文科立体几何面角二面角专题-带答案
- 格式:doc
- 大小:3.65 MB
- 文档页数:24
综合法求二面角一、知识梳理:二面角的相关概念1.定义:从一条直线出发的所组成的图形.(立体图形)2.相关概念:(1)这条直线叫做二面角的;(2)两个半平面叫做二面角的.3.画法:4.记法:二面角α-l-β或二面角α-AB-β或二面角P-l-Q或二面角P-AB-Q.5.二面角的平面角:(1)若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是(2)二面角的平面角α的取值范围是;平面角是直角的二面角叫做.二、牛刀小试:1.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β2.二面角α-l-β的大小为60°,异面直线a,b分别垂直于α,β,则a与b所成角的大小__.三、经典例题例1在三棱锥V-ABC中,VA=AB=VB=AC=BC=2,VC=3,求二面角V-AB-C的大小.方法总结:定义法利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法.例2如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(1)证明:平面SBC⊥平面SAB;(2)求二面角A-SC-B的平面角的正弦值.方法总结:三垂线法是利用三垂线定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法.这种方法关键是找垂直于二面角的面的垂线.此方法是属于较常用的.三垂线定理:在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.三垂线定理的逆定理:在平面内的一条直线如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.四、课堂反馈1. 如图,AB是圆的直径,P A垂直于圆所在的平面,C是圆上一点(不同于A,B)且P A=AC,则二面角P-BC-A的大小为()A.60°B.30°C.45°D.15°2.如图,在长方体ABCD-A1B1C1D1中,AB=AD=23,CC1=2,则二面角C1-BD-C的大小为________.3.如图所示,将等腰直角三角形ABC沿斜边BC上的高AD折成一个二面角,此时∠B′AC =60°,那么这个二面角大小是________.五、课后作业1、如图,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角的大小;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角的大小.2、如图,二面角α-l-β的大小是60°,线段AB⊂α,B∈l,AB与l所成的角为30°,则AB 与平面β所成的角的正弦值是________.3、求正四面体(棱长均相等的三棱锥)的侧面与底面所成二面角的大小.综合法求二面角(教师版)一、知识梳理:二面角的相关概念1.定义:从一条直线出发的两个半平面所组成的图形.2.相关概念:(1)这条直线叫做二面角的棱;(2)两个半平面叫做二面角的面.3.画法:4.记法:二面角α-l-β或二面角α-AB-β或二面角P-l-Q或二面角P-AB-Q.5.二面角的平面角:(1)若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.(2)二面角的平面角α的取值范围是0°≤α≤180°.平面角是直角的二面角叫做直二面角.二、牛刀小试:1.在二面角α-l-β的棱l上任选一点O,若∠AOB是二面角α-l-β的平面角,则必须具有的条件是()A.AO⊥BO,AO⊂α,BO⊂βB.AO⊥l,BO⊥lC.AB⊥l,AO⊂α,BO⊂βD.AO⊥l,BO⊥l,且AO⊂α,BO⊂β答案D2.二面角α-l-β的大小为60°,异面直线a,b分别垂直于α,β,则a与b所成角的大小是________.答案60°解析过直线a上一点作b的平行线b′,则根据二面角的定义和线面垂直的性质可知,a与b′的夹角为60°,所以a与b所成角的大小是60°.三、经典例题例1在三棱锥V-ABC中,VA=AB=VB=AC=BC=2,VC=3,求二面角V-AB-C的大小.解取AB的中点D,连接VD,CD,∵△VAB中,VA=VB=AB=2,∴△VAB为等边三角形,∴VD⊥AB且VD=3,同理CD⊥AB,CD=3,∴∠VDC为二面角V-AB-C的平面角,而△VDC是等边三角形,∠VDC=60°,∴二面角V-AB-C的大小为60°.方法总结:定义法利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法.例2如图,在三棱锥S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.(1)证明:平面SBC⊥平面SAB;(2)求二面角A-SC-B的平面角的正弦值.(1)证明∵∠SAB=∠SAC=90°,∴SA⊥AB,SA⊥AC,又AB ∩AC =A ,AB ,AC ⊂平面ABC , ∴SA ⊥平面ABC ,又BC ⊂平面ABC ,∴SA ⊥BC ,又AB ⊥BC ,SA ∩AB =A ,SA ,AB ⊂平面SAB , ∴BC ⊥平面SAB ,又BC ⊂平面SBC ,∴平面SBC ⊥平面SAB .(2)解 取SB 的中点D ,连接AD ,则AD ⊥SB ,垂足为点D ,由(1)知平面SBC ⊥平面SAB ,平面SBC ∩平面SAB =SB ,AD ⊂平面SAB , ∴AD ⊥平面SBC .作AE ⊥SC ,垂足为点E ,连接DE , 则DE ⊥SC ,则∠AED 为二面角A -SC -B 的平面角.设SA =AB =2,则SB =BC =22,AD =2,AC =23,SC =4. 由题意得AE =3,Rt △ADE 中,sin ∠AED =AD AE =23=63,∴二面角A -SC -B 的平面角的正弦值为63.方法总结:三垂线法是利用三垂线定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法.这种方法关键是找垂直于二面角的面的垂线.此方法是属于较常用的.三垂线定理:在平面内的一条直线如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.三垂线定理的逆定理:在平面内的一条直线如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.四、课堂反馈1. 如图,AB 是圆的直径,P A 垂直于圆所在的平面,C 是圆上一点(不同于A ,B )且P A =AC ,则二面角P -BC -A 的大小为 ( )A.60°B.30°C.45°D.15° 答案 C解析 由条件得P A ⊥BC ,AC ⊥BC ,又P A ∩AC =A ,P A ,AC ⊂平面P AC ,∴BC ⊥平面P AC ,∴∠PCA 为二面角P -BC -A 的平面角.在Rt △P AC 中,由P A =AC 得∠PCA =45°,故选C.2.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =23,CC 1=2,则二面角C 1-BD -C 的大小为________.答案 30°解析 如图,取BD 的中点O ,连结OC ,OC 1, ∵AB =AD =23,∴CO ⊥BD ,CO = 6. ∵CD =BC ,∴C 1D =C 1B ,∴C 1O ⊥BD . ∴∠C 1OC 为二面角C 1-BD -C 的平面角. tan ∠C 1OC =C 1C OC =26=33.∴∠C 1OC =30°,即二面角C 1-BD -C 的大小为30°.3.如图所示,将等腰直角三角形ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是________.答案 90°解析 由题意知,∠B ′DC 即为此二面角的平面角, 设AB =AC =1,连结CB ′, 则△AB ′C 为等边三角形, ∴B ′C =1,又B ′D =CD =22, ∴在△B ′DC 中,B ′D 2+CD 2=B ′C 2, ∴B ′D ⊥CD ,∴∠B ′DC =90°, 即此二面角的大小为90°.五、课后作业1、如图,正方体的棱长为1,B ′C ∩BC ′=O ,求:(1)AO 与A ′C ′所成角的大小; (2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角的大小. 解 (1)∵A ′C ′∥AC ,∴AO 与A ′C ′所成的角就是∠OAC . ∵AB ⊥平面BC ′,OC ⊂平面BC ′, ∴OC ⊥AB ,又OC ⊥BO ,AB ∩BO =B ,AB ,BO ⊂平面ABO , ∴OC ⊥平面ABO .又OA ⊂平面ABO ,∴OC ⊥OA . 在Rt △AOC 中,OC =22,AC =2, sin ∠OAC =OC AC =12,∴∠OAC =30°.即AO 与A ′C ′所成角为30°. (2)如图,作OE ⊥BC 于E ,连接AE .∵平面BC ′⊥平面ABCD ,平面BC ′∩平面ABCD =BC ,OE ⊂平面BC ′, ∴OE ⊥平面ABCD ,∴∠OAE 为OA 与平面ABCD 所成的角. 在Rt △OAE 中,OE =12,AE =12+⎝⎛⎭⎫122=52,∴tan ∠OAE =OE AE =55.即AO 与平面ABCD 所成角的正切值为55. (3)由(1)可知OC ⊥平面AOB .又∵OC ⊂平面AOC ,∴平面AOB ⊥平面AOC . 即平面AOB 与平面AOC 所成的角为90°.2、如图,二面角α-l -β的大小是60°,线段AB ⊂α,B ∈l ,AB 与l 所成的角为30°,则AB 与平面β所成的角的正弦值是________.答案34解析 如图,作AO ⊥β于O ,AC ⊥l 于C ,连接OB ,OC ,则OC ⊥l ,则∠ACO 为二面角α-l -β的平面角,∠ABC 为AB 与l 所成的角.设AB 与β所成的角为θ,则∠ABO =θ.由图象得sin θ=AO AB =AC AB ·AO AC =sin 30°·sin 60°=34.。
1、如图,在直三棱柱 ABC-A1B1C1 中,AC=3,BC=4,AB=5,AA1 =4,点 D 是 AB 的中点C1B1A1CBDA(1)求证:AC BC 1 ;(2)求证:AC 1 //平面 CDB 1 ; (3)求二面角 B-DC-B1 的余弦值.2、如图,在长方体 ABCD 一 A1B1C1D1 中,AA1=2, AD = 3, E 为 CD 中点,三棱 锥 A1-AB1E 的体积是 6. (1) 设 P 是棱 BB1 的中点,证明:CP//平面 AEB1; (2) 求 AB 的长; (3)求二面角 B—AB1-E 的余弦值.试卷第 1 页,总 3 页3、如图,正方形 与梯形 所在的平面互相垂直,,,,, 为 的中点.(1)求证: 平面 ;(2)求证:平面平面 ;(3)求平面 与平面 所成锐二面角的余弦值.4、如图所示,三棱柱 ABC﹣A1B1C1 的底面是边长为 2 正三角形,D 是 A1C1 的中点,且 AA1⊥平面 ABC,AA1=3. (Ⅰ)求证:A1B∥平面 B1DC; (Ⅱ)求二面角 D﹣B1C﹣C1 的余弦值.试卷第 2 页,总 3 页5 、 如 图 , 在 四 棱 锥 P-ABCD 中 ,PA⊥ 底 面 ABCD, 底 面 ABCD 为 直 角 梯 形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,过 AD 的平面分别交 PB,PC 于 M,N 两点.(1)求证:MN∥BC; (2)若 M,N 分别为 PB,PC 的中点, ①求证:PB⊥DN; ②求二面角 P-DN-A 的余弦值.6、如图,在正三棱柱 ABC A1B1C1 中,点 D 是棱 AB 的中点,BC 1, AA1 3 .AD CBA1 C1B1(1)求证: BC1 // 平面 A1DC ; (2)求二面角 D A1C A 的平面角的正弦值.试卷第 3 页,总 3 页1、【答案】(1)AC BC 1 ;参考答案(2)AC //平面 CDB ;113 34 (3)二面角 B-DC-B1 的余弦值为 34试题分析:(1)考虑到第三问要求二面角的大小,故需要在空间直角坐标系中用法向量 的方法求解,因此可提前建系,(1)(2)问也可方便证明,因为是直三棱柱可以以 C 为 坐标原点,直线 CA,CB,CC1 分别为 x 轴、y 轴、z 轴建立空间直角坐标系,利用向量证明 AC • BC1 0 即可得证;(2)要证明线面平行,必须证明线线平行;(3)分别求出平面 BDC 和平面 DCB1 的法向量,求出法向量的夹角的余弦值即为二面角 B-DC-B1 的余弦 值(注意值的正负判断) 试题解析:因为直三棱柱的底面三边长分别为 3、4、5 所以 AC, BC,CC1 两两垂直,以 C 为坐标原 点,直线 CA,CB,CC1 分别为 x 轴、y 轴、z 轴建立空间直角坐标系(1)因为 AC 3,0,0, BC1 0, 4, 4 ,所以 AC • BC1 0 ,即 AC BC1(2)设CB1C1BE,则E 0, 2,2,故DE 3 2, 0,2 ,AC13, 0,4所以DE1 2AC1,即DE//AC1因为 DE 平面 CDB1 , AC1 平面 CDB1 ,所以 AC 1 //平面 CDB 1(3)可求得平面 CDB1 的一个法向量为 n1 4,3,3 ,取平面 CDB 的一个法向量为n2 0,0,1 ,则 cosn1, n2 3 343 3434 ,由图可知,二面角 B-DC-B1 的余弦值为 34考点:1.直线与平面平行的判定及性质;2.利用空间直角坐标系求二面角的求法;答案第 1 页,总 9 页2、【答案】3、【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3) . 试题分析:本题主要考查中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、 二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,作答案第 2 页,总 9 页出辅助线 MN,N 为 中点,在 中,利用中位线得到,且,结合已知条件,可证出四边形 ABMN 为平行四边形,所以,利用线面平行的判定,得 ∥平面 ;第二问,利用面面垂直的性质,判断 面 ,再利用已知的边长,可证出,则利用线面垂直的判定得 平面 BDE,再利用面面垂直的判定得平面平面 ;第三问,可以利用传统几何法证明二面角的平面角,也可以利用向量法 建立空间直角坐标系,求出平面 BEC 和平面 ADEF 的法向量,利用夹角公式计算即可.(1)证明:取 中点 ,连结.在△ 中, 分别为 的中点,所以 ∥ ,且.由已知 ∥ ,,所以∥ ,且.所以四边形 为平行四边形,所以 ∥ .又因为 平面 ,且 平面 ,所以 ∥平面 .4 分(2)证明:在正方形 中,.又因为平面平面 ,且平面平面,所以 平面 .所以.6 分在直角梯形 中,, ,可得.