,M是BC中点,点N在PD上,平面ABE,求线段PN的长.【答案】证明:底面ABCD,,,,平面PAC,平面PAC,,,,平面ABE.解:平面ABE,设过MN与平面ABE平行的平面与PC交于点F,与AD交于点G,则,,又ABCD是平行四边形,,,平面MFNG,,是BC中点,是CE中点,,,.【解析】推导出,,从而平面PAC,由此能证明平面ABE.设过MN与平面ABM平行的平面与PC交于点F,与AD交于点G,则,,,,从而平面MFNG,进而,由此能求出PN.本题考查线面垂直的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.已知函数且,在上的最大值为1.求a的值;当函数在定义域内是增函数时,令,判断函数的奇偶性,并求函数的值域.【答案】解:根据题意,函数且,在上的最大值为1,若,则为增函数,则有,解可得;若,则为减函数,则有,解可得;故a的值为2或;根据题意,若函数为增函数,则,;有,解可得,即函数的定义域为;又由,则函数为偶函数;又由,设,,则,又由,则,则,故的值域为.【解析】根据题意,结合对数函数的最大值,分与两种情况讨论,求出a的值,即可得答案;根据题意,求出的解析式,分析可得与的关系,可得为偶函数,设,,则,分析t的取值范围,由对数函数的性质分析可得答案.本题考查函数的奇偶性与值域,中注意结合函数的单调性分析a的值.20.如图,在三棱柱中,底面ABC,,,,,D是线段AB的中点.证明:平面;求三棱锥的体积.【答案】解:证明:在中,,D为中点,,平面,平面,平面;为中点,,易得:,在等腰三角形CAB中,,平面,且,,.故三棱锥的体积为:12.【解析】利用中位线易得线线平行,进而得线面平行;利用底或高的关系,把所求体积转化为三棱锥体积的一半,得解.此题考查了线面平行,转化法求体积等,难度适中.21.已知.判断的单调性,并用定义法加以证明;若实数t满足不等式,求t的取值范围.【答案】解:令x,,则,,任取,,且,,,,即,在R上是增函数不等式化为在R上是增函数,,的取值范围是【解析】先用换元法求出函数的解析式,再用复合函数单调性判断方法得到单调性,最后用定义证明即可;根据函数的单调性可解得.本题考查了奇偶性与单调性的综合,属中档题.22.已知圆M过点且与圆N:为同圆心,圆N与y轴负半轴交于点C.若直线被圆M截得的弦长为,求m的值;设直线:与圆M交于点A,B,记,,若,求k的值.【答案】解:圆N的圆心为,故可设圆M的方程为,则,圆M的标准方程为,直线被圆M截得的弦长为,到直线的距离,或联立方程,消y可得,设,,则,,,,,解得或,但不满足,【解析】根据圆的标准方程,弦心距,点到直线的距离,即可求出,联立方程,消y可得,设,,整理后代入根与系数关系求解实数k的值.本题主要考查了直线与圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,是中档题.。
2019-2020学年江苏省南通市第一中学高一上学期期末数学试题一、单选题1.函数()()lg 2f x x =+的定义域是( ) A .[2,)-+∞ B .(2,)-+∞C .(2,)+∞D .[2,)+∞【答案】B【解析】根据对数函数的性质,只需20x +>,即可求解. 【详解】()()lg 2f x x =+Q , 20x ∴+>,解得2x >-,所以函数的定义域为(2,)-+∞, 故选:B 【点睛】本题主要考查了对数函数的性质,属于容易题. 2.sin 225︒的值为( )A .2-B .2C .D 【答案】A【解析】把225o 变为18045+o o ,利用诱导公式()sin 180sin αα+=-o化简后,再利用特殊角的三角函数值即可得结果. 【详解】()sin 225sin 18045sin 452︒=︒+︒=-︒=-,故选A. 【点睛】本题主要考查诱导公式的应用以及特殊角的三角函数,属于简单题.对诱导公式的记忆不但要正确理解“奇变偶不变,符号看象限”的含义,同时还要加强记忆几组常见的诱导公式,以便提高做题速度.3.函数23cos()56y x π=-的最小正周期是( )A .25π B .52πC .2πD .5π【答案】D【解析】分析:直接利用周期公式求解即可. 详解:∵23cos 56y x π⎛⎫=- ⎪⎝⎭,25ω=,∴2π5πT ω==.故选D点睛:本题主要考查三角函数的图象与性质,属于简单题.