第六章 平面直角坐标系(★确定版★10.5页)
- 格式:doc
- 大小:341.50 KB
- 文档页数:11
第六章平面直角坐标系第一节:知识梳理一、学习目标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.能在方格纸上建立适当的坐标系,描述物体的位置.3.在同一坐标系中,感受图形变换后点的坐标变化.4.能灵活应用不同的方式确定物体的位置.二、知识网络根据知识网络结构图,按其中数码顺序,说出各个数码所指内容,以达到梳理知识的目的.三、思想方法1.“由特殊到一般”“由一般到特殊”的思想,如图形的平移过程是通过图形上的一个点或几个点的坐标变化研究的,这些都体现了“由特殊到一般”的思想,而“由点与图形的平移”规律去解决图形的平移问题,又体现了“由一般到特殊”的思想.2.对应的思想,具体表现在平面直角坐标系中的一个点对应着一对有序数对,即点的坐标;而每一对有序数对确定的坐标对应着平面中的一个点.3.数形结合的思想,具体表现在借助平面直角坐标系把几何问题转化为代数问题,同时也可以把代数问题转化为几何问题,就是每一个有序数对(坐标)对应着平面上的一个点.第二节、错解剖析【例1】小虎正确地描出了各点,把它们连接起来,涂上阴影,如图所示.小虎兴奋地说:“真没想到,分布在四个象限内的这些点,居然能连成一只可爱的小猫.”不料,此话一出,又遭到小新的反对:“你说的话有毛病,坐标系内的点并不是都分布在四个象限中,还有些点在坐标轴上,它们不属于任何一个象限.比如,本题中(-2,0),(2,0),(3,0)三个点在横轴上,(0,-2),(0,2),(0,4)三个点在纵轴上”.小虎马上更正:“我说错了,我忘了在坐标轴上的点不属于任何象限,就像在横轴上的点都不能在纵轴一样.”没想到,小新又纠正道:“这话也有问题,原点是一个特殊的点,它既在横轴上,也在纵轴上.”这时,老师又问了小虎一个问题:“你能根据这只猫眼睛的大致位置,说出它们的坐标分别是什么吗?”小虎思考了一下,答道:“它两只眼睛的坐标分别是(-1.5,2.5)和(-0.5,2.5).”老师肯定了他的回答,又布置了一道思考题:请在坐标系中,描出到横轴距离为4、到纵轴距离为5的点.小虎一听,不假思索地说:“这有什么难的,不就是描出坐标为(4,5)的点吗?”他边说边在图中画出点M,没等画完就发现自己错了,急忙更正:“哦——错了!到横距离为4,不是说横坐标为4;到纵轴距离为5,也不是说纵坐标为5.所以,这个点的坐标不是(4,5),而应该是(5,4),这个点N才符合条件——这次,总该没错了吧.”小新一听,说:“你考虑得不全面,还有三个点呢.你看,点P(5,-4),Q(-5,-4)和R(-5,4)三个点是不是也符合条件,别忘了距离是非负数,一个点到横轴的距离是它的纵坐标的绝对值,到纵轴的距离是它的横坐标的绝对值.”第三节、思维点拨一、坐标平面内三角形面积的求法1.有一边在坐标轴上或平行于坐标轴【例1】如图,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?【思考与解】根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值,所以三角形ABC的面积为S△ABC=BC×AO=×4×3=6.2.三边均不与坐标轴平行【例2】平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?【思考与分析】由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图,过点A、C分别作平行于y轴的直线,与过点B平行于x轴的直线交于点D、E,则四边形ADEC为梯形.因为A(-3,-1),B(1,3),C(2,-3),所以AD=4,CE=6,DB=4,BE=1,DE=5.所以三角形ABC的面积为(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.【小结】本题也可以把三角形ABC分割为两个三角形,转化为1中的情况求解,大家不妨试试.二、平面直角坐标系内四边形面积的求法【例3】如图,你能求出四边形ABCD的面积吗?【思考与分析】四边形ABCD是不规则的四边形,面积不能直接求,我们可以利用分割或补形来求.解法一:将四边形ABCD分割成如上图所示的直角三角形和直角梯形.由各顶点坐标可知DE=3,CE=2, EF=3,CF=5,BF=2,AF=4.所以四边形ABCD的面积为DE×CE+BF×CF+×(DE+AF)×EF=×3×2+×5×2+(3+4)×3=18.5.解法二:如下图,分别过点A、D作平行于y轴的直线,与过点C平行于x轴的直线交于点E、F.由各顶点坐标可知AB=6,AE=5,CE=4,EF=1,FC=3,DF=2.所以四边形ABCD的面积为(CE+AB)×AE-DF×CF-(DF+AE)×EF=×(4+6)×5-×2×3-(2+5)×1=18.5.