答案第 3 页,总 9 页在△ 中,,所以.7 分所以 平面 .8 分又因为 平面 ,所以平面平面 .9 分(3)(方法一)延长 和 交于 .在平面内过 作于 ,连结 .由平面∥,,平面平面 = ,得,于是.又, 平面 ,所以,于是 就是平面 与平面 平面角.12 分所成锐二面角的平面 ,由,得.又,于是有.在中,.所以平面 与平面 所成锐二面角的余弦值为 .14 分答案第 4 页,总 9 页(方法二)由(2)知 平面 ,且.以 为原点,所在直线分别为 轴,建立空间直角坐标系.易得.平面 的一个法向量为的一个法向量,因为,所以所以为平面 的一个法向量.12分设平面 与平面 所成锐二面角为 ..设为平面,令 ,得.则.所以平面 与平面 所成锐二面角的余弦值为. 【考点】中位线、平行四边形的证明、线面平行、线面垂直、面面垂直、二面角. 4、【答案】 证明:(1)连结 BC1,B1C,交于点 O,连结 OD, ∵三棱柱 ABC﹣A1B1C1 的底面是边长为 2 正三角形,D 是 A1C1 的中点, ∴OD∥A1B, ∵A1B?平面 B1DC,OD?平面 B1DC, ∴A1B∥平面 B1DC. (2)∵三棱柱 ABC﹣A1B1C1 的底面是边长为 2 正三角形,D 是 A1C1 的中点,且 AA1⊥平面 ABC,AA1=3. ∴以 D 为原点,DC1 为 x 轴,DB1 为 y 轴,过 D 作平面 A1B1C1 的垂线为 z 轴,建立空间直 角坐标系, 则 D(0,0,0),B1(0, ,0),C(1,0,3),C1(1,0,0),答案第 5 页,总 9 页=(﹣1, ,﹣3), =(﹣1,0,﹣3), 设平面 B1DC 的法向量 =(x,y,z),=(0,0,﹣3),则,取 z=1,得 =(﹣3,0,1),设平面 B1CC1 的法向量 =(a,b,c),则,取 b=1,得 =(),设二面角 D﹣B1C﹣C1 的平面角为 θ,则 cosθ===.∴二面角 D﹣B1C﹣C1 的余弦值为.5、【答案】(1)见解析;(2)见解析, 试题分析:(1)先证明 BC∥平面 ADNM,再证明 MN∥BC.(2)①先证明 PB⊥平面 ADNM, 再证明 PB⊥DN.②以 A 为坐标原点,直线 AB 为 x 轴,直线 AD 为 y 轴,直线 AP 为 z 轴,建立 空间直角坐标系 A-xyz,利用向量法求二面角 P-DN-A 的余弦值. 【详解】 (1)证明因为底面 ABCD 为直角梯形,所以 BC∥AD.因为 BC 平面ADNM, AD 平面ADNM ,所以 BC∥平面 ADNM. 因为 BC 平面 PBC,平面 PBC∩平面 ADNM=MN,所以 MN∥BC. (2)①证明因为 M,N 分别为 PB,PC 的中点,PA=AB,所以 PB⊥MA. 因为∠BAD=90°,所以 DA⊥AB.答案第 6 页,总 9 页因为 PA⊥底面 ABCD,所以 DA⊥PA. 因为 PA∩AB=A,所以 DA⊥平面 PAB. 所以 PB⊥DA. 因为 AM∩DA=A,所以 PB⊥平面 ADNM. 因为 DN 平面 ADNM,所以 PB⊥DN.②如图,以 A 为坐标原点,直线 AB 为 x 轴,直线 AD 为 y 轴,直线 AP 为 z 轴,建立空间直角 坐标系 A-xyz, 则 A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0),P(0,0,2).由①知,PB⊥平面 ADNM,所以平面 ADNM 的法向量为 =(-2,0,2). 设平面 PDN 的法向量为 n=(x,y,z),因为 =(2,1,-2), =(0,2,-2),所以令 z=2,则 y=2,x=1. 所以 n=(1,2,2),所以 cos<n, >=.所以二面角 P-DN-A 的余弦值为 . 【点睛】 (1)本题主要考查二面角的向量求法,考查空间线面位置关系的证明,意在考查学生对 该知识的掌握水平和空间想象分析推理转化能力.(2)二面角的求法方法一:(几何法)找 作(定义法、三垂线法、垂面法) 证(定义) 指 求(解三角形).方法二:(向量法)首先求出两个平面的法向量 ;再代入公式(其中 分别是两个平面的法向量, 是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“ ” 号).6、【答案】(1)证明见解析;(2) 2 13 . 13答案第 7 页,总 9 页试题分析:(1)连结1AC 交1A C 于点G ,连结DG ,利用四边形11ACC A 是平行四边形,进而证明出DG ∥1BC ,即可利用线面平行的判定定理,证得//1BC 平面DC A 1;(2)分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,分别求解平面1DA C 和平面1A CA 的一个法向量,利用向量的夹角公式,即可求解二面角1DAC A的平面角的余弦值,进而求解其正弦值.试题解析:(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG . 在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形,∴1AG GC =. ∵AD DB =,∴DG ∥1BC .∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC . (2)过点A 作AO BC ⊥交BC 于O ,过点O 作OE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,3BCAA ,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O ,B 0,0) (Ⅰ)设平面1A DC 的法向量为(),,n x y z =,则10,0.n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩ ∵3(,0,CD =,11(A C =-⎪⎩,得平面1A DC 的一个法向量为(3,1,n =-1BC =(10)1BC ·n =0∴∴1BC ∥平面1A DC .(Ⅱ)可求平面1ACA 的一个法向量为(13,0,n =设二面角1D AC A 的大小为θ,则16,n n <>∵()0,θπ∈,213sin 13DEDFEDF 考点:直线与平面平行的判定与证明;二面角的求解.。
立体几何(l ìt ǐj ǐh é)中的二面角问题一、常见基此题型: (1)求二面角的大小例1、斜三棱柱的底面是正三角形,侧面是菱形,且,M 是的中点,〔1〕求证:平面ABC ;〔2〕求二面角的余弦值。
解:〔1〕∵侧面是菱形且 ∴为正三角形又∵点为的中点 ∴∵∥11A B ∴由∴平面〔2〕如图建立空间直角坐标系设菱形11A ABB 边长为2得,,那么,, 设面11A ABB 的法向量,由,得,令,得设面的法向量, 由,得,令,得得.又二面角为锐角,所以(suǒyǐ)所求二面角的余弦值为。
〔2〕二面角的大小,求其它量。
例1、如图,在四棱锥P-ABCD 中,PC ⊥底面ABCD ,ABCD 是直角梯形,AB ⊥AD , AB∥CD ,AB= 2AD =2CD =2.E 是PB 的中点. 〔I 〕求证:平面EAC ⊥平面PBC; 〔II 〕假设二面角P-A C-E 的余弦值为,求直线PA与平面EAC 所成角的正弦值.解:〔Ⅰ〕∵PC ⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥PC ,∵AB =2,AD =CD =2,∴AC =BC =2,∴AC 2+BC 2=AB 2,∴AC ⊥BC , 又BC ∩PC =C ,∴AC ⊥平面PBC ,∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .〔Ⅱ〕如图,以C 为原点,DA →、CD →、CP →分别为x 轴、y 轴、z 轴正向,建立空间直角坐标系,那么C (0,0,0),A (1,1,0),B (1,-1,0). 设P (0,0,a )〔a >0〕, 那么(n àme)E (1 2,- 1 2, a2〕,DACE PBxyzCA →=(1,1,0),CP →=(0,0,a ),CE →=〔 1 2,- 1 2, a 2〕,取m =(1,-1,0),那么m ·CA →=m ·CP →=0,m 为面PAC 的法向量. 设n =(x ,y ,z )为面EAC 的法向量, 那么n ·CA →=n ·CE →=0,即⎩⎨⎧x +y =0,x -y +az =0,取x =a ,y =-a ,z =-2,那么n =(a ,-a ,-2), 依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,那么a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,那么sin θ=|cos 〈PA →,n 〉|=|PA →·n |__________|PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23.〔3〕求二面角的取值范围例3.如图,△AOB ,∠AOB =,∠BAO =,AB =4,D 为线段AB 的中点.假设△AOC 是△AOB 绕直线AO 旋转而成的.记二面角B -AO -C 的 大小为.〔1〕当平面COD ⊥平面AOB 时,求θ的值; 〔2〕当θ∈[2π,]时,求二面角C -OD -B 的余弦(yúxián)值的取值范围.AO BCD解:〔1〕如图,以O 为原点,在平面OBC 内垂直于OB的直线为x 轴,OB ,OA 所在的直线分别为y 轴,z 轴建立空间直角坐标系O -xyz ,那么A (0,0,2), B (0,2,0), D (0,1,3),C (2sin θ,2cos θ,0). 设=(x ,y ,z )为平面COD 的一个法向量,由得,取z =sin θ,那么1n =(3cos θ,-3sin θ,sin θ). 因为平面AOB 的一个法向量为=(1,0,0),由平面COD ⊥平面AOB 得1n 2n =0,所以cos θ=0,即θ=2π.〔2〕设二面角C -OD -B 的大小为,由(Ⅰ)得当θ=2π时, cos α=0;当θ∈(2π,23π]时,tan θ≤-,cos α===-, 故-≤cos α<0.综上,二面角C -OD -B 的余弦值的取值范围为[-55,0].二、针对性练习 1.如图,斜三棱柱的底面是直角三角形, ,点1B 在底面内的射影(sh èy ǐng)恰好是的中点,且.yAOBCDxz(1)求证:平面平面;(2)假设二面角的余弦值为,设,求的值.解: (1)取中点,连接,那么面,,,〔2〕以为轴,为轴,过点C与面ABC垂直方向为轴,建立空间直角坐标系设,那么即设面法向量;面法向量,2. 如图,四棱锥的侧面垂直于底面,,,,在棱上,是的中点(zhōnɡ diǎn),二面角为〔1〕求的值;〔2〕求直线与平面所成角的正弦值.解:〔1〕建立如下图的坐标系,其中,,,,,。
立体几何中的角度问题一、 异面直线所成的角1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小。
2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值二、直线与平面所成夹角1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥ 底面ABCD ,且2PA AD AB BC ===,M N 、分别为PC 、PB 的中点。
求CD 与平面ADMN 所成的角的正弦值。
2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。
三、二面角与二面角的平面角问题1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.2、如图5,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足5FB FD a ==,6EF a =。
(1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。
高二数学二面角专项练习题及参考答案班级_____________姓名_____________一、定义法:直接在二面角的棱上取一点,分别在两个半平面内作棱的垂线,得出平面角. 例1 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
二、垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例2 在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的正切。
三、垂面法:作棱的垂直平面,则这个垂面与二面角两个面的交线所夹的角就是二面角的平面角 例3 在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,求B-PC-D 的大小。
四、投影面积法:一个平面α上的图形面积为S ,它在另一个平面β上的投影面积为S',这两个平面的夹角为θ,则S'=Scos θ或cos θ=/SS .例4 在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
五、补形法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
例5、在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
方法归纳:二面角的类型和求法可用框图展现如下: [基础练习]1. 二面角是指 ( ) A 两个平面相交所组成的图形B 一个平面绕这个平面内一条直线旋转所组成的图形C 从一个平面内的一条直线出发的一个半平面与这个平面所组成的图形D 从一条直线出发的两个半平面所组成的图形2.平面α与平面β、γ都相交,则这三个平面可能有 ( ) A 1条或2条交线 B 2条或3条交线C 仅2条交线D 1条或2条或3条交线3.在300的二面角的一个面内有一个点,若它到另一个面的距离是10,则它到棱的距离是( )A 5B 20C 210 D225 4.在直二面角α-l-β中,RtΔABC 在平面α内,斜边BC 在棱l 上,若AB 与面β所成的角为600,则AC 与平面β所成的角为 ( ) A 300 B 450 C 600 D 1200 5.如图,射线BD 、BA 、BC 两两互相垂直,AB=BC=1,BD=26, 则弧度数为3的二面角是( ) A D-AC-B B A-CD-BC A-BC-D D A-BD-C6.△ABC 在平面α的射影是△A 1B 1C 1,如果△ABC 所在平面和平面α成θ,则有( ) A S △A1B1C1=S △ABC ·sinθ B S △A1B1C1= S △ABC ·cosθC S △ABC =S △A1B1C1·sinθD S △ABC =S △A1B1C1·cosθ7.如图,若P 为二面角M-l-N 的面N 内一点,PB ⊥l ,B 为垂足,A 为l 上一点,且∠PAB=α,PA 与平面M 所成角为β,二面角M-l-N 的 大小为γ,则有 ( )A.sinα=sinβsinγB.sinβ=sinαsinγC.sinγ=sinαsinβ D 以上都不对AB C DAB M NP l C1A1B1D8.在600的二面角的棱上有两点A 、B ,AC 、BD 分别是在这个二面角的两个面内垂直于AB 的线段,已知:AB=6,AC=3,BD=4,则CD= 。
