实验四 RC正弦振荡电路设计与调试(设计性实验)
- 格式:doc
- 大小:49.00 KB
- 文档页数:2
RC振荡电路实验报告实验名称:RC振荡电路实验报告实验目的:通过搭建RC振荡电路,研究其振荡特性,了解和掌握RC振荡电路的工作原理和参数对振荡频率的影响。
实验器材:1. 直流电源2. 变阻器3. 电容器4. 示波器5. 电压测量仪器6. 连接线实验原理:RC振荡电路由一个电容器和一个电阻器组成。
在起始时刻,电容器会被充电,当电容器电压达到一定数值后,将通过电阻器放电,使得电容器电压逐渐下降。
然后电容器再次被充电,反复循环。
这种充放电的周期性过程导致了振荡现象的发生。
RC振荡电路可以用于时钟电路、电子发生器等方面。
实验步骤:1. 将电阻器和电容器连接在一起,组成RC振荡电路。
2. 连接电路:将直流电源的正极与电容器连接,电源负极通过电阻器与电容器连接。
3. 使用示波器观察电路的振荡波形,并记录。
4. 调节电阻器的阻值,观察振荡频率的变化,并记录。
5. 更换不同容值的电容器,观察振荡频率的变化,并记录。
6. 通过实验数据分析,验证RC振荡电路的工作原理。
实验结果与分析:根据实验数据,我们可以得出以下结论:1. 当电阻器的阻值增大时,振荡频率逐渐减小;反之,当电阻器的阻值减小时,振荡频率增大。
这是因为电阻器的阻值决定了电容器的充放电速度,进而影响振荡频率。
2. 当电容器的容值增大时,振荡频率减小;反之,当电容器的容值减小时,振荡频率增大。
这是因为电容器的容值决定了电容器的充放电时间,而振荡频率是充放电时间的倒数。
3. 示波器观察到的振荡波形符合理论推导的正弦波形,证明了RC 振荡电路的正常工作。
实验总结:本实验通过搭建RC振荡电路,研究了其振荡特性,进一步加深了对RC振荡电路的理解。
通过调节电阻器和更换不同容值的电容器,我们验证了大部分理论推导的结论。
实验过程中,需要注意保证电路的接触良好,放置示波器探头时要小心,以免短路或损坏设备。
通过本实验,我们掌握了RC振荡电路的基本原理和实验操作技巧。
实验改进:为了进一步提高实验的准确性和可靠性,可以进行以下改进:1. 增加数据采集仪器,如计时器,以获得更准确的振荡频率数据。
rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。
2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。
对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。
因此,已知振荡频率f,可以求出R和C的值。
3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。
电路一般由放大器、RC电路和正反馈网络组成。
放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。
4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。
例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。
5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。
总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。
《电子设计基础》课程报告设计题目:RC正弦波振荡器电路设计及仿真学生班级:学生学号:学生姓名:指导教师:时间:成绩:西南xx大学信息工程学院一.设计题目及要求RC正弦波振荡器电路设计及仿真,要求:(1)设计完成RC正弦波振荡器电路;(2)仿真出波形,并通过理论分析计算得出频率。
二.题目分析与方案选择在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。
三.主要元器件介绍10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器四.电路设计及计算图 1在multisim软件上做的仿真电路图如图1。
电路震荡频率计算:f=1/2πRC起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d由其电路元件特性R=10KΩC=10nF电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。
平衡时A v=3,F v=1/3(w=w0=1/RC)五.仿真及结果分析在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图图2刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。