三、由点的位置确定坐标【例4】如图,小强告诉小华,图中A 点和B 点的坐标分别为(-1,7)和(-3,5),小华一下就说出了C在同一坐标系下的坐标,你知道是多少吗?【思考与分析】我们先由A点和B 点的坐标确定它们所在的坐标系,从而确定C 点的位置.解: C点的坐标是(3,5).四、由坐标确定图的形状和位置【例5】在平面直角坐标系中,描出下列各组点,并用线段顺次连结起来,观察所得到的图形,说说它像什么?(1)(1,1),(2,0),(7,0),(8,2),(6,1),(1,1);(2)(6,1),(6,8);(3)(5,7),(7,8),(7,3),(5,4),(5,7);(4)(2,1),(6,7).【思考与解】解决本题,首先要理解本题的顺次连结,就是将每一组中的各点顺次连结起来.建立平面直角坐标系,通过描点,连线,可以发现,所得到的图案是一只帆船(如图).五、由坐标确定坐标系【例6】如下图,B,C两点的坐标分别是B(2,3),C(4,3),那么(0,0),(0,4),(4,0),(0,-2),(2,-1)及(4,-1)各是哪点的坐标?图中有和x轴平行的线段吗?有和y轴平行的线段吗?有互相平行的线段吗?【思考与分析】由B点和C点的坐标可知,图中的单位长度等于小正方形的边长,根据有序数对(a,b)的有序性,先在x轴上找到a,再在y轴找到b,分别过a,b作x,y轴的垂线,两垂线的交点就是有序数对(a,b)的对应点.解:(0,0),(0,4),(4,0),(0,-2),(2,-1)及(4,-1)对应的点分别是O、A、D、G、F、E.BC、EF平行于x轴,CE、BF平行于y轴;BC平行于EF,BF平行于AG、CE. 【例7】在纸上建立直角坐标系,根据点的坐标描出下列各点:(0,0),(5,3),(3,0),(5,1),(5,-1),(4,-2),然后按照(0,0)→(5,3)→(3,0)→(5,1)→(5,-1)→(3,0)→(4,-2)→(0,0)的顺序用线段连结起来.(1)看看你得到的图案像什么?(2)如果把这些点的横坐标都加上1,纵坐标都减去2.再按照原来的顺序将得到的各点用线段连结起来,这个图案与原图案在大小、形状、位置上有什么变化?【思考与解】(1)建立平面直角坐标系,将各点描出,连结后我们可以得到一条可爱的小鱼,如图1.(2)如果把这些点的横坐标都加上1,纵坐标都减去2,再按原来的顺序连结,仍得到一条小鱼,这条小鱼的大小、形状与原来的完全一样,它的位置可以看作将原来的小鱼向右平移1个单位长度,然后再向下平移两个单位长度得到,如图2.【例8】如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,….对称中心分别是A、B、O、A、B、O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.【思考与解】根据所给的坐标可以知道O为坐标原点.由于点P1与点P2关于点A对称,且P1的坐标是(1,1),所以P2的坐标是(1,-1);点P2与点P3关于点B对称,所以P3的坐标是(-1,3);点P3与P4关于点O对称,所以P4的坐标是(1,-3);点P4与点P5关于点A对称,所以P5的坐标是(1,3);点P5与点P6关于点B对称,所以P6的坐标是(-1,-1);点P6与点P7关于点O对称,所以P7的坐标是(1,1),这样的话P7与P1重合.依次类推,反复循环,可以知道P8与P2重合、P9与P3重合、P10与P4重合、P11与P5重合、P12与P6重合、P13与P7重合(即与P1重合),由此推断,点Pn是以6为一个周期进行循环的.因此100除以6商是16余数为4,因此P n的坐标与P6的坐标相等为(1,-3).答案为P2(1,-1), P7(1,1),P100(1,-3).【小结】通过以上分析,在平面直角坐标系中,与点的坐标有关的探索问题中点的变化都是有周期性变化的.希望同学们认真探索、总结,以便做到熟能生巧.第四节、竞赛数学【例1】如果点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点P在第几象限?【分析】若抓住对称点的坐标特性这一解题关键,则可由点M(1-x,1-y)与点N(1-x,y-1)的横坐标相等、纵坐标互为相反数,知两点关于x轴对称,从而可确定出点N在第三象限.于是,点N关于原点的对称点P在第一象限.解法一:∵点M(1-x,1-y)在第二象限,∴1-x<0,1-y>0.∴y-1<0,则点N(1-x,y-1)在第三象限.∵点P与点N关于原点对称,∴点P在第一象限.解法二:∵点M(1-x,1-y)与点N(1-x,y-1)关于x轴对称,且点M在第二象限,∴点N在第三象限.∵点P与点N关于原点对称,∴点P在第一象限.【小结】(1)若不能根据题设条件获得1-x与y-1的正、负情况,就没有解法一;(2)若不能发现点M与点N之间的对称关系,就没有解法二.(3)有序实数对与坐标上的点一一对应,这就使得数与形结合起来.解题时可根据条件,运用数形结合的思想灵活解题.