由 函数cos()y A x ωϕ=+可求得函数的周期为2πω;由x k ωϕπ+=可得对称轴方程;由2x k πωϕπ+=+可得对称中心横坐标.4.若向量,a b r r 不共线,且a mb +r r与()2b a -r r 共线,则实数m 的值为(A .12B .12-C .2D .2-【答案】B【解析】根据向量共线可得()2a mb k b a -+=r r r r,化简即可求出m 的值.【详解】因为向量,a b r r 不共线,且a mb +r r与()2b a -r r 共线,所以()2a mb k b a -+=r r r r ,即2b a mb ka k +=-r r r u u r,所以12m kk=⎧⎨=-⎩,解得12m =-, 故选:B 【点睛】本题主要考查了向量共线,属于容易题. 5.若1tan 3α=,1tan()2αβ+=,则tan β=( ) A .17-B .17C .67D .76【答案】B【解析】利用角的变换()βαβα=+-,代入两角差的正切公式即可求解. 【详解】因为()βαβα=+-,所以11tan()tan 123()]=11+tan()t tan t an 716an[αβααβααβαβ-+-+-==+⋅+=, 故选:B 【点睛】本题主要考查了角的变换,两角差的正切公式,属于容易题. 6.要得到函数y =cos 23x π⎛⎫+⎪⎝⎭的图象,只需将函数y =cos2x 的图象( ) A .向左平移3π个单位长度 B .向左平移6π个单位长度 C .向右平移6π个单位长度D .向右平移3π个单位长度【答案】B【解析】∵cos(2)cos[2()]36y x x ππ=+=+,∴要得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图像,只需将函数cos2y x =的图像向左平移6π个单位. 选B .7.已知角θ的终边经过点P (4,m ),且sinθ=35,则m 等于( ) A .﹣3 B .3C .163D .±3【答案】B【解析】试题分析:3sin 5θ==,解得3m =. 【考点】三角函数的定义. 8.已知扇形圆心角为6π,面积为3π,则扇形的弧长等于() A .6πB .4πC .3π D .2π 【答案】C【解析】根据扇形面积公式得到半径,再计算扇形弧长. 【详解】221122263S r r r παπ==⨯=⇒=扇形弧长263l r ππα==⨯=故答案选C 【点睛】本题考查了扇形的面积和弧长公式,解出扇形半径是解题的关键,意在考查学生的计算能力. 9.若02a π<<,3sin()35πα-=,则sin α的值( )A .B .310C D .310-【答案】B【解析】利用角的变换()33ππαα=--,代入两角差的正弦公式即可求解. 【详解】 因为02a π<<,3sin()35πα-=, 所以032ππα<-<,故4cos()35πα-=,所以sin sin[()]sin cos()sin()cos 333333ππππππαααα=--=---431552=-⨯=, 故选:B 【点睛】本题主要考查了角的变换,两角差的正弦公式,属于中档题.10.已知正三角形ABC 边长为2,D 是BC 的中点,点E 满足AE 2ED =u u u v u u u v ,则EB EC ⋅=u u u v u u u v() A .13- B .12-C .23-D .-1【答案】C【解析】化简2EB EC ED DB DC ⋅=+⋅u u ur u u u u u u v r u u u v u u u r ,分别计算3ED =,1DB DC ==,代入得到答案. 【详解】2EB EC ()()()ED DB ED DC ED ED DB DC DB DC ⋅=+⋅+=+⋅++⋅u u u v u u u u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r v u u u r u u u r正三角形ABC 边长为2,D 是BC 的中点,点E 满足AE 2ED =u u u v u u u v13AD ED DB DC =⇒===222EB EC (133ED DB DC ⋅=+⋅=-=-u u u r u u u r u u u r u u u v u u u v故答案选C 【点睛】本题考查了向量的计算,将2EB EC ED DB DC ⋅=+⋅u u ur u u u u u u v r u u u v u u u r 是解题的关键,也可以建立直角坐标系解得答案.11.