图3经过不久,波形就开始产生振荡,幅度逐渐增大,并达到一个最大值后,保持幅度以正弦输出。
如图3六.PCB板排布图4Protel 99 se中做出来的原理图如图四,pcb如下图。
rc正弦波振荡实验报告RC正弦波振荡实验报告引言:RC正弦波振荡电路是电子学中非常重要的一种电路,它能够产生稳定的正弦波信号。
本实验旨在通过搭建RC正弦波振荡电路,研究其工作原理和参数对振荡频率的影响。
实验装置和步骤:实验所需的装置包括一个电容器(C)、一个电阻器(R)、一个信号发生器和一个示波器。
具体步骤如下:1. 将电容器和电阻器按照串联的方式连接起来。
2. 将信号发生器的输出端与电容器的一端相连,将示波器的输入端与电容器的另一端相连。
3. 打开信号发生器和示波器,调节信号发生器的频率和幅度,观察示波器上的波形。
实验结果:在实验过程中,我们通过调节信号发生器的频率和幅度,观察了示波器上的波形。
当频率较低时,波形呈现出较为平缓的正弦波;当频率逐渐增加时,波形开始变得不规则,并且出现了衰减的现象。
通过进一步调节电容器和电阻器的数值,我们发现改变这两个参数可以对振荡频率进行调节。
当电容器的容值较大或电阻器的阻值较小时,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,振荡频率较高。
讨论:RC正弦波振荡电路的工作原理是基于电容器和电阻器的充放电过程。
当电容器充电时,电流通过电阻器流入电容器,电容器的电压逐渐增加;当电容器放电时,电流从电容器流出,电容器的电压逐渐减小。
这个充放电过程会不断重复,从而产生稳定的正弦波信号。
在实验中,我们观察到当频率较低时,波形呈现出较为平缓的正弦波。
这是因为在较低的频率下,电容器有足够的时间来充放电,从而形成较为平缓的波形。
而当频率逐渐增加时,电容器的充放电时间变得不足,导致波形变得不规则,并且出现了衰减的现象。
此外,我们还观察到改变电容器和电阻器的数值可以对振荡频率进行调节。
这是因为电容器的容值和电阻器的阻值直接影响了电容器的充放电时间。
当电容器的容值较大或电阻器的阻值较小时,电容器的充放电时间较长,振荡频率较低;反之,当电容器的容值较小或电阻器的阻值较大时,电容器的充放电时间较短,振荡频率较高。
实验四 RC振荡器实验一、实验目的1、掌握文氏电桥振荡电路的原理2、掌握文氏电桥振荡电路振荡频率的计算方法二、实验内容1.调试文氏电桥振荡电路;2.测量并记录振荡波形的相关参数。
三、实验仪器20MHz示波器四、实验原理RC振荡器由放大器和RC网络组成,根据RC网络的不同,可将RC振荡器分为相移振荡器和文氏电桥振荡器两大类。
其中,文氏电桥振荡器广泛用于产生几Hz到几百KHz频段范围的振荡器。
图10-1为文氏电桥振荡器的实验原理图.R27, C25, R28, C26组成RC选频网络同时兼作正反馈支路,R25, R26, R29, D3,D2构成负反馈及稳幅环节。
当R27= R28=R, C25=C26=C时(本实验R27= R28=12KS2,C25=C26=0.01uF),电路的振荡频率为:(10-1)设二极管D2, D3的正向导通电阻为rD当R26+(R29||rD)=RF时,电路起振的振辐条条件(10-2 ) 运放UlA组成放大器,振荡信号从TP6和TT2处输出,通过W3调节输出信号的幅度。
由于D2. D3正向电阻非线性特性不可能完全一致,所以振荡波形会有正负半周不对称的失。
本实验产生的信号仅用于一般原理性验证实验,因此对输出波形的失真未做处理。
五、实验步骤正弦波振荡器模块如图l、连接实验电路在主板上正确插好正弦波振荡器模块,开关K1. K9, K10, K11, K12向左拨,主板GND接模块GND,主板+12V接模块+l2V,主板-12V 接模块-12Vo检查连线正确无误后,打开实验箱右侧的船形开关,K9, Kl0向右拨。
若正确连接,则模块上的电源指示灯LED2,LED3亮。
2、观察、测量振荡输出波形及其相关参数用示波器在TT2处测量,调节电位器W3,观察TT2处波形的幅度变化及失真情况,记录TT2处波形的最大峰峰及频率fo,填表10-1a六、实验现象1. 将TT2引入到模拟示波器中观察波形如图2.调节电位器W3可观察到幅度变化及失真情况,如图波形底部被切割。
正弦波振荡电路实验1.实验目的(1)进一步学习RC 正弦波振荡电路的工作原理。
(2)掌握RC 正弦波振荡频率的调整和测量方法。
2.知识要点(1)实验参考电路见图2-11图2-11 RC 正弦波振荡电路电路参考参数:R 1=2k Ω R 2=2k Ω R 3=R 4=15k Ω R W =10k Ω C 1=C 2=0.1µF D 1、D 2为IN4001 运放选LM741(2)RC 正弦波振荡电路元件参数选取条件1)振荡频率 在图2-11电路中,取R 3=R 4=R ,C 1=C 2=C ,则电路的振荡频率为RC f π210=2)起振幅值条件11R R A f f +=应略大于3,R f 应略大于2R 1其中R f =R W +R 2//R D (R D 为二极管导通电阻)。