【例2】国际象棋、中国象棋和围棋号称世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多;“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线所经过的每一个小方格.在如图乙的小方格棋盘中有一“皇后Q”,她所在的位置可用“(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.【分析与解】注意行与列的区别,点(2,3)的意义是第3行、第2列.故“皇后Q”可控制整个第3行和第2列,还可以控制(1,4),(3,2),(4,1)和(1,2),(3,4).不能被该“皇后Q”所控制的四个位置是(1,1),(3,1),(4,2),(4,4). 【例3】如图.围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为________.【思考与解】本题平面直角坐标系中的横坐标用英文字母表示,根据坐标点位置的意义,易知白棋⑨的位置应记为(D,6).【例4】五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【思考与分析】由对弈规则可知:只有当任一方向(包括直线和斜线)上有五个子连在一起时才能获胜,观察棋盘,不难发现,甲必须首先截断乙方的(2,6),(3,5)和(4,4)三颗白子,故必须在(1,7)或(5,3)处落子,方可不败.解:甲必须在(1,7)或(5,3)处落子,因为若甲不首先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.第五节、本章训练基础训练题1.如图,将平行四边形ABCD向右平移2个单位长度,可以得到平行四边形A′B′C′D′,再将平行四边形A′B′C′D′向上平移2个单位长度,可以得到平行四边形A″B″C″D″,画出平移后的图形,并写出平行四边形A″B″C″D″各个顶点的坐标.2.在如图所示的国际象棋棋盘中,双方四只马的位置分别是A(b,3),B(d,5),C(f,7),D(h,2),请在图中描出它们的位置.3.如图是一个8×8的球桌,小明用A球撞击B球,到C处反弹,再撞击桌边D处.请选择适当的坐标系,并用坐标表示各点的位置.答案1.解:如图,A″(1,0),B″(5,0),C″(6,3),D″(2,3).2.解:如图:3.解:以A为坐标原点,则B(2,1),C(6,3),D(-1,6).提高训练题1.如图所示的直角坐标系中,四边形ABCD各顶点坐标分别为A(0,0),B(5,0),C(7,3),D(3,6),你能求出这个四边形的面积吗?2.已知长方形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,-2),则长方形的面积是多少?答案1.解:如图:S四边形ABCD = S四边形AEFG - S三角形ADG - S三角形BCE - S三角形CDF=7×6-×6×3-×(7-5)×3-×(7-3)×(6-3)= 42-9-3-6= 24.2.解:因为点B的坐标为(3,-2),所以AB=|-2|=2,BC=3.所以长方形的面积为2×3=6.强化训练题1.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.2.小明家在学校以东150m,再向北100m处,张明同学家在学校以西50m,再往南200m 处,王玲同学家在学校以南150m处,建立适当的直角坐标系,在直角坐标系中画出这三位同学家的位置,并用坐标表示出来.2.如图为一辆公交车的得驶路线示意图,“●”表示停靠点,现在请你帮助小明完成对该公交车行驶的路线描述:起点站→(1,1)→…→终点站.答案1.解:如图:2.解:如图:3.解:起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→(2,8).综合训练题一、填空题(每题7分,共35分)1.已知点M(-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M在新坐标系内的坐标为 .2.小红将直角坐标系中的点A的横坐标乘2再加2,纵坐标减2再除以2,点A恰好落在原点上,则点A的坐标是 .3.若A(a,6),B(0,2)两点在同一条直线上,则a的值为 .4.已知点(a,b)在x轴负半轴上,则点(a-b,b-a)在象限.5.如图所示,如果小力的位置可表示为(2,3),则小红的位置应表示为 .二、选择题(每题7分,共35分)6.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比().A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以37.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的().A.