如果函数y =f(x)在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,那么称函数y =f(x)是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数213()22f x x x =-+是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0C .[0,1]D .[1【答案】D【解析】由题意,求213()22f x x x =-+的增区间,再求()13122f x y x x x==-+的减区间,从而求缓增区间. 【详解】 因为函数213()22f x x x =-+的对称轴为x =1, 所以函数y =f(x)在区间[1,+∞)上是增函数, 又当x≥1时,()13122f x x x x=-+, 令13()122g x x x =-+(x ≥1),则222133'()222x g x x x-=-=,由g′(x)≤0得1x ≤≤即函数()13122f x x x x=-+在区间上单调递减,故“缓增区间”I 为[1,3], 故选D. 【点睛】该题考查的是有关新定义的问题,涉及到的知识点有应用导数研究函数的单调性,属于简单题目. 12.已知3()|sin |2f x x π=,123,,A A A 为图象的顶点,O ,B ,C ,D 为()f x 与x 轴的交点,线段3A D 上有五个不同的点125,,,Q Q Q L .记2(1,2,,5)i i n OA OQ i =⋅=u u u u r u u u u rL ,则15n n ++L 的值为( )A .1532B .45C .452D .1534【答案】C【解析】通过分析几何关系,求出230A OC ︒∠=,260A O C ︒∠=,再将i n 表示成222()=i i i n OA OQ OA OD DQ OA OD =⋅=⋅+⋅u u u u r u u u u r u u u u r u u u r u u u u r u u u u r u u u r,结合向量的数量积公式求解即可【详解】解:由图中几何关系可知,32OE =,23A E =,23OA =21A C =230A OC ︒∠=∴260A O C ︒∠=,32//A D A C Q ,∴23OA DA ⊥,即23OA DA ⊥u u u u r u u u u r.则2222()cos 6i i i n OA OQ OA OD DQ OA OD OA OD π=⋅=⋅+=⋅=⋅u u u u r u u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u u r u u u r ,1545352n n ++==L 答案选C 【点睛】本题结合三角函数考查向量的线性运算,找出两组基底向量2OA u u u u r ,OD uuu r是关键二、填空题13.已知向量()2,1a =r ,(),2b x =-r ,若//a b r r ,则a b +=r r___________.【答案】()2,1--【解析】根据向量平行可得b r,由向量坐标运算即可求解.【详解】//a b r r Q ,2(2)x ∴⨯-=,解得4x =-,(4,2)b ∴=--r,(2,1)(4,2)(2,1)a b ∴+=+--=--r r,故答案为:()2,1-- 【点睛】本题主要考查了平行向量,向量的坐标运算,属于容易题. 14.若幂函数()f x 的图象过点()4,2,则()8f =______.【答案】【解析】设()af x x =,将点()4,2代入函数()y f x =的解析式,求出实数a 的值,即可求出()8f 的值. 【详解】设()a f x x =,则()442af ==,得12a =,()12f x x∴=,因此,()128822f ==.故答案为22. 【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.15.给定两个长度为1的平面向量OA u u u r 和OB uuu r,它们的夹角为120o .如图所示,点C 在以O 为圆心的圆弧上变动.