高中物理 动能 动能定理资料
- 格式:doc
- 大小:68.01 KB
- 文档页数:6
高一物理《动能定理》知识点讲解
1. 动能的定义
动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
动能的计算公式为:
动能 = 1/2 x 质量 x 速度的平方
其中,动能的单位是焦耳(J)或者牛顿米(N·m)。
2. 动能定理的内容
动能定理指出,物体的动能增量等于物体所受合外力做功的大小:
动能增量 = 所受合外力做功
动能定理反映了力学中能量守恒的基本原理,即能量可以相互转化,但总能量不变。
3. 动能定理的应用
动能定理可以用于解决物体在运动过程中的问题。
例如:
- 已知物体的初速度和受力情况,求物体在某一时刻的速度和位移。
- 已知物体的初速度和终速度,求物体受到的合外力做功和位移。
4. 注意事项
在应用动能定理时,需要注意以下几点:
- 与动能有关的力是合外力,而非作用力;
- 对于质量不变的物体,动能定理可以简化成:动能增量等于所受合外力做的功。
以上就是《动能定理》的知识点讲解。
掌握了这一定理,就可以更好地理解物体在运动过程中的能量转化情况,从而更好地解决相应的问题。
高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。
在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。
可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。
ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。
(3)理解:①外力对物体做的总功等于物体动能的变化。
W 总=△E K =E K2-E K1 。
它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。
可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。
外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。
②注意的动能的变化,指末动能减初动能。
用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。
③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。
(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。
②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。
高中物理动能定理的内容与公式高中物理动能定理公式是W=(1/2)mV₁²-(1/2)mVo²=Ek₂-Ek₁,W为外力做的功,Vo是物体初速度,V₁是末速度,Ek₂表示物体的末动能,Ek₁表示物体的初动能。
W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
动能定理研究的对象是单一的物体,或者可以称单一物体的物体系。
动能定理的计算式是等式,一般以地面为参考系。
动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;里可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和。
拓展阅读:高中物理动能定理的知识点动能定理的基本概念合外力做的功,等于物体动能的改变量,这就是动能定理的内容。
动能定理还可以表述为:过程中所有分力做的功的代数和,等于动能的改变量。
这里的合外力指研究对象受到的所有外力的合力。
动能定理的表达式动能定理的基本表达式:F合s=W=ΔEk;动能定理的其他表示方法:∫Fds=W=ΔEk;F1s1+F2s2+F3s3+……=ΔEk;功虽然是标量,但有正负一说。
最为严谨的公式是第二个公式;最常用的,有些难度的却是第三个公式。
动能定理根源我们来推导动能定理,很多学生可能认为这是没有必要的,其实恰恰相反。
近几年的高考物理试题,特别注重基础知识的推导和与应用。
理解各个知识点之间的关联,能够帮你更好的理解物理考点。
在内心理解了动能定理,知道了它的本源,才能在考试中科学运用动能定理来解题。
动能定理的推导分为如下两步:(1)匀变速直线运动下的动能定理推导过程物体做匀变速直线运动,则其受力情况为F合=ma;由匀变速直线运动的公式:2as=v2-v02;方程的两边都乘以m,除以2,有:mas=½(mv2-v02)=Ek2-Ek1=ΔEk;上述方程的左端mas=F合s=W;因此有:F合s=W=ΔEk;这就是动能定理在匀变速直线运动情况下的推导过程。
高中物理动能定理的内容与公式
姓名:
学校:
专业:
学号:
高中物理动能定理的内容与公式
物理动能定理内容
动能具有瞬时性,是指力在一个过程中对物体所做的功等于在这个过程中动能的变化。
动能是状态量,无负值。
合外力(物体所受的外力的总和,根据方向以及受力大小通过正交法能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化。
即末动能减初动能。
动能定理一般只涉及物体运动的始末状态,通过运动过程中做功时能的转化求出始末状态的改变量。
但是总的能是遵循能量守恒定律的,能的转化包括动能、势能、热能、光能(高中不涉及)等能的变化。
物理动能定理公式
W=(1/2)mV1^2-(1/2)mV0^2 (w 为外力做的功,V0为物体初速度 ,v1 为末速度) *W=Ek2-Ek1