立体几何线面角二面角解答题练习1.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。
已知∠ABC =45°,AB =2,BC=22,SA =SB =3。
(Ⅰ)证明:SA ⊥BC ;(Ⅱ)求直线SD 与平面SAB 所成角的大小; 解答:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由22AD BC ==,3SA =,2AO =,得1SO =,11SD =.SAB △的面积22111222S ABSA AB ⎛⎫=-= ⎪⎝⎭.连结DB ,得DAB △的面积21sin13522S AB AD ==设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =, 解得2h =.设SD 与平面SAB 所成角为α,则222sin 1111h SD α===. 所以,直线SD 与平面SBC 所成的我为22arcsin 11. 解法二: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-,,, (0220)CB =,,,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,22022E ⎛⎫⎪⎪⎝⎭,,,连结SE ,取SE 中点G ,连结OG ,221442G ⎛⎫ ⎪ ⎪⎝⎭,,. 221442OG ⎛⎫= ⎪ ⎪⎝⎭,,,22122SE ⎛⎫= ⎪ ⎪⎝⎭,,,(220)AB =-,,.0SE OG =,0AB OG =,OG 与平面SAB 两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.(2220)D ,,,(2221)DS =-,,.22cos 11OG DS OG DSα==,22sin 11β=,所以,直线SD 与平面SAB 所成的角为22arcsin11.BCASOEGyxzODCAS7、如图1,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,如图2. (I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角; 解:解法一:(I)因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,AD AB ⊥,AD ⊂平面ABCD ,所以AD ⊥平面1G AB ,又AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )过点B 作1BH AG ⊥于点H ,连结2G H .由(I )的结论可知,BH ⊥平面12G ADG , 所以2BG H ∠是2BG 和平面12G ADG 所成的角.因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,故1G E EF ⊥.因为12G G AD <,AD EF =,所以可在EF 上取一点O ,使12EO G G =,又因为12G G AD EO ∥∥,所以四边形12G EOG 是矩形.由题设12AB =,25BC =,8EG =,则17GF =.所以218G O G E ==,217G F =,15OF ==,1210G G EO ==.因为AD ⊥平面1G AB ,12G G AD ∥,所以12G G ⊥平面1G AB ,从而121G G G B ⊥.故222222221126810200BG BE EG G G =++=++=,2BG =.又110AG ==,由11BH AG G E AB =得81248105BH ⨯==.故2248sin 525BH BG H BG ∠===.即直线2BG 与平面12G ADG所成的角是arcsin 解法二:(I )因为平面1G AB ⊥平面ABCD ,平面1G AB平面ABCD AB =,1G E AB ⊥,1G E ⊂平面1G AB ,所以1G E ⊥平面ABCD ,从而1G E AD ⊥.又AB AD ⊥,所以AD ⊥平面1G AB .因为AD ⊂平面12G ADG ,所以平面1G AB ⊥平面12G ADG .(II )由(I )可知,1G E ⊥平面ABCD .故可以E 为原点,分别以直线1EB EF EG ,,为x 轴、y 轴、z 轴建AE BGDFCAEBCFDG 1G 2图1图2立空间直角坐标系(如图),由题设12AB =,25BC =,8EG =,则6EB =,25EF =,18EG =,相关各点的坐标分别是(600)A -,,, (6250)D -,,,1(008)G ,,,(600)B ,,. 所以(0250)AD =,,,1(608)AG =,,.设()n x y z =,,是平面12G ADG 的一个法向量,由100n AD n AG ⎧=⎪⎨=⎪⎩,.得250680y x z =⎧⎨+=⎩,故可取(403)n =-,,.过点2G 作2G O ⊥平面ABCD 于点O ,因为22G C G D =,所以OC OD =,于是点O 在y 轴上.因为12G G AD ∥,所以12G G EF ∥,218G O G E ==.设2(08)G m ,, (025m <<),由222178(25)m =+-,解得10m =,所以2(0108)(600)(6108)BG =-=-,,,,,,.设2BG 和平面12G ADG 所成的角是θ,则22222224|sin 25643BG n BG nθ===++.故直线2BG 与平面12G ADG 所成的角是arcsin 25.16、(理19)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点。
面面垂直与二面角一.选择题(共12小题)1.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD:BC:AB=2:3:4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1B.2C.3D.42.如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是()A.平面BCE⊥平面ABNB.MC⊥ANC.平面CMN⊥平面AMND.平面BDE∥平面AMN3.下列命题中错误的是()A.如果α⊥β,那么α内一定存在直线平行于平面βB.如果α⊥β,那么α内所有直线都垂直于平面βC.如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD.如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ4.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,P为线段A1B上的动点,则下列结论中正确的个数为()①DC1⊥D1P ②平面D1A1P⊥平面A1AP③∠APD1的最大值为90°④AP+PD1的最小值为⑤C1P与平面A1B1B所成角正弦值的取值范围是[,]A.1B.2C.3D.45.如图,在正方体ABCDA1B1C1D1中,E为BC1的中点,则DE与平面ABC1D1所成角的正弦值为()A.B.C.D.6.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=2,AC=3,BD=4,CD=,则该二面角的大小为()A.30°B.45°C.60°D.120°7.正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为12,底面对角线的长为2,则侧面与底面所成的二面角为()A.30°B.45°C.60°D.90°8.在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()A.30°B.45°C.60°D.90°9.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,,AA1=1,则二面角C﹣B1D﹣C1的大小的余弦值为()A.B.C.D.10.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,则CD的长为()A.B.7C.2D.911.如图,M,N是圆锥底面圆O上不同两点,且M,N,O不共线,设AN与底面所成角为α,二面角A﹣MN﹣O的平面角为β,ON与平面AMN所成角为γ,则()A.β>α>γB.β>γ>αC.α>β>γD.α>γ>β12.如图,P是△ABC边AB上一点,将△ACP沿CP折成直二面角A'﹣CP﹣B,要使|A'B|最短,则CP是()A.△ABC中AB边上的中线B.△ABC中AB边上的高线C.△ABC中∠ACB的平分线D.要视△ABC的具体情况而定二.解答题(共18小题)13.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,△PAD为等边三角形,E,M分别是AD,PD的中点,PB=2.(Ⅰ)求证:平面PBE⊥平面ABCD;(Ⅱ)求点P到平面ACM的距离.14.如图,在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点,E为线段PC 上一点.〔Ⅰ)求证:PA⊥BD;(Ⅱ)求证:平面BDE⊥平面PAC.15.如图,BD是圆O的直径,C是圆周上不同于B,D的任意一点,AB⊥平面BCD,E为AB 的中点.(1)求证:OE∥平面ACD;(2)求证:平面ACD⊥平面ABC.16.在正方体ABCD﹣A1B1C1D1中,点E为CC1的中点.(1)求证:平面AA1CC1⊥平面BDB1D1;(2)求直线BE与平面ACC1A1所成角的余弦值.17.如图1,梯形ABCD满足:AB∥CD,AD⊥AB,AD=DC=2AB=2,E是BA延长线上一点,AE=2.现将△EDA沿直线DA翻折,记翻折后的点E为点P.若PC=2,M为PC的中点,如图2.(Ⅰ)求证:平面ABM⊥平面PBD;(Ⅱ)求直线BC与平面PBD所成的角的正弦值.18.已知三棱锥A﹣BCD中,△BCD是等腰直角三角形,且BC⊥CD,BC=4,AD⊥平面BCD,AD=2.(Ⅰ)求证:平面ABC⊥平面ADC(Ⅱ)若E为AB的中点,求点A到平面CDE的距离.19.如图(1)在直角梯形ABCD中,∠BAD=90°,AB∥CD,CD=2AB=2AD=4,E为CD中点,现将△CEB沿BE折起,使得AC=4,得到如图(2)几何体,记线段CB的中点为F.(1)求证:平面CED⊥平面ABED(2)求点F到平面ACD的距离.20.如图所示,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.(1)求证:FH∥平面BDE;(2)求证:平面BDE⊥平面ACF.21.如图,在正三棱柱(底面为正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=AA1=2,点Q为BC的中点.(Ⅰ)求证:平面AQC1⊥平面B1BCC1;(Ⅱ)求点B到平面AQC1的距离.22.如图,在正三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都是4,D是CC1的中点,求:(1)三棱锥D﹣ABC的体积;(2)二面角D﹣AB﹣C的大小.23.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:平面PAB⊥平面PAD;(2)求二面角P﹣AB﹣D的大小.24.三棱柱ABC﹣A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为,点D在棱AA1上,且AD=,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B﹣B1C﹣A1的平面角的余弦值.25.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:EF∥CD;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求锐二面角P﹣AF﹣E的余弦值.26.四棱锥P﹣ABCD中,底面ABCD是平行四边形,BC=2AB,∠ABC=60°,PA=PB,点M为AB 的中点.(Ⅰ)在棱PD上作点N,使得AN∥平面PMC(Ⅱ)若PB⊥AC,且直线PC与平面PAB所成的角是45°,求二面角M﹣PC﹣A的余弦值27.如图,在直三棱柱ABC﹣A1B1C1中,E、F分别为A1C1、BC的中点AB=BC=2,C1F⊥AB.(1)求证:平面ABE⊥平面B1BCC1;(2)若直线C1F和平面ACC1A1所成角的正弦值等于,求二面角A﹣BE﹣C的平面角的正弦值.28.已知PA⊥菱形ABCD所在平面,PA=,G为线段PC的中点,E为线段PD上一点,且=2.(1)求证:BG∥平面AEC;(2)若AB=2,∠ADC=60°,求二面角G﹣AE﹣C的余弦值.29.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=.(1)求证:平面EBC⊥平面EBD;(2)设M为线段EC上一点,3=,求二面角M﹣BD﹣E的平面角的余弦值.30.如图所示,在四棱锥P﹣ABCD中,底面四边形ABCD是边长为的正方形,,PC=4,点E为PA中点,AC与BD交于点O.(Ⅰ)求证:OE⊥平面ABCD;(Ⅱ)求二面角B﹣PA﹣D的余弦值.参考答案一.选择题(共12小题)1.解:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选:B.2.解:分别过A,C作平面ABCD的垂线AP,CQ,使得AP=CQ=1,连接PM,PN,QM,QN,将几何体补成棱长为1的正方体.∵BC⊥平面ABN,BC⊂平面BCE,∴平面BCE⊥平面ABN,故A正确;连接PB,则PB∥MC,显然PB⊥AN,∴MC⊥AN,故B正确;取MN的中点F,连接AF,CF,AC.∵△AMN和△CMN都是边长为的等边三角形,∴AF⊥MN,CF⊥MN,∴∠AFC为二面角A﹣MN﹣C的平面角,∵AF=CF=,AC=,∴AF2+CF2≠AC2,即∠AFC≠,∴平面CMN与平面AMN不垂直,故C错误;∵DE∥AN,MN∥BD,∴平面BDE∥平面AMN,故D正确.故选:C.3.解:如果α⊥β,则α内与两平面的交线平行的直线都平行于面β,故可推断出A命题正确.B选项中α内与两平面的交线平行的直线都平行于面β,故B命题错误.C根据平面与平面垂直的判定定理可知C命题正确.D根据两个平面垂直的性质推断出D命题正确.故选:B.4.