Spatial and temporal dynamics of vegetation in the San Pedro River Basin Area
- 格式:pdf
- 大小:1.35 MB
- 文档页数:14
时变跨尺度结构动力学行为与机理研究The research topic I seek to explore is the dynamicbehavior and mechanisms of spatio-temporal structural changes across multiple scales.我想要探索的研究主题是关于不同尺度上时空结构变化的动态行为及其机理。
At the core of this study is the investigation into how structures evolve, adapt, and interact across various scales, from the atomic level to macroscopic dimensions. By studying these dynamic behaviors, we aim to gain a deep understanding of how different spatial and temporal factors influence structural dynamics.该研究的核心是探究在不同尺度上结构如何演变、适应和相互作用,从原子级到宏观维度。
通过研究这些动态行为,我们旨在深入了解不同的时空因素如何影响结构动力学。
The first aspect we will focus on is understanding how individual components within a structure respond andinteract at the microscopic scale. This involves investigating the behavior of atoms, molecules, or even smaller subunits that make up a larger structure. By studying these fundamental interactions, we can uncover the forces and patterns that govern their collective behavior and ultimately shape the overall structural dynamics.我们将重点关注微观尺度下结构内各个组成部分的响应和相互作用方式。
Sweden: LPJ-GUESSThe name of the group: Department of Physical Geography and Ecosystem AnalysisName, title and affiliation of Principal investigator: Assoc. Prof. Almut Arneth; Assoc. Prof. Ben Smith Name and affiliation of contact point, incl. detailed address: Almut Arneth & Ben Smith, INES,Sölvegatan12,22362Lund,*****************************.se;*******************.seURL: http://www.nateko.lu.se/INES/Svenska/main.aspPartner institutions: PIK, SMHI/EC-EARTHWhich components:land sfc yesatmospheric chemistry yesProject Description:LPJ-GUESS (Smith et al., 2001; Hickler et al., 2004) is a generalized, process-based model of vegetation dynamics and biogeochemistry designed for regional to global applications. It combines features of the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM; Sitch et al., 2003) with those of the General Ecosys-tem Simulator (GUESS; Smith et al., 2001) in a single, flexible modeling framework. The models have identical representations of ecophysiological and biogeochemical processes, including the hydrological cycle updates d e-scribed in Gerten et al. (2004). They differ in the level of detail with which vegetation dynamics and canopy stru c-ture are simulated: simplified, computationally efficient representations are used in the LPJ-DGVM, while in GUESS a "gap-model" approach is used which is particularly suitable for continental to regional simulations. Tepre-sentations of stochastic establishment, individual tree mortality and disturbance events ensure representation of suc-cessional vegetation dynamics which is important for vegetation response to extreme events.LPJ-GUESS models terrestrial carbon and water cycle from days to millennia (Sitch et al. 2003; Koca et al. 2006; Morales et al. 2005, 2007) and has been shown to reproduce the CO2 fertilisation effects seen in FACE sites (Hickler et al. in press). It has been widely applied to assess impacts on carbon cycle and veg etation based on scenarios from climate models (Gritti et al. 2006; Koca et al. 2006; Morales et al. 2007; Olesen et al. 2007). In addition it has several unique features that are currently not available in any of the Earth System Models:(1) A process-based description for the main biogenic volatile organic compounds (BVOC) emitted by vegetation. BVOC are crucial for air chemistry and climate models, since they contribute to formation and destruction of trop o-spheric O3 (depending on presence and absence of NOx), constrain the atmospheric lifetime of methane, and are key precursors to secondary organic aerosol formation. LPJ-GUESS is the only land surface model with a mechanistic BVOC representation that links their production to photosynthesis. It also uniquely accounts for the recently disco v-ered direct CO2-BVOC inhibition which has been shown to fundamentally alter future and past emissions compared to empirical BVOC algorithms that neglect this effect (Arneth et al., 2007a,b). (2) The possibility to simulate past and present vegetation description on a tree species (as well as PFT) level (Miller et al., in press, Hickler et al., 2004). This is crucial for simulations of BVOC and other reactive trace gases and allows for a much better represe ntation of vegetation heterogeneity in regional and continental atmospheric chemistry-climate studies (Arneth et al., 2007b), an important aspect since spatial heterogeneity must be accounted for with atmospherically reactive chemical species. (3) LPJ-GUESS accounts for deforestation by early human agriculture throughout the Holocene and the effects on global carbon cycle and atmospheric CO2 concentration (Olofsson & Hickler 2007). We currently investigate the impor-tance of Holocene human deforestation on BVOC and fire trace gas and aerosol emissions, and how these may affect Holocene CH4 levels, and simulations of pre-industrial O3. (4) LPJ-GUESS accounts for deforestation by early human agriculture throughout the Holocene and the effects on global carbon cycle and atmospheric CO2 concentra-tion (Olofsson & Hickler 2007). We currently investigate the importance of Holocene human deforestation on BVOC and fire trace gas and aerosol emissions, and how these may affect Holocene CH4 levels, and simulations of pre-industrial O3. (5) A novel global process-based fire description, SPITFIRE (Thonicke et al., 2007) has been incorporated; it is currently used to study effects of climate change and of human vs. natural ignition on carbon cycle and trace gas emissions in savanna ecosystems. (6) Prognostic schemes for agricultural and forest land use that p a-rameterise farmer and forestmanagement decisions under changing climate and productivity. The agricultural scheme has been implemented and applied at the global scale (Bondeau et al. 2007), the forest management scheme in a prototype form for Sweden (Koca et al. 2006). (7) Incorporation of a permafrost module, wetland processes and methane emissions, as well as vegetation nitrogen cycle is in progress.The vegetation dynamics module of LPJ-GUESS has been coupled to the land surface scheme of the Rossby Centre regional climate model RCA3 (Jones et al. 2004a,b) and is being applied to investigate biophysical feedbacks of land surface changes on climate at the regional scale in Europe. The above listed process descriptions are also applicable and available to global ESMs.(References available on request)。
基于帕累托前沿面曲率预估的超多目标进化算法基于帕累托前沿面曲率预估的超多目标进化算法序言:超多目标优化问题在现实世界中非常常见,涉及到多个冲突的目标。
为了解决这类问题,进化算法被广泛采用。
然而,当目标超过三个时,直接应用进化算法面临挑战,其中之一是如何有效地选择适当的解集。
对于这个问题,一种新的方法——基于帕累托前沿面曲率预估的超多目标进化算法应运而生。
介绍:帕累托前沿面曲率预估是一种通过分析帕累托前沿面的曲率特征来预测解的优劣的方法。
在超多目标进化算法中,该方法可以用于帮助选择最优解集。
在本文中,我将深入探讨基于帕累托前沿面曲率预估的超多目标进化算法的原理、优势、应用以及我的个人观点和理解。
一、基本原理1.1 帕累托前沿面曲率预估的概念帕累托前沿面曲率预估是基于帕累托前沿面的曲率进行预测的方法。
帕累托前沿面是一组最优解的集合,其中任何解的改进都会导致至少一个目标的恶化。
曲率被认为是评估前沿面的弯曲程度的一种方式。
通过分析前沿面上的点的曲率,可以得出一些关于全局优化的启示。
1.2 算法流程基于帕累托前沿面曲率预估的超多目标进化算法的流程如下:1) 初始化种群;2) 计算种群中每个个体的目标函数值,并按照帕累托支配关系将个体分为不同的支配层次;3) 对于每个支配层次,计算该层次上每个个体在前沿面上的曲率;4) 根据曲率预估,选择某个阈值,将曲率小于该阈值的个体加入解集;5) 将其他个体作为种群重新进行进化操作;6) 重复步骤2至5,直到满足停止条件。
二、优势与应用2.1 优势基于帕累托前沿面曲率预估的超多目标进化算法具有以下优势:- 可以预测解的优劣,帮助选择最优解集;- 通过曲率分析,能够发现前沿面上的局部极值点;- 可以加速算法的收敛过程,提高求解效率;- 在处理带有冲突目标的问题时,表现出较好的性能。
2.2 应用基于帕累托前沿面曲率预估的超多目标进化算法已经在多个领域得到了成功应用,比如:- 交通规划中的路网设计优化;- 供应链管理中的供应商选择问题;- 机器学习中的特征选择与神经网络设计;- 网络安全领域的漏洞修复策略制定等。
第37卷第1期农业工程学报V ol.37 No.12021年1月Transactions of the Chinese Society of Agricultural Engineering Jan. 2021 267 近10年中国耕地变化的区域特征及演变态势袁承程1,张定祥2,刘黎明1※,叶津炜1(1. 中国农业大学土地科学与技术学院,北京100193;2. 中国国土勘测规划院,北京100035)摘要:随着工业化、城市化进程推进,中国耕地在数量和质量方面均发生了显著变化。
通过分析2009-2018年中国耕地的时空变化,掌握中国耕地变化的区域特征与变化态势,有助于制定差别化的区域耕地保护政策与管理策略,为保障粮食安全提供科学依据。
该研究基于2009-2018年土地调查格网数据,利用GIS空间分析、数学指数模型等方法,从耕地数量、空间以及立地条件等方面研究近10年来中国的耕地时空变化特征。
研究表明:1)2009-2018年间中国耕地数量总体稳定,但是耕地数量变化的区域差异较大。
全国耕地共减少39.37万hm2,减少幅度为0.29%。
2)从市域尺度分析,呈现以“哈尔滨-郑州-昆明”带为中心的东-中-西分异特征,该中心带内耕地净减少面积与全国耕地净减少总量基本持平,而该中心带以东地区的耕地净减少量与中心带以西地区的耕地净增加量相近。
3)耕地空间变化率在长江以北的长江中下游平原区、黄淮海平原区以及四川盆地及其周边地区相对较高,表明这些区域人为调整耕地空间布局的强度较大,但其市域内净增加耕地面积总量却不大。
4)耕地减少主要分布在距离主要城市中心30 km以内的区域,而耕地增加主要发生在离城市中心40 km以外区域,这进一步说明城市化发展仍然是当前耕地减少的主导因子。
此外,石嘴山、延安、雅安、榆林、张家口、丽水和泉州等地的耕地平均海拔增加较大,说明这些地区耕地“上山”现象较为严重。
因此,今后应根据耕地变化“热点地区”的动态识别,提升自然资源管理和督察的精准定位和因地施策的能力。
方岱宁在固体力学领域取得了许多成就。
以下是他的一些主要成就:
弹性体理论的发展:方岱宁在弹性体力学理论的发展上做出了重要贡献。
他提出了方岱宁定理,用于解决平面弹性体问题。
该定理是解决弹性体力学问题的重要工具,被广泛应用于工程实践中。
形状记忆合金的研究:方岱宁对形状记忆合金的研究也具有重要意义。
他发现了镍钛合金的形状记忆效应,并提出了相关理论。
材料失效、疲劳和断裂研究:方岱宁在材料失效、疲劳和断裂等方面的研究也取得了重要成果。
他提出了基于微观结构的材料失效分析方法,为我国航空航天、核能等领域的材料设计和安全评估提供了有力支持。
总的来说,方岱宁在固体力学领域的研究涉及多个方面,包括弹性体理论、形状记忆合金、材料失效、疲劳和断裂等。
他的研究成果为工程实践和相关领域的发展提供了重要的理论支持和实践指导。