其中,Ek2表示物体的末动能,Ek1表示物体的初动能。
ΔW是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
1.动能定理研究的对象是单一的物体,或者是可以堪称单一物体的物体系。
2.动能定理的计算式是等式,一般以地面为参考系。
3.动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;力可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和即可,这就是动能定理的优越性。
动能定理与动量定理区别
动量定理Ft=mv2-mv1反映了力对时间的累积效应,是力在时间上的积分。
动能定理FL=1/2mv2-1/2mv02反映了力对空间的累积效应,是力在空间上的积分。
动能 动能定理如果一个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能. E k =½mv 2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。
二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W 1+W 2+W 3+……=v v m m t 2022121- 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。
2.“增量”是末动能减初动能.ΔE K >0表示动能增加,ΔE K <0表示动能减小.3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和.5.力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理一些问题时,可在某一方向应用动能定理.6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变为及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.7.对动能定理中的位移与速度必须相对同一参照物.三、由牛顿第二定律与运动学公式推出动能定理设物体的质量为m ,在恒力F 作用下,通过位移为S ,其速度由v 0变为v t ,则:根据牛顿第二定律F=ma ……① 根据运动学公式v v t as 2022-=……② 由①②得:FS=v v m m t 2022121-四.应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解一般比用牛顿定律及运动学公式求解要简单的多.用动能定理还能解决一些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动等问题.1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解.2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.3、应用动能定理要注意的问题注意1.由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.注意2.用动能定理求变力做功,在某些问题中由于力F的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变为F所做的功.注意3.区别动量、动能两个物理概念.动量、动能都是描述物体某一时刻运动状态的状态量,动量是矢量,动能是标量.动量的改变必须经过一个冲量的过程,动能的改变必须经过一个做功的过程.动量是矢量,它的改变包括大小和方向的改变或者其中之一的改变.而动能是标量,它的改变仅是数量的变化.动量的数量与动能的数量可以通过P2=2mE K联系在一起,对于同一物体来说,动能E K变化了,动量P必然变化了,但动量变化了动能不一定变化.例如动量仅仅是方向改变了,这样动能就不改变.对于不同的物体,还应考虑质量的多少.注意4.动量定理与动能定理的区别,两个定理分别描述了力对物体作用效应,动量定理描述了为对物体作用的时间积累效应,使物体的动量发生变化,且动量定理是矢量武;而动能定理描述了力对物体作用的空间积累效应,使物体的动能发生变化,动能定理是标量式。
第7节动能和动能定理一、动能1.大小:E k =12mv 2。
2.单位:国际单位制单位为焦耳,1 J =1N·m=1 kg·m 2/s 2。
3.标矢性:动能是标量,只有大小,没有方向,只有正值,没有负值。
二、 动能定理1.推导:如图所示,物体的质量为m ,在与运动方向相同的恒力F 的作用下发生了一段位移l ,速度由v 1增加到v 2,此过程力F 做的功为W 。
1.物体由于运动而具有的能量叫做动能,表达式为E k =12mv 2。
动能是标量,具有相对性。
2.力在一个过程中对物体做的功,等于物体在这个过 程中动能的变化,这个结论叫动能定理,表达式为 W =E k2-E k1。
3.如果物体同时受到几个力的共同作用,则W 为合力 做的功,它等于各个力做功的代数和。
4.动能定理既适用于恒力做功,也适用于变力做功, 既适用于直线运动,也适用于曲线运动。
2.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
3.表达式:W=E k2-E k1。
4.适用范围:既适用于恒力做功也适用于变力做功;既适用于直线运动也适用于曲线运动。
1.自主思考——判一判(1)速度大的物体动能也大。
(×)(2)某物体的速度加倍,它的动能也加倍。