东南方向B.东北方向C.西南方向D.西北方向8.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A 与A′的关系是().A.关于x轴对称B.关于y轴对称C.关于原点对称D.将A点向x轴负方向平移一个单位9. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C(5,4),最后爬到D(5,5),则小虫一共爬行了()个单位.A. 7B. 6C. 5D. 410. 已知点M1(-1,0)、M2(0,-1)、M3(-2,-1)、M4(5,0)、 M5(0,5)、M6(-3,2),其中在x轴上的点的个数是().A. 1 个B. 2 个C. 3个D. 4个三、解答题(每题15分,共30分)1. 如图是某城市的交通网络图,横向的行称为“道”,如第一大道,第二大道等,纵向的列称为“路”,如1路,2路等. 如图中的车,就在“第一大道2路”的位置.(1)想一想,如果只用“道”或“路”能不能确定一个点的位置?(2)如图的车,要到第五大道3路处,又要使路程最短,你能想出几种方法?12.已知点P(2,3)(1)在坐标平面内画出点P;(2)分别求出点P关于x轴、y轴的对称点P1、P2.(3)求三角形P1PP2的面积.答案一、1. (-1,5) 2. (-1,2) 3. 04. 第二5. (3,4)二、6.A 7.B 8.B 9.B 10.B三、11. 【解题思路】(1)在平面上确定点的位置至少需要两个数据.(2)车到第五大道3路去的路线很多,可先列出几条较近的再择优选取.解:(1)只用“道”或“路”一个数,不能确定点的位置.(2)要使路程最短,共有五种方法.①(1,2)→(2,2)→(3,2)→(4,2)→(5,2)→(5,3)②(1,2)→(2,2)→(3,2)→(4,2)→(4,3)→(5,3)③(1,2)→(2,2)→(3,2)→(3,3)→(4,3)→(5,3)④(1,2)→(2,2)→(2,3)→(3,3)→(4,3)→(5,3)⑤(1,2)→(1,3)→(2,3)→(3,3)→(4,3)→(5,3)12.【解题思路】我们可以看到,本题分三问,每一问都是下一问的基础,因此我们不能因为前边的问题简单而麻痹大意,因为一步错,步步错.所以我们必须认真对待,一丝不苟的完成解:(1)如图:(2)P1(2,-3),P2(-2,3).(3)如图:=PP1×PP2=×6×4=12.。
第六章“平面直角坐标系”简介(新)伟大的法国数学家笛卡儿(Descartes 1596-1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点.他进而又创立了解析几何学,把相互对立着的“数”与“形”统一了起来,他的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域.正如恩格斯所说“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了.”平面直角坐标系架起了数与形之间的桥梁.提前安排平面直角坐标系是本套教科书体系安排上的一个特点.原教科书有关平面直角坐标系的内容只有2课时,放在初中三年级“函数”一章,作为学习函数的基础知识来安排的.这套教科书将“平面直角坐标系”单独设章,8个课时,放在7年级下学期学习,目的是让学生尽早接触平面直角坐标系这种数学工具,尽早感受数形结合的思想.本章教学时间约需7课时,具体分配如下(仅供参考):6.1 平面直角坐标系 3课时6.2 坐标方法的简单应用 3课时数学活动小结 1课时一、教科书内容和课程学习目标(一)本章知识结构(二)内容安排本章的主要内容包括平面直角坐标系的有关概念和点与坐标(均为整数)的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容.教科书首先从实际中需要确定物体的位置(如确定电影院中座位的位置以及确定教室中学生座位的位置等)出发,引出有序数对的概念,指出利用有序数对可以确定物体的位置,由此联想到是否可以用有序数对表示平面内点的位置的问题,结合数轴上确定点的位置的方法,引出平面直角坐标系,学习平面直角坐标系的有关概念,如横轴、纵轴、原点、坐标、象限,建立点与坐标(整数)的对应关系等.对于坐标方法的简单应用,本章主要学习平面直角坐标系在确定地理位置和表示平移变换中的应用.用坐标表示地理位置体现了坐标系在实际生活中的应用.本章在安排这部分内容时,首先设置一个观察栏目,让学生观察地图上是怎样利用坐标表示一个地点的地理位置的,从中得到启发,来学习建立坐标系,确定一个地点的地理位置的方法.接下去教科书设置了一个探究栏目,要求学生画出一幅地图,标出学校和三位同学家的位置.要用平面直角坐标系表示地理位置,就要考虑如何建立坐标系的问题,首先是确定原点和坐标轴的正方向,教科书选用了以学校为原点,向东为x轴正方向,向北为y轴正方向建立坐标系,并确定一定的比例尺,根据三位同学家的位置情况,在坐标系中标出了这些地点的位置,并归纳给出绘制平面示意图的一般过程.