第18卷第3期2013年5月气候与环境研究Climatic and Environmental ResearchV ol. 18, No. 3May 2013侯美亭, 赵海燕, 王筝, 等. 2013. 基于卫星遥感的植被NDVI对气候变化响应的研究进展 [J]. 气候与环境研究,18 (3): 353–364,doi: 10.3878/j.issn. 1006-9585.2012.11137. Hou Meiting, Zhao Haiyan, Wang Zheng, et al. 2013. Vegetation responses to climate change by using the satellite-derived normalized difference vegetation index: A review [J]. Climatic and Environmental Research (in Chinese), 18 (3): 353–364.基于卫星遥感的植被NDVI对气候变化响应的研究进展侯美亭1, 2赵海燕2, 3王筝2, 4延晓冬2, 51中国气象局气象干部培训学院,北京1000812中国科学院大气物理研究所东亚区域气候—环境重点实验室,北京1000293山西省气候中心,太原0300064中国科学院空间应用工程与技术中心,北京1000945北京师范大学,北京100875摘 要回顾了以往植被对气候响应的有关研究,从此类研究常使用的数据、方法及获取的结论3个方面进行了分析,重点阐述了归一化植被指数(Normalized Difference Vegetation Index,NDVI)对降水、温度和辐射等气候因子的响应特征,并探讨了未来的发展趋势。
结果表明,植被NDVI对降水的显著响应往往出现在干旱半干旱地区和干湿季气候差异明显地区,且具有一定的滞后特征,滞后的时间尺度与局地条件关系密切;温度成为植被NDVI控制因子的情况常出现在温带或寒温带地区,与对降水的滞后响应相比,植被对于温度的滞后响应并不是特别明显;辐射对于植被的主导影响主要出现在低纬度的部分区域、高云量区域和高纬度地区的特定时间段内。
spatial-temporalDefinition: Spatial-temporal refers to the relationship between the physical space and the passage of time. It is a concept often used in physical science, mathematics, and engineering, with applications in fields such as computer vision, robotics, and navigation.Spatial-temporal research seeks to understand how physical space changes over time, from single moments to long-term patterns. By studying the interactions between space and time, researchers can uncover insights into the ways systems interact with each other to create structures, relationships, and dynamics. Spatial-temporal research also has implications for how we manage, use, and protect spatial resources, as well as our understanding of the environment in which we live.Research into spatial-temporal relationships can also help us better understand the ways in which human beings interact with their environment. For example, understanding the influence of urban growth on air and water quality can guide decision-making about building regulations, as well as inform conservation efforts. Additionally, by understanding how people move through space, researchers can gain insights into our transportation system, helping cities become more efficient and safer. Finally, research into spatial-temporal relationships can also help inform our understanding of natural disasters, such as hurricanes and floods, helping to inform public policies and emergency response planning.。
海河流域近17年植被时空变化及其气候影响因素何龙1,曾晓明1,2,钱达1,张虎1,连懿1(1.天津师范大学地理与环境科学学院,天津3003872;2.交通运输部天津水运工程科学研究所,天津300456)摘要:为了分析海河流域近17年植被覆盖时空变化特征及其与气候要素的关系,利用2000—2016年MODIS/NDVI 数据提取海河流域植被覆盖情况,采用一元线性回归趋势法对海河流域植被盖度空间分布和植被时序变化趋势进行分析,并通过对比2000、2009和2016年3期海河流域Landsat TM 影像以及MODIS 影像,对植被变化趋势结果进行验证.同时,结合海河流域2000—2016年降水和气温气象数据资料,对植被覆盖年际变化和气候变化进行相关性分析和趋势分析.结果表明:淤海河流域整体植被覆盖较高,覆盖类型以高覆盖度(NDVI >0.7)为主,高覆盖度的面积占流域总面积的76.93%;于海河流域NDVI 时序变化的多年平均值为0.76,总体呈上升趋势,线性增长率为0.027/10a ;盂海河流域植被空间变化趋势以改善为主,轻微改善和明显改善的面积分别占流域总面积的32.45%和11.14%;榆气候因子相关分析表明,降水是影响海河流域植被覆盖较为显著的气候影响因素,相关系数达到0.51.关键词:MODIS/NDVI ;海河流域;植被覆盖;回归趋势分析中图分类号:TP79文献标志码:A文章编号:1671-1114(2020)03-0054-08Temporal and spatial variation of vegetation and its climatic factors inthe Haihe River Basin in recent 17yearsHE Long 1,ZENG Xiaoming 1,2,QIAN Da 1,ZHANG Hu 1,LIAN Yi 1(1.Schoole of Geographic and Environmental Sciences ,Tianjin Normal University ,Tianjin 300387,China ;2.Tianjin Institute for WaterTransportation Engineering ,Ministry of Transportation ,Tianjin 300456,China )Abstract :In order to analyze the temporal and spatial distribution characteristics of vegetation in the Haihe River Basin overthe recent 17years and their relationship with climate factors ,the vegetation coverage condition of the Haihe River Basin was extracted using MODIS NDVI data from 2000to 2016,and the spatial distribution of vegetation coverage and the change trend of vegetation sequence were studied by linear regression analysis.The results of vegetation change trend were verified by comparing the Landsat TM images and MODIS images of the Haihe River Basin in 2000,2009and 2016.Meanwhile ,the interannual variation of vegetation cover and climate change were analyzed based on the data of temperature and precipitation meteorological data of the Haihe River Basin from 2000to 2016.The results show that:淤The overall vegetation coverage of the Haihe River Basin is high ,the cover type is mainly high coverage (NDVI >0.7),accounting for 76.93%of the area of the river basin.于The annual average value of NDVI time series changes of the Haihe River Basin is 0.76,the overall growth trend is 0.027/10a.盂The trend of the vegetation spatial variation in the Haihe River Basin is improved.The area of the catchment area whose type is slightly improved and mainly improvement respectively account for 32.45%and 11.14%of thewhole areas of the Haihe River Basin.榆The climate factor correlation analysis shows that precipitation is a significantclimatic factor affecting the vegetation coverage in the Haihe River Basin,and the correlation coefficient is 0.51.Keywords :MODIS/NDVI ;Haihe River Basin ;vegetation cover ;regression trend analysisdoi :10.19638/j.issn1671-1114.20200311第40卷第3期2020年5月天津师范大学学报(自然科学版)Journal of Tianjin Normal University (Natural Science Edition )Vol.40No.3May 2020收稿日期:2019-07-14基金项目:国家自然科学基金资助项目(41971306,41601348);天津师范大学博士基金资助项目(043-135202XB1620).第一作者:何龙(1989—),男,助理实验师,主要从事地理信息可视化方面的研究.通信作者:张虎(1986—),男,讲师,主要从事定量遥感理论和应用方面的研究.E -mail :****************.cn.海河流域在全国经济格局中占有十分重要的战略地位.但随着经济社会的快速发展,相关流域遭到破坏性开发,生态环境破坏严重,出现了一系列环境问题[1].作为陆地生态系统的重要组成部分,植被在维持海河流域生态平衡、涵养水源等方面具有重要作用.因此,快速准确地表达海河流域植被生长现状及演变趋势对生态研究具有一定的参考意义[2].作为重要的生态气候参数,植被覆盖度是许多区域气候数值模型中所需的重要信息,也是描述生态系统的重要基础数据[3].归一化植被指数NDVI是利用遥感手段监测地面植物生长状态的一种方法[2],广泛应用于土地覆盖分类[4-6]、植被动态监测[7-9]和植被变化与气候关系[10-13]等诸多研究领域.目前,针对海河流域植被变化已有学者进行了相关研究[14-17],这些研究所采用的NDVI时序数据最高空间分辨率为1km,且所选数据时间序列周期较短,如能加入更长时间序列对植被变化趋势进行分析,结果会更加客观[18].常用的NDVI数据集有GIMMS/NDVI、SPOT VGT/ NDVI和MODIS/NDVI,其中MODIS/NDVI数据具有较高的空间分辨率和数据质量[19-20],可用数据最高空间分辨率为250m,为区域植被趋势研究提供了可使用的时序数据,大大提高了地表植被的观测能力[8].与GIMMS/ NDVI数据相比,MODIS/NDVI数据在可见光波段提高了对叶绿素的敏感度,减少了大气和观测视角等外部因素以及叶冠背景等内在因素的影响,在近红外波段排除了大气水汽的干扰.因此,在植被变化监测中具有较高的准确性[21].本研究利用2000—2016年MODIS/NDVI数据和国家气象信息中心中国地面降水和气温日值数据集,提取海河流域植被覆盖状况,对海河流域近17年植被覆盖变化趋势进行分析,并选取植被覆盖严重退化和明显改善2个区域,结合TM影像和MODIS影像进行验证.同时,对植被覆盖变化的主要气候影响因素进行研究分析,以期为海河流域生态环境的恢复和治理建设提供一定的理论依据和参考.1数据与方法1.1研究区域概况海河流域位于112毅~120毅E,35毅~43毅N,流域总面积3.182伊105km2,占全国总面积的3.3%,其中山区面积占59%,平原面积占41%.海河流域总体地势西北高、东南低,属于温带半干旱季风气候区,包括海河、滦河和徒骇马颊河3大水系.1.2数据来源与处理MODIS影像数据来源于美国航空航天局(NASA)数据中心,包括EOS/Terra卫星的MODIS/NDVI产品MOD13Q1和EOS/Aqua卫星的MODIS/NDVI产品MYD13Q1.海河流域覆盖4景MODIS/NDVI数据,分别为h26v04、h26v05、h27v04和h27v05.该数据集的空间分辨率为250m,时间分辨率为16d.其中,EOS/Terra 卫星数据产品的时间刻度为2000—2016年,EOS/Aqua 卫星数据产品的时间刻度为2002—2016年.影像数据在获取过程中会受大气等因素的影响,在使用这些影像数据前需要对其进行投影转换、变换数据格式等预处理.经过预处理后的数据采用最大值合成法(maximum value composite,MVC)将2000—2016年NDVI数据逐年合成,逐像元比较NDVI值,选取最大值作为合成后的年度NDVI数据集,排除和降低大气、云和太阳高度角等因素对影像数据造成的影响[22].最终得到海河流域2000—2016年共计17年最大NDVI数据集,选取其中2000、2009和2016年3期结果如图1所示.气象数据来源于中国气象局国家气象信息中心图1海河流域2000、2009和2016年最大NDVI的空间分布Fig.1Annual maximum NDVI spatial distribution of the Haihe River Basin in2000,2009and2016(b)2009(c)2016NNN(a)2000LegendMax NDVI<00-0.250.25-0.500.50-0.75>0.7504080160240320kmLegendMax NDVI<00-0.250.25-0.500.50-0.75>0.7504080160240320kmLegendMax NDVI<00-0.250.25-0.500.50-0.75>0.7504080160240320km55··的中国地面降水[23]和气温[24]日值0.5毅伊0.5毅格点数据集.该数据集基于2472个国家级地面气象站获取的基本气象要素资料,利用薄盘样条法(thin plate spline ,TPS )进行空间插值得到中国地面(72毅~136毅E ,18毅~54毅N )空间分辨率0.5毅伊0.5毅的日值降水和气温格点数据.本研究采用的气象数据时间跨度为2000—2016年,时间分辨率为24h.将降水和气温日值数据分别进行预处理,得到2000—2016年海河流域局部区域的气温和降水数据集,选取其中2000、2009和2016年3期结果如图2所示.1.3研究方法本研究在统计海河流域NDVI 时,采用均值法计算流域内所有像元NDVI 的平均值,计算公式为I NDVI =mi=1移(移I NDVI x ,y)/nm(1)式(1)中:I NDVI 为海河流域的NDVI 平均值;x 为海河流域像元行数;y 为流域像元列数;n 为流域内像元总数;i =1,2,…,m ,本研究时间刻度为2000—2016年,对应时间跨度m 为17.趋势分析是对海河流域NDVI 时间序列影像数据进行回归分析,并预测流域内植被覆盖的变化趋势.采用一元线性回归趋势法,通过统计海河流域年最大NDVI 数据集每个像元2000—2016年的值,采用趋势分析法模拟分析该像元17年间的变化趋势,反映海河流域植被覆盖的年际变化及时空变化规律.K NDVI =m 伊m i =1移i 伊NDVI k -m i =1移i mi =1移NDVI im 伊mi =1移i 2-m i =1移i蓸蔀2(2)式(2)中:K NDVI 为每个像元NDVI 的斜率,即为海河流域2000—2016年NDVI 的年际变化趋势.i 为1~m 的年序号,本研究时间刻度为2000—2016年,对应时间跨度m 为17;NDVI i 为第i 年的NDVI 值.K NDVI >0表示海河流域植被覆盖度的变化趋势是增加的,反之则减少;K NDVI =0说明随着时间的变化,植被覆盖变化趋势不变.根据计算所得每个栅格像元的线性回归率,将计算结果分为5类:严重退化区、轻微退化区、基本不变区、轻微改善区和明显改善区,此方法可以有效区分出海河流域植被覆盖度的变化趋势.(b )Annual average precipitation(a )Annual average temperature图2海河流域2000、2009和2016年平均气温和降水量的空间分布Fig.2Spatial distribution of annual average temperature and annual average precipitation in Haihe River Basin in 2000,2009and 20160320km 24016080400320km 24016080400320km24016080400320km24016080400320km24016080400320km240160804015益10益5益0益15益10益5益0益15益10益5益0益200020092016NNNNNN2000200920161000mm 800mm 600mm 400mm 200mm 0mm1000mm 800mm 600mm 400mm 200mm 0mm1000mm 800mm 600mm 400mm 200mm 0mm56··本文采用NDVI 与气温和降水的相关系数探讨研究区气温和降水量变化对NDVI 的影响,相关系数的计算公式为r =mi=1移(x i-x )(y i-y )mi=1移(x i-x )2姨m i=1移(y i-y )2(3)式(3)中:r 代表变量x (NDVI )和y (气温或降水量)之间的相关系数,取值范围为[-1,1],其数值越大,表明2个变量间的相关性越强;m 为时间序列长度17年;i 为年份;x i 为NDVI 在第i 年的值;x 为NDVI 在17年间数值的年平均值;y i 为气温或降水量在第i 年的数值;y 为气温或降水量在17年间数值的年平均值.2结果与分析2.1NDVI 空间分布特征利用海河流域2000—2016年的年度NDVI 最大值数据集,计算得到流域17年的NDVI 平均值.