(×)(3)合外力做功不等于零,物体的动能一定变化。
(√)(4)物体的速度发生变化,合外力做功一定不等于零。
(×)(5)物体的动能增加,合外力做正功。
(√)2.合作探究——议一议(1)歼15战机是我国自主研发的第一款舰载战斗机,如图所示:①歼15战机起飞时,合力做什么功?速度怎么变化?动能怎么变化?②歼15战机着舰时,动能怎么变化?合力做什么功?增加阻拦索的原因是什么?提示:①歼15战机起飞时,合力做正功,速度、动能都不断增大。
②歼15战机着舰时,动能减小,合力做负功。
高中物理必修二。
动能和动能定理高中物理必修二:动能和动能定理动能是指物体由于运动而具有的能量。
动能的大小取决于物体的质量和速度,可以用公式Ek=1/2mv^2来计算。
动能是标量,是状态量,也是相对量。
动能定理是指外力做功等于物体动能的变化,表达式为W合=Ek2-Ek1.这意味着外力所做的总功将导致物体动能的变化,变化的大小由动能定理来度量。
外力可以是重力、弹力、摩擦力、电场力、磁场力或其他力。
物体动能的变化是指物体从一个状态到另一个状态时动能的变化。
动能定理适用于直线运动和曲线运动,适用于___做功和变力做功。
力可以是各种性质的力,可以同时作用或分别作用。
动能定理解题的优越性在于只需求出在作用过程中各力做功的多少和正负即可。
应用动能定理解题的基本步骤包括选取研究对象,分析受力情况和各力做功的情况,明确物体在过程的始末状态的动能Ek1和Ek2,列出动能定理的方程W合=Ek2-Ek1及其它必要的解题方程,进行求解。
动能定理的计算式为W合=Ek2-Ek1,其中v和s是相对于同一参考系的。
动能定理的研究对象是单一物体或可以看做单一物体的物体系。
动能定理不仅适用于___做功,也适用于变力做功。
当力F的大小或方向发生变化时,可以利用动能定理来求变力做功。
如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力F拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离。
在此过程中,外力F做的功等于A和B动能的增量。
例二:从牛顿定律出发,对于物体为质点,作用力是___,运动轨迹为直线的情况,动能定理的表达式为:$W=\frac{1}{2}mv^2-\frac{1}{2}mu^2$,其中$W$表示力所做的功,$m$表示物体的质量,$v$表示物体的末速度,$u$表示物体的初速度。
例三:如图所示,一弹簧振子,物块的质量为$m$,它与水平桌面间的动摩擦因数为$\mu$。
动能动能定理
动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。
一、教学目标
1.理解动能的概念:
(1)知道什么是动能。
制中动能的单位是焦耳(J);动能是标量,是状态量。
(3)正确理解和运用动能公式分析、解答有关问题。
2.掌握动能定理:
(1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。
(2)理解和运用动能定理。
二、重点、难点分析
1.本节重点是对动能公式和动能定理的理解与应用。
2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。
3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。
三、主要教学过程
(一)引入新课
初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。
(二)教学过程设计
1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书:
物体由于运动而具有的能叫动能,它与物体的质量和速度有关。
下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。
所以说动能是表征运动物体做功的一种能力。
2.动能公式
动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。
因此我们可以通过做功来研究能量。
外力对物体做功使物体运动而具有动能。
下面我们就通过这个途径研究一个运动物体的动能是多少。
列出问题,引导学生回答:
光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。
在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?
样我们就得到了动能与质量和速度的定量关系:
物体的动能等于它的质量跟它的速度平方的乘积的一半。
用E k表示动能,则计算动能的公式为:
由以上推导过程可以看出,动能与功一样,也是标量,不受速度方向的影响。
它在国际单位制中的单位也是焦耳(J)。
一个物体处于某一确定运动状态,它的动能也就对应于某一确定值,因此动能是状态量。
下面通过一个简单的例子,加深同学对动能概念及公式的理解。
试比较下列每种情况下,甲、乙两物体的动能:(除下列点外,其他情况相同)
①物体甲的速度是乙的两倍;②物体甲向北运动,乙向南运动;
③物体甲做直线运动,乙做曲线运动;④物体甲的质量是乙的一半。
在学生得出正确答案后总结:动能是标量,与速度方向无关;动能与速度的平方成正比,因此速度对动能的影响更大。
3.动能定理
(1)动能定理的推导
将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v1,且水平面存在摩擦力f,在外力F作用下,经过一段位移s,速度达到v2,如图2,则此过程中,外力做功与动能间又存在什么关系呢?