用坐标表示平移,从数的角度刻画了第五章平移的内容,本章主要研究点(或图形)的平移(上、下、左、右平移)引起的点(或图形顶点)坐标的变化,以及点(或图形顶点)坐标的变化引起的点(或图形)的平移.教科书首先设置一个探究栏目,分析在平面直角坐标系中,将一个已知点向右(或向左)平移某个单位长度得到一个新点,这个点的坐标与平移前的点的坐标有什么关系,同样如果将这个点分别向上(或向下)平移某个单位长度得到新的点,这个点与平移前点的坐标又有什么关系,通过分析平移前后点的坐标的变化,发现坐标的变化规律,比如将一个点向右平移某个单位长度,平移后得到的点的坐标是纵坐标不变,横坐标加上这个单位长度;对于图形的平移引起的图形顶点坐标的变化,教课书是在练习中给出的,让学生自己完成.从这个练习的安排上可以看出,本套教材对于练习有一种新的考虑,就是练习不全是对正文内容的复习和巩固,有些练习是正文的一部分,是正文内容的延伸和拓展.接下去教科书讨论了一个三角形顶点坐标的某种有规律变化,引起的三角形的平移.比如,将三角形三个顶点的横坐标都减去某个正数,纵坐标不变,得到三个新的点,连接这三个点,得到一个新的三角形,这个新三角形与原来的三角形在大小、形状和位置上有什么关系等,通过探究发现这两个三角形大小形状完全相同,只是位置不同,实际上是对三角形进行了平移,在此基础上教科书归纳给出有关的规律.(三)课程学习目标1.通过实例认识有序数对,感受它在确定点的位置中的作用;2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数);3.能在方格纸中建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用;4.在同一平面直角坐标系中,能用坐标表示平移变换.通过研究平移与坐标的关系,使学生看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换;5.结合实例,了解可以用不同的方式确定物体的位置.二、本章编写特点(一)注意加强知识间的相互联系平面直角坐标系是以数轴为基础的,两者之间存在着密切的联系.平面直角坐标系是由两条相互垂直、原点重合的数轴构成的,坐标平面内点的坐标是根据数轴上点的坐标定义的,平面内点与坐标的对应关系类似于数轴上点与坐标的对应关系等.本章编写时注意突出了平面直角坐标系与数轴的联系.对于平面直角坐标系的引入,教科书首先从学生熟悉的数轴出发,给出点在数轴上的坐标的定义,建立点与坐标的对应关系,在此基础上,教科书类比着数轴,探讨了在平面内确定点的位置的方法,引出平面直角坐标系,给出平面直角坐标系的有关概念.这样通过加强平面直角坐标系与数轴的联系,可以帮助学生更好地理解点与坐标的对应关系,顺利地实现由一维到二维的过渡.(二)突出数形结合的思想,体现平面直角坐标系的作用无论是在数学还是在其他领域,平面直角坐标系都有着非常广泛的应用.在数学科学中,由于平面直角坐标系的引入,架起了数与形之间的桥梁,使得我们可以用几何的方法研究代数问题,又可以用代数的方法研究几何问题.对于平面直角坐标系的这种桥梁作用,本套教科书给予了充分重视.本章中,编写了利用坐标的方法研究平移的内容,从数的角度刻画平移变换,这就用代数的方法对几何问题进行了研究,体现了平面直角坐标系在数学中的作用.通过本章的学习,让学生看到平面直角坐标系的引入,加强了数与形之间的联系,它是解决数学问题的一个强有力的工具.用坐标表示地理位置体现了坐标系在实际生活中的应用.用经纬度表示地球上一个地点的地理位置,用极坐标表示区域内地点的位置,以及用平面直角坐标表示区域内地点的位置等,实际上都是利用了有序数对与点的对应关系,是坐标与点一一对应思想的表现.教科书突出了这种对应关系,利用这种对应关系研究了如何建立坐标系用坐标表示地理位置的问题,使学生体会坐标思想在解决实际问题中的作用.(三)注重学生的认知规律本章编写时,改变了原教科书从数学的角度引出坐标系的做法,而是将本章内容的编写仅仅围绕着确定物体的位置展开,从实际生活中确定物体的位置出发引出坐标系,也就是从实际需要引出坐标系这个数学问题,然后展开对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,最后再利用坐标系解决生活中确定地理位置的问题,让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.也就是经历了一个由实践—理论—实践的认识过程.(四)内容编写生动生动活泼本章编写时,注意结合本章内容的特点,将枯燥的数学问题赋予有趣的实际背景,使内容更符合学生的年龄特点,激发学生学习数学的兴趣.例如教科书习题6.2的第1题“三架飞机P、Q、R保持编队飞行,分别写出它们的坐标.30秒后,飞机P飞到P位置,飞机Q、R飞到了什么位置?