解:对于①,∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,①正确对于②,∵平面D1A1P即为平面D1A1BC,平面A1AP 即为平面A1ABB1,切D1A1⊥平面A1ABB1,∴平面D1A1BC,⊥平面A1ABB1,∴平面D1A1P⊥平面A1AP,∴②正确;对于③,当0<A1P<时,∠APD1为钝角,∴③错;对于④,将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°利用余弦定理解三角形得AD1=,即AP+PD1≥,∴④不正确.对于⑤,C1P与平面A1B1B所成角正弦值为,∵,∴C1P与平面A1B1B所成角正弦值的取值范围是[,],故⑤正确.故选:C.5.解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1中棱长为2,D(0,0,0),E(1,2,1),A(2,0,0),B(2,2,0),C1(0,2,2),=(1,2,1),=(0,2,0),=(﹣2,2,2),设平面ABC1D1的法向量=(x,y,z),则,取x=1,得=(1,0,1),设DE与平面ABC1D1所成角为θ,则sinθ===,∴DE与平面ABC1D1所成角的正弦值为.故选:D.6.解:由已知可得:,,,∴=+2=32+22+42+2×3×4cos<,>=,∴cos<>=﹣,即<>=120°,∴二面角的大小为60°,故选:C.7.解:正四棱锥的体积为12,底面对角线的长为2,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα==,则二面角等于60°,故选:C.8.在正三棱柱ABC﹣A1B1C1中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为()A.30°B.45°C.60°D.90°解:以A为坐标原点,、的方向分别为y轴和z轴的正方向建立空间直角坐标系.设底面边长为2a,侧棱长为2b,则A(0,0,0),C(0,2a,0),D(0,a,0),B(a,a,0),C1(0,2a,2b),B1(a,a,2b).=(),=(﹣,a,2b),=(,0,0),=(0,a,2b),由AB1⊥BC1,得•=2a2﹣4b2=0,即2b2=a2.设=(x,y,z)为平面DBC1的一个法向量,则•=0,•=0.即,又2b2=a2,令z=1,解得=(0,﹣,1).同理可求得平面CBC1的一个法向量为=(1,,0).设平面DBC1与平面CBC1所成的角为θ,则cos θ==,解得θ=45°.∴平面DBC1与平面CBC1所成的角为45°.故选:B.9.解:建立空间直角坐标系,如图所示;长方体ABCD﹣A1B1C1D1中,AB=2,,AA1=1,∴A(0,0,0),C(2,,0),D(0,,0),B1(2,0,1),C1(2,,1);∴=(﹣2,,﹣1),=(﹣2,0,0),=(0,,0);设平面CB1D的法向量为=(x,y,z),则,即,令y=1得=(0,1,);同理,设平面C1B1D的法向量为=(x,y,z),则,即,令x=1,则=(1,0,﹣2);∴cos<,>===﹣,∴二面角C﹣B1D﹣C1的余弦值为﹣cos<,>=.故选:A.10.解:∵CA⊥AB,BD⊥AB,∴,.∵,∴=+++2+2+2═62+42+82+2×6×8cos120°=68,∴CD=2故选:C.11.解:连接OA,OM,取MN的中点H,连接OH,AH,过O作OD⊥AH,垂足为D,连接ND,由AO⊥底面,可得∠ANO=α,由OH⊥MN,AO⊥底面,由三垂线定理可得MN⊥AH,可得∠AHO=β,由OD⊥AH,MN⊥平面AHO,可得OD⊥MN,OD⊥平面AMN,可得∠OND=γ,且α,β,γ均为锐角,则sinα=,sinβ=>=sinα,即β>α;=•=>1,即有β>γ,tanα=,tanγ=,设AO=h,ON=r,OH=d,可得OD=,DN=,则tanα=,tanγ=,tan2α﹣tan2γ=>0,可得tanα>tanγ,即有α>γ,即为β>α>γ.故选:A.12.解:如图所示,作A′E⊥CP,垂足为E.∵直二面角A'﹣CP﹣B,∴A′E⊥平面BCP.时AC=b,BC=a,∠ACB=α.设∠ACP=θ.则A′E=bsinθ,CE=bcosθ.BE2=b2cos2θ+a2﹣2abcosθcos(α﹣θ),∴A′B2=(A′E)2+BE2=b2sin2θ+b2cos2θ+a2﹣2abcosθcos(α﹣θ)=b2+a2﹣2abcosθcos(α﹣θ),∵cosθcos(α﹣θ)=cosθ(cosαcosθ+sinαsinθ)=cosαcos2θ+sinαsin2θ=c osα+sinαsin2θ=+cos(α﹣2θ).∴A′B2=b2+a2﹣abcosα﹣abcos(α﹣2θ),当且仅当cos(α﹣2θ)=1时,即α=2θ时,即CP为∠ACB的平分线时,|A'B|最短.故选:C.二.解答题(共18小题)13.(Ⅰ)证明:由题意知,正△PAD边长为2,∵E为AD的中点,∴PE⊥AD,PE=,在正方形ABCD中,E为AD的中点,边长为2,则BE=,在△PBE中,BE2+PE2=8=PB2,∴PE⊥BE,又BE∩AD=E,∴PE⊥平面ABCD,∵PE⊂P平面ABCDM,∴平面PBE⊥平面ABCD;(Ⅱ)由题意知V P﹣ACM=V C﹣APM,△PAD为等边三角形,则AM=,∴S△APM=,∵PE⊥平面ABCD,∴PE⊥CD,∵CD⊥AD.∴CD⊥平面PAD,故CD为三棱锥C﹣PAB的高,∴CD⊥PD,在正方形ABCD中,AC=2,则在△ACM中,满足8=AC2=AM2+CM2,∴△ACM为直角三角形,∴AM⊥MC,∴S△ACM=|AM|•|CM|=,设点P到平面ACM的距离为d,由V P﹣ACM=V C﹣APM,得×d×S△ACM=×CD×S△APM,解得d=14.证明:(Ⅰ)∵在三棱锥P﹣ABC中,PA⊥AB,PA⊥BC,AB∩BC=B,∴PA⊥平面ABC,∵D为线段AC的中点,∴BD⊂平面ABC,∴PA⊥BD.(Ⅱ)∵AB=BC,D为线段AC的中点,∴BD⊥AC,∵PA⊥BD,PA∩AC=A,∴BD⊥平面PAC,∵BD⊂平面BDE,∴平面BDE⊥平面PAC.15..证明:(1)∵BD是圆O的直径,E为AB的中点,∴OE∥AD,∵OE⊄平面ACD,AD⊂平面ACD,∴OE∥平面ACD.(2)∵BD是圆O的直径,∴BC⊥DC,∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵AB∩BC=B,∴平面ACD⊥平面ABC.16.证明:(1)正方体ABCD﹣A1B1C1D1中,有AA1⊥平面ABCD,又BD⊂平面ABCD,∴AA1⊥BD,又由正方形ABCD,可知AC⊥BD,AA1∩AC=A,∴BD⊥平面ACC1A1,又BD⊂平面BDD1B1,∴平面AA1C1C⊥平面BDD1B1.(6分)解:(2)记AC与BD交点为O,连接OE,∵BD⊥平面ACC1A1,∴∠OEB即为直线BE与平面ACC1A1所成角,设正方体棱长AB=2,则OB=,BE=,OE=,则有cos=,直线BE与平面ACC1A1所成角的余弦值为.(12分)17.(Ⅰ)证明:在△ADE中,AD=AE=2,得DE=2,即PD=.在△PDC中,DC=2,PC=2,可得PC2=PD2+DC2,∴∠CDP=90°,即CD⊥PD.又CD⊥AD,∴CD⊥平面PAD.取PD中点N,则MN是△PCD的中位线,∴MN∥CD,MN=.又AB∥CD,AB=,∴AB∥MN,AB=MN,即四边形ABMN为平行四边形.又AN是等腰直角三角形PAD斜边PD的中线,∴PD⊥AN,又CD⊥平面PAD,∴AB⊥平面PAD,AB⊥PD.∴PD⊥平面ABM,又PD⊂平面PBD,∴平面ABM⊥平面PBD;(Ⅱ)解:在△MNB中,作MH⊥NB于H,则MH⊥平面PBD,由已知可得MN=1,MB=,又NB=,∴,即点M到平面PDB的距离为.又由于M是PC的中点,∴点C到平面PBD的距离h=.求得BC=,设直线BC与平面PBD所成的角为θ,则s inθ=.18.(Ⅰ)证明:∵AD⊥平面BCD,BC⊂平面BCD,∴AD⊥BC,又∵BC⊥CD,CD∩AD=D,∴BC⊥平面ACD,又BC⊂平面ABC,∴平面ABC⊥平面ACD.…(5分)(Ⅱ)解:由已知可得,取CD中点为F,连结EF,∵,∴△ECD为等腰三角形,∴,,…(8分)由(Ⅰ)知BC⊥平面ACD,∴E到平面ACD的距离为:,∴S△ACD=4,…(10分)设A到平面CED的距离为d,有,解得,∴A到平面CDE的距离是.…(12分)19.(1)证明:由条件可知BA=DE,BA∥DE,∠BAD=90°,∴四边形ABED为正方形,∴BE⊥EC,BE⊥ED,EC⊥ED=E,⇒BE⊥平面DEC.又BE⊂平面ABCD,所以平面CED⊥平面ABCD.(2)AD∥BE,∴AD⊥平面DEC,∴∠ADC=90°,∴∠CED=120°,△CED为等腰三角形.过点E作EM⊥CD,∴M为CD中点⇒ME=1 ∴ME⊥CD,ME⊥AD⇒ME⊥平ACD.又F为BC的中点,∴.20.证明:(1)设BD与AC交于点O,连接OE、OH.∵O、H分别为AC,BC中点,∴OH∥AB,OH=AB,∴EF∥AB,EF=AB,∴OH=EF,OH∥EF,∴四边形OEFH为平行四边形,∴FH∥OE,又∴FH⊄平面BDE,OE⊂平面BDE,∴FH∥平面BDE.(2)∵EF∥AB,EF⊥FB,AB∩FB=B,∴EF⊥平面ABF,∵FB⊂平面ABF,∴AB⊥FB,∵AB⊥BC,BC∩FB=B,∴AB⊥平面BCF,∵FH⊂BCF,∴AB⊥FH,∵FH⊥BC,AB∩BC=B,∴FH⊥平面ABCD,又FH∥OE,∴OE⊥平面ABCD,∵AC⊂平面ABCD,∴OE⊥AC,∵AC⊥BD,AC∩BD=O,∴AC⊥平面BDE,又AC⊂平面ACF,∴平面BDE⊥平面ACF.21.解:(I)证明:由题意知,AB=AC,Q为BC的中点,∴AQ⊥BC;由B1B⊥平面ABC,得B1B⊥AQ;∵BC,B1B⊂平面B1BCC1,且BC∩B1B=B,∴AQ⊥平面B1BCC1,又∵AQ⊂平面AC1Q,∴平面AC1Q⊥平面B1BCC1;……(6分)(II)设点B到平面AQC1的距离为d,在正三棱柱ABC﹣A1B1C1中,CC1⊥平面ABQ,∴CC1为三棱锥C1﹣ABQ的高;由(I)知,AQ⊥平面B1BCC1,则AQ⊥QC1,∴;∴,;又,∴,即,解得.……(12分)22.解:(1)∵三棱柱ABC﹣A1B1C1为正三棱柱,且底面边长和侧棱长都是4,D是CC1的中点,∴,三棱锥D﹣ABC的高为DC=2.∴三棱锥D﹣ABC的体积V=;(2)取AB中点G,连接DG,CG,则AB⊥平面DGC,∴∠DGC为二面角D﹣AB﹣C的平面角,在Rt△DCG中,DC=2,CG=,∴tan∠DGC=,则.即二面角D﹣AB﹣C的大小为.23.证明:(1)∵四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.∴AB⊥AD,AB⊥PD,又AD∩PD=D,∴AB⊥平面PAD,∵AB⊂平面PAB,∴平面PAB⊥平面PAD.解:(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,设PD=DC=DP=2,则A(2,0,0),P(0,0,2),D(0,0,0),B(2,2,0),=(﹣2,0,2),=(0,2,0),设平面PAB的法向量=(x,y,z),则,取x=1,得=(1,0,1),平面ABD的法向量=(0,0,1),设二面角P﹣AB﹣D的大小为θ,则cosθ===,θ=45°,∴二面角P﹣AB﹣D的大小为45°.24.(1)证明:连接AO,∵A1O⊥底面ABC,AO,BC⊂底面ABC,∴BC⊥A1O,A1O⊥AO,且AA1与底面ABC 所成的角为∠A1AO,即.在等边三角形ABC中,易求得AO=.在△AOD中,由余弦定理,得,∴OD2+AD2=3=OA2,即OD⊥AA1.又∵AA1∥BB1,∴OD⊥BB1.∵AB=AC,OB=OC,∴AO⊥BC,又∵BC⊥A1O,AO∩A1O=O,∴BC⊥平面AA1O,又∵OD⊂平面AA1O,∴OD⊥BC,又BC∩BB1=B,∴OD⊥平面BB1C1C.(2)如下图所示,以O为原点,分别以OA,OB,OA1所在的直线为x,y,z轴建立空间直角坐标系,则故由(1)可知,∴可得点D的坐标为,∴平面BB1C1C的一个法向量是.设平面A1B1C的法向量=(x,y,z),由得,令,则y=3,z=﹣1,则,∴,易知所求的二面角为钝二面角,∴二面角B﹣B1C﹣A1的平面角的余弦角值是.25.解:(1)∵底面ABCD是菱形,∴AB∥CD,又∵AB⊄面PCD,CD⊂面PCD,∴AB∥面PCD,…(2分)又∵A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,∴AB∥EF,即可得EF∥CD…(5分)(2)取AD中点G,连接PG,GB,∵PA=PD,∴PG⊥AD,又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,∴PG⊥GB,在菱形ABCD中,∵AB=AD,∠DAB=60°,G是AD中点,∴AD⊥GB,…(6分)如图,建立空间直角坐标系G﹣xyz,设PA=PD=AD=2,则G(0,0,0),A(1,0,0),B(0,,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,)又∵AB∥EF,点E是棱PC中点,∴点F是棱PD中点,E(﹣1,,),F(﹣,0,),,,设平面AFE的法向量为=(x,y,z),则有⇒,不妨令x=3,则平面AFE的一个法向量为.∵BG⊥平面PAD,∴是平面PAF的一个法向量,cos==∴锐二面角P﹣AF﹣E的余弦值为..…(12分)26.解:(Ⅰ):点N为PD中点.下证:取PD中点N,PC中点Q,连结AN,QN,MQ,在△PCD中,N,Q分别是所在边PD,PC的中点,则NQ∥CD且.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)因为点M为AB中点,AB=CD,所以NQ∥AM且NQ=AM.﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)所以四边形AMQN是平行四边形,所以AN∥MQ.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)又因为AN⊄平面PMC,MQ⊂平面PMC,所以AN∥平面PMC.﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)在△ABC中,BC=2AB,∠ABC=60°,设AB=a,则BC=2a,由余弦定理有:,则BC2=AB2+AC2,由勾股定理的逆定理可得:AC⊥AB.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)又因为PB⊥AC,PB∩AB=B,PB,AB⊂平面PAB,所以AC⊥平面PAB.因为PM⊂平面PAB,所以AC⊥PM.因为PA=PB,点M为线段AB的中点,所以PM⊥AB,因此PM,AB,AC两两垂直.