1-4 概率的公理化定义与性质
- 格式:ppt
- 大小:375.50 KB
- 文档页数:8
概率的公理化是概率论的基础,它提供了一种严格的数学框架来描述不确定性和随机现象。
概率的公理化由俄国数学家安德雷·科尔莫哥洛夫在20世纪30年代首次提出,并被广泛接受和应用。
概率的公理化基于三条基本原则,它们构成了概率论的基础。
以下是对这三条原则的详细阐述。
1. 非负性:概率是非负的。
这意味着对于任何事件A,它的概率必须大于等于零。
即P(A) ≥0。
这个原则表明概率不能为负数,即任何事件都至少有一定的可能性发生。
2. 规范性:全样本空间的概率为1。
全样本空间是指所有可能结果的集合,通常用Ω表示。
规范性要求全样本空间的概率等于1,即P(Ω) = 1。
这个原则确保所有可能结果的总和为1,表示了一定会发生某个结果的确定性。
3. 可加性:对于互斥(互不相交)事件的概率,可以通过求和计算。
如果事件A和B是互斥事件(即A和B不可能同时发生),则它们的概率之和等于它们分别的概率之和。
即P(A∪B) = P(A) + P(B)。
这个原则允许我们通过计算各个可能事件的概率来得到复合事件的概率。
在这三条基本原则的基础上,可以推导出概率论中的其他重要定理和性质。
例如,可以通过可加性原理推导出条件概率和乘法规则,用于计算事件之间的依赖关系。
条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
乘法规则则用于计算多个事件同时发生的概率。
概率的公理化还涉及到概率空间的定义。
概率空间由样本空间Ω和一个叫做事件域的集合F组成。
事件域是样本空间的子集合的集合,它包含了我们感兴趣的所有事件。
概率被定义为一个函数P,它将事件映射到实数,即P:F→[0,1]。
满足非负性、规范性和可加性的概率函数被称为概率测度。
概率的公理化使得概率论成为一门严密的数学理论,并被广泛应用于统计学、风险管理、金融学、物理学等领域。
它提供了一种计算和分析不确定性的工具,帮助我们做出决策、预测事件的发生概率,并评估风险。
总结起来,概率的公理化是概率论的基础,它建立了一套数学框架来描述不确定性和随机现象。
概率公理化的定义概率公理化是概率论的基本公理系统,用于定义和推导概率的性质和规则。
它由三个基本公理组成,分别是非负性公理、规范性公理和可列可加性公理。
首先,非负性公理指出概率是一个非负的实数,即概率值始终大于或等于零。
这是因为概率是表示事件发生的可能性的度量,而任何事件的发生概率都不应该是负数。
因此,对于任何事件A,其概率P(A)满足P(A)≥0。
其次,规范性公理指出概率的最大值是1,即整个样本空间的概率是1。
样本空间是所有可能事件的集合,而其中的某一个事件一定会发生。
因此,整个样本空间的概率等于1。
即对于整个样本空间S,有P(S) = 1。
最后,可列可加性公理是概率公理化的核心内容,它指出对于任意可列个互不相容的事件Ai(i=1,2,3,...),其概率P(Ai)的和等于它们各自概率的和。
这表示当我们考虑多个事件同时发生的情况时,可以将它们的概率逐个相加来求得总概率。
即对于事件A1,A2,A3,...,有P(A1∪A2∪A3∪...) =P(A1) + P(A2) + P(A3) + ...。
这三个基本公理共同构成了概率公理化的定义,通过这些公理我们可以进行概率的形式化描述和推导。
同时,这些公理也满足概率的一些基本性质和规则,如辅助定理、概率的有限可加性、概率的递减性等。
其中,辅助定理是基于这三个公理得到的,它指出对于事件A 和事件B,当A包含于B时,A的概率一定小于等于B的概率。
即当A⊆B时,有P(A)≤P(B)。
概率的有限可加性指出对于任意有限个互不相容的事件A1,A2,A3,...,它们的概率P(A1∪A2∪A3∪...)等于它们各自概率的和。
即对于有限个事件A1,A2,A3,...,有P(A1∪A2∪A3∪...) = P(A1) + P(A2) + P(A3) + ...。
概率的递减性指出对于事件A和事件B,当A包含于B时,B的概率一定大于等于A的概率。
即当A⊆B时,有P(B)≥P(A)。
