2014年北京市西城区高三数学查缺补漏试题及答案
- 格式:doc
- 大小:936.00 KB
- 文档页数:12
北京市西城区2013 — 2014学年度第一学期期末试卷高三数学(理科) 2014.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4(B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1-(B )i -(C )1(D )i5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( )6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b <<(D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116-(B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A BC D -的棱长为动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++=______.(A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示, 那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.侧(左)视图16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.甲组 乙组 891a822 F BCEAHD19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区2013 — 2014学年度第一学期期末高三数学(理科)参考答案及评分标准2014.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B 5.A 6.C 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.4 10.125511. 12.24 13.1 214.(1,1) π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x x ωω=->的最小正周期为π, 所以 2||ωπ=π,解得2ω=. ……………… 3分由 ()2f α=22α=,即 cos 22α=, ……………… 4分所以 π22π4k α=±,k ∈Z . 因为 [π,π]α∈-, 所以7πππ7π{,,,}8888α∈--. ……………… 6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- (8)分1sin 222x x =+ πsin(2)3x =+, (10)分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. (12)分所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分(Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a =,共有10种可能. (5)分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同, 所以当2,3,4,,9a =时,乙组平均成绩超过甲组平均成绩,共有8种可能. (6)分所以乙组平均成绩超过甲组平均成绩的概率84()105P A==. (7)分(Ⅲ)解:当2a=时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种,它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92),..................9分则这两名同学成绩之差的绝对值X的所有取值为0,1,2,3,4. (10)分因此2(0)9P X==,2(1)9P X==,1(2)3P X==,1(3)9P X==,1(4)9P X==. (11)分所以随机变量X的分布列为: (12)分所以X的数学期望221115()01234993993E X=⨯+⨯+⨯+⨯+⨯=. (13)分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD是菱形,所以AC BD⊥. (1)分因为平面BDEF⊥平面ABCD,且四边形BDEF是矩形,所以ED⊥平面ABCD, (2)分又因为AC⊂平面ABCD,所以ED AC⊥. (3)分因为 EDBD D =,所以 AC ⊥平面BDEF . ……………… 4分(Ⅱ)解:设ACBD O =,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点, 所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD , 由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……………… 5分因为底面ABCD 是边长为2的菱形,60BAD ∠=,BF =所以 (0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F ,C ,13()222H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF 的法向量AC =. …………7分 设直线DH 与平面BDEF 所成角为α, 由 33()22DH =, 得 32sin |cos ,|DH AC DH AC DH ACα⨯⋅=<>===所以直线DH 与平面BDEF . ………………9分(Ⅲ)解:由(Ⅱ),得13(,)222BH =-,(2,0,0)DB =. 设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n (10)分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n . ………………11分由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-,则1cos ,2ED ED ED⋅<>===-n n n . (13)分由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e xf x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分令()0f x '=,得1x a =--. ……………… 3分当x 变化时,()f x 和()f x '的变化情况如下: (5)分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分(Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分当0x ≠时,方程可化简为ex ax -=. 设函数()e x a F x x -=-,则()e 1x a F x -'=-, 令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程ex ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分(Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=, 由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分同理,得AC 的方程为11(1)y x k-=--,211x k =--. (8)分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =- (10)分联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-, 所以点D 的坐标为111((2),)2k k k k---. ………………11分因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离d ==,所以5OD ≥,当且仅当点42(,)55D --时等号成立. (13)分由3125y k k =-=-,得15k =,验证知符合题意.所以当k =OD有最小值. ………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. .................. 1分 所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. (2)分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ (3)分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分由 21a q a =,得 1q <. ……………… 6分因为 201220142[2,3)a a q =∈,所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ……………… 8分(Ⅲ)证明:(充分性)因为1a N *Î,q N *Î,所以11n n a a q N -*=?,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. 由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, (10)分所以公比21a q a =为正有理数. ………………11分假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1. 因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r +整除.又因为111211k k k k a p a a qr++++==,且p 与r 的最大公约数为1.所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾. 所以q *∈N .因此1a N *Î,q *∈N . ……………13分高考资源网版权所有!投稿可联系QQ :1084591801。
北京市西城区2014年高三二模试卷数学(文科)2014.5第I 卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.设集合{}20A x x =-<,集合{}1B x x =>,则( ).A .AB ⊆ B .B A ⊆C .A B =∅D . A B ≠∅2.在复平面内,复数()()12i 1i z =+-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x yC a b a b-=>>的一条渐近线,则双曲线C 的离心率是( ).ABCD4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ).A .2A ∈,且4A ∈ BA ,且4A ∈ C .2A ∈,且ADAA5.设平面向量,,a b c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.在ABC △中,若14,3,cos 3a b A ===,则角B =( ).A .π4B .π3C .π6D .2π37.设函数224,4,()log ,4x x x f x x x ⎧-+⎪=⎨>⎪⎩≤若函数()y f x =在区间(,1)a a +上单调递增,则实数a 的取值范围是( ).A .(],1-∞B .[]1,4C .[)4,+∞D .(][),14,-∞+∞8.设Ω为平面直角坐标系中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果Ω是边长为1的正方形,那么()()x y Ω+Ω的取值范围是( ).A. B.2,⎡⎣ C.⎡⎣ D.⎡⎣第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在等差数列{}n a 中,141,7a a ==,则公差d =_________;12n a a a +++=___________.10.设抛物线2:4C y x =的焦点为F ,M 为抛物线C 上一点,且点M 的横坐标为2,则MF =___________.11.执行如图所示的程序框图,输出的a 值为________.12.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤ 所表示的平面区域是α,不等式组04,04x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β,从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是________.13.已知正方形,2ABCD AB =,若将ABD △沿正方形的对角线BD 所在的直线进行翻折,则在翻折的过程中,四面体A BCD -的体积的最大值是_______.14.已知f 是有序数对集合{}(,),M x y x y **=∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)z f x y =,对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =_________,使不等式(2,)4x f x ≤成立的x 的集合是________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin cos )1f x x x x =-+.(I )求函数()f x 的最小正周期;(II )当π,02x ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班的5名学生的视力检测结果:43.,51.,46.,41.,49.. B 班的5名学生的视力检测结果:51.,49.,40.,40.,45.. (I )分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II )由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(III )根据数据推断A 班全班40名学生中有几名学生的视力大于46.?17.(本小题满分14分)如图,在正方体1111ABCD A B C D -中,12AA =,E 为1AA 的中点,O 为1BD 的中点. (I )求证:平面11A BD ⊥平面11ABB A ; (II )求证://EO 平面ABCD ;(III )设P 为正方体1111ABCD A B C D -棱上一点,给出满足条件OP 的点P 的个数,并说明理由.18.(本小题满分13分)已知函数2e ()1xf x ax x =++,其中a ∈R .(I )若0a =,求函数()f x 的定义域和极值;(II )当1a =时,试确定函数()()1g x f x =-的零点个数,并证明.19.(本小题满分14分)设12,F F 分别为椭圆22:12x W y +=的左、右焦点,斜率为k 的直线l 经过右焦点2F ,且与椭圆W 相交于A ,B 两点.(I )求1ABF △的周长;(II )如果1ABF △为直角三角形,求直线l 的斜率k .20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<,设*m ∈N ,记使得n a m ≤成立的n 的最大值为m b .(I )设数列{}n a 为1,3,5,7,L ,写出1b ,2b ,3b 的值; (II )若{}n a 为等比数列,且22a =,求12350b b b b ++++L 的值; (III )若{}n b 为等差数列,求所有可能的数列{}n a .北京市西城区2014年高三二模试卷参考答案及评分标准 高三数学(文科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D 5.B 6.A 7.D 8.B 二、填空题:本大题共6小题,每小题5分,共30分. 9.2 2n 10.3 11.2- 12.1213.314.8 {1,2} 注:第9,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:2()sin cos cos 1f x x x x =-+11cos 2sin 2122xx +=-+ ……………… 4分111sin 2cos 2222x x =-+π1)242x =-+,………… 6分 所以函数()f x 的最小正周期为2ππ2T ==. ……………… 7分 (Ⅱ)解:由 π02x -≤≤,得5πππ2444x --≤≤-.