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)以A为原点,分别以AB,AC所在直线为x,y轴,建立空间直角坐标系.因为直线PC与平面PAB的所成角是45°,所以∠CPA=45°,所以Rt△CAP是等腰直角三角形,所以.﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)则A(0,0,0),,,,,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)设平面PMC的一个法向量为=(x,y,z),则即得,同理可得,平面PAC的一个法向量为,﹣﹣﹣﹣﹣﹣﹣﹣(10分)则.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)由图可得所求二面角的平面角为锐角,所以二面角M﹣PC﹣A的余弦值为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)27.(1)证明:在直三棱柱中,CC1⊥AB,又C1F⊥AB,且CC1∩C1F=C1,∴AB⊥平面B1BCC1,又∵AB⊂平面EBA,∴平面ABE⊥平面B1BCC1;(2)解:由(1)可知,AB⊥BC,以B点为坐标原点,为x轴正方向,为y轴正方向,为z轴正方向建立坐标系.设AA1=a,则B(0,0,0),C(2,0,0),A(0,2,0),B1(0,0,a),C1(2,0,a),A1(0,2,a),E (1,1,a),F(1,0,0).直线FC1的方向向量,平面ACC1A1的法向量.可知||=,∴a=2.,,,设平面ABE的法向量,由,取z=﹣1,可得.设平面CBE的法向量,由,取z=﹣1,可得.记二面角A﹣BE﹣C的平面角为θ,∴|cosθ|=||=,则sin.故二面角A﹣BE﹣C的平面角的正弦值为.28.(1)证明:取PE的中点F,连接GF,BF,∵G为PC的中点,∴GF∥CE,∴GF∥平面AEC.连接BD交AC与点O,连接OE.∵E为DF的中点,∴BF∥OE,∴BF∥平面AEC.∵BF∩GF=F,∴平面BGF∥平面AEC.又BG⊄平面BGF,∴BG∥平面AEC;(2)解:如图,建立空间直角坐标系O﹣xyz.则则O(0,0,0),A(﹣1,0,0),C(1,0,0),P(﹣1,0,),D(0,,0),E(,,),G(0,0,2),∴=(,,),=(2,0,0),=(1,0,),设平面AEC的法向量为,则,∴,即,不妨设得=(0,,),设平面AEG的法向量为,则,∴,即,不妨设z2=1得=(,0,1),∴=.由图可知,二面角G﹣AE﹣C为锐角,则二面角G﹣AE﹣C的余弦值为.29.证明:(1)∵AD=1,CD=2,AC=,∴AD2+CD2=AC2,∴△ADC为直角三角形,且AD⊥DC,同理∵ED=1,CD=2,EC=,∴ED2+CD2=EC2,∴△EDC为直角三角形,且ED⊥DC,又四边形ADEF是正方形,∴AD⊥DE,又∵AB∥DC,∴DA⊥AB.在梯形ABCD中,过点作B作BH⊥CD于H,∴四边形ABHD是正方形,∴∠ADB=45°.在△BCH中,BH=CH=1,∴∠BCH=45°.BC=,∴∠BDC=45°,∴∠DBC=90°,∴BC⊥BD.∵ED⊥AD,ED⊥DC,AD∩DC=D.AD⊂平面ABCD,DC⊂平面ABCD.∴BD⊥平面ABCD,又∵BC⊂平面ABCD,∴ED⊥BC,因为BD∩ED=D,BD⊂平面EBD,ED⊂平面EBD.∴BC⊥平面EBD,BC⊂平面EBC,∴平面EBC⊥平面EBD.解:(2)以D为原点,DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系,如图,D(0,0,0),E(0,0,1),B(1,1,0),C(0,2,0).令M(0,y0,z0),则=(0,y0,z0﹣1),=(0,2,﹣1),∵3=,∴(0,3y0,3z0﹣3a)=(0,2,﹣1),∴M(0,,).=(1,1,0),=(0,),∵BC⊥平面EBD,∴=(﹣1,1,0)是平面EBD的一个法向量.设平面MBD的法向量为=(x,y,z).则.令y=1,得=(﹣1,1,1),∴cos<>===,∴二面角M﹣BD﹣E的平面角的余弦值为.30.证明:(I)底面四边形ABCD是边长为的正方形,,PC=4,在△PBC中,∵PB2=PC2+BC2,∴PC⊥BC,同理可得BC⊥CD,而BC∩CD=C,BC、CD⊂平面ABCD,∴PC⊥平面ABCD,在△PAC中,由题意知O、E分别为AC、PA中点,则OE∥PC,而PC⊥平面ABCD,∴OE⊥平面ABCD.解:(II)由(I)知:OE⊥平面ABCD,故可建立空间直角坐标系O﹣xyz,如图所示,A(1,0,0),B(0,1,0),D(0,﹣1,0),P(﹣1,0,4),∴=(﹣2,0,4),=(﹣1,1,0),=(﹣1,﹣1,0),设、=(a,b,c)分别为平面PAB和平面PAD的一个法向量,则,,∴,,不妨设z=c=1,则=(2,2,1),=(2,﹣2,1),∴cos<>===,由图知二面角B﹣PA﹣D为钝二面角,∴二面角的B﹣PA﹣D的余弦值为﹣.。
二面角的求法定义法:从一条直线出发的两个半平面所组成的图形叫做二面角 ,这条直线叫做二面角的棱 ,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角 的平面角。
矚慫润厲钐瘗睞枥庑赖。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S — AM — B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面 ASM 内过该垂足(F )作棱AM 的垂线(如 GF ), 这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
聞創沟燴鐺險爱氇谴净。
例1如图,四棱锥 S ABCD 中,底面ABCD 为矩形,DC SD 2,点 M 在侧棱 SC 上, ABM =60 °(I ) 证明:M 在侧棱SC 的中点 (II ) 求二面角S AM B 的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形 ABM 中过点B 作BF AM 交AM 于点F ,则点F 为 AM 的中点,过F 点在平面ASM 内作GF AM GF 交AS 于G ,连结 AC ‘•••△\DC 也ZADS , A AS-AC ,且 M 是 SC 的中点, •••AM 丄SC , GF 丄 AM ,「.GF //AS ,又T F 为 AM 的中点, •••GF 是Z AMS 的中位线,点 G 是AS 的中点。
SD 底面 ABCD ,AD 2c残骛楼諍锩瀨濟GC籟。
则GFB即为所求二面角••••$“2,则GF练习1如图,已知四棱锥 P -ABCD ,底面ABCD 为菱形,PA 丄平面ABCD , ABC 60 ,E , F 分别是BC , PC 的中点•酽锕极額閉镇桧猪訣 锥。
(I)证明:AE 丄PD ;(H)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值6为,求二面角E — AF — C 的余弦值.2分析:第1题容易发现,可通过证 AE 丄AD 后推出AE 丄平面APD ,使命题获证,而第 2题,则首先必须 在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二J 15 面角的平面角的顶点 S ,和两边SE 与SC ,进而计算二面角的余弦值。
专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
这是空间向量求解的巨大优点,也是缺点,就这么共存着。
其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。
方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
第6讲立体几何二面角问题知识与方法1. 空间问题平面化解立体几何问题离不开空间问题平面化, 求二面角大小也是如此. 把二面角大小转化为线线角大小, 这里的线线角可以是二面角的平面角, 也可以是两个半平面的法线等. 2. 求二面角大小, 有以下方法方法一: 二面角的平面角. 过公共棱上的点直接作出二面角的平面角.方法二: 公共棱的垂面产生二面角的平面角.方法三:利用三垂线定理或三垂线定理的逆定理构造二面角的平面角.三垂线定理: 平面内的一条直线, 如果与穿过这个平面的一条斜线在这个平面上的射影垂直, 那么它也与这条斜线垂直.三垂线定理的逆定理: 如果平面内一条直线与穿过该平面的一条斜线垂直, 那么这条直线也垂直于这条斜线在平面内的射影.∠是利用三垂线定理或其逆定理, 作出两个半平面的公共棱的垂面AOH, 则AOH∠的大小.二面角的平面角, 在Rt AOH中求出AOH方法四: 面积射影法.设平面α内有一平面图形的面积为S, 它在平面β上的射影的面积为S', 则平面 α 与平面 β 所成锐二面角 θ 的余弦值 cos S Sθ='. 方法五:利用两个平面的法向量的夹角来求二面角大小.一般通过建立空间直角坐标系进行代数运算.方法六: 等体积法.在平面 α 内找到一个点 A , 求出点 A 到两个半平面的公共棱的距离 AO , 用等体积法求出 点 A 到平面 β 的距离 h , 则二面角 θ 的正弦值 sin h AO θ=. 方法七:三正弦定理.方法八: 三面角的余弦定理.定理: 如图,四面体 O ABC - 的二面角 A OC B -- 的大小为 α, 则cos α cos cos cos sin sin AOB AOC BOC AOC BOC∠∠∠∠∠-⋅=⋅.在已知一个四面体中 ,,OA OB OC 的两两夹角的情况下, 便能求解二面角A OCB --, 二 面角 A OBC --, 二面角 C OA B -- 的大小.方法九: 无棱二面角.题设背景中没有直接给出二面角的公共棱,要解决这一问题,可以补全几何图形,作出二 面角的公共棱,再用上述方法来求解二面角大小,也可以用面积射影法,或者用空间向量法计 算二面角的大小.典型例题【例1】1111(1), , ,ABC A B C AA ABC ABC -⊥如图在三棱柱中侧棱平面为等腰直角三角形, 90BAC ∠=, 且 12,,AB AA E F == 分别是 1,CC BC 的中点.(1) 求证 : EF ⊥ 平面 1AB F ;(2) 求锐二面角 1B AE F -- 的平面角的余弦值.【例2】111111 (1), , , ,ABCD A B C D E F CC CD -如图在正方体中分别是的中点, G 是线段 1AA 的四等分点 (靠近点 A ), 则过 ,,E F G 三点的截 面与底面 ABCD 所成锐二面角的余弦值为 .【例3】 在平面α内,已知AB BC ⊥,过直线AB BC 、分别作平面β ,γ ,使锐二面角AB αβ--的大小为 3π, 锐二面角 BC αγ-- 的大小为 3π, 则平面 β 与平面 γ 所成的锐二面角的余弦值为()A. 14B.C. 12D. 34【例4】 如图, 在正方体 1111ABCD A B C D - 中, 平面 11ABC D 与平面 1DBC 所成锐二面角的余弦值为 .【例5】 如图 (1), 设 P 为圆锥的顶点, ,,A B C 是其底面圆周上的三点, 满 足90ABC ∠=. 若 1,2,AB AC AP ===则二面角 A PB C -- 的平 面角的余弦值为 .【例6】如图①,已知边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面互相垂直, M 是 CD 上异于,C D 的点.(1) 证明: 平面 AMD ⊥ 平面 BMC ;(2) 当三棱锥 M ABC - 的体积最大时,求平面 MAB 与平面 MCD 所 成二面角的正弦值.图(1)【例7】如图(1), 在四棱锥P ABCD-中, 侧面PAD是边长为2 的等边三角形且垂直于底面1,,2ABCD AB BC AD BAD ABC∠∠====90,E是PD的中点.(1) 证明: 直线//CE平面PAB;(2)点M在棱PC上, 且直线BM与底面ABCD所成的角为45, 求二面角M AB D--的平面角的余弦值.第6讲立体几何二面角问题知识与方法1. 空间问题平面化解立体几何问题离不开空间问题平面化, 求二面角大小也是如此. 把二面角大小转化为线线角大小, 这里的线线角可以是二面角的平面角, 也可以是两个半平面的法线等.2. 求二面角大小, 有以下方法方法一: 二面角的平面角. 过公共棱上的点直接作出二面角的平面角.方法二: 公共棱的垂面产生二面角的平面角.方法三:利用三垂线定理或三垂线定理的逆定理构造二面角的平面角.三垂线定理: 平面内的一条直线, 如果与穿过这个平面的一条斜线在这个平面上的射影垂直, 那么它也与这条斜线垂直.三垂线定理的逆定理: 如果平面内一条直线与穿过该平面的一条斜线垂直, 那么这条直线也垂直于这条斜线在平面内的射影.利用三垂线定理或其逆定理, 作出两个半平面的公共棱的垂面AOH, 则AOH∠是二面角的平面角, 在Rt AOH中求出AOH∠的大小.方法四: 面积射影法.设平面α内有一平面图形的面积为S, 它在平面β上的射影的面积为S', 则平面α与平面β所成锐二面角θ的余弦值cosSS θ='.方法五:利用两个平面的法向量的夹角来求二面角大小.一般通过建立空间直角坐标系进行代数运算.方法六: 等体积法.在平面α内找到一个点A, 求出点A到两个半平面的公共棱的距离AO, 用等体积法求出点A到平面β的距离h, 则二面角θ的正弦值sinh AOθ=. 方法七:三正弦定理.方法八: 三面角的余弦定理.定理: 如图,四面体 O ABC - 的二面角 A OC B -- 的大小为 α, 则cos α cos cos cos sin sin AOB AOC BOC AOC BOC∠∠∠∠∠-⋅=⋅.在已知一个四面体中 ,,OA OB OC 的两两夹角的情况下, 便能求解二面角A OCB --, 二 面角 A OBC --, 二面角 C OA B -- 的大小.方法九: 无棱二面角.题设背景中没有直接给出二面角的公共棱,要解决这一问题,可以补全几何图形,作出二 面角的公共棱,再用上述方法来求解二面角大小,也可以用面积射影法,或者用空间向量法计 算二面角的大小.典型例题【例1】1111(1), , ,ABC A B C AA ABC ABC -⊥如图在三棱柱中侧棱平面为等腰直角三角形, 90BAC ∠=, 且 12,,AB AA E F == 分别是 1,CC BC 的中点.(1) 求证 : EF ⊥ 平面 1AB F ;(2) 求锐二面角 1B AE F -- 的平面角的余弦值.图(1)【分析】 证明线面垂直, 一般会用线面垂直的判定定理. 研究二面角的平面角时, 找到一个半平面的垂线很重要, 利用这条垂线, 根据三垂线定理可以作出二面角的平面角. 当然本 题是在直棱柱的背景下解决问题, 可以考虑建立空间直角坐标系, 用空间向量来求解二面角的大小.(1) 【解析】 因为 AC AB =, 且 F 为 BC 的中点, 所以 AF BC ⊥.