§1.4 概率的公理化定义及概率的性质一、几何概率一个随机试验,如果数学模型是古典概型,那么描述这个实验的样本空间Ω,文件域 F 和概率P 已在前面得到解决。
在古典概型中,试验的结果是有限的,受到了很大的限制。
在实际问题中经常遇到试验结果是无限的情况的。
例如,若我们在一个面积为ΩS 的区域Ω中,等可能的任意投点,这里等可能的确切意义是这样的:在区域Ω中有任意一个小区域A ,若它的面积为A S , 则点A 落在A 中的可能性大小与A S 成正比,而与A 的位置及形状无关。
如果点A 落在区域A 这个随机事件仍记为A ,则由P(Ω)=1可得Ω=S S A P A)(, 这一类概率称为几何概率。
同样,如果在一条线段上投点,那么只需要将面积改为长度,如果在一个立方体内投点,则只需将面积改为体积。
例1:(会面问题)甲乙两人约定在6时到7时之间某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率。
解:以x 和y 分别表示甲乙约会的时间,则600,600≤≤≤≤y x 。
两人能会面的充要条件是15≤-y x 在平面上建立直角坐标系(如教材图)则(x,y )的所有可能结果是边长为60米的正方形,而可能会面的时间由图中阴影部分表示。
这是一个几何概率问题,由等可能性 167604560)(222=-==ΩS S A P A例2 蒲丰(Buffon )投针问题。
平面上画有等距离的平行线,平行线间的距离为a(a>0),向平面任意投掷一枚长为l(l<a)的针,试求针与平行线相交的概率。
解:假设x 表示针的中点与最近一条平行线的距离,又以ϕ表示针与此直线间的交角,有20ax ≤≤,πϕ≤≤0 由这两式可以确定ϕ,x 平面上的一个矩形 }0,20),({πϕϕ≤≤≤≤=Ωax x , 这时为了针与平行线相交,其条件为ϕsin 2lx ≤,由这个不等式表示的区域A 是图中的阴影部分 }sin 2,20),({ϕϕlx a x x A ≤≤≤=由等可能性可知 a la d lS S A P A ππϕϕπ22sin 2)(0===⎰Ω 若l,a 为已知,则以π值代入上式,即可计算得P (A )的值。
概率的公理化定义及其确定方法随着中学教材改革的深入,许多原来只在大学教材中才出现的一些概念现在已经出现在中学教材中.但是,由于中学教材的难度的限制,很多概念和方法并没有象大学教材中叙述的那么系统、严格.本文主要针对概率的定义及其确定方法进行归纳总结.1 概率的公理化定义在概率论的发展史上,曾经有过概率的古典定义、概率的几何定义、概率的频率定义和概率的主观定义,这些定义各适合一类随机现象.为了给出适合一切随机现象的概率的最一般的定义,前苏联数学家柯尔莫哥洛夫在1933年提出了概率的公理化定义,该定义既概括了上述几种概率定义的共同特性,又避免了各自的局限性和含混之处.概率的公理化定义刻画了概率的本质,概率是集合(事件)的函数,对给定的样本空间及事件域F,若定义在F上的函数满足上述三个条件,就被称为概率.概率的公理化定义没有告诉人们如何去确定概率,它只是规定了概率应该满足的性质.历史上在公理化定义出现之前的概率的古典定义、几何定义、频率定义和主观定义都在一定的场合下给出了各自的确定概率的方法,因此在有了概率的公理化定义之1/ 7后,把它们看作确定概率的方法是恰当的.2 确定概率的古典方法确定概率的古典方法是概率论历史上最先开始研究的情形,它简单、直观,不需要做大量重复试验,只是在经验事实的基础上,对被考察事件的可能性进行逻辑分析后得出事件的概率.它的基本如下:(1)所涉及的随机现象只有有限个结果,即样本空间中只有有限个样本点,设为n;(2)每个样本点发生的可能性相等(称为等可能性);(3)若事件A含有k个样本点,则事件A的概率为P(A)=事件A 所含样本点的个数中所有样本点的个数=kn.容易验证,由上述方法确定的概率满足概率的公理化定义,这种概率模型通常称为古典概型.用古典方法求概率的关键是计算样本空间所包含的点的个数和事件A所含的样本点的个数.在我们日常生活中经常遇到可以用古典方法解决的问题,如下例:例1 设有一张电影票,甲、乙、丙三个人都想得到它,现抽签决定三人由谁得到这张电影票.设三张签分别标号为1、2和3,甲、乙、丙三个人各抽取一张,抽到标号为1的人得到电影票.