分别写出这三架飞机新位置的坐标”,这个问题实际上是一个三角形平移的问题,再比如,让学生画出本学校的平面示意图,用坐标表示动画制作过程中小鸭子的位置变化,用坐标表示某地古树名木的位置等.从数学上讲,这些都是关于点与坐标对应关系的问题,本章编写时注意给这些数学问题加上一个有趣的背景,增加学生学习本章内容的兴趣.三、几个值得关注的问题(一)密切联系实际本章内容的编写仅仅围绕着确定物体的位置展开.教科书首先从建国50周年庆典中的背景图案、确定电影院中座位的位置以及确定教室中学生座位的位置等实际出发,引出有序数对,进而引入平面直角坐标系.通过对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,然后再利用坐标系解决生活中确定地理位置的问题(如确定同学家的位置等),让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.这样的一种处理,不是从数学角度引入平面直角坐标系,而是密切联系生活实际,从实际的需要出发学习直角坐标系.教学中可以结合学生的实际情况,利用学生周围熟悉的素材学习本章内容,让学生充分感受平面直角坐标系在解决实际问题中的作用.(二)准确把握教学要求对于某些重要的概念和方法,本套教科书采用了螺旋上升的编排方式.例如,对于平移变换,教课书首先在上一章“相交线与平行线”中安排了一节“平移”,探讨得出“对应点的连线平行且相等”等平移变换的基本性质;在本章又安排了一小节“用坐标表示平移”的内容,用坐标刻画了平移变换,从数的角度进一步认识平移变换;对平移变换以后还要继续学习,例如在八年级上册第13章“实数”进一步安排了在实数范围内研究平移的内容,在八年级下册“四边形”一章中,将对“对应点的连线平行且相等”这条平移变换的基本性质进行论证,为后续学习利用平移变换探索几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础.对于平面直角坐标系,本章只要求学生会建立直角坐标系,能根据坐标描出点的位置,能由点的位置写出点的坐标,其中点的坐标都是整数,这实际研究了点与有序整数对的对应关系,在第13章“实数”将把点的坐标扩展到实数范围,并建立点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等问题打下基础.因此,教学中要注意内容安排的这个特点,准确把握本章对于平移变换和平面直角坐标系的教学要求,以一个动态的、发展的观点看待教学要求.(三)注意留给学生思考的空间本章编写时,注意结合本章内容特点,利用一些“思考”“探究”“归纳”等栏目,给学生留出了较大的思考空间.例如,在第6.2.2小节中,教科书首先设置一个“探究”栏目,让学生探究将几个已知坐标的点上、下、左、右的平移后得到新的点,各对应点之间的坐标有怎样的变化规律,接下去就设置一个“归纳”栏目,栏目中留有空白,让学生写出平移过程中对应点的坐标的变化规律,这实际上让学生经历一个由特殊到一般的归纳过程.对于这个规律的获得,教科书仅用了两个栏目,很少的篇幅,这样实际上给学生留出了较大的探索空间,因此教学中,要注意留给学生足够的时间,使学生充分活动起来,通过探究发现并总结规律.对于这些规律,不要让学生死记硬背,要让学生在坐标系中,结合图形的变换理解这些结论.。
第六章平面直角坐标系1.在平面内,两条具有公共原点、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴向______方向为正方向,竖直的数轴向______方向为正方向2. 平面直角坐标系内的点与有序实数对一一对应。
3. 特殊点的坐标:(1)坐标轴上点的坐标特征:点P(x,y)在x轴上,则点P的坐标可以表示为;点P(x,y)在y轴上,则点P的坐标可以表示为;点P(x,y)在原点,则点P的坐标可以表示为;平行于坐标轴的直线上点的坐标特征:平行于x轴的直线上,所有点的相等;平行于y轴的直线上,所有点的相等;(2)关于坐标轴、原点对称的点的坐标特征:关于x轴对称的点横坐标________、纵坐标________。
关于y轴对称的点纵坐标_______、横坐标_______。
关于原点对称的点纵横坐标都____________。
(3)各象限角平分线上的点的坐标特征:点P(x,y)在第一、三象限的角平分线上,则;点P(x,y)在第二、四象限的角平分线上,则;4. 距离:(1) 点P(x,y)到x 轴的距离为____,到y 轴的距离为____;到x 轴的距离为m ,到y 轴距离为n )0,0(>>n m 的点的坐标为______________________;(2) x 轴上或平行于x 轴的直线上两点A 、B 的距离为 ;y 轴上或平行于y 轴的直线上两点A 、B 的距离为 ;5. 平移:在平面直角坐标系内,如果把一个图形各个顶点的横坐标都加上(或减去)一个正数a ,那么相应的新图形就是把原图形向______(或向______)平移______个单位长度得到的;如果把一个图形各个顶点的纵坐标都加上(或减去)一个正数b ,那么相应的新图形就是把原图形向_____(或向_____)平移______个单位长度得到的。