外力F做功:W1=Fs
摩擦力f做功:W2=-fs
可见,外力对物体做的总功等于物体在这一运动过程中动能的增量。
其中F 与物体运动同向,它做的功使物体动能增大;f与物体运动反向,它做的功使物体动能减少。
它们共同作用的结果,导致了物体动能的变化。
将上述问题再推广一步:若物体同时受几个方向任意的外力作用,情况又如何呢?引导学生推导出正确结论并板书:
外力对物体所做的总功等于物体动能的增加,这个结论叫动能定理。
用W总表示外力对物体做的总功,用E k1表示物体初态的动能,用E k2表示末态动能,则动能定理表示为:
(2)对动能定理的理解
动能定理是学生新接触的力学中又一条重要规律,应立即通过举例及分析加深对它的理解。
a.对外力对物体做的总功的理解
有的力促进物体运动,而有的力则阻碍物体运动。
因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;又因为W总=W1+W2+…=F1·s+F2·s+…=F合·s,所以总功也可理解为合外力的功。
b.对该定理标量性的认识
因动能定理中各项均为标量,因此单纯速度方向改变不影响动能大小。
如匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变。
c.对定理中“增加”一词的理解
由于外力做功可正、可负,因此物体在一运动过程中动能可增加,也可能减少。
因而定理中“增加”一词,并不表示动能一定增大,它的确切含义为末态与初态的动能差,或称为“改变量”。
数值可正,可负。
d.对状态与过程关系的理解
功是伴随一个物理过程而产生的,是过程量;而动能是状态量。
动能定理表示了过程量等于状态量的改变量的关系。
4.例题讲解或讨论
主要针对本节重点难点——动能定理,适当举例,加深学生对该定理的理解,提高应用能力。
例1.一物体做变速运动时,下列说法正确的是[ ]
A.合外力一定对物体做功,使物体动能改变
B.物体所受合外力一定不为零
C.合外力一定对物体做功,但物体动能可能不变
D.物体加速度一定不为零
此例主要考察学生对涉及力、速度、加速度、功和动能各物理量的牛顿定律和动能定理的理解。
只要考虑到匀速圆周运动的例子,很容易得到正确答案B、D。
例2.在水平放置的长直木板槽中,一木块以6.0m/s的初速度开始滑动。
滑行4.0m后速度减为4.0m/s,若木板糟粗糙程度处处相同,此后木块还可以向前滑行多远?
此例是为加深学生对负功使动能减少的印象,需正确表示动能定理中各物理量的正负。
解题过程如下:
设木板槽对木块摩擦力为f,木块质量为m,据题意使用动能定理有:
二式联立可得:s2=3.2m,即木块还可滑行3.2m。
此题也可用运动学公式和牛顿定律来求解,但过程较繁,建议布置学生课后作业,并比较两种方法的优劣,看出动能定理的优势。
例3.如图3,在水平恒力F作用下,物体沿光滑曲面从高为h1的A处运动到高为h2的B处,若在A处的速度为v A,B处速度为v B,则AB的水平距离为多大?
可先让学生用牛顿定律考虑,遇到困难后,再指导使用动能定理。
A到B过程中,物体受水平恒力F,支持力N和重力mg的作用。
三个力做功分别为Fs,0和-mg(h2-h1),所以动能定理写为:
从此例可以看出,以我们现在的知识水平,牛顿定律无能为力的问题,动能定理可以很方便地解决,其关键就在于动能定理不计运动过程中瞬时细节。
通过以上三例总结一下动能定理的应用步骤:
(1)明确研究对象及所研究的物理过程。
(2)对研究对象进行受力分析,并确定各力所做的功,求出这些力的功的代数和。
(3)确定始、末态的动能。
(未知量用符号表示),根据动能定理列出方程
W总=E k2—E k1
(4)求解方程、分析结果
我们用上述步骤再分析一道例题。
例4.如图4所示,用细绳连接的A、B两物体质量相等,A位于倾角为30°的斜面上,细绳跨过定滑轮后使A、B均保持静止,然后释放,设A与斜面间的滑动摩擦力为A受重力的0.3倍,不计滑轮质量和摩擦,求B下降1m时的速度多大。
让学生自由选择研究对象,那么可能有的同学分别选择A、B为研究对象,而有了则将A、B看成一个整体来分析,分别请两位方法不同的学生在黑板上写出解题过程:
三式联立解得:v=1.4m/s
解法二:将A、B看成一整体。
(因二者速度、加速度大小均一样),此时拉力T为内力,求外力做功时不计,则动能定理写为:
f=0.3mg
二式联立解得:v=1.4m/s
可见,结论是一致的,而方法二中受力体的选择使解题过程简化,因而在使用动能定理时要适当选取研究对象。
(三)课堂小结
1.对动能概念和计算公式再次重复强调。
2.对动能定理的内容,应用步骤,适用问题类型做必要总结。
3.通过动能定理,再次明确功和动能两个概念的区别和联系、加深对两个物理量的理解。
五、说明
1.由于计算功时质点的位移和动能中的速度都与参考系有关。
因此对学习基础较好的学生,可以补充讲解功和动能对不同惯性系的相对性和动能定理的不变性。
如时间较紧。
可在教师适当提示下,让学生在课下思考解答。
2.一节课不可能对动能定理的应用讲解的非常全面、深刻,但一定要强调
公式中各物理量的正确含义,因为动能定理实质上就是能的转化和守恒定律的一种表达形式,掌握好动能定理,以后才能顺利地深入研究功能关系、机械能守恒定律及能的转化和守恒定律。
如果一开始就概念不清,很可能影响以后知识的学习。
六、教学后记:。