若,OC xOA yOB =+u u u r u u u r u u u r其中,x y R ∈,则x y +的最大值是________.【答案】2 【解析】【详解】12x y OA OC -=⋅u u u r u u u r 12x y OB OC -+=⋅u u u r u u u r 2()22cos ,x y OA OB OC OD OC OD OC +=+⋅=⋅=<>u u u r u u u r u u u r u u u r u u u r u u u r u u u r所以最大值为216.已知函数()21sin sin cos 2f x x x x =+-,下列结论中: ①函数()f x 关于8x π=-对称;②函数()f x 关于(,0)8π对称;③函数()f x 在3(,)88ππ是增函数,④将2y x =的图象向右平移34π可得到()f x 的图象. 其中正确的结论序号为______ . 【答案】①②③【解析】把()f x 化成()()sin f x A wx ϕ=+的型式即可。
2019-2020学年度第一学期高一数学期末考试试卷(满分:150分,时间:120分钟 )一、选择题(共12小题,每小题5分,共60分)1.已知集合A={3,5,6,8},B={1,3,5},那么A ∪B 等于( ) A .{1,3,5,6,8} B .{6,8}C .{3,5}D .{1,6,8}2. 函数()lg(31)f x x =-的定义域为 ( ) A .R B .1(,)3-∞ C .1[,)3+∞ D .1(,)3+∞ 3. (log 227)•(log 34)=( )A .16B .2C .3D .64. 下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为( )A.1y x -=B.ln y x =C.||y x =D.3y x =5. 若一个几何体的三视图都是等腰三角形,则这个几何体可能是( ) A .圆锥 B .正四棱锥 C .正三棱锥 D .正三棱台6. 下面多面体是五面体的是( )A.三棱锥 B .三棱柱 C. 四棱柱 D. 五棱锥 7. 计算:9823log log ⋅= ( ) A.12B.10C. 8D. 68. 已知函数2()1f x x =+,那么(1)f a +的值为( ). A.a 2+a +2 B.a 2+1 C.a 2+2a +2 D.a 2+2a +19. 函数2()43f x x x =-+的零点个数为( ) A .0B .1C .2D .310. 下列等式成立的是( ).A .log 2(8-4)=log 2 8-log 2 4B .4log 8log 22=48log 2C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 411. 方程2x =2-x 的根所在区间是( ).A .(-1,0)B .(2,3)C .(1,2)D .(0,1) 12. 若三球的表面积之比为1:2:3,则其体积之比为( ) A 3:2:1 B 3:2:1 C 32:22:1 D 7:4:1 二.填空题((共4小题,每小题5分,共20分) 13.函数()lg(5)=-f x x 的定义域为 14. 若函数()f x 的图象和()2x g x =的图象关于直线y x =对称,则()f x 的解析式为15. 已知球O 的半径为3,则球O 的表面积为 16. 函数5()2log (3)f x x =++在区间[-2,2]上的值域是______三.解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17. (8分)已知全集R U =, A =}52{<≤x x ,集合B 是函数lg(9)y x =-的定义域. (1)求集合B ; (2)求)(B C A U18. (10分)已知函数1()f x x x=+(1)判断函数()f x 的奇偶性,并证明你的结论; (2)证明函数()f x 在区间(1,+∞)上是增函数.19. (12分)已知函数(),2c bx x x f ++=且()01=f .(1)若0b =,求函数()x f 在区间[]3,1-上的最大值和最小值; (2)要使函数()x f 在区间[]3,1-上单调递增,求b 的取值范围20.(10分)计算(1)5log 3333322log 2log log 859-+- (2)641log ln 3842log 323+⨯e21.(15分)已知函数⎪⎩⎪⎨⎧≥<<--≤+=)2(2)21()1(2)(2x x x x x x x f 。