根据水利部2007年颁布的《土壤侵蚀分类分级标准》[25],结合海河流域植被覆盖类型特征,将海河流域植被盖度划分为极低覆盖度、低覆盖度、中覆盖度、中高覆盖度和高覆盖度地5种覆盖类型,划分范围和特点如表1所示.表1植被覆盖度划分表Tab.1Classification of vegetation coverageCoverage degree Vegetation coverage/%CharacteristicExtremely low00-100Residents ,water areas ,bare fields ,traffic landsLow10-30Low yield of grasslands ,wastelands ,open forest landsMedium30-50Medium yield of grasslands ,croplands ,low confinement woodlandsAbove average50-70Slightly higher yield of grasslands ,forest lands ,beach wetlandsHigh70-100High yield of grasslands ,dense woodlands ,dense bushesN240km180********Extremely lowLow MediumAbove average High表22000—2016年海河流域不同植被覆盖度的面积Tab.2Different vegetation coverage area in the Haihe River Basin from 2000to 2016依据植被盖度分级分类标准,得到2000—2016年海河流域植被盖度空间分布图和海河流域2000—2016年不同植被盖度面积表,分别如图3和表2所示.由图3和表2可以看出,海河流域NDVI 值小于0.1的极低覆盖度区域主要为湿地、水域和建设用地,面积为1.7伊103km 2,占流域总面积的0.53%,主要分布在环渤海湾地区;低覆盖度区域面积为1.2伊103km 2,占流域总面积的0.38%,主要分布于城市中心和环渤海湾一带,以建设用地为主;中覆盖度NDVI 值为0.3~0.5,主要为中产草地、农田和低郁闭度林地等,面积占比3.83%;中高覆盖度NDVI 值为0.5~0.7,主要由中高产草地、林地和滩地组成,面积为5.8伊104km 2;海河流域NDVI 值大于0.7的高覆盖度区域面积较大,占流域总面积的76.93%,主要为高产草地、密林地和农田,集中分布于辽宁、山东和河南等地.综上可知,研究区植被覆盖率总体较高,仅环渤海湾地带和一些城市区域植被覆盖率较低.图32000—2016年海河流域不同植被覆盖度的空间分布Fig.3Spatial distribution of different vegetation coverage in the Haihe River Basin from 2000to 2016NDVI range CoverageArea/(伊104km 2)Proportion/%0-0.1.0Extrerndy low 00.1700.530.7-1.0High24.4876.930.1-0.3Low 0.120.380.3-0.5Medium 1.22 3.830.5-0.7Above average5.8318.3257··图52000—2016年海河流域NDVI 变化趋势Fig.5Trends of NDVI in the Haihe River Basin from2000to 2016N240km 180********Severe degradation Slight degradation InvariantSlight improvementObvious improvement表3趋势变化区域的统计数据Tab.3Statistics of trends of changed areaTrends of NDVITypeArea/(伊104km 2)Proportion/%K NDVI 臆-0.0101Severe degradation00.7002.18-0.0101约K NDVI 约-0.0016Slight degradation 3.4010.70-0.0016臆K NDVI 臆0.0034Invariant13.8543.530.0034约K NDVI 约0.0083Slight improvement10.3232.45K NDVI 逸0.0083Obvious improvement 03.5411.14Trend2.2NDVI 时序变化特征利用海河流域2000—2016年的年度NDVI 最大值数据集制作折线图并拟合出17年间NDVI 的变化趋势,得到2000—2016年海河流域NDVI 年际变化情况,结果如图4所示.由图4可以看出,海河流域NDVI 在0.70~0.79间波动,NDVI 的多年平均值为0.76,总体呈上升趋势,线性增长率为0.027/10a.其中2000—2004年,NDVI 上升趋势明显,线性增长率为0.184/10a ,植被覆盖情况有所改善;2004—2008年,NDVI 呈缓慢增长趋势,2008年出现最大值;NDVI 在2009年和2014年出现谷值,说明流域内植被覆盖有所退化;2014年后,NDVI 线性增长率为0.145/10a ,植被覆盖有所提升.综上所述,2000—2016年间海河流域植被覆盖状况的变化较为明显,17年间研究区的植被覆盖状况整体上得到较大改善.这与海河流域范围内实施的一系列生态建设工程密切相关,如三北防护林工程、退耕还林还草工程以及京津风沙源治理工程等,这些生态建设工程有效增加了海河流域地表植被的覆盖率.2.3NDVI 变化趋势分析基于2000—2016年海河流域的逐年NDVI 最大值数据集,采用一元线性回归趋势分析法计算得到海河流域NDVI 年际变化情况,K NDVI 的变化范围为-0.0610~0.0538,植被变化趋势较为明显.采用Jenks 自然间断点分级法(一种地图分级算法,类内差异最小,类间差异最大,利用数据本身有断点的特征进行聚类分级)将海河流域NDVI 年际变化分为严重退化、轻微退化、基本不变、轻微改善和明显改善共5个等级,得到2000—2016年海河流域NDVI 变化趋势以及趋势变化区域的统计数据,结果分别如图5和表3所示.由图5和表3可以看出,海河流域植被覆盖改善区域面积为1.386伊105km 2,远大于退化区域,其中改善部分以轻微改善为主,占流域总面积的32.45%;退化区域面积为4.1伊104km 2,占总面积的12.88%,环状分布于城市的周围,北京和天津最为明显;基本不变区域交错分布于改善区域和退化区域之间,面积占流域总面积的43.53%.综上可知,海河流域近17年来植被覆盖变化存在显著的空间差异性,人类活动等对地表植被覆盖所产生的正负效应同时存在,研究区大部分地区的植被得到了明显改善,但受城市扩张等因素的影响,城市外围区域的植被退化现象较为严重.2.4变化趋势结果验证为了验证一元线性回归趋势分析方法对海河流域植被覆盖进行趋势分析的可靠性,在研究区域中分别选取植被覆盖严重退化区域A 和植被覆盖明显改善区域B ,如图5中方框所示.选用TM 和MODIS 影图42000—2016年海河流域NDVI 年际变化Fig.4Inter -annual variation of NDVI in the Haihe RiverBasin from 2000to 20160.800.780.760.740.720.700.682000Year20022004200620082010201220142016y =0.0027x +0.7392R 2=0.347558··图6验证区域A 和B 对应的Landsat 和MODIS 影像Fig.6Landsat and MODIS images of the validation regions A and B(a )Large version of region A in Fig.5(c )TM (4,3,2)composite image of region A in different years(d )MODIS NDVI of region A in different years(e )TM (4,3,2)composite image of region B in different years(f)MODIS NDVI of region B in different years(b )Large version of region B in Fig.5TM2000TM2009TM2016MODIS2000MODIS2009MODIS2016MODIS2000MODIS2009MODIS2016TM2000TM2009TM2016像对区域A 和区域B 这2个植被覆盖显著变化区域进行验证,二者的NDVI 变化趋势局部放大图以及对应的TM 和MODIS NDVI 产品影像如图6所示.图6中TM 影像为4,3,2波段合成的标准假彩色影像,红色代表植被,MODIS NDVI 产品影像中颜色越深代表NDVI 值越小,即植被覆盖度越低.59··区域A 为植被退化区域,主要涵盖天津市10个区(红桥区、河北区、河东区、河西区、和平区、南开区、东丽区、津南区、西青区以及静海区);区域B 为植被改善区域,主要包括河北省张家口市怀安县和万全区.由图6(a )可以看出,植被退化区域主要集中在天津市西青区、东丽区、津南区和静海区等城镇规模迅速扩张地区,结合图6(c )和图6(d )可以看出,2000—2016年天津市城市快速发展扩张,建筑用地显著增加,土地利用情况发生变化,植被覆盖退化较为明显,NDVI 呈现显著减小趋势.由图6(b )可以看出,植被改善区域主要集中在河北省张家口市万全区的旧堡乡和北新屯乡,该区域主要为山区,位于省级园林县城、国家重点生态功能区(防风固沙)万全区和怀安县,结合图6(e )和图6(f )影像可知,2016年较2009年相比植被覆盖区域面积明显增加,NDVI 呈现显著增加趋势.验证区域的植被变化情况与趋势分析方法所得结果相符,进一步说明了该方法提取的海河流域植被变化特征具有较高的精度.2.5植被变化气候影响因素分析为了直观展现2000—2016年17年间海河流域植被覆盖度、年降水量和年平均气温的变化趋势关系,将海河流域年降水量和年平均气温气象数据分别与海河流域NDVI 年际变化进行叠加,结果如图7所示.通过计算得到海河流域2000—2016年NDVI 与年降水量相关系数为0.51,呈显著正相关,NDVI 与年平均气温相关系数为-0.20,呈负相关且相关性较弱.海河流域属于温带半干旱季风气候,相关系数表明气温对海河流域植被生长的影响较弱,降水是影响植被覆盖最显著的气候影响因素,在气温上升、降水减少的情况下,植被覆盖度会有所下降.结合图7可知,NDVI 和年降水量在2008年和2012年出现峰值,在2009年和2014年出现谷值,二者年度变化趋势表现出较高的一致性.3结论利用MODIS/NDVI 数据分析海河流域近17年植被空间分布、时序变化和空间变化特征及其与气候影响因素的关系,得到以下主要结论:(1)空间分布:通过海河流域植被盖度空间分布状况可以看出,海河流域整体植被覆盖较高,覆盖类型以高覆盖度(NDVI 跃0.7)为主,面积为2.448伊105km 2,占流域总面积的76.93%,植被类型主要为高产草地、密林地和密灌地;极低覆盖度(NDVI 约0.1)区域主要分布在环渤海湾地区,面积不足流域总面积的1%.(2)时序变化:通过海河流域植被年NDVI 可以看出,海河流域NDVI 值近17年变化范围为0.70~0.79,总体呈上升趋势,线性增长率为0.027/10a ,时序变化的多年平均值为0.76.其中2000—2008年NDVI 呈增长趋势,且在2008年达到最大值0.79;2009年和2014年出现谷值,说明流域内植被覆盖有所退化.(3)空间变化:通过海河流域近17年植被NDVI 变化趋势可以看出,海河流域植被空间变化趋势以改善为主,其中变化趋势大于0.0034小于0.0083为轻微改善,占流域总面积的32.45%;变化趋势大于0.0083为明显改善,占流域总面积的11.14%;退化区域面积占比不足13%.在植被变化趋势结果验证中,对比植被变化趋势较为明显的2个区域,验证区的变化特征与趋势分析方法所得结果表现出较好的空间一致性.(4)气候影响因素:海河流域为温带半干旱季风气候,选择年平均气温和年降水量对海河流域植被覆盖变化进行相关性分析,结果表明年平均气温与NDVI 相关性较弱,说明气温对海河流域植被生长的影响较弱;年降水量与NDVI 相关系数为0.51,呈显著正相关,说明降水是影响海河流域植被覆盖较为显著的气候影响因素.本研究利用海河流域2000—2016年MODIS/NDVI 数据计算分析了近17年海河流域植被时空分布及变化规律特征,快速准确地表达了海河流域植被生长现状及演变趋势,并对变化趋势结果进行验证.在进行植被影响因素分析时,以气温和降水作为气候影响因素对植被变化进行相关性分析,没有考虑到其他气候影响因素、自然因素和人为因素对植被变化带来的影响.因此,进一步拓展植被变化影响因素分析是今后0.800.780.760.740.720.700.68y =-0.0223x +9.6153R 2=0.1003121086420y =0.0027x +0.7392R 2=0.3475图72000—2016年海河流域NDVI 、年降水量及年平均气温变化趋势Fig.7Change trend of NDVI ,annual average precipitationand annual average temperature in the Haihe River Basin from 2000to 20162000Years20022004200620082010201220142016NDVI Annual average temperatureAnnual average precipitation y =0.0492x +4.4852R 2=0.187060··工作的重点.参考文献:[1]李树元.海河流域生态环境关键要素演变规律与脆弱性研究[D].天津:天津大学,2014.LI S Y.Research on Variation of Essential Factors and Vulnerability of Aquatic Ecosystem in Haihe Basin[D].Tianjin:Tianjin University,2014(in Chinese).[2]冯露,岳德鹏,郭祥.植被指数的应用研究综述[J].林业调查规划,2009,34(2):48-52.FENG L,YUE D P,GUO X.A review on application of normal differ-ent vegetation index[J].Forest Inventory and Planning,2009,34(2):48-52(in Chinese).[3]SELLERS P J,TUCKER C J,COLLATZ G J,et al.A revised land surface parameterization(SiB2)for atmospheric GCMS.Part域:The generation of global fields of terrestrial biophysical parameters from satellite data[J].Journal of Climate,1996,9(4):706-737. [4]那晓东,张树清,李晓峰,等.MODIS NDVI时间序列在三江平原湿地植被信息提取中的应用[J].湿地科学,2007,5(3):227-236. NA X D,ZHANG S Q,LI X F,et al.Application of MODIS NDVI time series to extracting wetland vegetation information in the Sanjiang plain[J].Wetland Science,2007,5(3):227-236(in Chinese). [5]顾娟,李新,黄春林.基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J].地球科学进展,2010,25(3):317-326.GU J,LI X,HUANG C nd cover classification based on time-series MODIS NDVI data in Heihe river basin[J].Advances in Earth Science,2010,25(3):317-326(in Chinese).[6]王志慧,李世明,刘良云,等.基于MODIS NDVI时间序列的土地覆盖分层分类方法研究[J].遥感技术与应用,2013,28(5):910-919.WANG Z H,LI S M,LIU L Y,et al.Hierarchical land cover classifi-cation based on MODIS NDVI time-series[J].Remote Sensing Technol-ogy and Application,2013,28(5):910-919(in Chinese). [7]王晓江,胡尔查,李爱平,等.基于MODIS NDVI的内蒙古大青山自然保护区植被覆盖度的动态变化特征[J].干旱区资源与环境,2014,28(8):61-65.WANG X J,HU E C,LI A P,et al.Dynamic changes of vegetation coverage in Daqingshan Nature Reserve based on MODIS NDVI image [J].Journal of Arid Land Resources and Environment,2014,28(8):61-65(in Chinese).[8]张莉,陈芸芝,汪小钦.基于时序MODIS NDVI数据的长汀县植被趋势特征研究[J].福州大学学报(自然科学版),2016,44(5):661-667.ZHANG L,CHEN Y Z,WANG X Q.Vegetation trends research of Changting County based on time series of MODIS NDVI[J].Journal of Fuzhou University(Natural Science Edition),2016,44(5):661-667(in Chinese).[9]冯志敏,辛海强,李军.基于MODIS植被指数的塔河流域植被时空变化特征研究[J].测绘与空间地理信息,2017,40(2):90-94. FENG Z M,XIN H Q,LI J.Study on characteristics of land cover change of time and space in Tarim river basin using MODIS NDVI[J]. Geomatics&Spatial Information Technology,2017,40(2):90-94(inChinese).[10]徐浩杰,杨太保,曾彪.2000-2010年祁连山植被MODIS NDVI的时空变化及影响因素[J].干旱区资源与环境,2012,26(11):87-91. XU H J,YANG T B,ZENG B.Spatial-temporal changes of vegetation in Qilian Mountains from2000to2010based on MODIS NDVI data and its affecting factors[J].Journal of Arid Land Resources and Enviro-nment,2012,26(11):87-91(in Chinese).[11]成方妍,刘世梁,尹艺洁,等.基于MODIS NDVI的广西沿海植被动态及其主要驱动因素[J].