证明这种抽签方法是公平的.证明这是一个典型的古典概型问题.用A表示甲得到这张电2/ 7影票,则甲、乙、丙三人抽签的结果共有6种可能,并且每种结果出现的可能性都是16,满足古典概型的条件.由于事件A含有2个样本点,因此事件A的概率为P(A)=26=13,即甲得到这张电影票的概率为13.同理可得,乙和丙得到这张电影票的概率也都是13,因此,三人得到这张电影票的概率相等,这说明抽签方法是公平的.实际生活中抽签的例子比比皆是,很多人在抽签时都抢着先抽,因为他们知道,一旦前面的人抽到了,后面的人就抽不到或者抽到的机会就变小了,这些人通常不会想到:如果前面的人没有抽到,后面的人抽到的机会会变大,因此,总的机会是相等的,这其中包含着条件概率的.而由前面的例子知道,无论先抽后抽,抽到的概率都是相等的.古典方法的局限是它只适用于样本空间中只有有限个样本点的情形,下面的几何方法适用于样本空间有无限个样本点的情形.3 确定概率的几何方法几何概率是日常生活中另一种常见的概率模型,其基本思想是:由上述方法确定的概率称作几何概率,它也满足概率的公理化定义.求几何概率的关键是对样本空间和事件A用图形描述清楚(一般用平面或者空间图形),然后计算出相关图形的度量3/ 7(一般为面积或者体积).虽然几何方法能够处理样本空间有无限个样本点的情形,但是它同样要求某种“等可能性”,有时对“等可能性”的不同理解会得到不同的答案,从而会出现自相矛盾的情形,著名的“贝特朗悖论”就是大家熟知的一个例子.下面这个例子是我在教学中遇到的一个类似于“贝特朗悖论”的例子.例2 如图,从等腰直角三角形的直角顶点C任作一条射线交斜边AB于点D,求AD的长度小于AC的长度的概率.解法一由于射线CD可以由点C和∠ACD唯一确定,从直角顶点C任作一条射线可以理解为∠ACD的取值在闭区间[0°,90°]上是“等可能的”,而AD的长度小于AC的长度当且仅当∠ACD的取值落在区间[0°,67.5°)内,从而AD的长度小于AC的长度的概率为P1=67.590=0.75.解法二设三角形ABC的直角边AC长为a,则斜边AB长为2a.由于射线CD可以由点C和D唯一确定,从直角顶点C任作一条射线可以理解为点D在斜边AB上的分布是“均匀的”,即线段AD的长度取值在区间[0,2a]上是“等可能的”,而AD的长度小于AC的长度当且仅当AD的长度取值落在区间[0,a)内,从而AD 的长度小于AC的长度的概率为P2=a2a=22.由例2可以看出,处理几何概率题目的难点是对“等可能性”4/ 7的理解.由于高中学生在初学几何概率时还没有深刻理解“等可能性”的内涵,因此,老师在处理那些类似于“贝特朗悖论”的题目时一定要慎重,最好在开始时避免在学生的练习和作业中出现这类题目,要等到时机成熟以后再讲这类题目,以加深学生对“等可能性”的内涵的理解.4 确定概率的频率方法频率方法也是确定概率的一种常用方法,其基本思想是:(1)与所考察事件A有关的随机试验可以大量重复进行;(2)在n次重复试验中,记n(A)为事件A出现的次数,称n(A)为n次重复试验中事件A的频数,称f n(A)=n(A)n为事件出现的频率;(3)随着试验重复次数n的增加,f n(A)会稳定在某一常数p附近,称这个常数为频率的稳定值,这个频率的稳定值就是所求事件A的概率.根据概率极限理论,当n趋向于无穷时,f n(A)会以概率1收敛到相应的概率p.可以验证,用上述方法确定的概率也满足概率的公理化定义.频率方法的优点是它不需要象古典方法和几何方法那样要求某种“等可能性”,人们只需要多次重复试验即可.但是,由于人们不可能把一个试验无限次的重复下去,因此要精确获得频率的稳定值是困难的,通常只能获得概率的一个近似值.5/ 7例3 抛硬币试验.历史上有不少人做过抛硬币试验,其结果如下表.试验者抛硬币次数出现正面次数频率De Morgan2 0481 0610.518 1Buffon4 0402 0480.506 9Feller10 0004 9790.497 9Pearson12 0006 0190.501 6Pearson24 00012 0120.500 5 在很多概率题目中,会出现“均匀硬币”、“均匀骰子”之类的字样,如:抛掷一枚均匀的硬币5次,求出现2次正面的概率.