江苏省南通市如皋市高一(上)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)设全集U={﹣1,2,4},集合A={﹣1,4},则∁UA= .2.(5分)已知函数y=2sin(ω+)(ω>0)的最小正周期为,则ω= .3.(5分)已知幂函数的图象过点(2,4),则它的单调递减区间是.4.(5分)设函数f()=,则f[f(﹣)]的值为.5.(5分)在△ABC中,向量=(1,cosB),=(sinB,1),且⊥,则角B的大小为.6.(5分)(log23+log227)×(log44+log4)的值为.7.(5分)将函数f()=sin(2+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g ()的图象,若y=g()是偶函数,则φ= .8.(5分)已知函数f()=m2﹣2+m的值域为[0,+∞),则实数m的值为.9.(5分)已知sin(α﹣)=,则sin(2α+)的值为.10.(5分)已知sin(α+β)=,sin(α﹣β)=,则的值为.11.(5分)在平面直角坐标系Oy中,点P(1,4)是角α终边上一点,将射线OP绕坐标原点O逆时针方向旋转θ(0<θ<π)角后到达角π的终边,则tanθ= .12.(5分)已知函数f()=,若关于的方程f()﹣a2+2a=0有三个不同的实数根,则实数a的取值范围是.13.(5分)已知函数f()=cos(∈[0,2π])与函数g()=tan的图象交于M,N两点,则|+|= .14.(5分)如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3,点F位线段DE上的动点,则•的取值范围是.()二、解答题(共6小题,满分90分.解答时写出文字说明,证明过程或演算步骤)15.(14分)已知集合A={|f()=lg(﹣1)+},集合B={y|y=2+a,≤0}.(1)若a=,求A∪B;(2)若A∩B=∅,求实数a的取值范围.16.(14分)已知函数f()=Asin(ω﹣)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.(1)求函数f()的解析式;(2)若f(α+)=,f(β+)=,且α,β∈(0,),求α+β的值.17.(14分)若||=1,||=m,|+|=2.(1)若|+2|=3,求实数m的值;(2)若+与﹣的夹角为,求实数m的值.18.(16分)如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N (异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:m),PN⊥MN.(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;(2)当θ为何值时,l(θ)有最大值?并求出该最大值.19.(16分)已知函数f()=m(sin+cos)﹣4sincos,∈[0,],m∈R.(1)设t=sin+cos,∈[0,],将f()表示为关于t的函数关系式g(t),并求出t的取值范围;(2)若关于的不等式f()≥0对所有的∈[0,]恒成立,求实数m的取值范围;(3)若关于的方程f()﹣2m+4=0在[0,]上有实数根,求实数m的取值范围.20.(16分)(1)已知函数f()=2+(>0),证明函数f()在(0,)上单调递减,并写出函数f()的单调递增区间;(2)记函数g()=a||+2a(a>1)①若a=4,解关于的方程g()=3;②若∈[﹣1,+∞),求函数g()的值域.江苏省南通市如皋市高一(上)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)设全集U={﹣1,2,4},集合A={﹣1,4},则∁A= {2} .U【解答】解:全集U={﹣1,2,4},集合A={﹣1,4},则∁A={2}.U故答案为:{2}.2.(5分)已知函数y=2sin(ω+)(ω>0)的最小正周期为,则ω= 3 .