所以 π1sin(2)42x --≤≤, ……………… 9分所以 π1)42x -+≤1,即 ()1f x ≤. ……… 11分当ππ242x -=-,即π8x =-时,函数()f x 取到最小值π1()82f -=;… 12分当π5π244x -=-,即π2x =-时,函数()f x 取到最大值π()12f -=. …………13分16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, ………… 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. …………… 3分从数据结果来看A 班学生的视力较好. ……………… 4分 (Ⅱ)解:B 班5名学生视力的方差较大. ……………… 8分 (Ⅲ)解:在A 班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为25. ……………… 11分所以全班40名学生中视力大于4.6的大约有240165⨯=名,则根据数据可推断A班有16名学生视力大于4.6.………………13分17.(本小题满分14分)18.(本小题满分13分)(Ⅰ)解:函数e ()1xf x x =+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分22e (1)e e ()(1)(1)x x xx x f x x x +-'==++. ……………… 3分 令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:4分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞.所以当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分 (Ⅱ)解:结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2e ()11xg x x x =-++, 因为 22131()024x x x ++=++>, 所以函数()g x 的定义域为R . ……………… 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, ………………7分令()0g x '=,得10x =,21x =,当x 变化时,()g x 和()g x '的变化情况如下:故函数的单调减区间为;单调增区间为(,0)-∞,. 当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-.… 9分 因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. ……………… 10分 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠. ……………… 11分因为函数()g x 在(1,)+∞单调递增,且e(1)103g =-<,2e (2)107g =->, 所以函数()g x 在(1,)+∞上仅存在一个0x ,使得函数0()0g x =, ………… 12分故函数()g x 存在两个零点(即0和0x ). ……………… 13分19.(本小题满分14分) (Ⅰ)解:椭圆W的长半轴长a =1(1,0)F -,右焦点2(1,0)F , … ……… 2分由椭圆的定义,得12||||2AF AF a +=,12||||2BF BF a +=, 所以1ABF ∆的周长为1212||||||||4AF AF BF BF a +++== ……………… 5分 (Ⅱ)解:因为1ABF ∆为直角三角形,所以o 190BF A ∠=,或o 190BAF ∠=,或o190ABF ∠=, 当o 190BF A ∠=时,设直线AB 的方程为(1)y k x =-,11(,)A x y ,22(,)B x y , ……………… 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩ 得 2222(12)4220k x k x k +-+-=, ……………… 7分所以 2122412k x x k +=+,21222212k x x k -=+. ……………… 8分由o190BF A ∠=,得110F A F B ⋅=, ……………… 9分因为111(1,)F A x y =+,122(1,)FB x y =+, 所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, ……………10分解得k =. ……………… 11分 当o 190BAF ∠=(与o190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上,由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得(0,1)A ,或(0,1)A -, ……………… 13分 根据两点间斜率公式,得1k =±, 综上,直线l的斜率k =,或1k =±时,1ABF ∆为直角三角形. ……………14分 20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:因为{}n a 为等比数列,11a =,22a =,所以12n n a -=, ……………… 4分 因为使得n a m ≤成立的n 的最大值为m b ,所以11b =,232b b ==,45673b b b b ====,89154b b b ====,1617315b b b ====,3233506b b b ====, ……………… 6分所以12350243b b b b ++++=. ……………… 8分(Ⅲ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 9分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 10分 设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=,所以1n b =,其中*n ∈N .这与2(2)k b k =>矛盾, 所以22a =. ……………… 11分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 12分 因为使得n a m ≤成立的n 的最大值为m b ,所以n n a ≤,由n n a ≥,得n n a =. ……………… 13分。
一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1.设全集U R =,集合{}02A x x =<≤,{}1B x x =<,则集合()U AB =ð( )A.(],2-∞B.(],1-∞C.()2,+∞D.[)2,+∞2.已知平面向量()2,1a =-,()1,1b =,()5,1c =-. 若()//a kb c +,则实数k 的值为( ) A.2 B.12 C.114 D.114-3.在极坐标系中,过点2,2π⎛⎫⎪⎝⎭且与极轴平行的直线方程是( ) A.2ρ= B.2πθ=C.cos 2ρθ=D.sin 2ρθ=考点:直角坐标与极坐标的互化4.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为( )A.4B.16C.256D.3log 165.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( ) A.()sin f x x = B.()sin cos f x x x = C.()cos f x x = D.()22cos sin f x x x =-6.“8m <”是“方程221108x y m m -=--表示双曲线”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( )A.3B.4C.5D.6考点:1.数列求和;2.基本不等式8.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B.6个C.10个D.14个第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12ix yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____. 【答案】8;4x =-. 【解析】试题分析:抛物线2:2C y px =的焦点坐标为,02p ⎛⎫⎪⎝⎭,该点在直线240x y +-=上,则有402p -=,解BADC. P得8p =,此时抛物线的准线方程为4x =-. 考点:抛物线的几何性质11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.【答案】()3,5. 【解析】试题分析:作出不等式组1026x y x y ≥⎧⎪≤⎨⎪+≤⎩所表示的平面区域如下图中的阴影部分所表示,直线26x y +=交x 轴于点()3,0A ,交直线1x =于点()1,4B ,当直线x y a +=与直线26x y +=在线段13.科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______.(用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:①当2a =时,函数()f x 的值域为[]1,4;②()0,a ∀∈+∞,都有()11f =成立; ③()0,a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.D C P线1x =与对称轴的距离远,此时函数()f x 在0x =处取得最大值,即()()max 04f x f ==,当()224121a a +≥+时,即当0a <≤时,函数()f x 在区间[]0,1上单调递减, 此时函数()f x 在0x =处取得最大值,即()()max 04f x f ==, 综上所述,正确结论的序号是②③. 考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+. (1)求A 的大小;(2)如果cos 3=B ,2b =,求ABC ∆的面积.因为 0>c ,所以 1=c .故ABC ∆的面积1sin 22S bc A ==.考点:1.正弦定理与余弦定理;2三角形的面积公式16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(1)根据频率分布表中的数据,写出a 、b 的值;(2)某人从灯泡样品中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按三个等级分层抽........样.所得的结果相同,求n 的最小值; (3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.所以n 的最小值为4;17.(本小题满分14分)如下图,在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都 是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==. (1)求证:1⊥BC D E (2)求证:1//B C 平面1BED ;(3)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求线段1D E 的长度.所以四边形11D DBB 是平行四边形.连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . 又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,1设平面11BCC B 法向量为()111,,m x y z =, 因为()1,0,0CB =,()11,1,CB a =,由100m CB m CB ⎧⋅=⎪⎨⋅=⎪⎩得11110,0.x x y az =⎧⎨++=⎩ 令11z =,得()0,,1m a =-.由平面11BCC B 与平面1BED 所成的锐二面角的大小为3π, 得 ||cos ,cos32m n m n m nπ⋅===,解得1a =.考点:1.直线与平面垂直;2.直线与平面平行;3.二面角;4.空间向量法 18.(本小题满分13分)已知函数()2ln ,23,x x x a f x x x x a >⎧=⎨-+-≤⎩,其中0a ≥. (1)当0a =时,求函数()f x 的图象在点()()1,1f 处的切线方程;(2)如果对于任意1x 、2x R ∈,且12x x <,都有()()12f x f x <,求a 的取值范围.因为对于任意1x 、2x R ∈,且12x x <,都有()()12f x f x <成立, 所以1a ≤.19.(本小题满分14分)已知椭圆22:12x W y +=,直线l 与W 相交于M 、N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(1)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(2)判断是否存在直线l ,使得C 、D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)221152416x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;(2)存在,且直线l 的方程为25y x =±或y x =. 【解析】试题分析:(1)先确定OCD ∆三个顶点的坐标,利用其外接圆圆心即为该三角形垂直平分线的交点求出外接圆的圆心,并利用两点间的距离公式求出外接圆的半径,从而求出外接圆的方程;(2)将C 、D 是线段MN由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得()222124220k x kmx m +++-=,所以 2216880k m ∆=-+>, (*)由韦达定理,得122412kmx x k-+=+,21222212m x x k -=+. 由C 、D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, 解得2k =±. 由C 、D 是线段MN 的两个三等分点,得3MN CD =.20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等差数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (3)如果{}n c 为数列{}n a 的一个()3m m ≥项子列,且{}n c 为等比数列,证明:123m c c c c ++++1122m -≤-.则 ()2112311m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,()111c a N a*=≤∈. 设 (),Kq K L N L*=∈,且K 、L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 ()2112311m m c c c c c q q q -++++=++++211111222m -⎛⎫⎛⎫≤++++ ⎪ ⎪⎝⎭⎝⎭,1122m -⎛⎫=- ⎪⎝⎭,所以 1123122m m c c c c -⎛⎫++++≤- ⎪⎝⎭.当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且K 、L 互质,所以 ()1*m a K M M N -=⨯∈,所以 ()2112311m m c c c c c q q q -++++=++++1232111111m m m m M K K L K LL ----⎛⎫=++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈, 所以 2111231111122222m m m c c c c --⎛⎫⎛⎫⎛⎫++++≤++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.综上, 1231122m m c c c c -++++≤-.考点:1.新定义;2.等比数列求和。
北京市西城区2014年高三二模试卷数 学(文科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|20}A x x =-<,集合{|1}B x x =>,则( ) (A )A B ⊆(B )B A ⊆(C )AB =∅ (D )A B ≠∅解析:{|20}{|2}A x x x x =-<=<,所以答案D. 知识点;集合与常用逻辑用语--------集合的运算 难度系数:22.在复平面内,复数=(12i)(1i)z +-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:2=(12i)(1i)1223z i i i i +-=-+-=+,所以对应的点是(3,1)点在第一象限。
知识点; 推理与证明、数系的扩充与复数--------复数---复数乘除和乘方 难度系数:23.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B )2(C (D )2解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,bc a b c a e e a∴==+===,所以答案为C知识点:解析几何---------圆锥曲线--------双曲线 难度系数:34.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (BA ,且4A ∈(C ) 2A ∈,且A (DAA解析:有三视图可得,该四棱锥是底面边长的正方形,高为4的正四棱锥,所以=D 。