3)稳幅电路 实际电路中,一般在负反馈支路中加入由两个相互反接的二极管和一个电阻构成的自动稳幅电路,其目的是利用二极管的动态电阻特性,抵消由于元件误差、温度引起的振荡幅度变化所造成的影响。
3.预习要求(1)RC 振荡电路的工作原理和f 0的计算方法。
(2)RC 振荡电路的起振条件,稳幅电路的工作原理。
(3)写出预习报告或设计报告。
4. 实验内容及要求(1)RC 文式振荡电路实验1)按图2-11连接线路,用示波器观察U 0,调节负反馈电位器R w ,使输出U 0产生稳定的不失真的正弦波。
2)设计性实验(1)设计内容:正弦波振荡电路(2)设计要求:振荡频率f 0=320Hz (误差在1%以内)、放大环节采用运算放大电路、输出无明显失真(加稳幅二极管)。
(3)实验要求:设计电路、选择元件并计算理论值。
连接并调试电路,用示波器观察输出电压,得到不失真的正弦波信号。
用示波器测量输出电压频率,测量U0(P-P)和U f(P-P),计算反馈系数F=U f/U0。
测试结果与理论值相比较,检验是否达到设计要求,如不满足,调整设计参数,直到满足为止。
集成电路rc正弦波振荡电路实验报告
通过实验了解集成电路RC正弦波振荡电路的特点和工作原理,掌握搭建和调试电路的技能。
实验原理:
RC正弦波振荡电路由一个一阶RC滤波器和一个反相比例运算放大器组成。
当输出信号通过RC电路反馈到输入端时,会形成一个闭环的正反馈回路,从而产生振荡信号,其频率和幅度由RC电路和反相比例运算放大器的增益决定。
实验内容:
1. 搭建RC正弦波振荡电路,连接电源和示波器,调整电路元件参数,使得输出信号呈现稳定的正弦波形。
2. 测量电路中各元件的电压和电流值,并计算增益、相位差和频率等参数。
3. 调整电路参数,观察输出波形的变化,验证理论分析结果。
实验结果:
经过实验,我们成功搭建出RC正弦波振荡电路,输出信号呈现出稳定的正弦波形。
测量结果表明,电路中各元件的电压和电流值符合理论预测。
增益、相位差和频率等参数也与理论公式相符。
同时,我们还通过调整电路参数观察了输出波形的变化,验证了理论分析结果。
实验结论:
RC正弦波振荡电路是一种基于RC滤波器和反相比例运算放大器
的振荡电路,其工作原理是利用正反馈回路产生振荡信号。
通过实验,我们成功搭建了该电路,输出信号呈现出稳定的正弦波形。
实验结果表明,电路中各元件的电压和电流值符合理论预测。
增益、相位差和频率等参数也与理论公式相符。
RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。
振荡器是一种电路,它能够将直流电源的能量转换为交流信号。
在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。
在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。
时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。
接下来,我们将详细介绍如何设计RC正弦波振荡电路。
设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。
振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。
2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。
一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。
3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。
时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。
4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。
通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。
5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。
放大器电路一般采用运算放大器、晶体管等元件实现。
6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。
7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。