6. 用坐标表示地理位置:(1)建立坐标系,选择一个____________为原点,确定x 轴、y 轴的___方向; (2)根据具体问题确定______________,在坐标轴上标出__________; (3)在坐标平面内画出这些点,写出各点的_______和各个地点的名称. 7. 面积:(割补法)(1) 写出辅助线的作法; (2) 写出关键点的坐标; (3) 写出关键线段的长度; (4) 写出所求图形的面积表达式; (5) 代入数值计算求面积。
平面直角坐标系知识点总结归纳及配套练习《1.平面直角坐标系的定义:在平面内有公共原点且互相垂直的两条数轴组成平面直角坐标系。
水平的数轴为X轴,竖直的数轴为y轴,它们的公共原点O为直角坐标系的原点。
2.象限: 两坐标轴把平面分成________,坐标轴上的点不属于____________。
—3.可用有序数对(a ,b)表示平面内任一点P的坐标。
a表示横坐标,b表示纵坐标。
4.各象限内点的坐标符号特点: 第一象限______,第二象限_____ 第三象限______,第四象限_______。
5.坐标轴上点的坐标特点: 横轴上的点纵坐标为___,纵轴上的点横坐标为____。
6.特殊点的坐标:平行于x轴的直线上的点的坐标特点是平行于y轴的直线上的点的坐标特点是7. 在平面直角坐标系中,点p ( a , b )关于x轴的对称点的坐标为_______,关于y轴的对称点的坐标为_______,关于原点的对称点的坐标为_______。
8.点p ( a , b )到x轴的距离为_______,到y轴的距离为_______。
;9.在第一、三象限角平分线的点的横纵坐标;在第二、四象限角平分线上的点的横纵坐标。
10.利用平面直角坐标系绘制某一区域的各点分布情况的平面图包括以下过程:(1)建立适当的坐标系,即选择适当点作为原点,确定x轴、y轴的正方向; (注重寻找最佳位置)(2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度;(3)在坐标平面上画出各点,写出坐标名称。
)11.一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化, 可以简单地理解为: 左、右平移___坐标不变, ___坐标变,变化规律是___减___加, 上下平移___坐标不变, ___坐标变, 变化规律是___减___加。
例如:当P(x ,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为p′(x+a ,y+b)。
精题精炼一、选择题1、下列说法正确的是()A平面内,两条互相垂直的直线构成数轴B、坐标原点不属于任何象限。
( 数学教案 )学校:_________________________年级:_________________________教师:_________________________教案设计 / 精品文档 / 文字可改七年级数学:第六章“平面直角坐标系”简介(教学方案) Mathematics is a tool subject, it is the basis for learning other subjects, and it is also a subject that improves people's judgment, analysis, and comprehension abilities.七年级数学:第六章“平面直角坐标系”简介(教学方案)课程教材研究所左怀玲伟大的法国数学家笛卡儿(descartes 1596-1650)创立了直角坐标系.他用平面上的一点到两条固定直线的距离来确定这个点的位置,用坐标来描述空间上的点.他进而又创立了解析几何学,把相互对立着的“数”与“形”统一了起来,他的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域.正如恩格斯所说“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了.”平面直角坐标系架起了数与形之间的桥梁.提前安排平面直角坐标系是本套教科书体系安排上的一个特点.原教科书有关平面直角坐标系的内容只有2课时,放在初中三年级“函数”一章,作为学习函数的基础知识来安排的.这套教科书将“平面直角坐标系”单独设章,8个课时,放在7年级下学期学习,目的是让学生尽早接触平面直角坐标系这种数学工具,尽早感受数形结合的思想.本章教学时间约需7课时,具体分配如下(仅供参考):6.1 平面直角坐标系3课时6.2 坐标方法的简单应用3课时数学活动小结 1课时一、教科书内容和课程学习目标(一)本章知识结构(二)内容安排本章的主要内容包括平面直角坐标系的有关概念和点与坐标(均为整数)的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容.