知识点:立体几何-------空间几何体----------空间几何体的三视图和直观图 难度系数:25.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:平面向量a ,b ,c 均为非零向量,()0⋅-=a b c ,可以得出=b c 或者()⊥-a b c ;所以为必要不充分条件。
2014年北京西城区高三一模数学试题解析拿到西城一模数学试卷,隐隐觉得有点“不详”的预感。
通观全卷,感觉这份卷子出得有点让人哭笑不得。
【选择分析】8个选择,题型设计非常常规。
需要提一下的是第7题,一个函数应用题,此题的出现基本上和考试说明中提出的“考察实际能力”的精神是相符合的。
但其实,真要纠结于这一点的话,函数应用题,并不是一个特别生僻的点,即使把它勉强算成较少考察大的点,那么整张卷子,也没有第二道题出现了所谓的考察实际能力。
此题难度一般。
第8题,传统意义上的选择压轴。
题目本身没有设置特别大的难度,但是题干的用语却十分复杂纠结。
一个正四面体、任意一点到定点距离、距离构成的集合、集合元素还有限。
如果考生被这些或有用或无用的条件耽误太多时间,那么可能此题真的就成了一个难点。
但只要是有一个比较良好的审题习惯,并且对于高中的一百多知识点都非常熟悉,此题其实难度也没有想象中那么大。
【选择解读】逃离第八题本身的难度讨论,但是从第八题的出题方式也许能成为某种信号:绝对难度值降下来了,但是难度方式却发生了转移,更强调对于数学术语和数学逻辑的理解的考察。
如果命题者真是把这样的考察方式理解为考察数学思想。
那么本题的参考价值或许真的不小。
(当然,平心而论,笔者并不觉得这种出题方式和所谓的数学思想有多大关系,但或多或少,为数学思想提供了一个试题出口。
这个信号对于考生的价值其实还是比较大的。
)【填空分析】6个填空也没有太大的变化,平稳为主。
值得注意的是14题,和前面所说的第8题在某种程度上,如出一辙:绕!直角梯形,向量,内积加上莫名其妙的函数,或许会让部分学生有点晕头转向。
但其实,如果我们把这个题稍稍做调整,把函数换成“对应关系”四个字,也许晕的同学会减少不少,在很多同学考后给我的信息是:在考场上纠结函数大的解析式是什么纠结了很久,然后无果只能放弃。
这或许正式出题人的意图,用复杂的“条件们”去阻碍思路。
【填空解读】其实,14题算是一道好题,对于数学思想的考察明显比第8题要好很多。
北京市西城区2014年高三二模试卷小题解析高三数学(理科)1.D 【解析】考查集合的关系与运算.因为集合{|20}{|2}A x x x x =-<=<,集{|}B x x a =<,若A B A =,所以a ≥2,故选D.2.A 【解析】考查复数的计算及其几何意义. 2=(12i)= -3+4i z +,在复平面中点的坐标为(3,4)-,所以复数对应的点在第二象限.3. A 【解析】考查双曲线的简单性质.由题意知,双曲线的渐近线方程为b y x a =±,因为直线2y x =为双曲线的一条渐近线,所以2b a =,又因为222c a b =+,所以225,c a =可得双曲线的离心率c e a==. 4. D 【解析】考查三视图求面积、体积.由已知三视图可知该几何体为以俯视图为底的正四棱锥,底面的对角线长为2A ,由主视图和侧视图可得,棱锥的高为4=A ,故选D.5.B 【解析】考查充分必要条件. 因为()0⋅-=a b c ,又因为平面向量a ,b ,c 均为非零向量,所以()⊥-a b c 或=b c ,所以为必要不充分条件.6.B 【解析】考查定积分. 阴影区域的面积是32232cos sin |22xdx x ππππ-=-=⎰,故选B.7. C 【解析】考查线性规划与几何概型.由题意知,α表示的平面区域为一梯形,面积为24,β表示的平面区域为矩形,其面积为8×4=32.根据几何概型可得,则P 为区域β内的点的概率是243324=. 8. B 【解析】考查简单的线性规划.正方形的边长为1,∴如下图,正方形的对角线在x轴上时,此时()x Ω=()(22y Ω=--= 此时,()()x y Ω+Ω的最大值为 此时()1x Ω=,()1y Ω=,此时()()x y Ω+Ω的最大值为2,为最小值.故()()x y Ω+Ω的取值范围为2,⎡⎣.9.20【解析】考查二项式定理. 61()x x +的二项展开式中通项6621661()rr r r r r T x x x C C --+==,若为常数项则6-2r=0,r=3,所以常数项为3620C = 10.3, π4【解析】考查三角函数、正弦定理.由题意知,sin A ==.由正弦定理得3sin 3sin 4b A B a ⨯===11. 8,2【解析】考查相交弦定理、三角形相似.由相交弦定理知CE DE AE BE =,设BE=x ,则16=4x 2,解得:x=2所以AE=8,BE=2,由△ACE ∽△DBE 得:422AC CE BD BE === 12. 13-【解析】考查程序框图.由题意知,3,1a i ==,第一次循环,132,213a i +==-=-; 第二次循环,121,3123a i -==-=+;第三次循环,1113,41213a i -===+;第四次循环,1123,5112a i +===-;第五次循环,132,613a i +==-=-……第十次循环时121,11123a i -==-=+满足条件,跳出循环体,故输出a 值为13-.13. [3,+)∞【解析】考查抛物线的几何意义.由题意知,抛物线的准线方程为1x =-,由抛物线的几何意义可得,||MF 即为点M 到抛物线准线的距离,过点N 作准线的垂线,交抛物线与一点,根据两点之间线段最短可知当M 为垂线与交抛物线交点时,||||MF MN +最小,最小值为2-(-1)=314. 8, {1,2}【解析】考查映射与指数不等式的解法. 35<,(3,5)358f ∴=+=; 2x x >恒成立,故(2,)2x x f x x =-,当1x =时,(2,)2114x f x =-=≤成立, 当2x =时,2(2,)2224x f x =-=≤成立, 当3x ≥时,3(2,)235x f x =-=成立, 故使不等式(2,)4x f x ≤成立的x 的集合为{1,2}。
北京市第一学期期末试卷高三数学(理科)第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4 (B(C )3(D4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )12复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1- (B )i -(C )1(D )i6. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116- (B ) 18-(C ) 14-(D ) 08. 如图,正方体1111ABCD A B C D -的棱长为动点P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)5.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( ) (A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++=______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y =+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.侧(左)视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.甲组 乙组 891a822 F B CEAHD18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k ,O 为坐标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设全集{}02U x x =<<,集合{}01A x x =<≤,则集合U A =ð( )A.()0,1B.(]0,1C.()1,2D.[)1,22.已知平面向量()2,1a =-,()1,3b =,那么a b +等于( )A.5 D.133.已知双曲线()2222:10,0x y C a b a b-=>>的虚轴长是实轴长的2倍,则此双曲线的离心率为( )B.2= D.考点:1.双曲线的几何性质;2.双曲线的离心率4.某几何体的三视图如图所示,则该几何体的体积为( ) A.2 B.43C.4D.55.下列函数中,对于任意x R ∈,同时满足条件()()f x f x =-和()()f x f x π-=的函数是( ) A.()sin f x x = B.()sin cos f x x x = C.()cos f x x = D.()22cos sin f x x x =-()22cos sin cos2f x x x x =-=,该函数是偶函数,且以π为最小正周期的周期函数,故选D.正(主)视图俯视图侧(左)视图考点:1.二倍角公式;2.三角函数的奇偶性与周期性6.设0a >,且1a ≠,则“函数log a y x =在()0,+∞上是减函数”是“函数()32y a x =-在R 上是增函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.78.如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )A.4个B. 6个C.10个D.14个 【答案】C 【解析】试题分析:分以下两种情况讨论:(1)点P 到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点P 位于正四面体各棱的中点,符合条件的有6个点;(2)点P 到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点P 在正四面体各侧面的中心点,符合条件的有4个点,故选C. 考点:新定义第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.设复数12ix yi i-=++,其中x 、y R ∈,则x y +=______.10.若抛物线2:2C y px =的焦点在直线20x y +-=上,则p =_____;C 的准线方程为_____.4p =,此时抛物线的准线方程为2x =-.BADC. P考点:抛物线的几何性质11.已知函数()3,01,01x x f x x x +≤⎧⎪=⎨>⎪+⎩,若()02f x =,则实数0=x ______;函数()f x 的最大值为_____.12.执行如图所示的程序框图,如果输入2a =,2b =,那么输出的a 值为______.【答案】256. 【解析】试题分析:3log 24>不成立,执行第一次循环,224a ==;3log 44>不成立,执行第二次循环,2416a ==;4333log 164log 3log 81>==不成立,执行第三次循环,216256a ==;33log 2564log 81>=成立,跳出循环体,输出a 的值为256,故选C.考点:算法与程序框图13.若不等式组1026ax y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个四边形,则实数a 的取值范围是_______.范围是()3,5. 考点:线性规划14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,2BC =,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,记()y f x =,则()1f =____; 函数()f x 的值域为_________.因为()()205080441f f =⨯-⨯+=>,因此()()max 04f x f ==,所以函数()f x 的值域为4,45⎡⎤⎢⎥⎣⎦.A D C P考点:1.平面向量的数量积;2.二次函数三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15.(本小题满分13分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+. (1)求A 的大小;(2)如果cos 3=B ,2b =,求a 的值.考点:1.正弦定理与余弦定理;2.同角三角函数的基本关系16.(本小题满分13分)某批次的某种灯泡共200个,对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(1)根据频率分布表中的数据,写出a 、b 、c 的值;(2)某人从这200个灯泡中随机地购买了1个,求此灯泡恰好不.是次品的概率; (3)某人从这批灯泡中随机地购买了()n n N *∈个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽.....样.所得的结果相同,求n 的最小值.所以n 的最小值为10.考点:1.频率分布表;2.古典概型17.(本小题满分14分)如图,在四棱锥S ABCD -中,底面ABCD 是矩形,2AD AB =,SA SD =,SA AB ⊥, N 是棱AD 的中点.(1)求证://AB 平面SCD ;(2)求证:SN ⊥平面ABCD ;(3)在棱SC 上是否存在一点P ,使得平面PBD ⊥平面ABCD ?若存在,求出SPPC的值;若不存在,说明理由.【答案】(1)详见解析;(2)详见解析;(3)存在,且12SP PC =. 所以 SN AD ⊥.又因为 ABAD A =,所以 SN ⊥平面ABCD .(3)如图,连接BD 交NC 于点F ,在平面SNC 中过F 作//FP SN 交SC 于点P ,连接PD 、PC .因为 SN ⊥平面ABCD ,所以FP ⊥平面ABCD . 又因为FP ⊂平面PBD ,所以平面PBD ⊥平面ABCD . 在矩形ABCD 中,因为//ND BC , 所以12NF ND FC BC ==. 在SNC ∆中,因为//FP SN , 所以12NF SP FC PC ==. 则在棱SC 上存在点P ,使得平面PBD ⊥平面ABCD ,此时12SP PC =. 考点:1.直线与平面平行的判定与性质;2.直线与平面垂直 18.(本小题满分13分)已知函数()ln af x x x=-,其中a R ∈. (1)当2a =时,求函数()f x 的图象在点()()1,1f 处的切线方程; (2)如果对于任意()1,x ∈+∞,都有()2f x x >-+,求a 的取值范围. 【答案】(1)350x y --=;(2)(],1-∞-. 【解析】试题分析:(1)将2a =代入函数解析式,求出()1f '及()1f 的值,利用点斜式写出切线方程;(2)利用参数分离法将()2f x x >-+转化为2ln 2a x x x x <+-,构造新函数()2ln 2g x x x x x =+-,问题转化为()min a g x <来求解,但需注意区间()1,+∞端点值的取舍. 试题解析:(1)由()2ln f x x x =-,得()212f x x x'=+, 所以()13f '=, 又因为()12f =- ,所以函数()f x 的图象在点()()1,1f 处的切线方程为350x y --=;19.(本小题满分14分)已知椭圆()2222:10x y W a b a b+=>>的焦距为2,过右焦点和短轴一个端点的直线的斜率为1-,O 为坐标原点. (1)求椭圆W 的方程.(2)设斜率为k 的直线l 与W 相交于A 、B 两点,记AOB ∆面积的最大值为k S ,证明:12S S =.【答案】(1)2212x y +=;(2)详见解析. 【解析】试题分析:(1)利用题干中的已知条件分别求出a 、b 、c ,从而写出椭圆W 的方程;(2)设直线l 的方程为y kx m =+,将直线l 的方程与椭圆W 的方程联立,借助韦达定理求出弦长AB ,并求出原点到直线l 的距离d ,然后以AB 为底边,d 为高计算AOB ∆的面积,利用基本不等式验证1k =时和2k =时AOB ∆的验证知(*)成立;当2k =时,因为AOB S ∆=,20.(本小题满分13分)在数列{}n a 中,()1n a n N n*=∈. 从数列{}n a 中选出()3k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列12、13、15、18为{}n a 的一个4 项子列.(1)试写出数列{}n a 的一个3项子列,并使其为等比数列;(2)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足104d -<<;(3)如果{}n c 为数列{}n a 的一个6项子列,且{}n c 为等比数列,证明:1234566332c c c c c c +++++≤.【答案】(1)答案不唯一. 如3项子列:12、14、18;(2)详见解析;(3)详见解析.【解析】试题分析:(1)根据题中的定义写出一个3项子列即可;(2)根据定义得到11b ≤,利用数列{}n b 的定义与单调性得到0d >,然后由5140b b d =+>得到14d >-,从而证明104d -<<;(3)注意到数列{}n a 各项均为有理数,从而得到数列{}n c 的公比q 为正有理数,从而存在K 、L N *∈使得K q L=,并对K 是否等于1进行分类讨论,结合等比数列求和公式进行证明. 试题解析:(1)答案不唯一. 如3项子列:12、14、18; (2)由题意,知1234510b b b b b ≥>>>>>,所以 210d b b =-<. 因为 514b b d =+,11b ≤,50b >,所以 514011d b b =->-=-,解得 14d >-.543223*********M K K L K L K L KL L ⎛⎫=+++++ ⎪⎝⎭. 因为 2L ≥,K 、*M N ∈,所以 2345123456111116312222232c c c c c c ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤+++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.综上,12345663 32c c c c c c+++++≤. 考点:1.新定义;2.等比数列求和。