生态学报,2017,37(3):788-797. CHENG F Y,LIU S L,YIN Y J,et al.The dynamics and main driving factors of coastal vegetation in Guangxi based on MODIS NDVI[J].Acta Ecologica Sinica,2017,37(3):788-797(in Chinese). [12]石悦樾,银正彤,郑文锋.基于MODIS数据乌江流域植被覆盖变化与气候变化关系研究[J].林业资源管理,2017(1):127-134. SHI Y Y,YIN Z T,ZHENG W F.Study on the response of vegetation cover change and climate change in Wujiang river basin based on MODIS data[J].Forest Resources Management,2017(1):127-134(in Chinese).[13]孙艳玲,郭鹏.1982—2006年华北植被覆盖变化及其与气候变化的关系[J].生态环境学报,2012,21(1):7-12.SUN Y L,GUO P.Variation of vegetation coverage and its relationship with climate change in North China from1982to2006[J].Ecology and Environmental Sciences,2012,21(1):7-12(in Chinese). [14]吴云,曾源,赵炎,等.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424. WU Y,ZENG Y,ZHAO Y,et al.Monitoring and dynamic analysis of fractional vegetation cover in the Hai river basin based on MODIS data [J].Resources Science,2010,32(7):1417-1424(in Chinese). [15]陈福军,沈彦俊,胡乔利,等.海河流域NDVI对气候变化的响应研究[J].遥感学报,2011,15(2):401-414.CHEN F J,SHEN Y J,HU Q L,et al.Responses of NDVI to climate change in the Hai basin[J].Journal of Remote Sensing,2011,15(2):401-414(in Chinese).[16]王永财,孙艳玲,王中良.1998—2011年海河流域植被覆盖变化及气候因子驱动分析[J].资源科学,2014,36(3):594-602. WANG Y C,SUN Y L,WANG Z L.Spatial-temporal change in vege-tation cover and climate factor drivers of variation in the Haihe river basin1998-2011[J].Resources Science,2014,36(3):594-602(in Chinese).[17]杨艳丽,孙艳玲,王中良.2000—2013年海河流域植被覆盖的时空变化[J].干旱区资源与环境,2016,30(7):65-70. YANG Y L,SUN Y L,WANG Z L.The spatial-temporal variations of vegetation cover in the Haihe river basin from2000to2013[J].Journal of Arid Land Resources and Environment,2016,30(7):65-70(in Chinese).[18]陈燕丽,龙步菊,潘学标,等.MODIS NDVI和AVHRR NDVI对草原植被变化监测差异[J].遥感学报,2011,15(4):831-845. CHEN Y L,LONG B J,PAN X B,et al.Differences between MODIS NDVI and AVHRR NDVI in monitoring grasslands change[J].Journal of Remote Sensing,2011,15(4):831-845(in Chinese). [19]严晓瑜,董文杰,何勇.不同传感器数据在若尔盖湿地植被变化监61··(下转第68页)测应用中的适宜性分析[J].遥感技术与应用,2008,23(3):300-304.YAN X Y ,DONG W J ,HE Y.Analysis of the suitability from different remote sensing data on the monitoring of vegetation change in ruoergai marsh[J].Remote Sensing Technology and Application ,2008,23(3):300-304(in Chinese ).[20]韩鹏,姚娟,李天宏.3种不同数据源NDVI 的比较分析及其在延河流域的应用研究[J].应用基础与工程科学学报,2014,22(4):661-674.HAN P ,YAO J ,LI T parison of 3NDVI datasets and the appli -cation at Yanhe basin ,China[J].Journal of Basic Science and Enginee -ring ,2014,22(4):661-674(in Chinese ).[21]HUETE A ,JUSTICE C ,LEEUWEN W V.MODIS vegetation index (MOD13);algorithm theoretical basis document[EB/OL].(2013-12-31)[2019-06-10]./data/atbd_mod13.pdf.[22]宋富强,康慕谊,杨朋,等.陕北地区GIMMS 、SPOT :VGT 和MODIS 归一化植被指数的差异分析[J].北京林业大学学报,2010,32(4):72-80.SONG F Q ,KANG M Y ,YANG P ,et parison and validation of GIMMS ,SPOT -VGT and MODIS global NDVI products in the Loess Plateau of northern Shanxi Province ,northwestern China [J].Journal of Beijing Forestry University ,2010,32(4):72-80(in Chinese ).[23]国家气象科学数据中心.中国地面降水日值0.5毅伊0.5毅格点数据集(V2.0)[EB/OL].http :///data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html.National Meteorological Information Center.Dataset of 0.5毅伊0.5毅grid points of daily ground precipitation in China(V2.0)[EB/OL].http :///data/cdcdetail/dataCode/SURF_CLI_CHN_PRE_DAY_GRID_0.5.html.[24]国家气象科学数据中心.中国地面气温日值0.5毅伊0.5毅格点数据集(V2.0)[EB/OL].http :///data/cdcdetail/dataCode/SURF_CLI_CHN_TEM_DAY_GRID_0.5.html.National Meteorological Information Center.Dataset of 0.5毅伊0.5毅grid points of daily ground temperature in China (V2.0)[EB/OL].http :///data/cdcdetail/dataCode/SURF_CLI_CHN_TEM_DAY_GRID_0.5.html(in Chinese ).[25]中华人民共和国水利部.GB/SL190-2007,土壤侵蚀分类分级标准[S].北京:中国水利水电出版社,2008.Ministry of Water Resources of the People忆s Republic of China.GB/SL190-2007,Classification and Classification Standards of Soil Ero -sion[S].Beijing :China Water&Power Press ,2008(in Chinese ).(责任编校亢原彬)(上接第61页)ZOU Z C ,DENG Y C.Study on numerical simulation of wind field us -ing three kinds of Terra in data[J].Water Resources and Power ,2015,33(1):204-206,182(in Chinese ).[12]张小培,银燕.复杂地形地区WRF 模式四种边界层参数化方案的评估[J].大气科学学报,2013,36(1):68-76.ZHANG X P ,YIN Y.Evaluation of the four PBL schemes in WRF model over complex topographic areas[J].Transactions of AtmosphericSciences ,2013,36(1):68-76(in Chinese ).[13]潘小多,李新,冉有华,等.下垫面对WRF 模式模拟黑河流域区域气候精度影响研究[J].高原气象,2012,31(3):657-667.PAN X D ,LI X ,RAN Y H ,et al.Study on the influence of the under -lay on the climate accuracy of the Heihe River Basin in the face of WRFmodel[J].Plateau Meteorology ,2012,31(3):657-667(in Chinese ).[14]DANIELSON J J ,GESCH D B.Global Multi -Resolution Terrain Ele -vation Data 2010(GMTED2010)[M].U.S.Geological Survey Open -File Report 2011-1073,2011.[15]JAVIS A ,REUTER H I ,NELSON A ,et al.Hole -filled SRTM for the globe version 4[M].CGIAR -CSI SRTM 90m Database ,2008.[16]孟露,赵天良,杨兴华,等.塔克拉玛干沙漠腹地大气边界层参数化方案的模拟评估[J].气象科学,2018,38(2):157-166.MENG L ,ZHAO T L ,YANG X H ,et al.An assessment of atmospheric boundary layer schemes over the Taklimakan Desert hinterland[J].Jour -nal of the Meteorological Sciences ,2018,38(2):157-166(in Chinese ).[17]WANG Z Q ,DUAN A M ,WU G X.Impacts of boundary layer parame -terization schemes and air -sea coupling on WRF simulation of the EastAsian summer monsoon[J].Science China :Earth Sciences ,2014,57:1480-1493.[18]ATHMANIA D ,ACHOUR H.External validation of the Aster GDEM2,GMTED2010and CGIAR -CSI -SRTM v4.1free access digital elevation models (DEMs )in Tunisia and Algeria[J].Remote Sensing ,2014,6(5):4600-4620.[19]VARGA M ,BA譒I 鸳悦T.Accuracy validation and comparison of global digital elevation models over Croatia[J].International Journal of RemoteSensing ,2015,36(1):170-189.[20]董俊玲,韩志伟,张仁健,等.WRF 模式对中国城市和半干旱地区气象要素的模拟检验和对比分析[J].气象科学,2011,31(4):484-492.DONG J L ,HAN Z W ,ZHANG R J ,et al.Evaluation and analysis of WRF simulated meteorological variables in the urban and semi -arid ar -eas of China[J].Journal of the Meteorological Sciences ,2011,31(4):484-492(in Chinese ).(责任编校亢原彬)68··。
第 41 卷 ,第 2 期 2024 年4 月15 日国土资源科技管理Vol. 41,No.2Apr. 15,2024 Scientific and Technological Management of Land and Resourcesdoi:10.3969/j.issn.1009-4210.2024.02.005河南省耕地“非农化”时空演变特征分析余庆年,王虎威(河海大学 公共管理学院,江苏 南京 211100)摘 要:深入理解和掌握耕地“非农化”的时空演变特征及其原因对保护耕地并确保粮食安全具有重要意义。
本文针对中国产粮第二大省河南,以县域为单位,基于河南省1980—2020年土地利用长时序空间数据,采用重心转移模型和空间自相关分析等方法,定量揭示全省158个县级评价单元1980—2020年来耕地“非农化”的空间分布特征、时空迁移路径和集聚特征,以期为河南省耕地资源的保护与可持续利用提供依据。
结果表明:(1)河南省耕地资源东西分布差异大,集中连片耕地主要集中在东部,耕地总面积随时间推移呈波动减少。
(2)耕地“非农化”等级时空差异较大,豫西地区耕地“非农化”较为缓和,中部和东部地区呈先快速上升后缓慢下降的态势。
(3)河南省耕地“非农化”空间不均衡性增强,空间格局小幅波动,耕地“非农化”重心以先向东南和西南后向东北的路径迁移。
(4)河南省耕地“非农化”空间分布格局在4个时期均呈现出集聚特性,空间集聚程度先增大后减小,高—高和低—低聚类主导格局变化。
本研究揭示了1980—2020年河南省耕地“非农化”的时空演变格局,为政府管控耕地“非农化”现象、实现耕地资源的可持续发展提供参考和借鉴。
关键词:耕地“非农化”;时空演变特征;重心模型;空间自相关中图分类号:F323.21 文献标志码:A 文章编号:1009-4210-(2024)02-50-12Analysis on Temporal and Spatial Evolution Characteristics of FarmlandConversion in Henan ProvinceYU Qingnian,WANG Huwei(School of Public Administration,Hohai university,Nanjing 211100,Jiangsu,China)Abstract: Understanding and mastering the characteristics and underlying reasons for the spatial-temporal evolution of cultivated land “non-agriculturalization” is of paramount importance to ensure food security. Based on the long-term spatial data of land use in Henan from 1980 to 2020,the second largest grain-producing province in China,this paper adopts the methods of gravity shift model and spatial autocorrelation analysis. To provide a solid foundation for the protection and sustainable use of cultivated land resources in Henan Province,this study quantitatively examines the spatial distribution patterns,temporal-spatial migration routes,and agglomeration characteristics of cultivated land “non-agriculturalization” across 158 county-level units from 1980 through to 2020. The results show that:(1)the distribution of cultivated land resources in Henan Province varies greatly from east to west. The收稿日期:2023-10-31作者简介:余庆年(1977—),女,博士,副教授,硕士生导师,从事土地政策与制度研究。
收稿日期:2022-10-20基金项目:云南省教育厅科学研究基金项目(2022Y288)作者简介:刘士鑫(1994-),男,河南商城人,硕士,主要从事土地资源利用与保护研究,(电话)135****1557(电子信箱)****************;通信作者,陈运春(1976-),女,云南昭通人,副教授,硕士,主要从事国土生态修复、资产核算研究,(电子信箱)*****************。
刘士鑫,李建华,孙咏琦,等.基于FLUS-Markov 模型的玉溪市生态系统服务价值时空演变与预测[J ].湖北农业科学,2024,63(2):189-198.基于FLUS-Markov 模型的玉溪市生态系统服务价值时空演变与预测刘士鑫1a ,1b ,李建华1b ,1c ,孙咏琦1b ,1c ,杜园园1c ,向冬蕾2,陈运春1b ,1c(1.云南农业大学,a.资源与环境学院;b.自然资源科学技术工程研究中心;c.水利学院,昆明650051;2.云南省国土资源规划设计研究院,昆明605201)摘要:基于玉溪市2010年、2020年2期生态景观类型数据和粮食产量经济价值修正生态系统服务价值系数,分析玉溪市生态景观类型及生态系统服务价值分布特征,采用FLUS-Markov 模型预测玉溪市2030年生态系统服务价值及其分布。
结果表明,该模型预测结果的Kappa 系数提高至0.8969,整体精度为0.9393,精度较高;2010—2020年玉溪市林地、草地的面积呈减少趋势,以林地、草地、水域为主的生态系统仍然面临威胁;2030年玉溪市生态系统服务价值为535.0471亿元,变化率为-0.1297%,玉溪市应加强对林地、草地的保护,加强退耕还林、退耕还草政策的实施,合理控制草地、林地向耕地的转化;2030年玉溪市生态系统服务价值依然表现为西部>中部>东部;2030年玉溪市各县市区生态系统服务价值贡献率由高到低依次为新平县、元江县、峨山县、易门县、华宁县、红塔区、江川区、澄江市、通海县。