【解答】解:由题意可得:最小正周期T==,解得:ω=3.故答案为:3.3.(5分)已知幂函数的图象过点(2,4),则它的单调递减区间是(﹣∞,0).【解答】解:设幂函数的解析式为y=α,其函数图象过点(2,4),则4=2α,解得α=2,所以y=2,所以函数y的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).4.(5分)设函数f()=,则f[f(﹣)]的值为 4 .【解答】解:∵f()=,∴f(﹣)=2=2=2,f[f(﹣)]=f(2)=22=4.故答案为:4.5.(5分)在△ABC中,向量=(1,cosB),=(sinB,1),且⊥,则角B的大小为.【解答】解:∵⊥,∴•=sinB+cosB=0⇒tanB=﹣1,∵B∈(0,π),∴B=.故答案为:.6.(5分)(log23+log227)×(log44+log4)的值为0 .【解答】解:原式=log281×log41=0,故答案为:07.(5分)将函数f()=sin(2+φ)(0<φ<π)的图象向左平移个单位后得到函数y=g()的图象,若y=g()是偶函数,则φ= .【解答】解:图象向左平移得到f(+)=2sin(2++φ),∴g()=2sin(2++φ),∵g()为偶函数,因此+φ=π+,又0<φ<π,故φ=.故答案为:.8.(5分)已知函数f()=m2﹣2+m的值域为[0,+∞),则实数m的值为 1 .【解答】解:f()=m2﹣2+m的值域为[0,+∞),∴,解得m=1故答案为:19.(5分)已知sin(α﹣)=,则sin(2α+)的值为.【解答】解:∵sin(α﹣)=,∴sin(2α+)=cos[﹣(2α+)]=cos(2α)=cos[2(α﹣)]=1﹣2sin2(α﹣)=1﹣2×()2=.故答案为:.10.(5分)已知sin(α+β)=,sin(α﹣β)=,则的值为 3 .【解答】解:∵sin(α+β)=sinαcosβ+cosαsinβ=,sin(α﹣β)=sinαcosβ﹣cosαsinβ=,∴sinαcosβ=,cosαsinβ=,则===3,故答案为:3.11.(5分)在平面直角坐标系Oy中,点P(1,4)是角α终边上一点,将射线OP绕坐标原点O逆时针方向旋转θ(0<θ<π)角后到达角π的终边,则tanθ= .【解答】解:由题意可得,α+θ=,tanα=4,∴tan(α+θ)=﹣1,即=﹣1,即=﹣1,求得tanθ=,故答案为:.12.(5分)已知函数f()=,若关于的方程f()﹣a2+2a=0有三个不同的实数根,则实数a的取值范围是0<a<1或1<a<2 .【解答】解:由题意,关于的方程f()﹣a2+2a=0有三个不同的实数根,则f()=a2﹣2a有三个不同的交点,∵f()=,∴﹣1<a2﹣2a<0,∴0<a<1或1<a<2,故答案为0<a<1或1<a<2.13.(5分)已知函数f()=cos(∈[0,2π])与函数g()=tan的图象交于M,N两点,则|+|= π.【解答】解:由题意,M,N关于点(,0)对称,∴|+|=2×=π,故答案为π.14.(5分)如图,在△ABC中,已知AB=2,AC=3,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3,点F位线段DE上的动点,则•的取值范围是[﹣,] .()【解答】解:设=,,∴,;则•=+=,当λ=0时,f(λ)=最大为,当时,f(λ)=最小为﹣;则•的取值范围是[﹣,],故答案为:[﹣,],二、解答题(共6小题,满分90分.解答时写出文字说明,证明过程或演算步骤)15.(14分)已知集合A={|f()=lg(﹣1)+},集合B={y|y=2+a,≤0}.(1)若a=,求A∪B;(2)若A∩B=∅,求实数a的取值范围.【解答】解:(1)由f()=lg(﹣1)+可得,﹣1>0且2﹣≥0,解得1<≤2,故A={|1<≤2};…(2分)若a=,则y=2+,当≤0时,0<2≤1,<2+≤,故B={y|<y≤};…(5分)所以A∪B={|1<≤}.…(7分)(2)当≤0时,0<2≤1,a<2+a≤a+1,故B={y|a<y≤a+1},…(9分)因为A∩B=∅,A={|1<≤2},所以a≥2或a+1≤1,…(12分)即a≥2或a≤0,所以实数a的取值范围为a≥2或a≤0.…(14分)16.(14分)已知函数f()=Asin(ω﹣)(其中A,ω为常数,且A>0,ω>0)的部分图象如图所示.