北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A = ,则实数a 的取值范围是( ) (A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞解析:{|20}{|2}A x x x x =-<=<,,A B A A B =⊆ ,所以满足2a ≥,所以答案选择D. 知识点;集合与常用逻辑用语--------集合的运算 难度系数:22.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:22=(12i)14434z i i i +=++=-+,所以复数对应的点(-3,4)点在第二象限。
知识点; 推理与证明、数系的扩充与复数--------复数---复数乘除和乘方 难度系数:23.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A )5(B )52(C )3(D )32解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,5bc a b c a e e a∴==+===,所以答案为C知识点:解析几何---------圆锥曲线--------双曲线 难度系数:34.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (B )2A ∈,且4A ∈(C ) 2A ∈,且25A ∈ (D )2A ∈,且17A ∈解析:有三视图可得,该四棱锥是底面边长为2的正方形,高为4的正四棱锥,所以每个侧棱长为24117+=。
北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )(A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞解析:{|20}{|2}A x x x x =-<=<,,A B A A B =⊆,所以满足2a ≥,所以答案选择D.2.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:22=(12i)14434z i i i +=++=-+,所以复数对应的点(-3,4)点在第二象限。
3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B (C (D解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,bc a b c a e e a∴==+===以答案为C4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (BA ,且4A ∈(C ) 2A ∈,且A (DAA解析:4的正四棱锥,所以每个=D 。
5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:平面向量a ,b ,c 均为非零向量,()0⋅-=a b c ,可以得出=b c 或者()⊥-a b c ;所以为必要不充分条件。
答案为B.6.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是( )(A )1(B )2(C )π2(D )π解析:求解阴影部分的面积要利用积分的方法332222(0cos )sin (11)2x dx xππππ-=-=---=⎰。
北京市西城区2014年高三二模试卷数学(文科)2014.5第I 卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.设集合{}20A x x =-<,集合{}1B x x =>,则( ).A .AB ⊆ B .B A ⊆C .A B =∅D . A B ≠∅2.在复平面内,复数()()12i 1i z =+-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限3.直线2y x =为双曲线2222:1(0,0)x yC a b a b-=>>的一条渐近线,则双曲线C 的离心率是( ).A .3B .32 C .5 D .524.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ).A .2A ∈,且4A ∈B .2A ∈,且4A ∈C .2A ∈,且25A ∈D .2A ∈,且17A ∈5.设平面向量,,a b c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.在ABC △中,若14,3,cos 3a b A ===,则角B =( ).A .π4B .π3C .π6D .2π37.设函数224,4,()log ,4x x x f x x x ⎧-+⎪=⎨>⎪⎩≤若函数()y f x =在区间(,1)a a +上单调递增,则实数a 的取值范围是( ).A .(],1-∞B .[]1,4C .[)4,+∞D .(][),14,-∞+∞8.设Ω为平面直角坐标系中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.如果Ω是边长为1的正方形,那么()()x y Ω+Ω的取值范围是( ).A .2,22⎡⎤⎣⎦B .2,22⎡⎤⎣⎦C .1,2⎡⎤⎣⎦D .1,22⎡⎤⎣⎦第II 卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在等差数列{}n a 中,141,7a a ==,则公差d =_________;12n a a a +++=___________.10.设抛物线2:4C y x =的焦点为F ,M 为抛物线C 上一点,且点M 的横坐标为2,则MF =___________.11.执行如图所示的程序框图,输出的a 值为________.12.在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤ 所表示的平面区域是α,不等式组04,04x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β,从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是________.13.已知正方形,2ABCD AB =,若将ABD △沿正方形的对角线BD 所在的直线进行翻折,则在翻折的过程中,四面体A BCD -的体积的最大值是_______.14.已知f 是有序数对集合{}(,),M x y x y **=∈∈N N 上的一个映射,正整数对(,)x y 在映射f 下的象为实数z ,记作(,)z f x y =,对于任意的正整数,()m n m n >,映射f 由下表给出:(,)x y (,)n n(,)m n(,)n m(,)f x yn m n - m n +则(3,5)f =_________,使不等式(2,)4x f x ≤成立的x 的集合是________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos (sin cos )1f x x x x =-+.(I )求函数()f x 的最小正周期;(II )当π,02x ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的,A B两班中各抽5名学生进行视力检测.检测的数据如下:A班的5名学生的视力检测结果:43.,51.,46.,41.,49..B班的5名学生的视力检测结果:51.,49.,40.,40.,45..(I)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(II)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明).?(III)根据数据推断A班全班40名学生中有几名学生的视力大于463 / 1617.(本小题满分14分)如图,在正方体1111ABCD A B C D -中,12AA =,E 为1AA 的中点,O 为1BD 的中点. (I )求证:平面11A BD ⊥平面11ABB A ; (II )求证://EO 平面ABCD ;(III )设P 为正方体1111ABCD A B C D -棱上一点,给出满足条件2OP =的点P 的个数,并说明理由.5 / 1618.(本小题满分13分)已知函数2e ()1xf x ax x =++,其中a ∈R .(I )若0a =,求函数()f x 的定义域和极值;(II )当1a =时,试确定函数()()1g x f x =-的零点个数,并证明.19.(本小题满分14分)设12,F F 分别为椭圆22:12x W y +=的左、右焦点,斜率为k 的直线l 经过右焦点2F ,且与椭圆W 相交于A ,B 两点.(I )求1ABF △的周长;(II )如果1ABF △为直角三角形,求直线l 的斜率k .7 / 1620.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<,设*m ∈N ,记使得n a m ≤成立的n 的最大值为m b .(I )设数列{}n a 为1,3,5,7,L ,写出1b ,2b ,3b 的值; (II )若{}n a 为等比数列,且22a =,求12350b b b b ++++L 的值; (III )若{}n b 为等差数列,求所有可能的数列{}n a .北京市西城区2014年高三二模试卷参考答案及评分标准 高三数学(文科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D 5.B 6.A 7.D 8.B 二、填空题:本大题共6小题,每小题5分,共30分. 9.2 2n 10.3 11.2- 12.1213.22314.8 {1,2} 注:第9,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:2()sin cos cos 1f x x x x =-+11cos 2sin 2122xx +=-+ ……………… 4分 111sin 2cos 2222x x =-+ 2π1sin(2)242x =-+, ……………… 6分 所以函数()f x 的最小正周期为2ππ2T ==. ……………… 7分 (Ⅱ)解:由 π02x -≤≤,得5πππ2444x --≤≤-. 所以 π21sin(2)42x --≤≤, ……………… 9分所以 212π1sin(2)2242x -+-+≤≤1,即 21()12f x -+≤≤. ……… 11分当ππ242x -=-,即π8x =-时,函数()f x 取到最小值π21()82f -+-=;… 12分当π5π244x -=-,即π2x =-时,函数()f x 取到最大值π()12f -=. …………13分16.(本小题满分13分)(Ⅰ)解:A 班5名学生的视力平均数为A 4.3+5.1+4.6+4.1 4.9==4.65x +, ………… 2分B 班5名学生的视力平均数为B 5.1+4.9+4.0+4.0 4.5==4.55x +. …………… 3分9 / 16从数据结果来看A 班学生的视力较好. ……………… 4分 (Ⅱ)解:B 班5名学生视力的方差较大. ……………… 8分 (Ⅲ)解:在A 班抽取的5名学生中,视力大于4.6的有2名,所以这5名学生视力大于4.6的频率为25. ……………… 11分 所以全班40名学生中视力大于4.6的大约有240165⨯=名, 则根据数据可推断A 班有16名学生视力大于4.6. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:在正方体1111D C B A ABCD -中,因为 11A D ⊥平面11ABB A ,11A D ⊂平面11A BD ,所以平面11A BD ⊥平面11ABB A . ……………… 4分 (Ⅱ)证明:连接BD ,AC ,设BD AC G =,连接OG .因为1111D C B A ABCD -为正方体,所以 1//DD AE ,且121DD AE =,且G 是BD 的中点, 又因为O 是1BD 的中点, 所以 1//DD OG ,且121DD OG =, 所以 AE OG //,且AE OG =, 即四边形AGOE 是平行四边形,所以//EO AG , ……………… 6分 又因为 EO ⊄平面ABCD ,⊂AG 平面ABCD ,所以 //EO 平面ABCD . ……………… 9分 (Ⅲ)解:满足条件2OP =的点P 有12个. ……………… 12分理由如下:因为 1111D C B A ABCD -为正方体,12AA =, 所以 22AC =. 所以 122EO AG AC ===. ……………… 13分 在正方体1111D C B A ABCD -中,因为 1AA ⊥平面ABCD ,AG ⊂平面ABCD ,A BA 1B 1D CD 1 C 1OEG所以 1AA AG ⊥, 又因为 //EO AG ,所以 1AA OE ⊥, 则点O 到棱1AA 的距离为2,所以在棱1AA 上有且只有一个点(即中点E )到点O 的距离等于2, 同理,正方体1111D C B A ABCD -每条棱的中点到点O 的距离都等于2, 所以在正方体1111D C B A ABCD -棱上使得2OP =的点P 有12个. ……… 14分18.(本小题满分13分)(Ⅰ)解:函数e ()1xf x x =+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分22e (1)e e ()(1)(1)x x xx x f x x x +-'==++. ……………… 3分令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:x(,1)-∞- (1,0)- 0 (0,)+∞()f x '--+()f x↘↘↗……………… 4分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞.所以当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分 (Ⅱ)解:结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2e ()11xg x x x =-++,因为 22131()024x x x ++=++>, 所以函数()g x 的定义域为R . ……………… 6分求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++, ………………7分令()0g x '=,得10x =,21x =,11 / 16当x 变化时,()g x 和()g x '的变化情况如下:x(,0)-∞ 0 (0,1) 1 (1,)+∞()g x '+ 0-+()g x ↗ ↘ ↗故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞.当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-. ……………… 9分因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. ……………… 10分 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠. ……………… 11分因为函数()g x 在(1,)+∞单调递增,且e (1)103g =-<,2e(2)107g =->,所以函数()g x 在(1,)+∞上仅存在一个0x ,使得函数0()0g x =, ………… 12分 故函数()g x 存在两个零点(即0和0x ). ……………… 13分19.