第36卷第21期农业工程学报V ol.36 No.212020年11月Transactions of the Chinese Society of Agricultural Engineering Nov. 2020 227 中国玉米秸秆草谷比及其资源时空分布特征霍丽丽1,赵立欣1,姚宗路1※,贾吉秀1,赵亚男1,傅国浩1,丛宏斌2(1.中国农业科学院农业环境与可持续发展研究所,北京100081;2. 农业农村部规划设计研究院农村能源与环保研究所,北京100125)摘要:针对玉米秸秆资源量及时空区域分布不清等问题,该研究分析9个典型省的玉米秸秆草谷比差异性,并基于草谷比实测值,评价近10a中国玉米秸秆资源量的时空变化情况,预测玉米秸秆的资源潜力。
研究结果表明,玉米秸秆草谷比实测值为(0.84±0.23),不同地区、不同品种草谷比差异显著,随着年份变化,玉米品种和种植方式在不断变化,草谷比逐年变小,从2009年1.2减小到2018年的0.84,估算2018年全国玉米秸秆理论资源量为2.16×108t,比2009年仅增加3.9%。
玉米秸秆东北和华北地区资源量最高,占50%以上,与2009年相比,东北、华北、西北地区资源量有所增加,华东、华中、西南、华南略有下降;单位面积玉米秸秆可收集资源量4.51 t/hm2,比2009年增加23%,东北地区最高,其次华北、华东和西北地区,然后是华中和西南地区,华南地区最低。
预测2025年玉米秸秆的理论资源量为(2.53±0.58)×108t,可收集资源量为(1.86±0.51)×108t。
研究为全国各个地区的秸秆合理规划利用提供基本参考数据。
关键词:秸秆;资源评价;谷物;草谷比;理论资源量;可收集资源量;时空变化doi:10.11975/j.issn.1002-6819.2020.21.027中图分类号:TK6 文献标志码:A 文章编号:1002-6819(2020)-21-0227-08霍丽丽,赵立欣,姚宗路,等. 中国玉米秸秆草谷比及其资源时空分布特征[J]. 农业工程学报,2020,36(21):227-234. doi:10.11975/j.issn.1002-6819.2020.21.027 Huo Lili, Zhao Lixin, Yao Zonglu, et al. Difference of the ratio of maize stovers to grain and spatiotemporal variation characteristics of maize stovers in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 227-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.027 0 引 言中国秸秆资源丰富,尤其是玉米秸秆分布范围广,资源量约占总秸秆资源量的1/3[1],2018年,全国玉米种植面积为42.1×106hm2,是2006年的1.5倍,而玉米产量为2.57×108 t,是2006年的1.7倍[2],玉米秸秆资源量随着种植面积和玉米产量增加而逐年增加,但秸秆资源量的统计值差异较大[3],难以为秸秆综合利用的区划提供相对准确的数据支撑[4-5]。
基于粒子群求解帕累托曲面前沿摘要:一、引言二、帕累托曲面的概念和求解方法1.帕累托曲面的定义2.传统求解方法三、粒子群算法简介1.粒子群算法的原理2.粒子群算法的应用领域四、基于粒子群求解帕累托曲面前沿的方法1.方法原理2.方法步骤五、实例分析1.实例介绍2.求解过程3.结果分析六、结论正文:一、引言帕累托曲面是一个在经济学、工程学等领域具有重要应用的非线性曲面。
随着问题的复杂度增加,用传统方法求解帕累托曲面前沿变得越来越困难。
近年来,粒子群算法作为一种优化搜索方法,在求解帕累托曲面前沿方面取得了显著的成果。
本文将介绍基于粒子群求解帕累托曲面前沿的方法,并通过实例分析验证其有效性。
二、帕累托曲面的概念和求解方法1.帕累托曲面的定义帕累托曲面是一个多目标优化问题的解集,其中每个解在所有解中具有最优的帕累托性质。
简单来说,帕累托曲面包含了所有可能的解,这些解在满足一定的约束条件下是最优的。
2.传统求解方法传统的求解方法主要包括线性规划、非线性规划等。
然而,随着问题复杂度的增加,这些方法的求解难度和计算时间呈指数增长,难以应对复杂问题。
三、粒子群算法简介1.粒子群算法的原理粒子群算法是一种基于群体行为的优化搜索方法。
它假设一个群体中的每个个体都是一个粒子,粒子在解空间中随机移动,并在移动过程中受到自身和全局最优解的吸引。
通过这种群体搜索策略,粒子群算法可以在较短时间内找到全局最优解。
2.粒子群算法的应用领域粒子群算法广泛应用于各种优化问题,如机器学习、信号处理、生产调度等。
在多目标优化领域,粒子群算法也表现出了良好的性能。
四、基于粒子群求解帕累托曲面前沿的方法1.方法原理基于粒子群求解帕累托曲面前沿的方法将帕累托曲面问题转化为一个多目标优化问题,并利用粒子群算法进行求解。
在这个过程中,每个粒子表示一个解,粒子群算法通过搜索策略不断更新解,最终收敛于帕累托曲面前沿解。
2.方法步骤(1)定义目标函数和约束条件(2)初始化粒子群(3)评估目标函数值和约束条件(4)更新粒子速度和位置(5)检查停止条件(6)输出结果五、实例分析1.实例介绍本文以一个简单的三目标优化问题为例,求解帕累托曲面前沿。
周期性驱动诱导的新奇拓扑物态周期性驱动诱导的新奇拓扑物态随着科技的不断发展,人们对材料科学的研究也进入了全新的阶段。
传统上,材料的性质主要由其化学成分和原子结构决定。
然而,近年来科学家们发现,周期性驱动可以引发材料中的一些新奇物态。
这些物态被称为周期性驱动诱导的新奇拓扑物态,其在凝聚态物理和量子材料领域受到广泛关注。
周期性驱动指的是在一个材料中施加周期性变化的外部场。
通常这个周期可以是时间、空间或者其他物理性质上的周期。
这个周期性的驱动可以是电场、磁场或者光场等。
这种周期性驱动会使材料的能带结构发生变化,从而导致新的物理现象出现。
最早被发现的周期性驱动诱导的新奇拓扑物态之一是“霍尔效应”。
霍尔效应是指在垂直于电流方向的磁场中,由于电子的轨道运动受到破坏而在材料中出现的横向电场。
在传统的霍尔效应中,这个横向电场与电流方向垂直,被称为纵向霍尔效应。
然而,在周期性驱动的情况下,电流方向和横向电场方向可以不再垂直,从而引发新的物理效应。
实验观测发现,在适当的周期性驱动下,纵向霍尔效应可以完全消失,并且出现一个与电流方向平行的横向电场,被称为电流平行横向霍尔效应。
这一现象揭示了周期性驱动对材料中电子运动的控制性质。
除了霍尔效应,周期性驱动还可以引发其他一些新奇的拓扑性质。
例如,在周期性驱动下,材料中的电子可以在时间轴上形成拓扑陈数。
这种陈数可以看作是电子的一种“指纹”,它代表了电子态的拓扑性质。
经过适当的周期性驱动,陈数可以发生变化,从而导致材料中新的拓扑物态出现。
这种拓扑陈数的变化可以通过多种物理量进行观测,例如电导、霍尔电导等。
周期性驱动诱导的新奇拓扑物态除了在实验中被观测到,理论上也得到了广泛的研究。
通过数学模型和计算模拟,科学家们可以预测不同周期性驱动条件下材料的物理性质。
这些理论预测为实验提供了重要的指导,并且可以帮助研究人员设计和合成具有特定拓扑物态的材料。
尽管周期性驱动诱导的新奇拓扑物态已经取得了许多重要的发现,但仍然存在许多挑战和问题需要解决。
1、What is the primary purpose of the passage?A. To discuss the benefits of online learning.B. To compare traditional classrooms with virtual classrooms.C. To highlight the challenges faced by students in remote areas.D. To analyze the impact of technology on education. (答案:D)2、Which of the following statements about climate change is NOT true?A. It is caused by human activities such as burning fossil fuels.B. It leads to an increase in global temperatures.C. It has no effect on the frequency of extreme weather events.D. It poses a threat to biodiversity. (答案:C)3、The author mentions "sustainable development" in the context of discussing:A. Economic growth without environmental degradation.B. Rapid industrialization in developing countries.C. The depletion of natural resources.D. The importance of renewable energy sources. (答案:A)4、Which of the following is a strategy for improving time management skills?A. Procrastinating tasks until the last minute.B. Multitasking without prioritization.C. Setting clear goals and deadlines.D. Constantly checking social media for updates. (答案:C)5、What is the main idea of the second paragraph in the article about healthy eating?A. The importance of a balanced diet.B. The dangers of processed foods.C. The benefits of a vegan lifestyle.D. The role of exercise in weight management. (答案:A)6、Which of the following is NOT a common type of business communication?A. EmailsB. MemosC. Social media posts (personal accounts)D. Formal reports (答案:C)7、The term "globalization" refers to:A. The spread of cultural and economic influence worldwide.B. The limitation of trade to local markets.C. The decrease in international cooperation.D. The isolation of nations from global trends. (答案:A)8、Which of these is a key factor in determining the success of a marketing campaign?A. The cost of production.B. Understanding the target audience.C. The number of advertisements placed.D. The use of the latest technology in advertising. (答案:B)9、In the field of psychology, what is meant by "cognitive dissonance"?A. A state of mental confusion caused by conflicting beliefs.B. A lack of emotional response to stimuli.C. The ability to process information quickly.D. A heightened sense of awareness. (答案:A)10、Which of the following best describes the concept of "digital literacy"?A. The ability to read and write in a digital environment.B. The skill of repairing electronic devices.C. The knowledge of computer programming languages.D. The use of technology for entertainment purposes only. (答案:A)。
Temporal and spatial characteristics of soil nutrients in cultivated land in Suzhou CityDING Qixun 1,ZHAN Xuejie 1,ZHANG Tian′en 1,XU Nuo 2,MA Xiuting 3,ZHANG Changkun 3,MA Youhua 1*(1.Key Laboratory of Farmland Ecological Conservation and Pollution Control of Anhui Province,College of Resources and Environment,Anhui Agricultural University,Hefei 230036,China;2.Suzhou Agriculture and Rural Affairs Bureau,Suzhou 234000,China;3.Anhui Huacheng Seed Co.,Ltd.,Suzhou 234000,China )Abstract :Analyzing the temporal and spatial evolution of soil nutrients is a prerequisite for implementing precision agriculture and sustainable soil management.The spatial and temporal variation characteristics of soil organic matter,total N,available P,and available K in arable soil in Suzhou City in 2010and 2019were analyzed by inverse distance weighted spatial interpolation analysis method.The results showed that the soil nutrients of arable soil in Suzhou increased slightly in 2019compared with 2010.The soil organic matter of arable soil was relatively scarce in Dangshan County,Xiaoxian County,and Sixian County,and abundant in the middle towns of YongqiaoDistrict,with an average value of 17.95g·kg -1,an increase of 6.15%.The area with intermediate soil organic matter content accounted for76.00%of the total cultivated land area;the soil total N content was the same,with an average value of 1.06g·kg -1.The area with medium宿州市耕地土壤养分时空变化特征分析丁琪洵1,詹雪洁1,张天恩1,许诺2,马秀婷3,张长坤3,马友华1*(1.农田生态保育与污染防控安徽省重点实验室,安徽农业大学资源与环境学院,合肥230036;2.宿州市农业农村局,安徽宿州234000;3.安徽华成种业股份有限公司,安徽宿州234000)收稿日期:2021-11-26录用日期:2022-03-02作者简介:丁琪洵(1997—),女,江苏泰州人,硕士研究生,主要从事耕地质量评价与提升研究。
Agricultural and Forest Meteorology105(2000)55–68Spatial and temporal dynamics of vegetation in theSan Pedro River basin areaJ.Qi a,∗,R.C.Marsett b,M.S.Moran b,D.C.Goodrich b,P.Heilman b,Y.H.Kerr c,G.Dedieu c,A.Chehbouni d,X.X.Zhang ea Department of Geography,Michigan State University,315Natural Science Building,East Lansing,MI48824-1115,USAb USDA–Agricultural Research Service,Tucson,AZ,USAc CESBIO,Toulouse,Franced IRD/IMADES,Hermosillo,Mexicoe Center for Space Science,Applied Research,Chinese Academy of Science,Beijing,ChinaAbstractChanges in climate and land management practices in the San Pedro River basin have altered the vegetation patterns and dynamics.Therefore,there is a need to map the spatial and temporal distribution of the vegetation community in order to understand how climate and human activities affect the ecosystem in the arid and semi-arid region.Remote sensing provides a means to derive vegetation properties such as fractional green vegetation cover(f c)and green leaf area index (GLAI).However,to map such vegetation properties using multitemporal remote sensing imagery requires ancillary data for atmospheric corrections that are often not available.In this study,we developed a new approach to circumvent atmospheric effects in deriving spatial and temporal distributions of f c and GLAI.The proposed approach employed a concept,analogous to the pseudoinvariant object method that uses objects void of vegetation as a baseline to adjust multitemporal images.Imagery acquired with Landsat TM,SPOT4VEGETATION,and aircraft based sensors was used in this study to map the spatial and temporal distribution of fractional green vegetation cover and GLAI of the San Pedro River riparian corridor and southwest United States.The results suggest that remote sensing imagery can provide a reasonable estimate of vegetation dynamics using multitemporal remote sensing imagery without atmospheric corrections.