最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。
总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。
rc正弦波振荡器实验报告
一、实验目的
学习RC正弦波振荡器的组成及其振荡条件。
学习如何设计、调试上述电路和测量电路输出波形的频
率、幅度。
二、实验设备
1、实验箱(台)。
2、示波器。
3、频率计。
4、毫伏表。
三、实验内容及步骤
按图13-1接线(1、2两点接通)。
本电路为文氏电桥RC正弦波振荡器,可用来产生频率范围宽、波形较好的正弦波。
电路由放大器和反馈网络组成。
有稳幅环节的文氏电桥振荡器。
(1)接通电源,用示波器观测有无正弦波电压Vo输出。
若无输出,可调节RP ,使Vo为无明显失真的正弦波,并观察Vo值是否稳定。
用毫伏表测量Vo和Vf的有效值,填入表13-1中,
( 2 )观察在R3=R4=10K2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0, 填入表13-2和表23-4中,并与计算结果比较。
( 2 )观察在R3=R4=10KQ2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0,
填入表13-2和表23-4中,并与计算结果比较。
3.无稳幅环节的文氏电桥振荡器
断开1、2两点的接线,接通电源调节RP,使Vo输出为无明显失真的正弦波,测量V0、Vf和f0 ,填入表13-3和表23-4中,并与计算结果比较。
五、实验报告
1、整理实验数据,填写表格。
2、测试Vo的频率并与计算结果比较。
rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。
实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。
根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。
在电容未充电时,电流通过电阻,而电容不导电。
当电压施加到电路上时,电容开始充电,电流开始减小。
随着时间的流逝,电容上的电压也在增加。
当电容经过一段时间充电后,电压达到最大值,电流达到最小值。
此时电容开始放电,电流再次增大。
随着电容的放电,电压逐渐减小。
电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。
实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。
2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。
3. 将电流表连接到电阻上,以测量通过电阻的电流。
4. 将电压表连接到电容上,以测量电容上的电压。
实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。
当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。
电流和电压的变化是周期性的,证明了电路中存在振荡现象。
实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。
2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。
3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。
实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。
实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。
实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。
集成RC正弦波振荡器实验报告引言在电子技术领域中,正弦波振荡器是一种常见且重要的电路。
它能够产生稳定的正弦波信号,被广泛应用于通信、测量以及控制系统中。
本实验旨在通过集成RC电路设计和实现一个正弦波振荡器,并进行详细的探索和分析。
一、电路设计1. RC电路原理RC电路是由电阻(R)和电容(C)组成的一种基本电路。
在充电过程中,电容器会通过电阻放电,导致电压逐渐减小;在放电过程中,电容器会再次通过电阻充电,导致电压逐渐增大。
当电容器充放电周期很短而频率很高时,RC电路就能产生连续变化的电压,形成一个振荡器。
2. RC正弦波振荡器的设计要求一个RC正弦波振荡器的设计需要满足以下要求:•可以产生稳定的正弦波信号;•输出波形的频率和幅度应可调节。
3. RC正弦波振荡器的基本原理RC正弦波振荡器的基本原理是通过将一个放大器的输出信号反馈至输入端,形成一个正反馈回路。