(本小题满分14分) (Ⅰ)解:椭圆W 的长半轴长2a =,左焦点1(1,0)F -,右焦点2(1,0)F , … ……… 2分由椭圆的定义,得12||||2AF AF a +=,12||||2BF BF a +=,所以1ABF ∆的周长为1212||||||||442AF AF BF BF a +++==. ……………… 5分(Ⅱ)解:因为1ABF ∆为直角三角形,所以o190BF A ∠=,或o190BAF ∠=,或o190ABF ∠=,当o190BF A ∠=时,设直线AB 的方程为(1)y k x =-,11(,)A x y ,22(,)B x y , ……………… 6分由 221,2(1),x y y k x ⎧+=⎪⎨⎪=-⎩ 得 2222(12)4220k x k x k +-+-=, ……………… 7分 所以 2122412k x x k +=+,21222212k x x k -=+. ……………… 8分 由o190BF A ∠=,得110F A F B ⋅=, ……………… 9分 因为111(1,)F A x y =+,122(1,)FB x y =+, 所以11121212()1F A F B x x x x y y ⋅=++++2121212()1(1)(1)x x x x k x x =++++-- 2221212(1)(1)()1k x x k x x k =++-+++2222222224(1)(1)101212k k k k k k k-=+⨯+-⨯++=++, ……………10分 解得77k =±. ……………… 11分 当o 190BAF ∠=(与o190ABF ∠=相同)时, 则点A 在以线段12F F 为直径的圆221x y +=上,也在椭圆W 上,由22221,21,x y x y ⎧+=⎪⎨⎪+=⎩解得(0,1)A ,或(0,1)A -, ……………… 13分 根据两点间斜率公式,得1k =±, 综上,直线l 的斜率77k =±,或1k =±时,1ABF ∆为直角三角形. ……………14分20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:因为{}n a 为等比数列,11a =,22a =,所以12n n a -=, ……………… 4分因为使得n a m ≤成立的n 的最大值为m b ,所以11b =,232b b ==,45673b b b b ====,89154b b b ====,1617315b b b ====,3233506b b b ====, ……………… 6分所以12350243b b b b ++++=. ……………… 8分(Ⅲ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 9分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 10分设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=, 所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾,所以22a =. ……………… 11分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 12分13 / 16因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a . ……………… 13分北京市西城区2014年高三二模试卷参考答案及评分标准高三数学(文科)选填解析一、选择题 1. 【答案】D【解析】解:{}{}20|2A x x x x =-<=<,{}1B x x => 所以AB ≠∅.故选D .2. 【答案】A【解析】解:因为()()212i 1i 1i 2i 3i z =+-=+-=+,则对应的坐标为(3,1);故选A .3. 【答案】C【解析】解:Q 直线2y x =为双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线,∴2ba=, 2215c a e a b∴==+=.故选C .4. 【答案】D【解析】解:由三视图知,几何体为正四棱锥,如图所示, 则{2,17}A =. 故选D .5. 【答案】B【解析】解:由()0⋅-=a b c ,可得()⊥-a b c (包含0=a 或0-=b c ),故推不出=b c ,所以“()0⋅-=a b c ”是“=b c ”不充分条件;而由=b c ,得0-=b c ,进一步可得()0⋅-=a b c ,故“()0⋅-=a b c ”是“=b c ”的必要条件. 故选B .6. 【答案】A【解析】解:因为(0,π)A ∈,1cos 3A =,所以22sin 3A =;由正弦定理,得223sin 23sin 42b AB a⨯⋅===,又b a <,所以B A <,所以B 为锐角;所以π4B =. 故选A15 / 167. 【答案】D【解析】解:如图画出224,4,()log ,4x x x f x x x ⎧-+⎪=⎨>⎪⎩≤的图象;若使函数()y f x =在区间(,1)a a +上单调递增,则12a +…或4a …解得实数a 的取值范围是(][),14,-∞+∞.故选D .8. 【答案】B【解析】解:易知,()[1,2],()[1,2]x y Ω∈Ω∈,且同时取得最小值和最大值,故()()x y Ω+Ω的取值范围是[2,22]. 故选B .二、填空题9. 【答案】2,2n【解析】解:4162413a a d -===-,221(1)2n n n S na d n n n n -=+⨯=+-=. 故答案为2,2n .10.【答案】3【解析】解:抛物线2:4C y x =的准线为1x =-,由抛物线的定义知,抛物线上的点到焦点的距离等于其到准线的距离,所以MF =3. 故答案为3.11.【答案】2-【解析】解:列表法a32-13- 123 2-跳出循环i1 2 3456故答案为2-. 12.【答案】12【解析】解:如图,画出平面区域α和平面区域β,则概率等于44112882OCDE AB S S ⨯==⨯⨯△O .故答案为12.13.【答案】223【解析】解:在翻折过程中,底面BCD 保持不变,当AO ⊥底面B C D 时,四面体A BCD -的体积最大为1122222323⨯⨯⨯⨯=. 故答案为223.14.【答案】8,{1,2}.【解析】解:依题意, (3,5)538f =+=;当1x …时,2x x >恒成立,所以(2,)24x x f x x =-…, 因为*x ∈N ,所以1,2x =,所以x 的集合为{1,2}. 故答案为8,{1,2}.。
2014年北京市西城区高三数学查缺补漏试题2014.5一、选择题1.已知23loglog 1x y <<,那么( )(A)3x y << (B )3y x << (C )3y x <<(D)3x y <<2.(理)在直角坐标系xOy 中,直线l 的参数方程为2,12x t y t=+⎧⎨=-⎩(t 为参数),设直线l 的倾斜角为θ,则tan θ=( ) (A )2 (B )2- (C )5(D )5-3.“0,0a b >>"是“曲线221axby +=为椭圆”的()(A)充分而不必要条件 (B )必要而不充分条件 (C)充分必要条件(D )既不充分也不必要条件4.设函数()sin f x x =的导函数为()f x ',那么要得到函数()f x 的图象,只需将()f x '的图象( ) (A )向左平移π4个单位(B )向右平移π4个单位(C )向左平移π2个单位(D )向右平移π2个单位5.已知函数()log(2)1mf x x =-+(0m >,且1m ≠)的图象恒过点P ,且点P 在直线1(0,0)ax by a b +=>>上,那么ab 的( ) (A )最大值为14(B )最小值为14(C )最大值为12(D )最小值为126. 在约束条件1,0,2a x y x y ⎧⎪⎨⎪+⎩≥≥≤下,设目标函数z x y =+的最大值为M ,则当46a ≤≤时,M的取值范围是( )(A)[3,5](B )[2,4](C)[1,4] (D )[2,5]7.某三棱锥的三视图是三个全等的等腰直角三角形,且正(主)视图如图所示,则此三棱锥的表面积为((A )6+ (B ) (C )(D ),或6+8.根据市场调查,预测某种家用商品从年初开始的n 个月内累积的需求量nS (万件)近似地满足2(215)90nnSn n (1,2,,12)n ,按此预测,在本年内,需求超过1。
2014西城区高三(上)期末数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合A={x|0<x<2},B={x|x﹣1≥0},则集合A∩B=()A.(0,1) B.(0,1]C.(1,2) D.[1,2)2.(5分)已知复数z满足z=,那么z的虚部为()A.﹣1 B.﹣i C.1 D.i3.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=3,b=2,cos(A+B)=,则c=()A.4 B.C.3 D.4.(5分)执行如图的程序框图,输出的S等于()A.B.C.D.5.(5分)已知圆C:(x+1)2+(y﹣1)2=1与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是()A.y=x+2﹣B.y=x C.y=x﹣2D.y=x+16.(5分)若曲线ax2+by2=1为焦点在x轴上的椭圆,则实数a,b满足()A.a2>b2B.C.0<a<b D.0<b<a7.(5分)定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2﹣x,则当x∈[﹣2,﹣1]时,f(x)的最小值为()A.﹣B.﹣C.﹣D.08.(5分)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点P在对角线BD1上,过点P作垂直于BD1的平面α,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,则当x∈[1,5]时,函数y=f(x)的值域为()A.[2,6]B.[2,18]C.[3,18]D.[3,6]二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)在平面直角坐标系xOy中,点A(1,3),B(﹣2,k),若向量,则实数k=.10.(5分)若等差数列{a n}满足a1=,a4+a6=5,则公差d=;a2+a4+a6+…+a20=.11.(5分)已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为.12.(5分)甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是.(用数字作答)13.(5分)如图,B,C为圆O上的两个点,P为CB延长线上一点,PA为圆O的切线,A为切点.若PA=2,BC=3,则PB=;=.14.(5分)在平面直角坐标系xOy中,记不等式组所表示的平面区域为D.在映射T:的作用下,区域D内的点(x,y)对应的象为点(u,v).(1)在映射T的作用下,点(2,0)的原象是;(2)由点(u,v)所形成的平面区域的面积为.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数f(x)=cosωx,g(x)=sin(ωx﹣)ω>0),且g(x)的最小正周期为π.(Ⅰ)若f(α)=,α∈[﹣π,π],求α的值;(Ⅱ)求函数y=f(x)+g(x)的单调增区间.16.(13分)如图所示茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a的值;(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;(Ⅲ)当a=2时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.17.(14分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点.(Ⅰ)求证:AC⊥平面BDEF;(Ⅱ)求直线DH与平面BDEF所成角的正弦值;(Ⅲ)求二面角H﹣BD﹣C的大小.18.(13分)已知函数f(x)=(x+a)e x,其中e是自然对数的底数,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当a<1时,试确定函数g(x)=f(x﹣a)﹣x2的零点个数,并说明理由.19.(14分)已知A,B是抛物线W:y=x2上的两个点,点A的坐标为(1,1),直线AB的斜率为k,O为坐标原点.(Ⅰ)若抛物线W的焦点在直线AB的下方,求k的取值范围;(Ⅱ)设C为W上一点,且AB⊥AC,过B,C两点分别作W的切线,记两切线的交点为D,求|OD|的最小值.20.(13分)设无穷等比数列{a n}的公比为q,且a n>0(n∈N*),[a n]表示不超过实数a n的最大整数(如[2.5]=2),记b n=[a n],数列{a n}的前n项和为S n,数列{b n}的前n项和为T n.(Ⅰ)若a1=4,q=,求T n;(Ⅱ)若对于任意不超过2014的正整数n,都有T n=2n+1,证明:()<q<1.(Ⅲ)证明:S n=T n(n=1,2,3,…)的充分必要条件为:a1∈N*,q∈N*.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【解答】由B中的不等式解得:x≥1,即B={x|x≥1},∵A={x|0<x<2},∴A∩B={x|1≤x<2}=[1,2).故选D2.【解答】z===1+i,∴z的虚部为1.故选:C.3.【解答】∵cos(A+B)=,∴cosC=﹣,在△ABC中,a=3,b=2,cosC=﹣,∴c2=a2+b2﹣2abcosC=9+4﹣=17,∴c=.故选:D.4.【解答】根据题意,本程序框图为求和运算第1次循环:S=0+n=2第2次循环:S=+n=3…第4次循环:S═++…+n=5此时,n=5输出S=1﹣=故选B.5.【解答】由题意,M为直线y=﹣x与圆的一个交点,代入圆的方程可得:(x+1)2+(﹣x﹣1)2=1.∵劣弧的中点为M,∴x=,∴,∵过点M的圆C的切线的斜率为1,∴过点M的圆C的切线方程是y﹣1+=x﹣+1,即y=x+2﹣.故选A.6.【解答】由题意,曲线ax2+by2=1可化为.∵曲线ax2+by2=1为焦点在x轴上的椭圆,∴,∴b>a>0.故选C.7.【解答】当x∈[﹣2,﹣1]时,x+2∈[0,1],∴f(x+2)=(x+2)2﹣(x+2)=x2+3x+2,又f(x+1)=2f(x),∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),∴4f(x)=x2+3x+2(﹣2≤x≤﹣1),∴f(x)=(x2+3x+2)=﹣(﹣2≤x≤﹣1),∴当x=﹣时,f(x)取得最小值﹣.故选:A.8.【解答】∵正方体ABCD﹣A1B1C1D1的棱长为2,∴正方体的对角线长为6,∵x∈[1,5],∴x=1或5时,三角形的周长最小,设截面正三角形的边长为t,则由等体积可得,∴t=,∴y min=;x=2或4时,三角形的周长最大,截面正三角形的边长为2,∴y max=6.∴当x∈[1,5]时,函数y=f(x)的值域为[3,6].故选D.二、填空题:本大题共6小题,每小题5分,共30分.9.【解答】∵=(1,3),=(﹣2,k)﹣(1,3)=(﹣3,k﹣3),向量,∴=(1,3)•(﹣3,k﹣3)=﹣3+3(k﹣3)=0,解得k=4.故答案为:4.10.【解答】等差数列{a n}满足a1=,a4+a6=5=2a5,∴a5=,∴=+4d,则公差d=.∴a2+a4+a6+…+a20=10(a1+d)+×2d=10×1+45=55,故答案为:,55.11.【解答】由正三棱柱的侧视图可知该三棱柱是平放着的三棱柱,如图:其中三棱柱的棱长为2,则三棱柱的正视图为矩形ABCD,其中AB=2,AD为正三角形的高,即AD=,∴此三棱柱正(主)视图的面积为2×,故答案为:2.12.【解答】由题意知本题需要分步来解,第一步甲大学生选实习公司,有=6种方法,第二步乙大学生选实习公司,有=4种方法,由乘法原理得:两人所选的实习单位中恰有1个相同的选法有6×4=24种.故答案是24.13.【解答】∵PA是圆O的切线,PBC是割线,∴PA2=PB•PC,∵PA=2、BC=3,∴22=PB•(PB+3),解得PB=1(舍负).∵PA切圆O于点A,∴∠BAP=∠C,又∵∠APB=∠CPA,∴△CPA∽△APB,可得==2.故答案为:1,214.【解答】不等式组所表示的平面区域D如图,(1)由,解得:.∴在映射T的作用下,点(2,0)的原象是(1,1).(2)由,得.代入不等式组,得.可行域如图,∴点(u,v)所形成的平面区域的面积为.故答案为:(1)(1,1);(2)π.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.【解答】(Ⅰ)解:因为g(x)=sin(ωx﹣)的最小正周期π,∴,解得ω=2,由f(α)=,得=,即,∴2,k∈Z,∵α∈[﹣π,π],∴α∈{};(Ⅱ)函数y=f(x)+g(x)=+=+sin2xcos﹣cos2xsin=sin2x+cos2x=sin(2x+),由,解得kπ﹣,所以函数y=f(x)+g(x)的单调增区间为[kπ﹣],k∈Z.16.【解答】(Ⅰ)由甲、乙两个小组的数学平均成绩相等,得,解得a=1;(Ⅱ)设“乙组平均成绩超过甲组平均成绩”为事件A,a的取值有:0,1,2,…,9共有10种可能.由(Ⅰ)可知,当a=1时甲、乙两个小组的数学平均成绩相同,∴当a=2,…,9时,乙组平均成绩超过甲组平均成绩,共有8种可能.