这类问题可以用古典方法求相应的概率.由于假设硬币是均匀的,因此每抛掷一次硬币,出现正面的概率都是0.5.但是,在现实生活中,“均匀”只是一种理想的假设,不会存在绝对“均匀”的硬币.先不说上面表格中的试验者用的是否是同一枚硬币,即使假设他们用的是同一枚硬币,那么抛掷一次这枚硬币出现正面的概率应该是多少?是0.5,还是平均值(0.5181+0.5069+0.4979+0.5016+0.5005)/5=0.505,亦或是中位数0.5016呢?通常大家会选0.5作为一个近似值.如果他们用的不是同一枚硬币,那么我们估计这个概率就没有意义了,因为抛掷不同的硬币出现正面的概率通常是不同的,此时我们只能得到抛掷这些硬币得到正面的各自不同的概率的近似值.5 确定概率的主观方法在现实世界里有一些随机现象是不能重复或者不能大量重6/ 7复的,它们也不具有某种“等可能性”,因此不能用上面的三种方法确定有关事件的概率,这时我们应该怎么确定其概率呢?统计界的贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生的可能性所给出的个人信念.这样给出的概率称为主观概率.如在气象预报中常常会说:“明天下雨的概率是25%”,这是气象专家根据气象专业知识和最近的气象情况给出的主观概率.由于主观给定的概率没有明确的公式,因此,确定主观概率时要使其符合公理化的定义.主观概率和主观臆造有着本质的不同,前者要求当事人对所考察的事件有透彻的了解和丰富的经验,并能对历史和当时的进行仔细分析,如此确定的主观概率是可信的.用主观方法得出的概率本质上是对随机事件概率的一种推断,其精确性有待实践的检验和修正,但结论的可信性在统计意义上是有其价值的.在遇到的随机现象无法大量重复时,用主观方法去做决策和判断是适合的.因此,主观方法是频率方法的一种补充.以上是对概率的公理化定义及其确定方法的总结,应该在教学中与现实生活结合起来,灵活运用,加深学生对概率定义及其确定方法的理解.7/ 7。
概率公理化的定义(一)概率公理化的定义1.引言–简介:概率公理化是概率论中的基本原理,通过对概率的定义和性质进行严格的公理化推导,建立了概率论的理论基础。
本文将介绍概率公理化的定义及相关概念。
2.概率的公理化定义–定义:概率的公理化定义是通过引入三个基本公理来定义概率的性质和运算规则。
–公理1:非负性(Non-negativity)- 对于任意事件A,概率P(A)大于等于0。
–公理2:规范性(Normalization)- 对于必然事件Ω(样本空间),概率P(Ω)等于1。
–公理3:可列可加性(Countable Additivity)- 对于两两互不相容的事件Ai,概率P(∪Ai)等于各事件概率之和。
3.概率公理化的理由–理论构建:概率公理化是概率论的基石,通过公理化的定义可以建立起完备且严密的概率论体系。
–可靠性:概率公理化的定义保证了概率的一致性和可靠性,使得概率论的结果具有普适性。
–推广性:概率公理化的定义可以被推广到更一般的情况,适用于各种概率空间和随机过程的建模和分析。
4.相关书籍推荐–《概率论与数理统计》(作者:李静波):该书全面介绍了概率论与数理统计的基本概念和理论,包括概率公理化的定义、概率分布、随机变量、统计推断等内容,适合作为入门教材和参考书阅读。
–《概率导论》(作者:德梅斯特):该书详细阐述了概率论的基本概念、性质和公理化定义,同时给出了大量的例题和习题,适合高年级本科生和研究生学习和研究。
–《概率论基础》(作者:谢益辉):该书系统地介绍了概率论的基本原理和公理化定义,注重理论的建立和证明过程,并给出了多个应用案例和实例分析,适合有一定数学基础的读者学习和研究。
5.总结–概率公理化的定义在概率论中扮演重要的角色,通过引入基本公理,建立了概率论的理论基础。
它的可靠性和推广性使得概率论在各个领域中得以广泛应用。
通过阅读相关书籍,可以加深对概率公理化的理解,并在概率论的研究和应用中获得更多收获。