又三棱柱中 1BB ⊥ 平面 ,ABC AF ⊂ 平面 ABC , 所以 1BB AF ⊥.因为 1BB BC B ⋂=, 所以 AF ⊥ 平面 11BB C C .因为 EF ⊂ 平面 11BB C C , 所以 AF EF ⊥.因为 12AC AB AA ===,经计算得 113B F EF B E ==,所以 22211B E B F EF =+, 即 1B F EF ⊥.又因为 1B F AF F ⋂=, 所以 EF ⊥ 平面 1AB F .(2) 解法 1: (定义法, 根据三垂线定理或其逆定理作二面角的平面角)如图 (2), 过点 F 作 FM AE ⊥, 连结 1B M .由 (1) 知 11,B F EF AF B F ⊥⊥.又 EF AF F ⋂=, 所以 1B F ⊥ 平面 AEF .因为 AE ⊂ 平面 AEF , 所以 1B F AE ⊥.图(2)又 1,AE MF FM B F F ⊥⋂=, 所以 EA ⊥ 平面 1B MF ,所以 1EA B M ⊥,所以 1B MF ∠ 就是二面角 1B AE F -- 的平面角,经计算得1MF B M ==所以11cos 6MF B MF B M ∠==. 【点睛】 用定义法作二面角的平面角, 经常会用到三垂线定理及其逆定理. 请特别关注线面垂直或面面垂直的信息, 因为若能找到一个半平面内的一个点在另一个半平面上的射 影, 那么借助三垂线定理或其逆定理,构造二面角的平面角就非常简单了.解法2: (空间向量法) 由 (1) 知 1,,FE FA FB 两两垂直.如图 (3), 以 FE 为 x 轴、 FA 为 y 轴、 1FB 为 z 轴建立空间直角坐标系. 则点)()(1,,E A B , 所以 ()(13,2,0,0,EA AB =-=-, 易知平面 EAF 的一个法向量为 ()10,0,1=n ,设平面 1AEB 的一个法向量为 ()2,,x y z =n ,则 230EA ⋅=-=n 且 2120AB ⋅=-=n, 取 2=⎝⎭n , 所以 121212cos ,6⋅==n n n n n n .图(3)【点睛】 只要能方便建立直角坐标系, 并能用写出相关点的坐标, 就可以套用公式计算二面 角的大小. 但是一定要注意两个平面的法向量的夹角与二面角的大小关系:相等或互补. 解法3:(面积射影法) 因为 1,AF BC AF BB ⊥⊥, 则 AF ⊥ 平面 1CBB , 所以 1AF FB ⊥.又由 (1) 知 1EF B F ⊥, 则 1B F ⊥ 平面 AEF .设锐二面角 1B AE F -- 的大小为 θ,则1cos 6EFA EB A S S θ==. 【点睛】 面积射影法可以在不作出二面角的平面角的情况下, 算出二面角的大小, 这也是一种较为常用的方法.解法 4: (三正弦定理) 设锐二面角 1B AE F -- 的大小为 θ,则2221111cos 2B A AE EB B AE B A AE ∠+-===⋅, 由三正弦定理知 11sin sin sin B AF B AE ∠∠θ=⋅,则11sin 2sin 3sin 6B AF B AE ∠θ∠===, 即 cos θ=解法5: (三面角的余弦定理) 设锐二面角 1B AE F -- 的大小为 θ, 则2221111cos 2B A AE EB B AE B A AE ∠+-===⋅,所以 131015sin ,cos ,sin 5510B AE FAE FAE ∠∠∠===, 所以 1111110cos cos cos 62510cos sin sin 6315510B AF B AE FAE B AE FAE ∠∠∠θ∠∠-⨯-⋅===⋅⨯. 【点睛】 若已知三条共点直线两两夹角的大小,求解以这三条直线为公共棱的两个半平面 所成角的大小时, 可使用三面角的余弦定理.一般建议在解小题中使用, 因为二级结论在 解决大题时难得步骤分.【例2】111111 (1), , , ,ABCD A B C D E F CC CD -如图在正方体中分别是的中点, G 是线段 1AA 的四等分点 (靠近点 A ), 则过 ,,E F G 三点的截 面与底面 ABCD 所成锐二面角的余弦值为【分析】 本题背景是 “无棱”二面角, 但二面角一定有公共棱, 可以依据 题意作出二面角的公共棱, 再作出二面角的平面角来求解. 对于“无棱”二面角,也可以考虑用面积射影法、空间向量法等来求解, 这样就不需要作出二面角的 公共棱.【解析】解法 1: 设正方体的棱长为 4 , 所求二面角的大小为 θ, 过点 F 作 FH ⊥ CD 于点 H , 如图 (2). 则 EFG 在底面ABCD 上的射影为 CHA , 经计算 2EF =, 点 G 到 EF 的距离为 17, 所以1424172cos 1172172AHCEFG SS θ⨯⨯===⨯⨯.图(2)【点睛】 本题是“无棱”二面角, 可以用面积射影法求解, 这种方法避免了找两个半平面的 公共棱及二面角的平面角.解法 2: (空间向量法) 设正方体的棱长为 4 . 如图(3), 以 AB 为 x 轴、 AD 为 y 轴、 1AA 为 z 轴建立空间直角坐标系, 则点 ()()()0,0,1,4,4,2,2,4,2G E F , 所以 ()()4,4,1,2,4,1GE GF ==.设平面 GEF 的一个法向量为 (),,x y z =n , 则 440GE x y z ⋅=++=n , 且 240GF x y z ⋅=++=n ,取 ()0,1,4=-n . 又平面 ABCD 的一个法向量为()10,0,1=n , 则 1cos<,=>n n .图(3)解法 3: 设正方体的棱长为 4.如图(4), 设 1,EF DD K KG DA O ⋂=⋂=.过点 O 作 //ON CD , 则 ////ON CD EF . 又 ON ⊥ 平面 ODK , 则DOK ∠ 为所求二面角的平面角,图(4)所以 cos 17DO DOK OK ∠==. 解法4: 设正方体的棱长为 4 . 如图(5), 过点 G 作平面 //GPNM 平面 ABCD , 则 GP ⊥ 平面 PNE , 则 NPE ∠ 为所求二面角的平面角, 所以cos17PN NPE PE ∠===.图(5)【点睛】 所谓“无棱” 的二面角, 并不是说两个半平面的公共棱不存在, 应该利用好已知条 件, 先作出二面角的公共棱, 再作出二面角的平面角.【例3】 在平面α内,已知AB BC ⊥,过直线AB BC 、分别作平面β ,γ ,使锐二面角AB αβ--的大小为 3π, 锐二面角 BC αγ-- 的大小为 3π, 则平面 β 与平面 γ 所成的锐二面角的余弦值为()A. 14B. 4C. 12D. 34【分析】 本题涉及三个平面, 可以用三面角的余弦定理来解决问题. 当然也可以考虑作出二 面角的平面角, 或用空间向量、三正弦定理来解.【解析】解法 1: (三面角的余弦定理) 如图 (1), 设平面 β 为平面 ABD , 平面 γ 为平面 BCD , 设点 D 在平面 ABC 上的射影为点 H , 过点 H 作 HM AB ⊥ 于点 M , 过点 H 作 HN BC ⊥ 于 点 N .由题意知, 四边形 BNHM 为正方形, DMH ∠ 为二面角 AB αβ-- 的 平面角, DNH ∠ 为二面角 AB αγ-- 的平面角.设平面 β 与平面 γ 所成的锐二面角大小为 θ, 设正方形 BNHM 的边 长为 1 , 则在 Rt DHM 中, ,13DMH MH π∠==, 所以 2MD =.图(1)同理 2ND =.所以 cosDBM DBM DBN DBN ∠∠∠∠====由三面角的余弦定理知 cos cos cos 1cos sin sin 4ABC ABD CBD ABD CBD ∠∠∠θ∠∠-⋅==-⋅. 所以平面 β 与平面 γ 所成的锐二面角的余弦值为14. 故选 A. 【点睛】 若能得知 ,,BA BD BC 这三条边的两两夹角的三角函数, 便能利用三面角的余弦 定理求得平面 β 与平面 γ 所在锐二面角的大小.解法 2:(二面角的平面角) 在解法1 的基础上, 如图 (2), 过点 M 作 ME DB ⊥ 于点 E , 连结 EN , 易证 MEN ∠ 为平面 β 与平面 γ 所成二面 角的平面角.又ME NE MN ===由余弦定理可得 1cos 4θ=. 故选 A.图(2)解法 3: (空间向量法) 构造符合题意的正四棱柱, 其中平面 β 为平面 ABD , 平面 γ为平面 BCD 根据条件“二面角 AB αβ-- 的大小为 3π, 锐二面角 BC αγ-- 的大小为 3π ”, 设四棱柱的 底面边长为 1 , 侧棱长为 二面角 A BD C -- 的大小为 θ.如图(3), 以点 B 为原点, 以 BC 为 x 轴、BA 为 y 轴、BE 为 z 轴建立空间 直角坐标系.则点 ()()(0,1,0,1,0,0,A C D , 所以 ()()(0,1,0,1,0,0,1,1,BA BC BD ===.图(3)设平面 ABD 的一个法向量为 ()1111,,x y z =n , 平面 BCD 的一个法向量为()2222,,x y z =n , 则 10BA ⋅=n 且 10BD ⋅=n , 即11110,0.y x y =⎧⎪⎨+=⎪⎩ 取)11=-n , 同理, 取()21=-n , 所以 121cos cos ,4θ==n n . 故选 A. 【点睛】 若能将几何体放到正方体、长方体中, 则容易建立空间直角坐标系, 从而借助空间向量法来解决问题.解法 4:(三正弦定理) 以解法3 为背景, 可知 AB 与平面 BCD 所成角为60,sin ABD ∠=设二面角 A BD C -- 的大小为 θ.由三正弦定理得 sin60sin sin ABD ∠θ=⋅,解得1sin 4θθ==. 故选 A. 【例4】 如图, 在正方体 1111ABCD A B C D - 中, 平面 11ABC D 与平面 1DBC 所成锐二面角的余弦值为【分析】 平面 11ABC D 与平面 1DBC 的法线较容易找到, 直接利用法线来求解.【解析】(用平面的法线求解) 平面 11ABC D 的一条法线为 1CB , 平面 1DBC 的一条法线为 1CA , 则直线 1CB 与直线 1CA 所成角的余弦值为 【点睛】 在正方体这一特殊几何体中, 很容易找到两个半平面的法线, 那么就可以直接利 用两条法线所成角的大小来表示二面角的大小. 当然, 也可以用定义法、空间向量法来求 解.【例5】 如图 (1), 设 P 为圆锥的顶点, ,,A B C 是其底面圆周上的三点, 满 足90ABC ∠=. 若 1,2,AB AC AP ===则二面角 A PB C -- 的平 面角的余弦值为【分析】 本题可以用空间向量法、作二面角的平面角等方法来解决问题.图(1)从条件来看, ,,PA PB PC 两两夹角的余弦值均可求解, 那么三面角的余弦定理可以更便 捷地解决问题. 【解析】 由 90ABC ∠= 知, AC 为底面圆的直径.如图 (2), 设底面中心为 O , 连结 PO ,则 PO ⊥ 平面 ABC , 易知 112AO CO AC ===,进而 1,PO BC ====图 (2)所以 22222231cos ,cos 2424AP BP AB PC BP CB APB CPB AP BP BP CP ∠∠+-+-====⋅⋅, 而 90APC ∠=, 设二面角 A PB C -- 的大小为 θ,则 cos cos cos cos sin sin 35APC APB CPB APB CPB ∠∠∠θ∠∠-⋅==-⋅. 【点睛】 由三条棱引出的三个半平面问题, 依据条件, 可以考虑用三面角的余弦定理尝试 解决问题.【例6】如图①,已知边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面互相垂直, M 是 CD 上异于,C D 的点.(1) 证明: 平面 AMD ⊥ 平面 BMC ;(2) 当三棱锥 M ABC - 的体积最大时,求平面 MAB 与平面 MCD 所 成二面角的正弦值.图(1)【分析】 面面垂直的证明, 一般转化为线面垂直来证明, 只要找到半平面的一条垂线, 如 DM ⊥ 平面 BMC . 研究体积的最大值时, 基于 ABC 的面积是确定的, 只需点 M 到平面 ABC 的距离最大即可, 再用定义法或空间向量法解决二面角大小的问题.【解析】 (1) 由题设知, 平面 CMD ⊥ 平面 ABCD , 交线为 CD .因为 ,BC CD BC ⊥⊂ 平面 ABCD , 所以 BC ⊥ 平面 CMD , 故 BC DM ⊥. 因为 M 为 CD 上异于 ,C D 的点, 且 DC 为直径, 所以 DM CM ⊥. 又 BC CM C ⋂=, 所以 DM ⊥ 平面 BMC .而 DM ⊂ 平面 AMD , 故平面 AMD ⊥ 平面 BMC .(2) 以点 D 为坐标原点, 以 DA 为 x 轴正方向、 DC 为 y 轴正方向 建立如图(2)所示的空间直角坐标系.图(2)当三棱锥 M ABC - 的体积最大时, M 为 CD 的中点.由题设得点 ()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M ,则 ()()()2,1,1,0,2,0,2,0,0AM AB DA =-==.设 (),,x y z =n 是平面 MAB 的一个法向量,则 0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即 20,20,x y z y -++=⎧⎨=⎩ 可取 ()1,0,2=n . 因为 DA 是平面 MCD 的一个法向量,因此 525cos<,,sin<,55DADA DA DA ⋅===>>n n n n , 所以平面 MAB 与平面 MCD 所成二面角的正弦值是【点睛】 在立体几何大题中,在容易找到线面垂直的背景下,一般可以选用空间向量法解决问题, 易错点在于判断二面角是钝角还是锐角.【例7】 如图 (1), 在四棱锥P ABCD -中, 侧面PAD 是边长为 2 的等边三角形且垂直于底面 1,,2ABCD AB BC AD BAD ABC ∠∠==== 90,E 是 PD 的中点. (1) 证明: 直线 //CE 平面 PAB ;图(1)(2) 点 M 在棱 PC 上, 且直线 BM 与底面 ABCD 所成的角为 45, 求二面角 M AB D -- 的 平面角的余弦值.【分析】 第一问可以用线面平行的判定定理 (或面面平行的性质定理) 来证明. 第二问建议采用空间向量法, 先通过计算确定点 M 的位置, 再解决二面角大小的问题.【解析】 (1) 如图 (2), 取 PA 的中点 F , 连结 ,EF BF .因为 E 为 PD 的中点, 所以 1//,2EF AD EF AD =. 由 90BAD ABC ∠∠== 得 //BC AD .又 12BC AD =, 所以 EF CB =. 所以四边形 BCEF 为平行四边形,所以 //CE BF .又 BF ⊂ 平面 ,PAB CE ⊄ 平面 PAB , 故 //CE 平面 PAB .图(2)(2) 由已知得 BA AD ⊥, 以点 A 为坐标原点, 以 AB 为 x 轴正方向、AD 为 y 轴正方向、 AB 为单位长, 建立如图 (3)所示的空间直角坐标系,则点 ()()()(()0,0,0,1,0,0,1,1,0,,,,A B C P M x y z ,则 ()()()1,0,3,1,0,0,1,,PC AB BM x y z =-==-,(,1,PM x y z =-.因为 BM 与底面 ABCD 所成的角为 45,而 ()0,0,1=n 是底面 ABCD 的一个法向量,图(3)所以 cos<,sin45BM =n >, 即2=, 即 222(1)0x y z -+-=.又点 M 在棱 PC 上, 设 PM PC λ=, 则,1,x y z λ===,1,122 1, ()1,x x y y z z ⎧⎧=+=-⎪⎪⎪⎪⎪⎪==⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩解得舍去或 所以点12M ⎛- ⎝⎭. 从而12AM ⎛=- ⎝⎭. 设 ()000,,x y z =m 是平面 ABM 的一个法向量,则 0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m 即(00002200x y x ⎧++=⎪⎨=⎪⎩,, 所以可取()0,=m.于是 cos<,⋅==m n m n >m n ,因此二面角 M AB D -- 的平面角的余弦值为 5. 【点睛】 对于动态立体几何问题, 如果用几何法较难确定位置关系, 可以考虑建立空间直角坐标系, 用空间向量的代数运算来确定动点的位置.。