©2000Elsevier Science B.V.All rights reserved. Keywords:Remote sensing;Spatial and temporal dynamics;San Pedro River basin;Fractional cover;Green leaf area index1.IntroductionClimate change and increasing human activities have resulted in a substantial change in the vegetation type and distribution in the southwest United States. Chihuahuan desert shrubs and mesquite trees increas-ingly have become dominant and replaced native ∗Corresponding author.Tel.:+1-517-353-8736;fax:+1-517-432-1671.E-mail addresses:qi@,qi@(J.Qi).grasses over large areas(Kepner et al.,1998;Watts et al.,1998).The change in vegetation pattern has a feedback influence on the local and regional climate by reducing evaporative water losses from surface to atmosphere.Therefore,the spatial and temporal distributions of vegetation characteristics is important in understanding how climate and human activities affect the ecosystem in the semi-arid environment. Estimation of vegetation properties with remotely sensed imagery has been quite successful.How-ever,when applied to satellite imagery,tremendous0168-1923/00/$–see front matter©2000Elsevier Science B.V.All rights reserved. PII:S0168-1923(00)00195-756J.Qi et al./Agricultural and Forest Meteorology105(2000)55–68processing efforts related to atmospheric and bidirec-tional corrections are needed.Although procedures to correct these effects are available,ancillary data about atmospheric conditions and bidirectional prop-erties of the surface types are limited in both space and time.This has prevented satellite data from being used to quantify vegetation dynamics for practical ap-plications.A common practical technique to correct atmospheric effect is dark-object subtraction(Chavez, 1988;Caselles and Garcia,1989),which subtracts the minimum pixel values of a dark object found in a scene with an assumption that no energy is reflected from that dark object.However,in many cases,it is impossible tofind a dark object within a scene that is large enough to occupy more than one single pixel, especially when coarse spatial resolution satellites are used.An alternative is to use pseudo invariant objects (PIOs)within a scene to convert digital numbers to radiance or reflectance values(Schott et al.,1988; Moran et al.,1996,1997).PIOs are those objects whose reflectances are known and remain approxi-mately constant throughout time and therefore can be used to“calibrate”multitemporal images.Reflectance properties of most PIOs,however,vary with many factors such as surface conditions.When bare soilfields are used as PIOs,e.g.,their reflectances vary with soil moisture content and surface rough-ness,which changes throughout the season because of the impact of rainfall e of either a dark object or a PIO for atmospheric corrections will not correct for bidirectional effects.When an image is ac-quired at an oblique view,the reflectance properties of most objects including PIOs may vary substantially. Therefore,oblique viewing will introduce a constant bias when PIOs are used for atmospheric corrections. Noise associated with atmospheric and bidirectional effects will be magnified when calculating derivative products such as vegetation cover and biomass,es-pecially over sparsely vegetated surfaces.Thus,it is critical that methods be developed to circumvent at-mospheric and bidirectional effects.The objective of this study is to develop an alternative technique to de-rive remote sensing products such as fractional green vegetation cover(f c)and leaf area index(LAI)that are less sensitive to atmospheric effect.Although viewing angles may introduce errors in estimated f c and LAI, no attempt was made to correct bidirectional effects in this study.2.MethodologyBy definition,a PIO is an object whose reflectance properties are invariant throughout time.Examples of such objects are bare soilfields,airstrips,and highways.Therefore,multitemporal remote sensing images can be converted to surface reflectances by us-ing a linear relationship between raw digital numbers on the image and the known reflectances of the PIOs found within the scene.The key assumption is that the object is invariant in terms of surface reflectance. This assumption,however,is not valid for most nat-ural land surfaces because their reflectance properties are known to vary with many external factors such as surface conditions and sensor’s viewing angles. Therefore,the fundamental assumption of invariance in reflectance fails in most cases,resulting in uncer-tainties in surface reflectance and its derived products. There are other physical properties besides reflec-tances that are indeed invariant with time and surface conditions.Such physical properties include the pres-ence of vegetation or green biomass.For example,a bare soilfield,which is often used as a PIO,changes in surface reflectance with surface moisture condition, roughness,and sensor/sun-viewing angles.However, the fractional green vegetation cover(f c)or green leaf area index(GLAI)does not vary with these factors. Therefore,the bare soilfield is variant in surface re-flectances but invariant in green vegetation cover or green biomass,allowing one to use this truly invari-ant property to calibrate the green cover product rather than to calibrate reflectance.We thus designed an adjustment approach(Fig.1), using true invariant properties of most land surfaces, to circumvent the atmospheric effect in the deriva-tion of biophysical properties of land surfaces.The adjustment approach(Fig.1)consists of three steps. Thefirst step is to identify surface targets void of vegetation,analogous to PIOs,whose physical sizes are at least twice larger than the spatial resolution of the remotely sensed imagery used.Such objects may be areas of bare soilfields,airport runways, and highways.To differentiate these objects from traditional pseudo reflectance-invariant objects,these objects are termed here as objects void of vegetation (OVV).By definition,the fractional green cover and GLAI values of OVVs should be zero.However,due to atmospheric effect,the derived f c and GLAI valuesJ.Qi et al./Agricultural and Forest Meteorology105(2000)55–6857Fig.1.Flow chart of the approach to compute green vegetation cover(f c)and GLAI using OVVs.of OVVs may not be zero and need to be adjusted. The second step is to compute this non-zero adjust-ment factor in terms of fractional cover and GLAI (algorithms for computing these two variables are de-scribed below).The third andfinal step is to compute the f c and GLAI spatial distribution by subtracting the adjustment factor from the entire image.In this study,we focused on the derivation of tem-poral dynamics of vegetation in the San Pedro River basin where the semi-arid land-surface-atmosphere (SALSA)program is currently focusing its effort (Goodrich et al.,2000).In particular,we used the proposed adjustment approach to derive spatial and temporal distributions of the fractional green vegeta-tion cover(f c)and GLAI of the study area.The se-lected OVVs in this study included the Wilcox playa, Arizona for all TM images and White Sands,New Mexico for the VEGETATION images.These OVVs can also be used as PIOs.The f c and GLAI values of the Wilcox playa and White Sands were computed and subtracted from the entire f c and GLAI images. The f c and GLAI values of these OVVs provided baselines for each image to allow an automatic adjust-ment of the f c and GLAI values from multitemporal remote sensing imagery.2.1.Green vegetation cover estimateFractional green vegetation cover(f c)in arid and semi-arid regions is an important variable in hydrolog-ical and ecological modeling studies.Their temporal dynamics and spatial distributions are often needed in global circulation models(GCMs)in order to compute the energy or waterfluxes.Estimation of fractional green vegetation cover,f c,from remotely sensed data is often associated with computation of spectral veg-etation indices and their empirical relationships with fractional green vegetation cover.In this study,we used a linear mixing model to relate f c with spectral vegetation indices.Assume that a pixel signal consists of the contri-bution from two components:soil and vegetation.Let the fractional green vegetation cover be f c and,there-fore,the fractional soil cover would be1−f c.The resulting signal,S,as observed by a remote sensor can be expressed asS=f c S v+(1−f c)S s(1) where S v is the signal contribution from the green veg-etation component and S s from the soil component. For pixels consisting of more than two components, Eq.