概率的公理化定义及其确定方法作者:刘艳丽来源:《中学数学杂志(高中版)》2008年第03期随着中学教材改革的深入,许多原来只在大学教材中才出现的一些概念现在已经出现在中学教材中.但是,由于中学教材的难度的限制,很多概念和方法并没有象大学教材中叙述的那么系统、严格.本文主要针对概率的定义及其确定方法进行归纳总结.1 概率的公理化定义在概率论的发展史上,曾经有过概率的古典定义、概率的几何定义、概率的频率定义和概率的主观定义,这些定义各适合一类随机现象.为了给出适合一切随机现象的概率的最一般的定义,前苏联数学家柯尔莫哥洛夫在1933年提出了概率的公理化定义,该定义既概括了上述几种概率定义的共同特性,又避免了各自的局限性和含混之处.概率的公理化定义刻画了概率的本质,概率是集合(事件)的函数,对给定的样本空间及事件域F,若定义在F上的函数满足上述三个条件,就被称为概率.概率的公理化定义没有告诉人们如何去确定概率,它只是规定了概率应该满足的性质.历史上在公理化定义出现之前的概率的古典定义、几何定义、频率定义和主观定义都在一定的场合下给出了各自的确定概率的方法,因此在有了概率的公理化定义之后,把它们看作确定概率的方法是恰当的.2 确定概率的古典方法确定概率的古典方法是概率论历史上最先开始研究的情形,它简单、直观,不需要做大量重复试验,只是在经验事实的基础上,对被考察事件的可能性进行逻辑分析后得出事件的概率.它的基本思想如下:(1)所涉及的随机现象只有有限个结果,即样本空间中只有有限个样本点,设为n;(2)每个样本点发生的可能性相等(称为等可能性);(3)若事件A含有k个样本点,则事件A的概率为P(A)=事件A所含样本点的个数中所有样本点的个数=kn.容易验证,由上述方法确定的概率满足概率的公理化定义,这种概率模型通常称为古典概型.用古典方法求概率的关键是计算样本空间所包含的点的个数和事件A所含的样本点的个数.在我们日常生活中经常遇到可以用古典方法解决的问题,如下例:例1 设有一张电影票,甲、乙、丙三个人都想得到它,现抽签决定三人由谁得到这张电影票.设三张签分别标号为1、2和3,甲、乙、丙三个人各抽取一张,抽到标号为1的人得到电影票.证明这种抽签方法是公平的.证明这是一个典型的古典概型问题.用A表示甲得到这张电影票,则甲、乙、丙三人抽签的结果共有6种可能,并且每种结果出现的可能性都是16,满足古典概型的条件.由于事件A 含有2个样本点,因此事件A的概率为P(A)=26=13,即甲得到这张电影票的概率为13.同理可得,乙和丙得到这张电影票的概率也都是13,因此,三人得到这张电影票的概率相等,这说明抽签方法是公平的.实际生活中抽签的例子比比皆是,很多人在抽签时都抢着先抽,因为他们知道,一旦前面的人抽到了,后面的人就抽不到或者抽到的机会就变小了,这些人通常不会想到:如果前面的人没有抽到,后面的人抽到的机会会变大,因此,总的机会是相等的,这其中包含着条件概率的思想.而由前面的例子知道,无论先抽后抽,抽到的概率都是相等的.古典方法的局限是它只适用于样本空间中只有有限个样本点的情形,下面的几何方法适用于样本空间有无限个样本点的情形.3 确定概率的几何方法几何概率是日常生活中另一种常见的概率模型,其基本思想是:由上述方法确定的概率称作几何概率,它也满足概率的公理化定义.求几何概率的关键是对样本空间和事件A用图形描述清楚(一般用平面或者空间图形),然后计算出相关图形的度量(一般为面积或者体积).虽然几何方法能够处理样本空间有无限个样本点的情形,但是它同样要求某种“等可能性”,有时对“等可能性”的不同理解会得到不同的答案,从而会出现自相矛盾的情形,著名的“贝特朗悖论”就是大家熟知的一个例子.下面这个例子是我在教学中遇到的一个类似于“贝特朗悖论”的例子.例2 如图,从等腰直角三角形的直角顶点C任作一条射线交斜边AB于点D,求AD的长度小于AC的长度的概率.解法一由于射线CD可以由点C和∠ACD唯一确定,从直角顶点C任作一条射线可以理解为∠ACD的取值在闭区间[0°,90°]上是“等可能的”,而AD的长度小于AC的长度当且仅当∠ACD的取值落在区间[0°,67.5°)内,从而AD的长度小于AC的长度的概率为67.590=0.75.解法二设三角形ABC的直角边AC长为a,则斜边AB长为2a.由于射线CD可以由点C 和D唯一确定,从直角顶点C任作一条射线可以理解为点D在斜边AB上的分布是“均匀的”,即线段AD的长度取值在区间[0,2a]上是“等可能的”,而AD的长度小于AC的长度当且仅当AD的长度取值落在区间[0,a)内,从而AD的长度小于AC的长度的概率为由例2可以看出,处理几何概率题目的难点是对“等可能性”的理解.