当回路增益大于等于1时,系统会不断振荡产生正弦波信号。
二、电路实现1. 基本RC正弦波振荡器电路图为了实现RC正弦波振荡器,我们可以采用如下电路图:•在非反相输入端连接一个电阻R和电容C,形成一个低通RC滤波器;•输出通过一个放大器反馈至输入端,产生正反馈。
2. 具体电路参数的选择在设计RC正弦波振荡器时,我们需要选择合适的电阻和电容数值,以控制振荡器的频率和幅度。
这里我们选择R=10kΩ和C=1μF。
3. 搭建电路实验平台为了实现RC正弦波振荡器,我们需要搭建一个电路实验平台:•使用集成运算放大器(Op-Amp)作为放大器,例如LM741;•将电阻R和电容C按照电路图连接至Op-Amp;•使用函数发生器作为输入信号源,连接至Op-Amp的输入端;•连接示波器至Op-Amp的输出端,用于观测输出波形。
三、实验过程1. 搭建实验电路根据电路图和参数选择,通过实验器材搭建RC正弦波振荡器实验电路。
2. 设置函数发生器参数设置函数发生器的频率和幅度,以达到所需的正弦波输出。
rc正弦波振荡电路实验报告总结I. 实验目的II. 实验原理A. RC正弦波振荡电路的原理B. RC正弦波振荡电路的基本组成部分III. 实验器材和元器件IV. 实验步骤A. 搭建RC正弦波振荡电路B. 测量电路参数V. 实验结果与分析VI. 实验总结I. 实验目的本实验旨在通过搭建RC正弦波振荡电路,掌握RC正弦波振荡电路的工作原理,了解RC正弦波振荡电路的基本组成部分和测量方法,提高学生实际动手能力和实验操作技能。
II. 实验原理A. RC正弦波振荡电路的原理RC正弦波振荡电路是一种基于反馈原理的简单的谐振电路。
当一个信号经过放大后再反馈到输入端时,会产生自激振荡现象。
在RC正弦波振荡电路中,通过选择合适的元器件参数,可以使得输出信号呈现出稳定、周期性、幅值恒定、频率可调等特点。
B. RC正弦波振荡电路的基本组成部分RC正弦波振荡电路由放大器、反馈电路和谐振电路三部分组成。
其中,放大器用于放大输入信号,反馈电路将输出信号反馈到输入端,谐振电路则是产生稳定的振荡信号。
III. 实验器材和元器件实验器材:示波器、函数发生器、万用表、电源等。
元器件:电容、电阻等。
IV. 实验步骤A. 搭建RC正弦波振荡电路1. 根据实验原理和要求搭建RC正弦波振荡电路。
2. 将示波器接入输出端口,观察输出信号的波形和频率等参数。
B. 测量电路参数1. 使用万用表测量各个元件的参数,并记录下来。
2. 使用示波器测量输出信号的幅值、频率等参数,并记录下来。
V. 实验结果与分析通过实验,我们成功搭建了RC正弦波振荡电路,并观察到了稳定的输出信号。
在测量过程中,我们发现元件参数对于输出信号的稳定性和频率有着很大影响。
因此,在实际应用中需要根据具体要求选择合适的元器件参数,以达到最佳的效果。
VI. 实验总结通过本次实验,我们深入了解了RC正弦波振荡电路的原理和组成部分,掌握了搭建和测量方法,并对元器件参数的选择有了更深刻的认识。
rc正弦波振荡实验报告RC正弦波振荡实验报告实验目的:本实验旨在通过搭建RC正弦波振荡电路,观察电路的振荡特性,并验证理论上的振荡频率和幅度。
实验原理:RC正弦波振荡电路由一个电阻R和一个电容C组成,通过连接一个交流信号源和一个运放构成一个反馈电路。
当输入信号通过运放放大后,输出信号又通过反馈回到输入端,形成一个闭环。
在一定条件下,该电路会产生稳定的正弦波振荡。
实验步骤:1. 准备实验仪器和元件,包括电阻R、电容C、运放、示波器等。
2. 按照电路图搭建RC正弦波振荡电路。
3. 调节电路参数,如电阻R和电容C的数值,以及交流信号源的频率和幅度。
4. 使用示波器观察输出波形,并记录振荡频率和幅度。
5. 对比实验结果与理论计算值,分析实验误差和可能的影响因素。
实验结果:经过实验观测和数据记录,我们得到了RC正弦波振荡电路的输出波形,并测得了振荡频率和幅度。
通过与理论计算值的对比,我们发现实验结果与理论值基本吻合,验证了RC正弦波振荡电路的振荡特性。
实验结论:通过本次实验,我们成功搭建了RC正弦波振荡电路,观察到了其振荡特性。
实验结果与理论计算值基本吻合,验证了该电路的振荡频率和幅度。
同时,我们也发现了一些可能的影响因素,为今后的实验和研究提供了参考。
这次实验为我们理解振荡电路的原理和特性提供了宝贵的实践经验。
总结:通过本次实验,我们深入了解了RC正弦波振荡电路的原理和特性,掌握了搭建和调试该电路的方法,提高了实验操作和数据处理的能力。
这次实验为我们打下了扎实的实验基础,为今后的学习和科研工作奠定了良好的基础。
RC 桥式正弦波振荡电路的调试与测量一、调试与测量检查元器件安装正确无误后,才可以接通电源。
测量时,先连线后接电源(或打开电源开关),拆线、改线或维修时一定要先关断电源;电源线不能接错,否则将可能损坏元器件。
