一类特殊图的邻点可区别全染色
- 格式:pdf
- 大小:157.64 KB
- 文档页数:2
2020年10月第40卷第5期天水师范学院学报Journal of Tianshui Normal UniversityOct.,2020V〇1.40 No.5r-型六角系统的邻点可区别/-全色数杨随义(天水师范学院数学与统计学院,甘肃天水741001)摘要:图G的邻点可区别/-全染色是一个满足相邻顶点色集合不同的/-全染色,其中任意一点的色集 合为该顶点及其关联边所染颜色构成的集合.将其所需颜色的最小数称为邻点可区别/-全色数,记为;^(G).运 用数学归纳法研究了 r-型六角系统厂>多0)的邻点可区别/-全染色,并证明了当n多0时,;^(7\)=3;当n这1时,獻)=4.关键词:r-型六角系统;邻点可区别/-全染色;邻点可区别/-全色数中图分类号:0157.5 文献标识码:A1预备知识图染色作为图论研究的重要方向之一,被广 泛应用于信息计算科学、通信网络、交通运输等领 域,为实际问题的解决提供了重要的理论依据和 最优策略.图染色最早起源于四色问题的研究,随后一系列经典染色如点染色、边染色以及全染色 等相继被提出.m点染色是若干种颜色在顶点(边)上的一个分配,且相邻顶点(边)分配不同的 颜色,将所用的最少颜色数称为点(边)色数.图的全染色是若干种颜色同时在顶点和边上的一个分 配,且满足相邻顶点与相邻边以及关联元素分配不 同的颜色,类似地,将所用的最少颜色数称为全 色数.1941年,Brooks证明任意一个既不是奇圈 也不是完全图的连通图,其点色数不超过A.1964 年前后,Vizing和Gupta分别独立证明了任意一个 图的边色数不超过A+1.此外,Vizing还猜测:任意一个图的全色数不超过A+ 2,即后来众所周 知的全染色猜想(T C C).染色问题已被证明是一 个N P-难问题,因此,为了进一步探索T C C猜 想,国内外学者随后又相继提出了一系列可区别染 色.2005年,张忠辅等"]提出了图的邻点可区别 全染色的概念,并给出了圈、完全图、完全二部 图等一些特殊图类的邻点可区别全色数,并猜测 图的邻点可区别全色数A+ 2.此后,国内外学者 针对这一猜想展开了研究.[2_31为了推动邻点可区文章编号:1671-1351 (2020) 05-0019-03别全色数猜想的研究,张忠辅等[41在邻点可区别全 染色的基础上,提出了邻点可区别/-全染色的概 念.随后王继顺M研究了蛛网图、渔网图以及联图 及的邻点可区别/-全染色.张婷、赵慧霞等171给出了图(75乂见…的邻点可区别/- 全色数•六角系统作为化学图论中重要的研究对象,受到了国内外学者的广泛关注.六角系统图是由正 六边形所组成的平面图网络,其构型多种多样,不 同的构型其化学性质也各不相同.r-型六角系统 是一类特殊的六角系统,它是由一个正六边形中心 分别向3个间隔方向延伸n个正六边形直链所构成 的对称图,简称》阶r-型六角系统链.最近,王 文杰等181首先研究了 r-型六角系统链的点可区别边 染色.本文以此为动机,研究了:r-型六角系统的邻点可区别/-全色数,并得到了其邻点可区别 /-全色数.定义1.1[”设6是阶至少为2的连通图,&是正 整数,/是V(G)U£(C)到{1,2,"•,叼的映射,对任意ueK(G),记C(u) = {/(“)}“託.如果(1)对于任意肌,有f(uv)¥^f{vw);⑵对于任意有/(u)^f(v),f{u)t^/M ;则称/为C的正常全染色,进一步,如果 /还满足收稿日期:2020-09-17作者简介:杨随义(1977-),男,甘肃天水人,天水师范学院数学与统计学院副教授,硕士。
细胞分裂识图考点分析1、细胞的生长和增殖的周期性。
Ⅰ2、细胞的有丝分裂。
Ⅱ3、细胞的减数分裂。
Ⅱ【拓展提升】1、基因与染色体的关系。
Ⅱ2、基因的分离规律和自由组合规律。
Ⅱ【与识图相关的知识要点】1、减数分裂与有丝分裂的比较表(课前完成)比较项目减数分裂有丝分裂细胞分裂次数染色体复制次数联会、四分体是否出现有无同源染色体着丝点分裂、染色单体分开的时期子细胞染色体数目子细胞名称和数量2、(同种生物)两种分裂方式中染色体与DNA变化对照表(课前完成)项目有丝分裂减数分裂间期前期中期后期末期性原细胞初级性母细胞次级性母细胞性细胞染色体数目变化2NDNA含量变化2a3、有丝分裂与减数分裂细胞分裂图的鉴别(以二倍体生物细胞为例):(1)几个特殊分裂时期的比较分析①细胞分裂前期:(如图)②细胞分裂中期:(如图)③细胞分裂后期:(如图)③有丝分裂、减数分裂图形辨析(以二倍体为例)4、其他与减数分裂和有丝分裂有关的图形题分析4.1坐标曲线图坐标曲线图一般用于考查细胞分裂过程中染色体及DNA含量关系的判断及分裂时期的判断。