∴乙组平均成绩超过甲组平均成绩的概率P(A)=;(Ⅲ)设“这两名同学的数学成绩之差的绝对值不超过(2分)”为事件B,当a=2时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有3×3=9种,它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92).∴事件B的结果有7种,它们是:(88,90),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92).∴两名同学的数学成绩之差的绝对值不超过(2分)的概率P(B)=.17.【解答】(Ⅰ)证明:∵四边形ABCD是菱形,∴AC⊥BD.又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,∴AC⊥平面BDEF;(Ⅱ)解:设AC∩BD=O,取EF的中点N,连接ON,∵四边形BDEF是矩形,O,N分别为BD,EF的中点,∴ON∥ED,∵ED⊥平面ABCD,∴ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.∴以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.∵底面ABCD是边长为2的菱形,∠BAD=60°,BF=3,∴A(0,﹣,0),B(1,0,0),D(﹣1,0,0),E(﹣1,0,3),F(1,0,3),C(0,,0),H(,,)∵AC⊥平面BDEF,∴平面BDEF的法向量=(0,2,0).设直线DH与平面BDEF所成角为α,∵=(,,),∴sinα=|cos<,>|=||=,∴直线DH与平面BDEF所成角的正弦值为;(Ⅲ)解:由(Ⅱ),得=(﹣,,),=(2,0,0).设平面BDH的法向量为=(x,y,z),则令z=1,得=(0,﹣,1)由ED⊥平面ABCD,得平面BCD的法向量为=(0,0,﹣3),则cos<,>==﹣,由图可知二面角H﹣BD﹣C为锐角,∴二面角H﹣BD﹣C的大小为60°.18.【解答】(Ⅰ)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=﹣a﹣1.当x变化时,f(x)和f′(x)的变化情况如下:故f(x)的单调减区间为(﹣∞,﹣a﹣1);单调增区间为(﹣a﹣1,+∞).(Ⅱ)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x﹣a)﹣x2,得方程xe x﹣a=x2,显然x=0为此方程的一个实数解.所以x=0是函数g(x)的一个零点.当x≠0时,方程可化简为e x﹣a=x.设函数F(x)=e x﹣a﹣x,则F′(x)=e x﹣a﹣1,令F′(x)=0,得x=a.当x变化时,F(x)和F′(x)的变化情况如下:即F(x)的单调增区间为(a,+∞);单调减区间为(﹣∞,a).所以F(x)的最小值F(x)min=F(a)=1﹣a.因为a<1,所以F(x)min=F(a)=1﹣a>0,所以对于任意x∈R,F(x)>0,因此方程e x﹣a=x无实数解.所以当x≠0时,函数g(x)不存在零点.综上,函数g(x)有且仅有一个零点.19.【解答】(Ⅰ)抛物线y=x2的焦点为(0,).…(1分)由题意,得直线AB的方程为y﹣1=k(x﹣1),…(2分)令x=0,得y=1﹣k,即直线AB与y轴相交于点(0,1﹣k).…(3分)∵抛物线W的焦点在直线AB的下方,∴1﹣k>,解得k<.…(5分)(Ⅱ)设B(x1,x12),C(x2,x22),则∵A(1,1)且AB⊥AC,∴即(x1+x2)+x1•x2=﹣2﹣﹣﹣﹣﹣﹣(6分)又∵y′=2x,∴B、C处的切线的斜率为k1=2x1,k2=2x2,∴B、C处的切线方程为y﹣x12=2x1(x﹣x1)和y﹣x22=2x2(x﹣x2),联立解得D(,x1•x2)﹣﹣﹣﹣﹣﹣(8分)设x1x2=t,由(x1+x2)+x1•x2=﹣2得=﹣1﹣,∴|OD|2=(﹣1﹣)2+t2=t2+t+1﹣﹣﹣﹣﹣(10分)当t=﹣时,|OD|2min=,∴|OD|min=﹣﹣﹣﹣﹣(12分)20.【解答】(Ⅰ)解:∵等比数列{a n}中,a1=4,q=,∴a1=4,a2=2,a3=1,且当n>3时,0<a n<1.…(1分)∵b n=[a n],∴b1=4,b2=2,b3=1,且当n>3时,b n=[a n]=0.…(2分)∴T n=.…(3分)(Ⅱ)证明:∵T n=2n+1(n≤2014),∴b1=T1=3,b n=T n﹣T n﹣1=2,(2≤n≤2014).…(4分)∵b n=[a n],∴a1∈[3,4),a n∈[2,3),(2≤n≤2014).…(5分)由q=,得q<1.…(6分)∵∈[2,3),∴,∴,即()<q<1.…(8分)(Ⅲ)证明:(充分性)∵a1∈N*,q∈N*,∴∈N*,∴b n=[a n]=a n对一切正整数n都成立.∴S n=a1+a2+…+a n,T n=b1+b2+…+b n,∴S n=T n.…(9分)(必要性)∵对于任意的n∈N*,S n=T n,当n=1时,由a1=S1,b1=T1,得a1=b1;当n≥2时,由a n=S n﹣S n﹣1,b n=T n﹣T n﹣1,得a n=b n.对一切正整数n都有a n=b n.由,a n>0,得对一切正整数n都有,…(10分)公比q=为正有理数.…(11分)假设q不属于N*,令q=,其中p,r∈,r≠1,且p与r的最大公约数为1.∵a1是一个有限整数,∴必然存在一个整数k(k∈N),使得a1能被r k整除,而不能被r k+1整除.又∵,且p与r的最大公约数为1.不属于Z,这与(n∈N*)矛盾.∴a k+2∴q∈N*.∴.…(13分)。
北京市西城区2014-2015学年度高三第一学期期末试数学理第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1{}A -=,2{|2}B x x x =-<,则集合A B =( )(A ){1,0,1}-(B ){1,0}-(C ){0,1}(D ){1,1}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin 4B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )75.设函数()3cos f x x b x =+,x ∈R ,则“0b =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件2.设命题p :∀平面向量a 和b ,||||||-<+a b a b ,则p ⌝为( )(A )∀平面向量a 和b ,||||||-+≥a b a b (B )∃平面向量a 和b ,||||||-<+a b a b (C )∃平面向量a 和b ,||||||->+a b a b(D )∃平面向量a 和b ,||||||-+≥a b a b8. 设D 为不等式组1,21,21x y x y x y ---+⎧⎪⎨⎪⎩≤≥≤表示的平面区域,点(,)B a b 为坐标平面x O 内一点,若对于区域D 内的任一点(,)A x y ,都有1OA OB ⋅≤成立,则a b +的最大值等于( ) (A )2 (B )1 (C )0(D )3第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数2i12iz -=+,则||z = _____.10.设12,F F 为双曲线C :2221(0)16x y a a -=>的左、右焦点,点P 为双曲线C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为____.6.一个四棱锥的三视图如图所示,那么对于这个四棱锥,下列说法中正确的是( ) (A(B )最长棱的棱长为3(C )侧面四个三角形中有且仅有一个是正三角形 (D )侧面四个三角形都是直角三角形7. 已知抛物线2:4C y x =,点(,0)P m ,O 为坐标原点,若在抛物线C 上存在一点Q ,使得90OQP?o ,则实数m 的取值范围是( )(A )(4,8) (B )(4,)+ (C )(0,4)(D )(8,)+侧(左)视图正(主)视图俯视图11.在右侧的表格中,各数均为正数,且每行中的各数从左到右成等差数列,每列中的各数从上到下成等比数列,那么x y z ++=______.12. 如图,在ABC ∆中,以BC 为直径的半圆分别交AB ,AC 于点E ,F ,且2AC AE =,那么AFAB=____;A ∠= _____. 13.现要给4个唱歌节目和2个小品节目排列演出顺序,要求2个小品节目之间恰好有3个唱歌节目,那么演出顺序的排列种数是______. (用数字作答)14. 设P ,Q 为一个正方体表面上的两点,已知此正方体绕着直线PQ 旋转()角后能与自身重合,那么符合条件的直线PQ 有_____条.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()cos cos 442x x xf x =+, x ∈R 的部分图象如图所示. (Ⅰ)求函数()f x 的最小正周期和单调递增区间;(Ⅱ) 设点B 是图象上的最高点,点A 是图象与x 轴的交点,求BAO ∠tan 的值.16.(本小题满分13分)现有两种投资方案,一年后投资盈亏的情况如下: (1)投资股市:(2)购买基金:(Ⅰ)当4p =时,求q 的值; (Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值范围; (Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p =,16q =,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面A B C D ,90BAD ∠=,BC AD //,且122A A AB AD BC ==== ,点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)证明:1A F ∥平面1BCE ; (Ⅱ)若E 是棱AB 的中点,求二面角1A EC D --的余弦值; (Ⅲ)求三棱锥11B A EF -的体积的最大值.18.(本小题满分13分)已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值; (Ⅱ)已知a b =,求切点P 的坐标.19.(本小题满分14分)B CDA B 1C 1E FA 1 D 1已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)Pm m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,求证:12||||S PM S PN =.20.(本小题满分13分)设函数()(9)f x x x =-,对于任意给定的m 位自然数0121m m n a a a a -=(其中1a 是个位数字,2a 是十位数字,),定义变换A :012()()()()m A n f a f a f a =+++. 并规定(0)0A =.记10()n A n =,21()n A n =,, 1()k k n A n -=,.(Ⅰ)若02015n =,求2015n ;(Ⅱ)当3m ≥时,证明:对于任意的*()m m ∈N 位自然数n 均有1()10m A n -<; (Ⅲ)如果*010(,3)m n m m <∈≥N ,写出m n 的所有可能取值.(只需写出结论)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.D 3.A 4.C 5.C 6.D 7.B 8.A 二、填空题:本大题共6小题,每小题5分,共30分.9.1 10.221416x y -=11.17412.12 π313.9614.13注:第10,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) (Ⅰ)解:因为()cos cos 442x x xf x =+cos 22x x=+ ……………… 2分=π2sin()26x +, ……………… 4分所以 2π4π12T ==. 故函数()f x 的最小正周期为4π. ……………… 6分由题意,得πππ2π2π2262x k k -++≤≤, 解得4π2π4π4π+33k x k -≤≤, 所以函数()f x 的单调递增区间为4π2π[4π,4π+],()33k k k -∈Z . ……………… 9分(Ⅱ)解:如图过点B 作线段BC 垂直于x由题意,得33π4TAC ==,2=BC ,所以2tan 3πBC BAO AC ∠==.16.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种,且三种投资结果相互独立, 所以p +13+q =1. ……………… 2分 又因为14p =, 所以q =512. ……………… 3分 (Ⅱ)解:记事件A 为 “甲投资股市且盈利”,事件B 为“乙购买基金且盈利”,事 件C 为“一年后甲、乙两人中至少有一人投资获利”, ……………… 4分则C AB AB AB =U U ,且A ,B 独立.由上表可知, 1()2P A =,()P B p =. 所以()()()()P C P AB P AB P AB =++ ……………… 5分 111(1)222p p p =?+? 1122p =+. ……………… 6分因为114()225P C p =+>,所以35p >. ……………… 7分 又因为113p q ++=,0q ≥,所以23p ≤.所以3253p ≤<. ……………… 8分(Ⅲ)解:假设丙选择“投资股票”方案进行投资,且记X 为丙投资股票的获利金额(单位:万元),所以随机变量X 的分布列为:…………… 9分则113540(2)2884EX =⨯+⨯+-⨯=. ……………10 分假设丙选择“购买基金”方案进行投资,且记Y 为丙购买基金的获利金额(单位:万元),所以随机变量Y 的分布列为:…………… 11分则111520(1)2366EY =⨯+⨯+-⨯=. …………… 12分因为EX EY >,所以丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.……… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D .又因为平面ABCD 平面1A ECF EC =,平面1111A BC D 平面11A ECF A F =,所以1A F ∥EC . …………………2分 又因为1A F ⊄平面1BCE ,EC ⊂平面1BCE , 所以1A F ∥平面1BCE . …………………4分 (Ⅱ)解:因为1AA ⊥底面ABCD ,90BAD ∠=,所以1AA ,AB ,AD 两两垂直,以A 为原点,以AB ,AD ,1AA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系. …………………5分则1(0,0,2)A ,(1,0,0)E ,(2,1,0)C ,所以 1(1,0,2)A E =-,1(2,1,2)AC =-. 设平面1A ECF 的法向量为(,,),m x y z = 由10AE m ⋅=,10AC m ⋅=, 得20,220.x z x y z -=⎧⎨+-=⎩令1z =,得(2,2,1)m =-. …………………7分 又因为平面DEC 的法向量为(0,0,1)n =, …………………8分 所以1cos ,3||||m n m n m n ⋅<>==⋅,由图可知,二面角1A EC D --的平面角为锐角,所以二面角1A EC D --的余弦值为13. …………………10分(Ⅲ)解:过点F 作11FM A B ⊥于点M ,因为平面11A ABB ⊥平面1111A BCD ,FM ⊂平面1111A B C D , 所以FM ⊥平面11A ABB ,所以11111113B A EF F B A E A B E V V S FM --∆==⨯⨯ …………………12分1222323FM FM ⨯=⨯⨯=. 因为当F 与点1D 重合时,FM 取到最大值2(此时点E 与点B 重合), 所以当F 与点1D 重合时,三棱锥11B A EF -的体积的最大值为43. ………………14分18.(本小题满分13分) (Ⅰ)解:由题意,得21()1e e ea bf =-=-, …………………1分 且()2f x ax b '=-,1()g x x'=, …………………3分 由已知,得11()()e ef g ''=,即2e eab -=, 解得22e a =,3e b =. …………………5分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………6分 由②,得 1(21)a s s =-,其中12s ≠,代入①,得 1ln 21s s s -=-. (*) …………………7分因为 10(21)a s s =>-,且0s >, 所以 12s >. …………………8分设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞,则 2(41)(1)()(21)x x F x x x ---'=-. …………………9分 令()0F x '= ,解得1x =或14x =(舍). …………………10分当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………12分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在, 则有 21S S =,||||PM PN =,符合题意. …………6分若直线l 的斜率存在,则设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N . 