(1)求函数f()的解析式;(2)若f(α+)=,f(β+)=,且α,β∈(0,),求α+β的值.【解答】(本题满分为14分)解:(1)据函数y=f()的解析式及其图象可知A=2,…(2分)且T=﹣(﹣)=π,其中T为函数y=f()的最小正周期,故T=2π,…(4分)所以=2π,解得ω=1,所以f()=2sin(﹣).…(6分)(2)由f(α+)=,可知2sin(﹣)=,即sinα=,因为α∈(0,),所以cos==.…(8分)由f(β+)=,可知2sin(﹣)=,即sin(+)=,故cosβ=,因为β∈(0,),所以sin=,…(10分)于是cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=.…(12分)因为α,β∈(0,),所以α+β∈(0,π),所以α+β=.…(14分)17.(14分)若||=1,||=m,|+|=2.(1)若|+2|=3,求实数m的值;(2)若+与﹣的夹角为,求实数m的值.【解答】解:(1)因为|+|=2,所以|+|2=4.即以2+2+2•=4.,…(2分)又||=1,||=m,所以.…(3分)由|+2|=3,所以所以|+2|2=9.即以2+42+4•=9,所以1+4×+4m2=9,解得m=±1,…(6分)又||≥0,所以m=1.…(7分)(2)因为,||=1,||=m,所以|﹣|2=2+2﹣2•=1﹣2×+m2=2m2﹣2,|﹣|=.…(9分)又因为+与﹣的夹角为,所以(+)•(﹣)=以2﹣2=|+|×|﹣|cos即,所以1﹣m2=2×,解得m=±,…(13分)又||≥0,所以m=.…(14分)18.(16分)如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N (异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:m),PN⊥MN.(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;(2)当θ为何值时,l(θ)有最大值?并求出该最大值.【解答】解:(1)过点P作PD⊥AC,垂足为D,连结PA.在Rt△MAN中,sinθ==,故NA=2sinθ,在Rt△PND中,∠PND=θ,sinθ==,cosθ==,故PD=sinθ,ND=cosθ.在Rt△PDA中,PA===,所以l(θ)=,函数l(θ)的定义域为(0,).(2)由(1)可知,l(θ)=,即l(θ)=====,又θ∈(0,),故2θ﹣∈(﹣,),所以当2θ﹣=,即θ=时,sin(2θ﹣)取最大值1,==1+.l(θ)ma答:当θ=时,l(θ)有最大值,最大值为1+.19.(16分)已知函数f()=m(sin+cos)﹣4sincos,∈[0,],m∈R.(1)设t=sin+cos,∈[0,],将f()表示为关于t的函数关系式g(t),并求出t的取值范围;(2)若关于的不等式f()≥0对所有的∈[0,]恒成立,求实数m的取值范围;(3)若关于的方程f()﹣2m+4=0在[0,]上有实数根,求实数m的取值范围.【解答】解:(1)因为t=sin+cos=,∈[0,],所以t∈[1,],sincos=.…(2分)所以g(t)=mt﹣4•=﹣2t2+mt+2.…(5分)(2)因为关于的不等式f()≥0对所有的∈[0,]恒成立,据(1)可知g(t)=﹣2t2+mt+2≥0对所有的t∈[1,]恒成立,…(6分)所以,得m≥.所以实数m的取值范围是[,+∞).…(10分)(3)因为关于的方程f()﹣2m+4=0在[0,]上有实数解,据(1)可知关于t的方程﹣2t2+mt+2﹣2m+4=0在t∈[1,]上有实数解,即关于t的方程2t2﹣mt+2m﹣6=0在t∈[1,]上有实数解,…(11分)所以△=m2﹣16(m﹣3)≥0,即m≤4或m≥12.令h(t)=2t2﹣mt+2m﹣6,开口向上,对称轴t=,①当m≥12时,对称轴t≥3,函数h(t)在t∈[1,]上单调递减,故,解得m不存在.…(13分)②当m≤4时,对称轴t≤1,函数h(t)在t∈[1,]上单调递增,故,解得2+≤m≤4.…(15分)综上所述,实数m的取值范围是[2+,4].…(16分)20.(16分)(1)已知函数f()=2+(>0),证明函数f()在(0,)上单调递减,并写出函数f()的单调递增区间;(2)记函数g()=a||+2a(a>1)①若a=4,解关于的方程g()=3;②若∈[﹣1,+∞),求函数g()的值域.