(1)needs to be modified.This analysis assumed that a pixel consisted of only vegetation and soils. Eq.(1)can be applied to remotely sensed data in the reflectance domain(Maas,1998)and in the spectral vegetation index domain(Zeng et al.,2000).When ap-plied with a spectral vegetation index such as the nor-malized difference vegetation index(NDVI),Eq.(1) may be approximated byNDVI=f c×NDVI veg+(1−f c)NDVI soil(2) which can be re-written asf c=NDVI−NDVI soilNDVI veg−NDVI soil(3)where NDVI soil is the NDVI value of an area of bare soil or OVV,and NDVI veg is the NDVI value of a pure vegetation pixel.Although many vegetation indices are available,we selected NDVI because of its traditional use in deriv-ing vegetation variables.The NDVI soil values should be constant throughout time and close to zero in theory for most type of bare soil surfaces.However,due to at-mospheric effect,and changes in surface moisture con-ditions,NDVI soil values vary substantially with time. In addition,they also vary from location to location because of difference in soil types and colors.There-fore,using a single value of NDVI soil as a baseline58J.Qi et al./Agricultural and Forest Meteorology105(2000)55–68for the entire image may not be valid unless the area of interest consists of uniform soil types.For this rea-son,we selected surfaces near the center of an image to minimize errors associated with variations in NDVI values of OVVs.To use the proposed adjustment ap-proach,it is not necessary to know the exact values of NDVI soil because this value will be computed from each image.The NDVI soil values from each image were used to compute the associated f c and GLAI adjustment factors.As previously stated,the spatial variation of bare soil surfaces may also be related to the sensor’s observation angles.Therefore,depending on the sun-viewing geometry of each pixel,the selected NDVI soil may be different and thus result in uncer-tainties in f c and GLAI estimation.To minimize the bidirectional effect,it is suggested to avoid large view angle data when nadir-looking images are available. In this study,the nadir-viewing TM images were used in the analysis.The proposed adjustment approach was designed to circumvent primarily the atmospheric effect,aiming at analyzing vegetation dynamics from multitemporal images.Uncertainties were expected when using images acquired with large viewing angle sensors.The value for NDVI veg represents the maximum value of a fully vegetated pixel.Because of the tem-porally dynamic nature of green vegetation cover,this value needs to be empirically determined.In selecting such a value,we examined all images and selected an image acquired during the peak-growing season within the area of interest.The NDVI veg was determined in this study to be0.8from high spatial resolution data. During the selection process,surfaces of known to be 100%green cover were identified and the correspond-ing NDVI values were computed from multitempo-ral images,and then the highest value(0.8)was used for all image.This empirically determined value may also vary with atmospheric conditions(Kaufman and Tanre,1992;Qi et al.,1994),which may cause some errors in the fractional cover computation in Eq.(3). Because the NDVI is a ratio vegetation index,it can be directly computed with digital numbers,or with top of atmosphere radiance or reflectance,or surface reflectance.In this analysis,NDVI veg of0.8was de-termined using surface reflectances derived from TM images.When used with radiance,or digital num-bers,or top-of-atmosphere reflectance or radiance,the NDVI veg may be different.However,once the datatype(radiance,raw digital numbers,or top-of-atmos-phere reflectance or radiance)is determined,theNDVI veg should be constant.2.2.GLAI estimateAnother important vegetation characteristic is theGLAI.Unlike the fractional green vegetation cover,which is a two-dimensional horizontal variable,theGLAI is a variable describing the density of greenvegetation.It is defined here as the total single-sidearea of green leaves per unit ground area.Therefore,its values can theoretically range from0to∞,whereasf c ranges from0to1.Approaches to derive GLAI exist using either em-pirical relationships with spectral vegetation indicesor model inversion techniques.For arid and semi-aridregions such as the San Pedro River basin,we adaptedthe approach by Qi et al.(2000),which was de-rived using a combination of modeling and empiricalapproachesGLAI=a NDVI3+b NDVI2+c NDVI+d(4) where a,b,c,and d are empirical coefficients and werefound to be a=18.99,b=−15.24,c=6.124,and d=−0.352for arid and semi-arid regions.The GLAI values derived from these coefficients were validatedusing TM imagery data over a desert grassland,andtherefore,the use of them over a large area of diversevegetation remains to be further validated.Since theTM imagery used in this study covered the same geo-graphic areas,it is expected that uncertainty in GLAIestimation from these coefficients would not be signif-icantly different from the original study.Furthermore,if adjusted NDVI was used in Eq.(4),the coefficientd should be adjusted to zero to ensure that the GLAIvalues of OVV were zeros for all seasonal images.3.Data description3.1.Remote sensing dataMultitemporal images were acquired with Land-sat TM,French SPOT4VEGETATION,and airbornesensors over the study area.They were geometricallyJ.Qi et al./Agricultural and Forest Meteorology105(2000)55–6859 Table1Remote sensing images acquired in1992,1997,and1998over the study area in the southwest United States on different dates and DOY Airborne TMS Landsat TM SPOT4VEGETATIONDate DOY Date DOY16February199746Daily from30April to30December199820March19977921April199711124April19921148June199715911June199216212August199722427June199217813July199219410July199722214July199222612September19972551October199227414October19972872November199230618November1992322Spatial resolution:3m Spatial resolution:30m Spatial resolution:1000mregistered to UTM coordinates.A total of15Land-sat TM images were acquired in1992and1997over the San Pedro basin area(Table1).Thematic mapper simulator(TMS)was deployed on an aircraft during the SALSA intensivefield campaign in August1997 (Goodrich et al.,2000)to acquire images at a3m spa-tial resolution.Daily SPOT4VEGETATION images were acquired over this study area at a spatial resolu-tion of1000m.Therefore,the remotely sensed images had a range of spatial resolution from3m to1km.In addition to these satellite-and aircraft-based remote sensing data,surface reflectances were also measured at the Audubon ranch near Elgin,AZ,in1998,us-ing an MMR radiometer in the same spectral bands as Landsat TM sensor.3.2.Vegetation dataGround vegetation properties were recorded in 1992,1997and1998using both destructive sampling technique and Li-Cor’s LAI-2000instrument.Vege-tation samples were collected at three study sites.The first site was located in the center of Walnut Gulch Experimental Watershed and the site was dominated by tobosa grasses(Hilaria mutica)with some desert shrubs.The second site was near the Lewis Springs within the San Pedro River basin and the dominant grass was sacaton(Sporobolus wrightii).The third site was at the Audubon research ranch near Elgin,AZ, and the dominant vegetation types were native upland grasses,Lehmann’s lovegrass,and sacaton grasses. Both destructive and non-destructive methods were used to measure the GLAI.For the destructive method, vegetation samples were collected in thefield and brought back to the lab and separated into green vege-tation,senescent vegetation,and litter.The single side leaf areas were measured by passing them through an LAI-3000area meter for each component and GLAI was then computed.For the non-destructive method, LAI-2000instrument was used to measure total LAI, and the lab-based ratio of green to total leaf areas was used to compute the GLAI.Measurements of the to-tal fractional vegetation cover were made by visual estimate on site during eachfield visit.Detailed de-scriptions of this data set can be found in Moran et al. (1998).The ground in situ measurements were then used in this study to examine the effectiveness of the proposed approach.4.Results4.1.Spatial dynamics of green vegetationThe spatial distribution of the estimated green veg-etation cover and GLAI was derived from the3m60J.Qi et al./Agricultural and Forest Meteorology 105(2000)55–68Fig.2.Spatial distribution of green vegetation cover (a)and GLAI (b)derived from TMS images (3m