由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为 8)2(8)2(8822112211--+--=-+-=+x x k x x k x y x y k k PN PM ……………… 10分 )8)(8()8)(2()8)(2(211221----+--=x x x x k x x k)8)(8(32)(102212121--++-=x x kx x k x kx0)8)(8(323416103448162212222=--++⋅-+-⋅=x x k k k k k k k ,所以 MPF NPF ∠=∠. ……………… 12分因为PMF ∆和PNF ∆的面积分别为11||||sin 2S PF PM MPF =⋅⋅∠, 21||||sin 2S PF PN NPF =⋅⋅∠, ……………… 13分 所以12||||S PM S PN =. ……………… 14分20.(本小题满分13分)(Ⅰ)解:114082042n =+++=,2201434n =+=,3182038n =+=,418826n =+=,5141832n =+=,6181432n =+=,……所以 201532n =. ……………… 3分(Ⅱ)证明:因为函数2981()(9)()24f x x x x =-=--+,所以对于非负整数x ,知()(9)20f x x x =-≤.(当4x =或5时,取到最大值)… 4分 因为 12()()()()m A n f a f a f a =+++,所以 ()20A n m ≤. ……………… 6分 令 1()1020m g m m -=-,则31(3)102030g -=-⨯>.当3m ≥时,11(1)g()1020(1)1020910200m m m g m m m m --+-=-+-+=⨯->, 所以 (1)g()0g m m +->,函数()g m ,(m ∈N ,且3m ≥)单调递增.故 g()g(3)0m >≥,即11020()m m A n ->≥.所以当3m ≥时,对于任意的m 位自然数n 均有1()10m A n -<. …………………9分 (Ⅲ)答:m n 的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.…………………14分。
北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )(A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞2.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B (C (D4.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A Î,且4A Î (BA ,且4A Î(C ) 2A Î,且A (DAA5.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是( )(A )1(B )2(C )π2(D )π7. 在平面直角坐标系xOy 中,不等式组0,0,80x y x y ⎧⎪⎨⎪+-⎩≥≥≤所表示的平面区域是α,不等式组4100,0x y ⎧⎨⎩≤≤≤≤所表示的平面区域是β. 从区域α中随机取一点(,)P x y ,则P 为区域β内的点的概率是( ) (A )14(B )35(C )34(D )15正(主)视图俯视图侧(左)视图8. 设Ω为平面直角坐标系xOy 中的点集,从Ω中的任意一点P 作x 轴、y 轴的垂线,垂足分别为M ,N ,记点M 的横坐标的最大值与最小值之差为()x Ω,点N 的纵坐标的最大值与最小值之差为()y Ω.若Ω是边长为1的正方形,给出下列三个结论: ○1 ()x Ω○2 ()()x y Ω+Ω的取值范围是; ○3 ()()x y Ω-Ω恒等于0.其中所有正确结论的序号是( ) (A )○1(B )○2○3(C )○1○2(D )○1○2○3第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.61()x x+的二项展开式中,常数项为______. 10. 在△ABC 中,若4a =,3b =,1cos 3A =,则sin A =_____;B =_____. 11.如图,AB 和CD 是圆O 的两条弦, AB 与CD 相交于点E ,且4CE D E ==,:4:1AE BE =,则 AE =______;ACBD=______.12.执行如图所示的程序框图,输出的a 值为______.C D. O E BA13. 设抛物线24C y x =:的焦点为F ,M 为抛物线C 上一点,(2,2)N ,则||||MF MN +的取值范围是 .14. 已知f 是有序数对集合**{(,)|,}M x y x yN N =挝上的一个映射,正整数数对(,)x y 在映射f 下的象为实数z ,记作(,)f x y z =. 对于任意的正整数,()m n m n >,映射f 由下表给出:则(3,5)f =__________,使不等式(2,)4x f x ≤成立的x 的集合是_____________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,点(cos )A θθ,(sin ,0)B θ,其中θ∈R .(Ⅰ)当2π3θ=时,求向量AB 的坐标; (Ⅱ)当π[0,]2θ∈时,求||AB 的最大值.16.(本小题满分13分)为了解某校学生的视力情况,现采用随机抽样的方式从该校的A ,B 两班中各抽5名学生进行视力检测.检测的数据如下:A 班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.B 班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?(Ⅱ)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)(Ⅲ) 现从A 班的上述5名学生中随机选取3名学生,用X 表示其中视力大于4.6的人数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在三棱锥ABC P -中,PA ⊥底面ABC ,AC BC ⊥,H 为PC 的中点, M 为AH 的中点,2PA AC ==,1BC =. (Ⅰ)求证:⊥AH 平面PBC ; (Ⅱ)求PM 与平面AHB 成角的正弦值; (Ⅲ)设点N 在线段PB 上,且PNPBλ=,//MN 平面ABC ,求实数λ的值.18.(本小题满分13分)已知函数12e ()44x f x ax x +=++,其中a ∈R .(Ⅰ)若0a =,求函数()f x 的极值;(Ⅱ)当1a >时,试确定函数()f x 的单调区间.19.(本小题满分14分)设,A B 是椭圆22: 143x y W +=上不关于坐标轴对称的两个点,直线AB 交x 轴于点M (与ACPHM点,A B 不重合),O 为坐标原点.(Ⅰ)如果点M 是椭圆W 的右焦点,线段MB 的中点在y 轴上,求直线AB 的方程; (Ⅱ)设N 为x 轴上一点,且4OM ON ⋅=,直线AN 与椭圆W 的另外一个交点为C ,证明:点B 与点C 关于x 轴对称.20.(本小题满分13分)在无穷数列{}n a 中,11a =,对于任意*n ∈N ,都有*n a ∈N ,1n n a a +<. 设*m ∈N , 记使得n a m ≤成立的n 的最大值为m b .(Ⅰ)设数列{}n a 为1,3,5,7,,写出1b ,2b ,3b 的值;(Ⅱ)若{}n b 为等差数列,求出所有可能的数列{}n a ; (Ⅲ)设p a q =,12p a a a A +++=,求12q b b b +++的值.(用,,p q A 表示)北京市西城区2014年高三二模试卷参考答案及评分标准高三数学(理科) 2014.5一、选择题:本大题共8小题,每小题5分,共40分.1.D 2.B 3.A 4.D 5.B 6.B 7.C 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.20 10.3 π411.8 2 12.13- 13.[3,+)∞14.8 {1,2}注:第10,11,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由题意,得(sin cos ,)AB θθθ=-, ……………… 2分当 2π3θ=时,2π2π1sin cos sin cos 332θθ+-=-=, ……………… 4分2π3θ==所以 AB =. ……………… 6分(Ⅱ)解:因为 (sin cos ,)AB θθθ=-,所以 222||(sin cos )()AB θθθ=-+ ……………… 7分21sin 22sin θθ=-+ ……………… 8分 1sin 21cos 2θθ=-+- ……………… 9分π2)4θ=+. ………………10分因为π2θ≤≤,所以ππ5π2444θ+≤≤. ………………11分所以当π5π244θ+=时,2||AB取到最大值2||2()32AB=-=,……12分即当π2θ=时,||AB………………13分16.(本小题满分13分)(Ⅰ)解:A班5名学生的视力平均数为A4.3+5.1+4.6+4.1 4.9==4.65x+,…………2分B班5名学生的视力平均数为B5.1+4.9+4.0+4.0 4.5==4.55x+. ………………3分从数据结果来看A班学生的视力较好. ………………4分(Ⅱ)解:B班5名学生视力的方差较大. ………………7分(Ⅲ)解:由(Ⅰ)知,A班的5名学生中有2名学生视力大于4.6.则X的所有可能取值为0,1,2. ………………8分所以3335C1(0)C10P X===;………………9分213235C C3(1)C5P X===;………………10分123235C C3(2)C10P X===. ………………11分所以随机变量X………………12分故1336()012105105E X=⨯+⨯+⨯=. ………………13分17.(本小题满分14分)(Ⅰ)证明:因为 PA ⊥底面ABC ,BC ⊂底面ABC ,所以 PA BC ⊥, ……………… 1分 又因为 AC BC ⊥, PAAC A =,所以 ⊥BC 平面PAC , ……………… 2分 又因为 ⊂AH 平面PAC ,所以 BC AH ⊥. ……………… 3分 因为 ,AC PA =H 是PC 中点, 所以 AH PC ⊥, 又因为 PCBC C =,所以 ⊥AH 平面PBC . ……………… 5分 (Ⅱ)解:在平面ABC 中,过点A 作,BC AD // 因为 ⊥BC 平面PAC , 所以 ⊥AD 平面PAC ,由 PA ⊥底面ABC ,得PA ,AC ,AD 两两垂直,所以以A 为原点,AD ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴如图建立空间直角坐标系,则(0,0,0)A ,(0,0,2)P ,(1,2,0)B ,(0,2,0)C ,(0,1,1)H ,11(0,,)22M . ……………… 6分设平面AHB 的法向量为(,,)x y z =n ,因为 (0,1,1)AH =,(1,2,0)AB =,由 0,0,AH AB ⎧⋅=⎪⎨⋅=⎪⎩n n 得 0,20,y z x y +=⎧⎨+=⎩ 令1=z ,得(2,1,1)=-n . ……………… 8分 设PM 与平面AHB 成角为θ,因为)23,21,0(-=PM ,所以sin cos ,PM PM PM θ⋅=<>==⋅n n n, 即 sin 15θ=.……………… 10分(Ⅲ)解:因为 (1,2,2)PB =-,PN PB λ=,所以 (,2,2)PN λλλ=-, 又因为 13(0,,)22PM =-, 所以 13(,2,2)22MN PN PM λλλ=-=--. ……………… 12分 因为 //MN 平面ABC ,平面ABC 的法向量(0,0,2)AP =, 所以 340MN AP λ⋅=-=, 解得 43=λ. ……………… 14分18.(本小题满分13分)(Ⅰ)解:函数1e ()44x f x x +=+的定义域为{|x x ∈R ,且1}x ≠-. ……………… 1分11122e (44)4e 4e ()(44)(44)x x x x xf x x x ++++-'==++. ……………… 3分令()0f x '=,得0x =,当x 变化时,()f x 和()f x '的变化情况如下:……………… 5分故()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间为(0,)+∞. 所以当0x =时,函数()f x 有极小值e(0)4f =. ……………… 6分 (Ⅱ)解:因为 1a >,所以 22244(2)(1)0ax x x a x ++=++->,所以函数()f x 的定义域为R , ……………… 7分求导,得12112222e (44)e (24)e (42)()(44)(44)x x x ax x ax x ax a f x ax x ax x +++++-++-'==++++,…… 8分令()0f x '=,得10x =,242x a=-, ……………… 9分 当 12a <<时,21x x <,当x 变化时,()f x 和()f x '的变化情况如下:故函数()f x 的单调减区间为(2,0)a -,单调增区间为(,2)a-∞-,(0,)+∞. ……………… 11分当 2a =时,210x x ==,因为12222e ()0(244)x x f x x x +'=++≥,(当且仅当0x =时,()0f x '=) 所以函数()f x 在R 单调递增. ……………… 12分 当 2a >时,21x x >,当x 变化时,()f x 和()f x '的变化情况如下:故函数()f x 的单调减区间为4(0,2)a-,单调增区间为(,0)-∞,4(2,)a-+∞. 综上,当 12a <<时,()f x 的单调减区间为4(2,0)a -,单调增区间为4(,2)a-∞-,(0,)+∞;当 2a =时,函数()f x 在R 单调递增;当 2a >时,函数()f x 的单调减区间为4(0,2)a-;单调增区间为(,0)-∞,4(2,)a -+∞. ……………… 13分19.(本小题满分14分)(Ⅰ)解:椭圆W 的右焦点为(1,0)M , ……………… 1分因为线段MB 的中点在y 轴上,所以点B 的横坐标为1-, 因为点B 在椭圆W 上,将1x =-代入椭圆W 的方程,得点B 的坐标为3(1,)2-±. ……………… 3分 所以直线AB (即MB )的方程为3430x y --=或3430x y +-=.…………… 5分 (Ⅱ)证明:设点B 关于x 轴的对称点为1B (在椭圆W 上),要证点B 与点C 关于x 轴对称, 只要证点1B 与点C 重合,.又因为直线AN 与椭圆W 的交点为C (与点A 不重合),所以只要证明点A ,N ,1B 三点共线. ……………… 7分 以下给出证明:由题意,设直线AB 的方程为(0)y kx m k =+≠,11(,)A x y ,22(,)B x y ,则122(,)B x y -.由 223412,,x y y kx m ⎧+=⎨=+⎩得 222(34)84120k x kmx m +++-=, ……………… 9分 所以 222(8)4(34)(412)0km k m ∆=-+->,122834km x x k +=-+,212241234m x x k -=+. ……………… 10分在y kx m =+中,令0y =,得点M 的坐标为(,0)mk-, 由4OM ON ⋅=,得点N 的坐标为4(,0)km-, ……………… 11分 设直线NA ,1NB 的斜率分别为NA k ,1NB k ,则 1211122121212444444()()NA NB k kx y y x y y y y m m k k k k k k x x x x m m m m+⨯++⨯--=-=++++ ,………12分 因为 21112244k k x y y x y y m m+⨯++⨯ 21112244()()()()k k x kx m kx m x kx m kx m m m=+++⨯++++⨯2121242()()8k k x x m x x k m=++++2222412482()()()83434m k kmk m k k m k -=⨯++-+++ 22323824832243234m k k m k k k k k---++=+ 0=, ……………… 13分所以 10NA NB k k -=,所以点A ,N ,1B 三点共线,即点B 与点C 关于x 轴对称. ……………… 14分20.(本小题满分13分)(Ⅰ)解:11b =,21b =,32b =. ……………… 3分 (Ⅱ)解:由题意,得1231n a a a a =<<<<<,结合条件*n a ∈N ,得n n a ≥. ……………… 4分 又因为使得n a m ≤成立的n 的最大值为m b ,使得1n a m +≤成立的n 的最大值为1m b +,所以11b =,*1()m m b b m +∈N ≤. ……………… 5分 设2 a k =,则 2k ≥. 假设2k >,即2 >2a k =,则当2n ≥时,2n a >;当3n ≥时,1n k a +≥. 所以21b =,2k b =. 因为{}n b 为等差数列, 所以公差210d b b =-=, 所以1n b =,其中*n ∈N . 这与2(2)k b k =>矛盾,所以22a =. ……………… 6分 又因为123n a a a a <<<<<,所以22b =,由{}n b 为等差数列,得n b n =,其中*n ∈N . ……………… 7分 因为使得n a m ≤成立的n 的最大值为m b , 所以n n a ≤,由n n a ≥,得n n a =. ……………… 8分(Ⅲ)解:设2 (1)a k k =>,因为123n a a a a <<<<<,所以1211k b b b -====,且2k b =,所以数列{}n b 中等于1的项有1k -个,即21a a -个; ……………… 9分 设3 ()a l l k =>, 则112l k k b b b -+====, 且3l b =,所以数列{}n b 中等于2的项有l k -个,即32a a -个; ……………… 10分 ……以此类推,数列{}n b 中等于1p -的项有1p p a a --个. ……………… 11分 所以1221321(1())))2((p q p b b b a a a a a p a p -++=-+--+-+++121(1)p p a a p a a p -=-----++121()p p p pa p a a a a -=+-++++(1)p q A =+-.即12(1)q q A b b b p ++++=-. ……………… 13分。