1.测量RC 选频网络的参数(1)电路连接。
按电路原理图连接RC 串并联网络,把函数信号发生器调至正弦波输出。
输出端接至网络,作为输入电压u 1,把网络的输出端接至示波器。
先估算选频网络的谐振频率f 01,然后将信号发生器调至估算频率的附近,反复调节频率旋钮,直到在示波器上找到u 2的最大值为止。
此时信号发生器的输出频率就是RC 选频网络的谐振频率f 0。
(2)参数测量。
用电子毫伏表测出u 1和u 2的幅度,填入表中,并保持此时函数信号发器的输出频率不变,待下一步与振荡电路的振荡频率相比较。
RC 选频网络参数测量值f 0计算值f 01u 1 u 22.RC 桥式正弦波振荡器测量(1)按电路原理图接线,将稳压电源的±12V 电压接入运放7脚和4脚。
电源的零端接电路中u o 的地端。
(2)用双踪示波器观测振荡电路的输出波形u o ,调节R P 使u o 为不失真的正弦波。
用示波器测量电路的振荡频率f 0记入表中,再将函数信号发生器的原输出频率送入到示波器中与振荡频电路的输出频率相比较。
然后将此值与计算值进行比较。
振荡电路参数的测试RC 选频网络+-+ -C 0.1µF R10k Ω 输入 输出 u 1 u 2 C 0.1µF R 10k Ω示波Y1 Y2函数信号发生(3)反复调节电位器R P,用示波器监测波形为不失真时,用电子毫伏表分别测试输出u o的最大值和最小值,同时测量相应的R P值,记录在表中。
u o值与R P大小的关系二、问题讨论1.根据u o值与R P大小的关系分析振荡电路的输出电压与负反馈强弱的关系。
2.通过电路的调试与测量,写出调试的整个过程。
18 实验四 RC 正弦波振荡电路设计与调试一、实验目的1、熟悉用集成运放设计信号发生器的方法;2、掌握RC 桥式振荡电路元器件的选择和振荡电路的调整测试方法;3、培养独立进行电路设计的能力。
二、设计要求与技术指标1、技术指标用集成运放设计一RC 桥式正弦波振荡器:振荡频率在100H Z ~2KHz 内均可(如160H Z ),不要求频率可调;输出波形正负半周对称、无明显失真。
2、设计要求(1)设计上述电路,确定电路元件参数;(2)确定调试方案,选择实验仪器;(3)联接电路并调整测试,使电路达到设计要求。
3、预习要求(1)掌握RC 桥式振荡电路的工作原理和各部分元器件的选择;(2)熟悉RC 桥式振荡电路的调试步骤;三、设计提示1、RC 桥式振荡电路设计的一般方法 图 4.1 实用RC 桥式振荡电路(1)集成运放的选择对运放的选择,除要求输入电阻高、输出电阻低外,最主要的是运放的增益带宽积应满足如下条件,即o u f BW A 3>∙因振荡输出幅度比较大,集成运放工作在大信号状态,因此要求转换速率S R 满足om o R U S ω≥该实验选择741单运放即可满足要求。
(2)选频网络元件值的确定 按照振荡频率RCf o π21=来选择RC 的大小。
为了减小集成运放输入阻抗对振荡频率的影响,应选择较小的R ,但为了减小集成运放输出阻抗对振荡频率的影响,又希望R 大些。
通常集成运放的输入电阻均比较大,所以R 可取大些,一般可取几千欧至几十千欧的电阻。
电容C 一般应大于几百皮法,以减小电路寄生电容对振荡频率的影响,电容过大以至需采用电解电容是不合适的。
因此,C 可在几百皮法至1微法之间选择。
为了提高振荡频率的稳定度,一般选用稳定性较好、精度较高的电阻和介质损耗较小的电容。
(先确定电容C ,再计算电阻。
如可取C=0.1微法)19 (3)负反馈电路元件值的确定负反馈电路元件参数的大小将决定闭环后的增益,各阻值选择应确保起振时放大电路闭环增益大于3。
实验四 正弦波振荡器实验一、实验目的1、学习用集成运放构成正弦波发生器。
2、学习波形发生器的调整和主要性能指标的测试方法。
二、实验仪器模拟电路箱( )、数字万用表( )、双踪示波器( )、信号发生器( )等三、实验原理图4-1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R w 及二极管等元件构成负反馈和稳幅环节。
调节电位器R w ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。
D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。
电路的振荡频率 RC f o π21=起振的幅值条件 21≥R R f图4-1 RC 桥式正弦波振荡器式中)(32D w f R R R R R ++=,D R 为二极管正向导通电阻。
调整反馈电阻f R (调w R ),使电路起振,且波形失真最小。
如不能起振,则说明负反馈太强,应适当加大f R 。
如波形失真严重,则应适当减小f R 。
改变选频网络的参数C 或R ,即可调节振荡频率。
一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。