resolution)over a portion of the San Pedro basin near the Lewis Springs,AZ.resolution TMS data (Fig.2).The spatial extent cov-ered the riparian corridor of the San Pedro River from Hereford to Fairbanks (see Fig.2in Goodrich et al.,2000).Dense green vegetation cover was distributed along the river where the cottonwood–willow riparian forest gallery was located.Away from the riverbanks toward the upland areas,the green vegetation cover diminished.There was also a vegetation cover gradi-ent from Fairbanks to Hereford or from north to south of the study area.This gradient was most likely due to water availability from the river and weather pattern variation due to elevation changes.Along the river were cottonwood and willow trees,which require easy access to water.They were the major vegetation community of this riparian corridor that caused evap-otranspirative water loss to the atmosphere (Schaeffer et al.,2000;Scott et al.,1999).Away from the river were sacaton grasses and mesquite trees.Although the sacaton grasses were denser than mesquite trees,they did not appear as green as the mesquite trees.This was due to the fact that the senescent sacaton grasses lim-ited the new growth by blocking solar radiation from reaching to the lower layers of the clumps.Therefore,even in the rainy wet season,the sacaton grasses did not appear as green as the cottonwood–willow community and mesquite trees.The fractional greenJ.Qi et al./Agricultural and Forest Meteorology 105(2000)55–6861vegetation cover of the sacaton was thus less than the cottonwood–willow community and mesquite trees.4.2.Temporal dynamicsTo examine the temporal dynamics of vegetation in the San Pedro River basin,a portion of the basin was extracted from two Landsat TM images acquired on 21April (DOY 111)in the dry season and on 12September (DOY 255)in the wet season of 1997.The spatial distribution of green vegetation cover (Fig.3)and GLAI (Fig.4)of the two seasons covered a portion of the San Pedro River basin.Note the scale difference between Figs.3and 4.The Huachuca mountains are located at the lower left corner of the images.The spotty areas with yellow color on the left-hand side of Figs.3b and 4b were clouds.The dry season was characterized with little green vegetation while the wet season,due to increased precipitation,produced more green vegetation cover.In the dry sea-son,only the river and mountainous areas had green vegetation.In the wet season,cottonwood,willows and mesquite trees were green.The sacaton,inspiteFig.3.Green vegetation cover maps derived from TM imagery of:(a)21April 1997,DOY 111;(b)12September 1997,DOY 255.of possible new growth underneath the canopy,did not appear green.Due to increased precipitation dur-ing the monsoon season,the wet season (Figs.3b and 4b)had more green vegetation than the dry season (Figs.3a and 4a).rge scale vegetation cover and GLAI The proposed adjustment approach was applied with SPOT 4VEGETATION data over a large area that encompassed the San Pedro River basin to demon-strate the application of the approach at different spatial scales.The imagery covered southwest United States and the northern part of Mexico.Eqs.(3)and (4)were applied to the VEGETATION images ac-quired in both the dry (April)and wet (September)seasons of 1998,and the results are presented in Figs.5and 6.Fig.5is a map of green vegetation cover derived from SPOT 4VEGETATION sensor on 21April and on 12September 1998,whereas Fig.6is the GLAI maps of the two dates.These two maps (Figs.5and 6)showed the vegetation patterns of large scales.The coarse spatial resolution f c maps showed62J.Qi et al./Agricultural and Forest Meteorology105(2000)55–68Fig.4.GLAI maps derived from TM imagery of:(a)21April1997,DOY111;12September1997,DOY255.Fig.5.Green vegetation cover maps derived from SPOT4VEGETATION imagery of:(a)21April1998,DOY111;(b)12September 1998,DOY255.J.Qi et al./Agricultural and Forest Meteorology 105(2000)55–6863Fig.6.GLAI maps derived from SPOT 4VEGETATION imagery of:(a)21April 1998,DOY 111;(b)12September 1998,DOY 255.little detailed structures (Figs.5and 6)in comparison with those derived from TM images (Figs.3and 4).Clearly,the San Pedro River can be seen with TM derived maps (Figs.3and 4),but can barely be seen on VEGETATION derived maps in Figs.5and 6.5.ValidationBecause of only limited ground-based data avail-able for this study,it was difficult to fully validate the proposed adjustment approach.However,inter-comparison of results from different data sets was made in three ways to verify the adjustment approach:(1)intercomparison across atmospheric corrections,(2)intercomparison across spatial scales,and (3)comparison against ground in situ data.5.1.Across-atmosphere comparisonFor this analysis,we selected 1992TM images because of availability of ancillary data for atmo-spheric corrections.A window of 9×9pixels,a size of approximately 270×270m 2area near Tombstone within the Walnut Gulch Experimental Watershed,was extracted from all 1992TM images.The mean values of reflectance at the surface (with atmospheric correction)and at the top of atmosphere (without atmospheric correction)were used to compute multi-temporal NDVI values.These values were then used in Eqs.(3)and (4)to compute temporal dynamics of f c and GLAI values without any adjustment.The data without atmospheric correction was then applied to the adjustment approach to investigate its effective-ness on reducing atmospheric effects.The results were plotted as a function of day of year (DOY)in Fig.7.Without atmospheric correction and OVV adjustment,the temporal dynamics of fractional green cover var-ied substantially with time and showed little seasonal patterns of vegetation dynamics of the region.After atmospheric corrections,the temporal pattern showed two seasonal variations,with peak-growing season being around DOY of 226and dry season for the rest of the year.The results obtained with the adjustment approach were similar to the results derived from the atmospherically corrected data and represented the vegetation dynamics of the study area more realis-tically.The results suggested that the use of OVV64J.Qi et al./Agricultural and Forest Meteorology 105(2000)55–68parison of fractional cover values derived with data before and after atmospheric correction,and with the proposed approach using the data without atmospheric correction.approach could reduce the atmosphere-induced noise in the temporal vegetation dynamics estimated from TM images even though no atmospheric correction was made.5.2.Across-scale comparisonThe remotely sensed data used in this analysis had a range of spatial scales from 3to 1000m (Table 1).To compare results across spatial resolutions,a common area (5×1km 2)found in both TMS (3m)and TM (30m)images was extracted and the statistical means were computed.This could not be done with VEGE-TATION images because the TMS coverage was not enough to cover even a single pixel of the VEGETA-TION data.To compare spatial scales between TM and VEGETATION,a separate common area (5×5km 2)was extracted and statistical means were used for intercomparison.Due to limited TMS data,we could only compare TMS with TM for the wet season,while comparison between TM and VEGETATION was made for both dry and wet season.The results were plotted in Fig.8.Although the spatial scales were different,the mean values of the fractional green cover estimated at three spatial scales agreed well.Because the TMS image was acquired over the inten-sive study site at the Lewis Springs site of SALSAprogram and had a spatial resolution of 3m,we felt quite confident about the f c estimate with this image.Therefore,the estimated f c from the fine resolution TMS image could be used to assess the accuracy of f c estimates by the coarser resolution TM and VEG-ETATION images.The good agreement among all three scales (Fig.8)suggest that the estimated f c with TM and VEGETATION images had approximately the same accuracy of that estimated by TMS parison with in situ measurements In this analysis,we selected 1997TM images be-cause of availability of ground in situ measurements of fractional cover and GLAI from the SALSA program and other research projects at the three study sites de-scribed previously.The estimated f c and GLAI values for this analysis were all derived from 1997TM im-ages without atmospheric corrections to demonstrate the effectiveness of the adjustment approach for reduc-ing atmospheric perturbation.Because of rigid Land-sat satellite overpass schedules over the study sites,the ground in situ measurements were not always co-incident with the satellite overpass dates.The results from the Lewis Springs (sacaton grasses)in the San Pedro River basin and the Walnut Gulch Experimental Watershed (tobosa grasses)were。