由于高中学生在初学几何概率时还没有深刻理解“等可能性”的内涵,因此,老师在处理那些类似于“贝特朗悖论”的题目时一定要慎重,最好在开始时避免在学生的练习和作业中出现这类题目,要等到时机成熟以后再讲这类题目,以加深学生对“等可能性”的内涵的理解.4 确定概率的频率方法频率方法也是确定概率的一种常用方法,其基本思想是:(1)与所考察事件A有关的随机试验可以大量重复进行;(2)在n次重复试验中,记n(A)为事件A出现的次数,称n(A)为n次重复试验中事件A 的频数,称为事件出现的频率;(3)随着试验重复次数n的增加,会稳定在某一常数p附近,称这个常数为频率的稳定值,这个频率的稳定值就是所求事件A的概率.根据概率极限理论,当n趋向于无穷时,会以概率1收敛到相应的概率p.可以验证,用上述方法确定的概率也满足概率的公理化定义.频率方法的优点是它不需要象古典方法和几何方法那样要求某种“等可能性”,人们只需要多次重复试验即可.但是,由于人们不可能把一个试验无限次的重复下去,因此要精确获得频率的稳定值是困难的,通常只能获得概率的一个近似值.例3 抛硬币试验.历史上有不少人做过抛硬币试验,其结果如下表.试验者抛硬币次数出现正面次数频率De Morgan2 0481 0610.518 1Buffon4 0402 0480.506 9Feller10 0004 9790.497 9Pearson12 0006 0190.501 6Pearson24 00012 0120.500 5 在很多概率题目中,会出现“均匀硬币”、“均匀骰子”之类的字样,如:抛掷一枚均匀的硬币5次,求出现2次正面的概率.这类问题可以用古典方法求相应的概率.由于假设硬币是均匀的,因此每抛掷一次硬币,出现正面的概率都是0.5.但是,在现实生活中,“均匀”只是一种理想的假设,不会存在绝对“均匀”的硬币.先不说上面表格中的试验者用的是否是同一枚硬币,即使假设他们用的是同一枚硬币,那么抛掷一次这枚硬币出现正面的概率应该是多少?是0.5,还是平均值(0.5181+0.5069+0.4979+0.5016+0.5005)/5=0.505,亦或是中位数0.5016呢?通常大家会选0.5作为一个近似值.如果他们用的不是同一枚硬币,那么我们估计这个概率就没有意义了,因为抛掷不同的硬币出现正面的概率通常是不同的,此时我们只能得到抛掷这些硬币得到正面的各自不同的概率的近似值.5 确定概率的主观方法在现实世界里有一些随机现象是不能重复或者不能大量重复的,它们也不具有某种“等可能性”,因此不能用上面的三种方法确定有关事件的概率,这时我们应该怎么确定其概率呢?统计界的贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生的可能性所给出的个人信念.这样给出的概率称为主观概率.如在气象预报中常常会说:“明天下雨的概率是25%”,这是气象专家根据气象专业知识和最近的气象情况给出的主观概率.由于主观给定的概率没有明确的公式,因此,确定主观概率时要使其符合公理化的定义.主观概率和主观臆造有着本质的不同,前者要求当事人对所考察的事件有透彻的了解和丰富的经验,并能对历史信息和当时的信息进行仔细分析,如此确定的主观概率是可信的.用主观方法得出的概率本质上是对随机事件概率的一种推断,其精确性有待实践的检验和修正,但结论的可信性在统计意义上是有其价值的.在遇到的随机现象无法大量重复时,用主观方法去做决策和判断是适合的.因此,主观方法是频率方法的一种补充.以上是对概率的公理化定义及其确定方法的总结,教师应该在教学中与现实生活结合起来,灵活运用,加深学生对概率定义及其确定方法的理解.参考文献[1] 茆诗松、程依明、濮晓龙. 概率论与数理统计教程[M].北京:高等教育出版社,2004[2] 概率论.复旦大学编,北京:人民教育出版社,1979[3] 魏宗舒等著. 概率论与数理统计教程[M].北京:高等教育出版社,1983“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。