四、实验内容按图4-1连接实验电路,输出端接示波器,实验步骤如下:(1)接通土12V 电源,调节电位器R w ,使输出波形从无到有,从正弦波到出现失真。
描绘o U 的波形,记下临界起振、正弦波输出及失真情况下的R w 值,分析负反馈强、弱对起振条件及输出波形的影响。
(2)调节电位器R w ,使输出电压o U 幅值最大且不失真,用数字万用表分别测量输出电压o U 、反馈电压+U 和-U ,分析研究振荡的幅值条件。
(3)用示波器测量振荡率o f ,然后改变选频网络的电阻R ,观察记录振荡频率的变化情况,并与理论值进行比较,将结果记录表4-1。
综合设计 正弦波振荡器的设计与测试一.实验目的1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加的选频网络,用以确定振荡频率。
正弦波振荡的平衡条件为:..1AF = 起振条件为..||1AF > 写成模与相角的形式:..||1AF = 2A F n πψ+ψ=(n 为整数) 电路如图1所示:1. 电路分析RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路,决定振荡频率0f 。
1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。
该电路的振荡频率 : 0f =RCπ21① 起振幅值条件:311≥+=R R A f v ②式中d f r R R R //32+= ,d r 为二极管的正向动态电阻2. 电路参数确定(1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC=21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求(2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。
此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即:R=1R //f R(3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实现稳幅。
实验四 RC 正弦波振荡器一、 实验目的1. 进一步学习RC 正弦波振荡器的组成及其振荡条件2. 学会测量、调试振荡器二、实验原理从结构上看,正弦波振荡器是没有输入信号的、带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
RC 串并联网络(文氏桥)振荡器电路型式如图1所示。
振荡频率 RC21f O π 起振条件 |A|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图1 RC 串并联网络振荡器原理图三、 实验设备与器件1. +12V 直流电源2. 函数信号发生器3. 双踪示波器4. 频率计5. 直流电压表6. 3DG12×2 或 9013×2电阻、电容、电位器等四、 实验内容1. RC 串并联选频网络振荡器(1) 按图2组接线路图2 RC串并联选频网络振荡器将电位器Rw顺时针方向旋到底,接入+12V电源和地,不接RC串并联网络(即A点和B 点不连接),测量放大器静态工作点,将数据填入表1。
表1 放大器静态工作点数据记录给放大器一个频率为1kHz、幅度为0.5V的正弦输入ui, 即从B点接入到信号发生器,用示波器分别测量Ui和Uo的值,求出放大器的电压放大倍数,填入表2。
表2 放大器电压放大倍数数据记录(2) 接通RC串并联网络,并使电路起振,用示波器观测输出电压u O波形,调节Rw使获得满意的正弦信号,记录波形及其参数填入表3(可允许少量失真以维持波形稳定)。
表3 起振波形数据记录(3) 测量振荡频率,并与计算值进行比较。
数据填入表4。
表4 起振波形振荡频率数据记录(4) RC 串并联网络幅频特性的观察将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(假设为3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。
RC正弦波振荡器实验报告
时间:2021.03.05 创作:欧阳理
学号 200800120228姓名辛义磊实验台号 30
一、实验目的
1、掌握RC正弦波振荡器的基本工作原理及特点;
2、掌握RC正弦波振荡器的基本设计、分析和测试方法。
二、实验仪器
双踪示波器数字频率计晶体管毫伏表直流稳压电源数字万用表
三、实验原理
1、RC正弦波振荡器的原理
文氏电桥振荡器时应用最广泛的RC正弦波振荡器,它由同相集成运算放大器与串并联选频电路组成。
由于二极管的导通电阻r D具有随外加正偏电压增加而减小的非线性特性,所以振荡器的起振条件为