高一寒假作业(8)—二面角专题1、正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1. (1)求证:A 1C //平面AB 1D ;(2)求二面角B —AB 1—D 的正切值;2、如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上.(1)求异面直线1D E 与1A D 所成的角;(2)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.3. 如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;(3)求平面PMD 与平面ABCD 所成的二面角(锐角)的正切值。
4、 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥。
(1)求证:1AC ⊥平面1A BC ; (2)求1CC 到平面1A AB 的距离; (3)求二面角1A A B C --的正弦值。
5、 如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。
(1)试确定PBP A 1的值,使得PC ⊥AB ;(2)若321=PBP A ,求二面角P —AC —B 的大小;(3)在(2)条件下,求C 1到平面PAC 的距离。
6、如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2.(1)证明:平面PBE ⊥平面PAB ;(2)求平面PAD 和平面PBE 所成二面角(锐角)的正弦值.7、如图7-29,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,,32=BD ,AB=4,AD=2,侧棱PB=15,PD=3。
文科立体几何线面角二面角专题学校:___________姓名:___________班级:___________考号:___________一、解答题1中,(1(2,求2中,(1)证明:(2)若点3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.4P,G面ABC(I AB所成角的余弦值;(II(III)求直线.5是正方形,,,.(1(2.6中,侧棱的中点.(1(2(3.7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角的大小为60°,求CF与平面ABCD所成角的正弦值.8(1(2与平面.9.在多面体中,底面是梯形,四边形是正方(1(2.10(1(2.参考答案1.(1)见解析(2【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.详解:(1)因为,所以知(2由已知平法向量由已知得.(舍去)点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP连结OB.因为AB=BC ABC为等腰直角三角形,且OB⊥AC,OB.OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC,CM ACB=45°.所以OM CH所以点C到平面POM的距离为【解析】分析:(1,欲证(2).详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP连结OB.因为AB=BC ABC为等腰直角三角形,且OB⊥AC,OB.OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC,CM ACB=45°.所以OM CH所以点C到平面POM的距离为点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.3.(Ⅰ)见解析;(Ⅱ)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出(Ⅱ)根据方程组解出平面互余关系求解.详解:方法一:,交直线是.学科.网,故方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:的法向量.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4(Ⅱ)见解析(Ⅲ)【解析】分析:AB,故∠AB所成的角,解三角形可得所求余弦值.ABC A1G,A1G,又A1G的中点H,连接AH,HG;取HG的中点O,连接OP PO//A1G故得∠PC1O是PC1详解:(I)AB,∴∠是异面直线AB所成的角.,G为BC的中点,∴A1G⊥B1C1,即异面直线AG与AB所成角的余炫值为(IIABC ABC,A1G,A1G,又A1G(III的中点H,连接AH,HG;取HG的中点O,连接OP∵PO//A1G,∴∠PC1O是PC1点睛:用几何法求求空间角的步骤:①作:利用定义作出所求的角,将其转化为平面角;②证:证明作出的角为所求角;③求:把这个平面角置于一个三角形中,通过解三角形求空间角;④作出结论,将问题转化为几何问题.5.(1)见解析【解析】试题分析:(1)由题意,从而问题可得证;(2轴,的法向量,结合图形,二面角.试题解析:(1,(2,点睛:此题主要考查立体几何中异面直线垂直的证明,二面角的三角函数值的求解,以及坐标法在解决立体几何问题中的应用等有关方面的知识和技能,属于中档题型,也是常考题型.坐标法在解决立体几何中的一般步骤,一是根据图形特点,建立空间直角坐标系;二是将几何中的量转化为向量,通过向量的运算;三是将运算得到的结果翻译为几何结论.6.(1)见解析(2)见解析【解析】分析:(1,再证明详解:(1)证明:连接,是平行四边形,∴(2,(3,.与直线点睛:(1)本题主要考查空间位置关系的证明和异面直线所成角的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)求空间的角,方法一是利用几何法,.方法二是利用向量法.7.(1)见解析(2【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BD cos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD ABCD,∴AD⊥DE.又因为=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:BCD为锐角为30°的等腰三角形.过点C,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则DE⊥平面ABCD过G I,则,即角二面角.在直角梯形BDEF中,G为BDCF与平面ABCD(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),又,CF与平面ABCD则sin故直线CF与平面ABCD点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.8.(1)见解析;(2【解析】分析:(1(2面可得与平面所成角,从而得到详解:(1中,由余弦定理得,又因为.(2由(1所以直线与平面所成角的正弦值为点睛:(1)证明空间中的位置关系时要注意解题的规范性和严密性,运用定理证明时要体现出定理中的关键性词语.(2)用几何法求空间角时可分为三步,即“一找、二证、三计算”,即首先根据所求角的定义作出所求的角,并给出证明,最后利用解三角形的方法得到所求的角(或其三角函数值).9.(1)见解析;(2【解析】分析:(1)由勾股定理的逆定理可得,(2详解:(1,,(2)由(1平面,.,得.由图形知二面角为锐角,点睛:利用空间向量求二面角的注意点(1)建立空间直角坐标系时,要注意证明得到两两垂直的三条直线.然后确定出相应点的坐标,在此基础上求得平面的法向量.(2)求得两法向量的夹角的余弦值后,还要结合图形确定二面角是锐角还是钝角,然后才能得到所求二面角的余弦值.这一点在解题时容易忽视,解题时要注意.10.(1)见解析(2【解析】分析:(1)通过取AD中点M,连接CM;再根据线面垂直判定定理即可证明。
专题3高中数学立体几何(解答题)二面角计算专题训练【方法总结】 1.二面角(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=<AB →,CD →>.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos <n 1,n 2>|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).2.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos <n 1,n 2>|=|n 1·n 2||n 1||n 2|. 3.利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【高考真题】1.(2022新高考Ⅰ卷)如图,直三棱柱111ABC A B C 的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.2.(2022新高考Ⅱ卷)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ︒∠=∠=,3PO =,5PA =,求二面角C AE B --的正弦值. 【题型突破】1.(2020·全国Ⅲ改编)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求平面AEF 与平面EF A 1夹角的正弦值.2.(2019·全国Ⅲ)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE = BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B -CG -A 的大小.3.(2019·全国Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B-EC-C1的正弦值.4.(2019·全国Ⅰ改编)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求平面AMA1与平面MA1N夹角的正弦值.5.(2020·全国Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66DO.(1)证明:P A⊥平面PBC;(2)求二面角B-PC-E的余弦值.6.(2021·全国新Ⅱ)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=5,QC=3.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B -QD -A 的平面角的余弦值.7.(2021·全国乙)如图,四棱锥P —ABCD 的底面是矩形,PD ⊥底面ABCD ,PD =DC =1,M 为BC 的 中点,且PB ⊥AM . (1)求BC ;(2)求二面角A -PM -B 的正弦值.8.(2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵ 所在平面垂直,M 是CD ︵上异 于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.9.(2021·全国新Ⅰ)如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点. (1)证明:OA ⊥CD ;(2)若△OCD 是边长为1的等边三角形,点E 在棱AD 上,DE =2EA ,且二面角E -BC -D 的大小为45°,求三棱锥A -BCD 的体积.DABCQDABCPM10.(2021·全国甲)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,面BB 1C 1C 与面DFE 所成的二面角的正弦值最小?11.(2021·北京)已知正方体ABCD -A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F .(1)证明:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M -CF -E 的余弦值为53,求A 1M A 1B 1的值.12.如图所示的几何体由平面PECF 截棱长为2的正方体得到,其中P ,C 为原正方体的顶点,E ,F 为原 正方体侧棱长的中点,正方形ABCD 为原正方体的底面,G 为棱BC 上的动点. (1)求证:平面APC ⊥平面PECF ;(2)设BG →=λBC →(0≤λ≤1),当λ为何值时,平面EFG 与平面ABCD 所成的角为π3?ABCDOEBACA 1B 1C 1D FEBAD CA 1B 1C 1D 1E FM13.如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]). (1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.14.已知在四棱锥P -ABCD 中,平面PDC ⊥平面ABCD ,AD ⊥DC ,AB ∥CD ,AB =2,DC =4,E 为PC的中点,PD =PC ,BC =22. (1)求证:BE ∥平面P AD ;(2)若PB 与平面ABCD 所成角为45°,点P 在平面ABCD 上的射影为O ,问:BC 上是否存在一点F ,使平面POF 与平面P AB 所成的角为60°?若存在,试求点F 的位置;若不存在,请说明理由.15.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF . (1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.16.如图所示,正方形AA 1D 1D 与矩形ABCD 所在平面互相垂直,AB =2AD =2,点E 为AB 的中点.(1)求证:BD 1∥平面A 1DE ;(2)设在线段AB 上存在点M ,使二面角D 1-MC -D 的大小为π6,求此时AM 的长及点E 到平面D 1MC的距离.17.(2017·全国Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.18.如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠ABC =60°,AB =2BC =2CD ,四边形DCEF 是正方形,N ,G 分别是线段AB ,CE 的中点. (1)求证:NG ∥平面ADF ;(2)设二面角A -CD -F 的大小为θ⎝⎛⎭⎫π2<θ<π,当θ为何值时,二面角A -BC -E 的余弦值为1313?19.已知三棱锥P -ABC (如图1)的平面展开图(如图2)中,四边形ABCD 为边长等于2的正方形,△ABE和△BCF 均为正三角形.在三棱锥P -ABC 中: (1)证明:平面P AC ⊥平面ABC ;(2)若点M 在棱P A 上运动,当直线BM 与平面P AC 所成的角最大时,求二面角P -BC -M 的余弦值.20.如图所示,在四棱锥P-ABCD中,侧面P AD⊥底面ABCD,侧棱P A=PD=2,P A⊥PD,底面ABCD 为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD的中点.(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为63若存在,求出PQQD的值;若不存在,请说明理由.。