【解答】(1)证明:设1,2是区间(0,)上的任意两个实数,且1<2,则f(1)﹣f(2)=2(1﹣2)+(﹣)=,因为0<1<2<,所以1﹣2<0,0<12<,故212﹣1<0,所以f(1)﹣f(2)>0,即f(1)>f(2),所以函数f()在(0,)上单调递减,函数f()的单调递增区间为(,+∞).(2)解:①当a=4时,4||+2•4=3,(ⅰ)当≥0时,4+2•4=3,即4=1,所以=0;(ⅱ)当<0时,4﹣+2•4=3,即2•(4)2﹣3•4+1=0,解得:4=1或4=,所以=﹣或0;综上所述,方程g()=3的解为=0或=﹣;②(ⅰ)当≥0时,g()=3a,其中a>1,=g(0)=3,所以g()在[0,+∞)上单调递增,g()min所以g()在[0,+∞)上的值域为[3,+∞);(ⅱ)当∈[﹣1,0)时,g()=a﹣+2a,其中a>1,令t=a,则t∈[,1),g()=2t+=f(t),(ⅰ)若1<a≤,则≥,据(1)可知,f(t)=2t+在[,1)上单调递增,所以f()≤f(t)<f(1),且f()=a+,f(1)=3,此时,g()在[﹣1,0)上的值域为[a+,3);(ⅱ)若a>,则<,据(1)可知,f(t)=2t+在[,)上单调递减,在(,1)上单调递增,=f()=2,又f()=a+,f(1)=3,所以f(t)min当f()≥f(1)时,g()在[﹣1,0)上的值域为[2,a+],当f()<f(1)时,g()在[﹣1,0)上的值域为[2,3);综上所述,当1<a≤时,函数g()在[﹣1,+∞)上的值域为[a+,+∞;当a>时,函数g()在[﹣1,+∞)上的值域为[2,+∞).。
江苏省南通市如东县2019-2020学年高一上学期期
末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 设集合,,则等于()A.B.
C.D.
2. 等于()
A.B.C.D.
3. 已知点,,则与共线的单位向量为()
A.B.
D.
C.或
4. 已知函数,则等于()
C.3 D.9
A.
B.
5. 在中,D为边BC上的一点,且,则( ) A.B.C.D.
6. 已知幂函数y=f(x)的图象过点(2,),则的值为()
A.B.
C.
D.
7. 已知角的终边过点,则等于()
A.B.
C.3 D.
8. 求值:()
A.B.
C.0 D.
9. 函数是定义域为,周期为2的函数,且当时,
;已知函数,则函数在区间内的零点个数为()
A.11 B.13 C.15 D.17
10. 平行四边形ABCD中,已知,,,点E,F分别满足,,若,则等于()
A.B.
C.1 D.2
二、多选题
11. 在中,,,若是直角三角形,则k的值可以是()
A.
B.C.D.
12. 已知函数(其中,,)的部分图象如图所示,则下列结论正确的是()
A.函数的图象关于直线对称
B.函数的图象关于点对称
C.函数在区间上单调递增
D.与图象的所有交点的横坐标之和为
三、填空题
13. 函数的定义域是________.
14. 已知函数是定义在上的偶函数,且在区间上是减函数,则的解集是________.
15. 若函数的部分图象如图所示,则的值为
_______________.
16. 矩形ABCD中,,,点P为矩形ABCD内(包括边界)一点,则的取值范围是________.
四、解答题
17. 已知,.
(1)求;
(2)当k为何值时,与垂直?
18. 已知函数.
(1)求的值;
(2)若,,求的值.
19. 已知函数.
(1)若函数在上是单调函数,求实数m的取值范围;
(2)若函数在上有最大值为3,求实数m的值.
20. 如图,半径为1的圆O中,作一关于圆心对称、邻边互相垂直的十字形,其中,设.
(1)将十字形的面积S表示为的函数;
(2)求十字形的面积S的最大值.
21. 设函数为奇函数.
(1)求实数a的值;
(2)当时,求的值域.
22. 如果函数在定义域的某个区间上的值域恰为,则称函数
为上的等域函数,称为函数的一个等域区间.
(1)若函数,,则函数存在等域区间吗?若存在,试写出其一个等域区间,若不存在,说明理由
(2)已知函数,其中且,,.(ⅰ)当时,若函数是上的等域函数,求的解析式;(ⅱ)证明:当,时,函数不存在等域区间.。