当适当减小,提高负反馈深度,调整输出信号幅度,即可实现稳定输出信号幅度的目的。
振荡器的振荡角频率
欲产生振荡频率符合上式的正弦波,要求所选的运算放大器的单位增益带宽积至少大于振荡频率的3倍。
电路选用的电阻均在千欧姆数量级,并尽量满足平衡电阻
的条件。
2、实验电路
本实验采用RC正弦波振荡器,如图所示为实验电路图。
RC振荡器
四、实验步骤及内容
准备:接通电路电源。
(一)电路调试
按照电路图连接电路,并进行调试
(二)振荡频率的测量
通过数字示波器测量电路的振荡频率
实验所测得的振荡频率为=858.96Hz
时间:2021.03.05 创作:欧阳理。
18 实验四 RC 正弦波振荡电路设计与调试
一、实验目的
1、熟悉用集成运放设计信号发生器的方法;
2、掌握RC 桥式振荡电路元器件的选择和振荡电路的调整测试方法;
3、培养独立进行电路设计的能力。
二、设计要求与技术指标
1、技术指标
用集成运放设计一RC 桥式正弦波振荡器:振荡频率在100H Z ~2KHz 内均可(如160H Z ),不要求频率可调;输出波形正负半周对称、无明显失真。
2、设计要求
(1)设计上述电路,确定电路元件参数;
(2)确定调试方案,选择实验仪器;
(3)联接电路并调整测试,使电路达到
设计要求。
3、预习要求
(1)掌握RC 桥式振荡电路的工作原理和
各部分元器件的选择;
(2)熟悉RC 桥式振荡电路的调试步骤;
三、设计提示
1、RC 桥式振荡电路设计的一般方法 图 4.1 实用RC 桥式振荡电路
(1)集成运放的选择
对运放的选择,除要求输入电阻高、输出电阻低外,最主要的是运放的增益带宽积
应满足如下条件,即
o u f BW A 3>∙
因振荡输出幅度比较大,集成运放工作在大信号状态,因此要求转换速率S R 满足
om o R U S ω≥
该实验选择741单运放即可满足要求。
(2)选频网络元件值的确定 按照振荡频率RC
f o π21=来选择RC 的大小。
为了减小集成运放输入阻抗对振荡频率的影响,应选择较小的R ,但为了减小集成运放输出阻抗对振荡频率的影响,又希望R 大些。
通常集成运放的输入电阻均比较大,所以R 可取大些,一般可取几千欧至几十千欧的电阻。
电容C 一般应大于几百皮法,以减小电路寄生电容对振荡频率的影响,电容过大以至需采用电解电容是不合适的。
因此,C 可在几百皮法至1微法之间选择。
为了提高振荡频率的稳定度,一般选用稳定性较好、精度较高的电阻和介质损耗较小的电容。
(先确定电容C ,再计算电阻。
如可取C=0.1微法)
19 (3)负反馈电路元件值的确定
负反馈电路元件参数的大小将决定闭环后的增益,各阻值选择应确保起振时放大电路闭环增益大于3。
闭环增益大,起振容易、输出幅度大、但振荡波形容易产生失真;闭环增益小,输出波形好,但幅度小且容易停振。
为了获得稳定的、具有一定幅度且失真小的振荡波形,通常采用非线性电阻构成负反馈电阻。
用图4.1所示电路时,选用稳幅二极管应注意:①从幅度的温度稳定性考虑,宜选用硅二极管;②为了保证正、负半波幅度对称,稳压管V 1、V 2的特性应一致。
其次,电阻R 3越大,负反馈自动调节作用越灵敏、稳幅效果越好;R 3减小,波形失真可减小,但稳幅效果会变差,可见选择R 3时应两者兼顾。
实践证明,R 3取几千欧即可(也可通过调试决定)。
R 1的阻值过大,则流过负反馈电路的电流不足,会使二极管的非线性电阻特性不明显;但R 1的阻值过小,又会使集成运放输出电流过大。
一般R 1的阻值应在数百欧到数千欧之间选取。
当R 1、R 3阻值确定后,可按:)2(2311R R R R p ->>来选取R P 的大小并留有一定的富裕量。
2、RC 桥式振荡电路的调试步骤
(1)检查线路,应特别注意检查集成运放输出端是否短路,正、负电源是否接错,确认没有错误后合上直流电源。
(2)用示波器观察输出端电压波形,若没有波形,应调节R P 以增大放大电路增益,直至出现振荡波形为止。
若有波形,且调节R P 时输出波形幅度发生变化,说明示波器所示波形是正常的振荡波形。
(3)若振荡波形严重失真,应先调节R P 减小其阻值或适当减小R 3以减小放大电路增益。
若波形不对称,应检查二极管特性是否相同。
(4)振荡频率的调整。
固定电容C 、改变电阻或固定电阻R 、改变电容C (串并联R 、C 应同步调整),直至振荡频率达到要求时为止。
3、输出波形测量
用示波器观察输出波形其波形是否满足要求,并记录输出正弦波的频率和幅值。
四、实验报告要求
1、画出设计电路图,列出元器件清单;
2、写出设计计算过程;
3、拟定调试步骤;
4、记录有关数据(频率、波形、幅值等)并计算分析频率误差。
五、实验思考与总结
总结设计与调试体会。
附预习建议:
1、自学理论课本§9.5、§9.6正弦波振荡电路相关内容;
2、在上实验课之前设计好电路、选择元件参数,并自行完成仿真实验。