1A 1B 1C 1D ABCD E FG线线角、线面角、二面角的求法1.空间向量的直角坐标运算律:⑴两个非零向量与垂直的充要条件是1122330a b a b a b a b ⊥⇔++=⑵两个非零向量与平行的充要条件是a ·b =±|a ||b | 2.向量的数量积公式若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a ·b =|a ||b | cos θ(2)模长公式:则212||a a a a a =⋅=++2||b b b b =⋅=+(3)夹角公式:2cos ||||a ba b a b a ⋅⋅==⋅+(4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==,A B d =①两条异面直线a 、b 间夹角0,2πα⎛⎫∈ ⎪⎝⎭在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4π C .510arccosD .2π(向量法,传统法)PBCA例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=︒且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____.解:(1)向量法(2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB中,即t a n 2PDDBA DB∠==. 点评:本题是将三棱柱补成正方体'''DBCA D B C P -②直线a 与平面α所成的角0,2πθ⎛⎤∈ ⎥⎝⎦(重点讲述平行与垂直的证明)可转化成用向量→a 与平面α的法向量→n 的夹角ω表示,由向量平移得:若ππ(图);若ππ平面α的法向量→n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤:(1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z =(3)根据法向量的定义建立关于x,y,z 的方程组(0a <(4)解方程组,取其中的一组解,即得法向量。
立体几何——二面角问题方法归纳(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二面角的求法一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1(全国卷Ⅰ理)如图,四棱锥SABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
练习1(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
例2.(山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 111111ABCD P -ABCD60,22,2,2,3=∠====PAB PD PA AD AB ⊥AD PAB PC ADA BD P -- (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
(1)求证:AC 1⊥BC ;(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。
文科立体几何线面角二面角专题学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.2.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.4.如图,在三棱柱中,点P,G分别是,的中点,已知⊥平面ABC,==3,==2.(I)求异面直线与AB所成角的余弦值;(II)求证:⊥平面;(III)求直线与平面所成角的正弦值.5.如图,四棱锥,底面是正方形,,,,分别是,的中点.(1)求证;(2)求二面角的余弦值.6.如图,三棱柱中,侧棱底面,且各棱长均相等.,,分别为棱,,的中点.(1)证明:平面;(2)证明:平面平面;(3)求直线与直线所成角的正弦值.7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求证:平面ADE⊥平面BDEF;(Ⅱ)若二面角C BF D的大小为60°,求CF与平面ABCD所成角的正弦值.8.如图,在四棱锥中,平面,,,,点是与的交点,点在线段上,且.(1)证明:平面;(2)求直线与平面所成角的正弦值.9.在多面体中,底面是梯形,四边形是正方形,,,,,(1)求证:平面平面;(2)设为线段上一点,,求二面角的平面角的余弦值.10.如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面,平面平面;(2)求三棱锥的体积.参考答案1.(1)见解析(2)【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.详解:(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.3.(Ⅰ)见解析;(Ⅱ).【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.详解:方法一:(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.学科.网由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4.(Ⅰ)(Ⅱ)见解析(Ⅲ)【解析】分析:(Ⅰ)由题意得∥AB,故∠G是异面直线与AB所成的角,解三角形可得所求余弦值.(Ⅱ)在三棱柱中,由⊥平面ABC可得⊥A1G,于是⊥A1G,又A1G⊥,根据线面垂直的判定定理可得结论成立.(Ⅲ)取的中点H,连接AH,HG;取HG的中点O,连接OP,.由PO//A1G可得平面,故得∠PC1O是PC1与平面所成的角,然后解三角形可得所求.详解:(I)∵∥AB,∴∠G是异面直线与AB所成的角.∵==2,G为BC的中点,∴A1G⊥B1C1,在中,,∴,即异面直线AG与AB所成角的余炫值为.(II)在三棱柱中,∵⊥平面ABC,平面ABC,∴⊥A1G,∴⊥A1G,又A1G⊥,,∴平面.(III)解:取的中点H,连接AH,HG;取HG的中点O,连接OP,.∵PO//A1G,∴平面,∴∠PC1O是PC1与平面所成的角.由已知得,,∴∴直线与平面所成角的正弦值为.点睛:用几何法求求空间角的步骤:①作:利用定义作出所求的角,将其转化为平面角;②证:证明作出的角为所求角;③求:把这个平面角置于一个三角形中,通过解三角形求空间角;④作出结论,将问题转化为几何问题.5.(1)见解析;(2).【解析】试题分析:(1)由题意,可取中点,连接,则易知平面∥平面,由条件易证平面,则平面,又平面,根据线面垂直的定义,从而问题可得证;(2)由题意,采用坐标法进行求解,可取中点为坐标原点,过点作平行于的直线为轴,为轴,为轴,建立空间直角坐标系,分别算出平面和平面的法向量,结合图形,二面角为锐角,从而问题可得解. 试题解析:(1)取中点,连结,,∵是正方形,∴,又∵,,∴,∴面,∴,又∵,,都是中点,∴,,∴面,∴;(2)建立如图空间直角坐标系,由题意得,,,,则,,,设平面的法向量为,则,即,令,则,,得,同理得平面的法向量为,∴,所以他的余弦值是.点睛:此题主要考查立体几何中异面直线垂直的证明,二面角的三角函数值的求解,以及坐标法在解决立体几何问题中的应用等有关方面的知识和技能,属于中档题型,也是常考题型.坐标法在解决立体几何中的一般步骤,一是根据图形特点,建立空间直角坐标系;二是将几何中的量转化为向量,通过向量的运算;三是将运算得到的结果翻译为几何结论.6.(1)见解析(2)见解析(3)【解析】分析:(1)先证明,再证明平面.(2)先证明面,再证明平面平面.(3)利用异面直线所成的角的定义求直线与直线所成角的正弦值为.详解:(1)证明:连接,∵、分别是、的中点,∴,,∵三棱柱中,∴,,又为棱的中点,∴,,∴四边形是平行四边形,∴,又∵平面,平面,∴平面.(2)证明:∵是的中点,∴,又∵平面,平面,∴,又∵,∴面,又面,∴平面平面;(3)解:∵,,∴为直线与直线所成的角.设三棱柱的棱长为,则,∴,∴.即直线与直线所成角的正弦值为.点睛:(1)本题主要考查空间位置关系的证明和异面直线所成角的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)求空间的角,方法一是利用几何法,找作证指求.方法二是利用向量法.7.(1)见解析(2)【解析】分析:(1)根据面面垂直的判定定理即可证明平面ADE⊥平面BDEF;(2)建立空间直角坐标系,利用空间向量法即可求CF与平面ABCD所成角的正弦值;也可以应用常规法,作出线面角,放在三角形当中来求解.详解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BD cos30°,解得BD=,所以AB2+BD2=AB2,根据勾股定理得∠ADB=90°∴AD⊥BD.又因为DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因为BD DE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如图,由已知可得,,则,则三角形BCD为锐角为30°的等腰三角形.则.过点C做,交DB、AB于点G,H,则点G为点F在面ABCD上的投影.连接FG,则,DE⊥平面ABCD,则平面.过G做于点I,则BF平面,即角为二面角C BF D的平面角,则60°.则,,则.在直角梯形BDEF中,G为BD中点,,,,设,则,,则.,则,即CF与平面ABCD所成角的正弦值为.(Ⅱ)方法二:可知DA、DB、DE两两垂直,以D为原点,建立如图所示的空间直角坐标系D-xyz.设DE=h,则D(0,0,0),B(0,,0),C(-,-,h).,.设平面BCF的法向量为m=(x,y,z),则所以取x=,所以m=(,-1,-),取平面BDEF的法向量为n=(1,0,0),由,解得,则,又,则,设CF与平面ABCD所成角为,则sin=.故直线CF与平面ABCD所成角的正弦值为点睛:该题考查的是立体几何的有关问题,涉及到的知识点有面面垂直的判定,线面角的正弦值,在求解的过程中,需要把握面面垂直的判定定理的内容,要明白垂直关系直角的转化,在求线面角的有关量的时候,有两种方法,可以应用常规法,也可以应用向量法.8.(1)见解析;(2)【解析】分析:(1)由题意得是等边三角形,故得,于是,从而得,所以,然后根据线面平行的判定定理可得结论成立.(2)由平面可得,于是平面.又,所以直线与平面所成角即直线与平面所成角,从而得到即为所求角,然后根据解三角形可得所求.详解:(1)因为,所以垂直平分线段.又,所以.在中,由余弦定理得,所以.又,所以是等边三角形,所以,所以,又因为,所以,所以.又平面平面,所以平面.(2)因为平面,平面,所以,又,所以平面.由(1)知,所以直线与平面所成角即直线与平面所成角,故即为所求的角.在中,,所以,所以直线与平面所成角的正弦值为.点睛:(1)证明空间中的位置关系时要注意解题的规范性和严密性,运用定理证明时要体现出定理中的关键性词语.(2)用几何法求空间角时可分为三步,即“一找、二证、三计算”,即首先根据所求角的定义作出所求的角,并给出证明,最后利用解三角形的方法得到所求的角(或其三角函数值).9.(1)见解析;(2).【解析】分析:(1)由勾股定理的逆定理可得,;又由条件可得到,于是平面,可得,从而得到平面,根据面面垂直的判定定理得平面平面.(2)由题意得可得,,两两垂直,故可建立空间直角坐标系,结合题意可得点,于是可求得平面的法向量为,又是平面的一个法向量,求得后结合图形可得所求余弦值为.详解:(1)由,,,得,∴为直角三角形,且同理为直角三角形,且.又四边形是正方形,∴.又∴.在梯形中,过点作作于,故四边形是正方形,∴.在中,,∴,,∴,∴,∴.∵,,,∴平面,又平面,∴,又,∴平面,又平面,∴平面平面.(2)由(1)可得,,两两垂直,以为原点,,,所在直线为轴建立如图所示的空间直角坐标系,则.令,则,∵,∴∴点.∵平面,∴是平面的一个法向量.设平面的法向量为.则,即,可得.令,得.∴.由图形知二面角为锐角,∴二面角的平面角的余弦值为.点睛:利用空间向量求二面角的注意点(1)建立空间直角坐标系时,要注意证明得到两两垂直的三条直线.然后确定出相应点的坐标,在此基础上求得平面的法向量.(2)求得两法向量的夹角的余弦值后,还要结合图形确定二面角是锐角还是钝角,然后才能得到所求二面角的余弦值.这一点在解题时容易忽视,解题时要注意.10.(1)见解析(2)【解析】分析:(1)通过取AD中点M,连接CM,利用得到直角;再利用可得平面;再根据线面垂直判定定理即可证明。