例1、下列图示中,横轴表示细胞周期,纵轴表示一个细胞核中DNA含量或染色体数目的变化,请分析图示,表示有丝分裂DNA含量变化、染色体数目的变化和减数分裂DNA含量变化、染色体数目的变化的依次是()4.2柱形图柱形图常用于考查细胞分裂各时期的染色体、染色单体及DNA等的数量关系特点。
熟悉细胞分裂各时期中染色体、染色单体及DNA的变化特点是解答此类问题的关键。
例2.下图A、B、C、D分别表示某哺乳动物细胞(2n)进行减数分裂的不同时期,其中a表示细胞数目。
请判断b、c、d依次代表()A.DNA分子数、染色体数、染色单体数B.染色体数、DNA分子数、染色单体数C.DNA分子数、染色单体数、染色体数D.染色单体数、染色体数、DNA分子4.3扇形图扇形图常用于考查细胞分裂各时期的判断。
例3.下图表示细胞有丝分裂一个细胞周期所用的时间,下列说法正确的是()①甲→乙过程中着丝点会分裂②乙→甲的过程有蛋白质合成③一个细胞周期是指甲→甲的全过程④一个细胞周期是指乙→乙的全过程A、①②③B、①②④C、③D、④4.4细胞分裂模式图和坐标曲线图相结合细胞分裂模式图常用于考查细胞分裂各时期染色体变化的特点,如根据图中细胞的特点判断细胞属于有丝分裂还是减数分裂的哪个时期、判断细胞的雌雄性等。
度逻辑判断一、图推常考:1、数量规律(重点)2、空间规律(重点)3、属性规律4、特殊规律:功能元素,图形间位置关系5、位置/样式规律较少,结合有点二、定义常考:1、单定义占90%2、多定义占10%三、类比常考:1、对应关系(50%)2、比喻象征3、包容关系:包容+对应4、近义关系、语法关系四、逻辑常考:1、加强论证(40%)2、削弱论证(20%)3、日常结论(20%)4、翻译推理,真假推理,其他(整体很少)图形推理一、图推考点:(注意图形特征匹配考点)1、位置规律:元素组成相同优先考虑位置(1)、平移(就近看图形变化,)方向:A直线(上下,左右,对角线),B绕圈(顺逆时针)步数:恒定,递增(等差递增)(2)、旋转(看选项差异,排除选项)方向:顺逆时针常见角度:45,90,180(3)、翻转左右翻转:图形沿竖轴对称(不必区别向左还是向右翻,因为图形都一样)上下翻转:图形沿横轴对称对比思维,看选项差异,排除选项,如遇到九宫格题目,可以直接看第二列规律,不必把每一列规律都推出来。
2、样式规律:元素组成似,元素重复出现;线条重复出现(1)遍历——缺啥补啥(相同元素重复出现,九宫格和两组图居多)注:1、外框缺啥补啥,2、内部图案缺啥补啥3、相减和求异不严格区分(2)、加减同异:相加相减、求异(去同求异)、求同(去异求同)A、相加、相减B、求异(去同求异)C相同图形重复出现,优先考虑加减。
求异和旋转一起出现(3)、黑白运算:图形轮廓和分割区域相同,不同区域“黑白”颜色不同且黑块数量不成规律。
方法:相同位置做运算注意:黑块数量相同,优先考虑位置平移黑块位置不同,优先考虑黑白运算“坑”:黑+白与白+黑未必一样3、属性规律:元素组成不相同、不相似、优先属性(1)、对称性A:轴对称(两侧一样)考点:对称轴方向和数量特征图:(出现箭头优先考虑轴对称)B:中心对称(绕某点,旋转180度,跟原图一样,考试中卷子倒过来看,跟原图一样就是中心对称图形)特征图:N Z S有2条垂直的对称轴,则该图既是轴对称又是中心对称轴对称图形一、新特征图图形两侧一样二、新考法1、对称轴的方向和数量(运算)2、对称轴与图形的线条关系(平行或者垂直)4、两个对称轴的线条关系(平行或垂直)三、技巧:把对称轴画出来(2)、曲直性A:全曲线B:全直线C:曲+直(3)、开闭性1、全封闭例如:2、全开放例如:完整图形留了小开口,可以考虑封闭性4、数量规律(点线角面素):元素组成不相同不相似、数量规律明显(元素组成不相同、不相似优先考虑属性,不行再数量)(1)、点:点的数量(交点)A:与线的交点,直曲相交的切点也属于交点B:直曲线的两个端点不属于交点数点特征图:Ⅰ、线条交叉明显(大树杈)Ⅱ、乱糟糟一团线交叉Ⅲ、相切较多细化考点:出现数点特征图,但整体数点无规律,考虑曲直交点(2)、线:线的数量A:直线数特征图形:多边形,单一直线(为了补充直线规律,有时候单一画个直线)B:曲线数:特征图形:曲线图形(全曲图形、圆、弧)注:单一直线或者曲线,可以看做直曲图形特征图内外框组合图形:外框直线和内框图形直线可以分开数看规律C:一笔画:线条不重复情况下,可以一笔画成,线条不能重复特征图形:一笔画:一笔画问题:A:线条之间连通。