北京市西城区2014年高三二模试卷数 学(理科) 2014.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ) (A )(,2]-∞-(B )[2,)-+∞(C )(,2]-∞(D )[2,)+∞解析:{|20}{|2}A x x x x =-<=<,,A B A A B =⊆,所以满足2a ≥,所以答案选择D.知识点;集合与常用逻辑用语--------集合的运算 难度系数:22.在复平面内,复数2=(12i)z +对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限解析:22=(12i)14434z i i i +=++=-+,所以复数对应的点(-3,4)点在第二象限。
知识点; 推理与证明、数系的扩充与复数--------复数---复数乘除和乘方 难度系数:23.直线2y x =为双曲线2222 1(0,0)x y C a b a b-=>>:的一条渐近线,则双曲线C 的离心率是( )(A (B (C(D解析:双曲线的渐近线方程为b y x a =±,2222222,,5,5,bc a b c a e e a∴==+===,所以答案为C知识点:解析几何---------圆锥曲线--------双曲线 难度系数:34.某四棱锥的三视图如图所示,记A 为此棱锥所有棱的长度的集合,则( ) (A ) 2A ∈,且4A ∈ (BA ,且4A ∈(C ) 2A ∈,且A (DAA解析:的正方形,高为4的正四棱锥,所以每个D 。
知识点:立体几何-------空间几何体----------空间几何体的三视图和直观图 难度系数:25.设平面向量a ,b ,c 均为非零向量,则“()0⋅-=a b c ”是“=b c ”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件解析:平面向量a ,b ,c 均为非零向量,()0⋅-=a b c ,可以得出=b c 或者()⊥-a b c ;所以为必要不充分条件。
2014年北京市西城区高三数学查缺补漏试题2014.5 一、选择题1. 已知23log log 1x y <<,那么( ) (A )3x y << (B )3y x << (C )3y x << (D )3x y <<2. (理)在直角坐标系xOy 中,直线l 的参数方程为2,12x t y t=+⎧⎨=-⎩(t 为参数),设直线l 的倾斜角为θ,则tan θ=( ) (A )2 (B )2- (C )5 (D )5-3. “0,0a b >>”是“曲线221ax by +=为椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件4. 设函数()sin f x x =的导函数为()f x ',那么要得到函数()f x 的图象,只需将()f x '的图象( )(A )向左平移π4个单位 (B )向右平移π4个单位 (C )向左平移π2个单位(D )向右平移π2个单位5. 已知函数()log (2)1m f x x =-+(0m >,且1m ≠)的图象恒过点P ,且点P 在直线1(0,0)ax by a b +=>>上,那么ab 的( )(A )最大值为14 (B )最小值为14(C )最大值为12 (D )最小值为126. 在约束条件1,0,2a x y x y ⎧⎪⎨⎪+⎩≥≥≤下,设目标函数z x y =+的最大值为M ,则当46a ≤≤时,M 的取值范围是( )(A )[3,5](B ) [2,4](C )[1,4](D ) [2,5]7. 某三棱锥的三视图是三个全等的等腰直角三角形,且正(主)视图如图所示,则此三棱锥的表面积为( )(A)6+ (B)(C) (D),或6+8. 根据市场调查,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足2(215)90n nS n n =--(1,2,,12)n =L ,按此预测,在本年内,需求超过1.5万件的月份是( ) (A )4月,5月 (B ) 5月,6月 (C )6月,7月 (D )7月,8月二、填空题9. 函数1, 0,()3e , 0x x x f x xx ⎧+>⎪=⎨⎪+⎩≤的最小值为______;函数()f x 与直线4y =的交点个数是______个.10. (理)在直角坐标系xOy 中,点M 为曲线C :3cos ,sin x y θθ=+⎧⎨=⎩(θ为参数)上一点. O 为坐标原点,则|OM |的最小值为________.11. 函数1π()sin()(0)26f x x ωω=+>, x ∈R 的部分图象如右图所示. 设M ,N 是图象上的最高点,P 是图象上的最低点,若PMN ∆为等腰直角三角形,则ω=____.12. ABC D 的顶点A ,B ,C 在正方形网格中的位置如图所示.则cos()B C +=_______.13. (理)如图,在△PAC 中,2PA =,90PAC ∠=,30PCA ∠=.以AC为直径的圆交PC 于点D ,PB 为圆的切线,B 为切点,则PD =______;BCBD=______.ABC正(主)视图14. (理)湖中有四个小岛,它们的位置恰好近似构成四边形的四个顶点,若要搭3座桥将它们连接起来,则不同的建桥方案有_________种.15. 数列{}n a 中,112a =,111n n na a a ++=-(其中*n ∈N ),则6a =____;使得12372n a a a a ++++≥成立的n的最小值是 .16. 粗细都是1cm 一组圆环依次相扣,悬挂在某处,最上面的圆环外直径是20cm ,每个圆环的外直径皆比它上面的圆环的外直径少1cm.那么从上向下数第3个环底部与第1个环顶部距离是 ; 记从上向下数第n 个环底部与第一个环顶部距离是n a ,则n a =三、解答题17. 已知函数2()(2cos sin 2)tan 1f x x x x =+-.(1)求函数()f x 的定义域和最小正周期; (2)当3π[,0]8x ∈-时,求函数()f x 的最大值和最小值.18. 已知向量(cos ,sin )x x =-a ,(cos ,cos )x x =b ,设()1,f x x =⋅∈R a b+.(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调减区间.19. 如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点.且点A ,B 的纵坐标分别为35,1213. (1)若将点B 沿单位圆逆时针旋转π2到达C 点, 求点C 的坐标; (2)求tan()αβ+的值.20. (理)甲、乙两人参加A ,B ,C 三个科目的学业水平考试,他们考试成绩合格的概率如下表. 设每人每个科目考试相互独立.(1)求甲、乙两人中恰好有1人科目B 考试不合格的概率; (2)求甲、乙两人中至少有1人三个科目考试成绩都合格的概率;(3)设甲参加学业水平考试成绩合格的科目数为X ,求随机变量X 的分布列和数学期望.21. 高三年级某班的所有考生全部参加了“语文”和“数学”两个科目的学业水平考试. 其中“语文”和“数学”的两科考试成绩的数据统计如下图(按[)0,10,[)10,20,,[80,90),[90,100]分组)所示,其中“数学”科目的成绩在[)70,80分数段的考生有16人.(1)求该班考生“语文”科目成绩在[)90,100分数段的人数;(2)根据数据合理估计该班考生“数学”科目成绩的平均分,并说明理由;(3)若要从“数学”科目分数在[)50,60和[)90,100之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[)50,60之间的概率;22. 已知等比数列{}n a 的前n 项和为n S ,*121()n n a S n +=+∈N . ①求1a 的值;②设等差数列{}n b 的公差0d <,前n 项和n T 满足315T =,且11a b +,2233,a b a b ++成等比数列,求n T .图2频率图1a23. 已知等差数列{}n a 的前n 项和为n S ,且27126a a a ++=-,20110S =-. ①求数列{}n a 的通项n a ;②若等比数列{}n b 的前n 项和为n T ,14b =,公比12q =-,且对任意的*,m n ∈N ,都有n m S T t <+,求实数t 的取值范围.24. 如图,在矩形ABCD 中,AB =6, BC =32, 沿对角线BD 将三角形ABD 向上折起,使点A 移至点P ,且点P在平面BCD 上的射影O 在DC 上. ①求证:BC PD ⊥;②判断PDC ∆是否为直角三角形,并证明; ③(文)求三棱锥M BCD -的体积.(理)若M 为PC 的中点,求二面角B DM C --的大小.25. (文)如图,四棱锥P ABCD -的底面ABCD 是圆内接四边形(记此圆为W ),且⊥PA 平面ABCD ,. ①当AC 是圆W 的直径时,求证:平面⊥PBC 平面PAB ;②当BD 是圆W 的直径时,2PA BD ==,AD CD ==求四棱锥P ABCD -的体积;③在②的条件下,证明:直线AB 不可能与平面PCD 平行.CB26. (理)如图,四棱锥P ABCD -的底面ABCD 是圆内接四边形(记此圆为W ),⊥PA 平面ABCD ,2PA BD ==,AD CD ==(1)当AC 是圆W 的直径时,求证:平面⊥PBC 平面PAB ; (2)当BD 是圆W 的直径时,求二面角A PD C --的余弦值;(3)在(2)的条件下,判断棱P A 上是否存在一点Q ,使得//BQ 平面PCD ? 若存在,求出AQ 的长,若不存在,说明理由.27. 已知函数f (x )=x -sin x -13ax 3,其中a ∈R . (1)当a =1时,求函数g (x )=f (x )+sin x 的极值;(2)当0a <时,证明:函数f (x )在R 是单调函数.28. 设椭圆22143x y +=, 点,B C 分别是其上下顶点, 点A 在椭圆上且位于第一象限. 直线AB 交x 轴于点M , 直线AC 交x 轴于点N . (1)若0AB AM +=, 求A 点坐标;(2)若AMN ∆的面积大于OCN ∆的面积, 求直线AB 的斜率的取值范围.CB29. (理)设12,F F 分别为椭圆22: 162x y W +=的左、右焦点,斜率为(0)k k >直线l 经过右焦点2F ,且与椭圆W 相交于,A B 两点.(1)如果线段2F B 的中点在y 轴上,求直线l 的方程; (2)如果1ABF ∆为直角三角形,求直线l 的斜率k .30. 椭圆22220:1()x y W a ba b +=>>的焦距为4,短轴长为2,O 为坐标原点.(1) 求椭圆W 的方程;(2) 设,,A B C 是椭圆W 上的三个点,判断四边形OABC 能否为矩形?并说明理由.高三数学查缺补漏试题参考答案2014.5 一、选择题1. A2. B3. B4.D5. A6. A7. D8. D 二、填空题9. 2,3 10. 211. π 12. 13. 1,2 14. 1615. 3,238 16. 53 23742n n n a -++=(118n ≤≤)三、解答题17. (1)定义域{|,x x ∈R 且ππ+,}2x k k ≠∈Z . 周期π.(2)最小值π()8f -=3π()08f -=.18. (1)周期π.(2)3π7π[π,π]()88k k k ++∈Z . 19. (1)125(,)1313C --. (2)3356-.20. (1)12. (2)1340. (3)23()12E X =.21. (1)5人. (2)76.5. (3)35.22. (1)11a =. (2)2205n T n n =-. 23. (1)5n a n =-+. (2)8t >.24. (1)略. (2)是,90DPC ∠=. (3)(文)(理)60.25. (1)略. (2 (3)略.26. (1)略. (2)25. (3)存在,23AQ =.2228. (1)2A . (2)11(,0)(0,)22k ∈-.29. (1)证明:椭圆W 的左焦点1(2,0)F -,右焦点为2(2,0)F ,因为线段2F B 的中点在y 轴上,所以点B 的横坐标为2-, 因为点B 在椭圆W 上,将2x =-代入椭圆W 的方程,得点B 的坐标为(2,3-±.所以直线AB (即l )的方程为20x +-=或20x --=. (2)解:因为1ABF ∆为直角三角形,所以o 190BF A ∠=,o 190BAF ∠=,或o190ABF ∠=. 当o 190BF A ∠=时 ,设直线AB 的方程为(2)y k x =-,11(,)A x y ,22(,)B x y ,由 221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得 2222(13)121260k x k x k +-+-=, 所以 2222(12)4(13)(126)0k k k ∆=-+->,12221213k x x k +=+,212212613k x x k -=+.由o190BF A ∠=,得110F A F B ⋅=,因为111(2,)F A x y =+,122(2,)F B x y =+, 所以111212122()4F A F B x x x x y y ⋅=++++21212122()4(2)(2)x x x x k x x =++++-- 2221212(1)(22)()44k x x k x x k =++-+++222222212612(1)(22)4401313k k k k k k k-=+⨯+-⨯++=++,当o 190BAF ∠=(与o 190ABF ∠=相同)时,则点A 在以线段12F F 为直径的圆224x y +=上,也在椭圆W 上,由 22221,624,x y x y ⎧+=⎪⎨⎪+=⎩解得A,或(A,或1)A -,或(1)A -,因为直线l 的斜率为0k >,所以由两点间斜率公式,得2k =+2k =综上,直线l的斜率k =2k =+2k =1ABF ∆为直角三角形. 30. (1)由题意,椭圆W 的方程为2215x y +=. (2)设:AC y kx m =+, 1122(,),,(),C x A x y y AC 中点00(,)M x y , 33(,)B x y ,2222255(15)10550x y k x kmx m y kx m⎧+=⇒+++-=⎨=+⎩, 222(10)4(15)(55)0km k m ∆=-+->,1221015km x x k +=-+, 21225515m x x k -=+. (1) 由条件OA OC ⊥,得12120x x y y +=,即1212()()0x x kx m kx m +++=,整理得221212(1)()0k x x km x x m ++++=,将(1)式代入得 2222(1)(55)(10)(15)0k m km km m k +-+-++=即 22655m k =+ (2) 又20125215x x km x k +==-+, 00215m y kx m k =+=+ 且M 同时也是OB 的中点, 所以30302,2x x y y ==因为B 在椭圆上, 所以223355x y +=, 即 02024205x y +=,222254()20()51515km m k k -+=++, 所以 22451m k =+ (3)由(2)(3) 解得2272,5k m ==, 验证知222(10)4(15)(55)1200km k m ∆=-+-=>,所以四边形OABC 可以为矩形.说明:1、 提供的题目并非一套试卷,小题(选、填)主要针对较难题,大体相当于选择的5,6,7,8和填空的12,13,14题的位置,也有部分题目针对复习的一些“盲点”设计。