教科书首先从实际中需要确定物体的位置(如确定电影院中座位的位置以及确定教室中学生座位的位置等)出发,引出有序数对的概念,指出利用有序数对可以确定物体的位置,由此联想到是否可以用有序数对表示平面内点的位置的问题,结合数轴上确定点的位置的方法,引出平面直角坐标系,学习平面直角坐标系的有关概念,如横轴、纵轴、原点、坐标、象限,建立点与坐标(整数)的对应关系等.对于坐标方法的简单应用,本章主要学习平面直角坐标系在确定地理位置和表示平移变换中的应用.用坐标表示地理位置体现了坐标系在实际生活中的应用.本章在安排这部分内容时,首先设置一个观察栏目,让学生观察地图上是怎样利用坐标表示一个地点的地理位置的,从中得到启发,来学习建立坐标系,确定一个地点的地理位置的方法.接下去教科书设置了一个探究栏目,要求学生画出一幅地图,标出学校和三位同学家的位置.要用平面直角坐标系表示地理位置,就要考虑如何建立坐标系的问题,首先是确定原点和坐标轴的正方向,教科书选用了以学校为原点,向东为x轴正方向,向北为y轴正方向建立坐标系,并确定一定的比例尺,根据三位同学家的位置情况,在坐标系中标出了这些地点的位置,并归纳给出绘制平面示意图的一般过程.用坐标表示平移,从数的角度刻画了第五章平移的内容,本章主要研究点(或图形)的平移(上、下、左、右平移)引起的点(或图形顶点)坐标的变化,以及点(或图形顶点)坐标的变化引起的点(或图形)的平移.教科书首先设置一个探究栏目,分析在平面直角坐标系中,将一个已知点向右(或向左)平移某个单位长度得到一个新点,这个点的坐标与平移前的点的坐标有什么关系,同样如果将这个点分别向上(或向下)平移某个单位长度得到新的点,这个点与平移前点的坐标又有什么关系,通过分析平移前后点的坐标的变化,发现坐标的变化规律,比如将一个点向右平移某个单位长度,平移后得到的点的坐标是纵坐标不变,横坐标加上这个单位长度;对于图形的平移引起的图形顶点坐标的变化,教课书是在练习中给出的,让学生自己完成.从这个练习的安排上可以看出,本套教材对于练习有一种新的考虑,就是练习不全是对正文内容的复习和巩固,有些练习是正文的一部分,是正文内容的延伸和拓展.接下去教科书讨论了一个三角形顶点坐标的某种有规律变化,引起的三角形的平移.比如,将三角形三个顶点的横坐标都减去某个正数,纵坐标不变,得到三个新的点,连接这三个点,得到一个新的三角形,这个新三角形与原来的三角形在大小、形状和位置上有什么关系等,通过探究发现这两个三角形大小形状完全相同,只是位置不同,实际上是对三角形进行了平移,在此基础上教科书归纳给出有关的规律.(三)课程学习目标1.通过实例认识有序数对,感受它在确定点的位置中的作用;2.认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数);3.能在方格纸中建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问题中的作用;4.在同一平面直角坐标系中,能用坐标表示平移变换.通过研究平移与坐标的关系,使学生看到平面直角坐标系是数与形之间的桥梁,感受代数问题与几何问题的相互转换;5.结合实例,了解可以用不同的方式确定物体的位置.二、本章编写特点(一)注意加强知识间的相互联系平面直角坐标系是以数轴为基础的,两者之间存在着密切的联系.平面直角坐标系是由两条相互垂直、原点重合的数轴构成的,坐标平面内点的坐标是根据数轴上点的坐标定义的,平面内点与坐标的对应关系类似于数轴上点与坐标的对应关系等.本章编写时注意突出了平面直角坐标系与数轴的联系.对于平面直角坐标系的引入,教科书首先从学生熟悉的数轴出发,给出点在数轴上的坐标的定义,建立点与坐标的对应关系,在此基础上,教科书类比着数轴,探讨了在平面内确定点的位置的方法,引出平面直角坐标系,给出平面直角坐标系的有关概念.这样通过加强平面直角坐标系与数轴的联系,可以帮助学生更好地理解点与坐标的对应关系,顺利地实现由一维到二维的过渡.(二)突出数形结合的思想,体现平面直角坐标系的作用无论是在数学还是在其他领域,平面直角坐标系都有着非常广泛的应用.在数学科学中,由于平面直角坐标系的引入,架起了数与形之间的桥梁,使得我们可以用几何的方法研究代数问题,又可以用代数的方法研究几何问题.对于平面直角坐标系的这种桥梁作用,本套教科书给予了充分重视.本章中,编写了利用坐标的方法研究平移的内容,从数的角度刻画平移变换,这就用代数的方法研究几何问题,体现了平面直角坐标系在数学中的作用.通过本章的学习,让学生看到平面直角坐标系的引入,加强了数与形之间的联系,它是解决数学问题的一个强有力的工具.用坐标表示地理位置体现了坐标系在实际生活中的应用.用经纬度表示地球上一个地点的地理位置,用极坐标表示区域内地点的位置,以及用平面直角坐标表示区域内地点的位置等,实际上都是利用了有序数对与点的对应关系,是坐标与点一一对应思想的表现.教科书突出了这种对应关系,利用这种对应关系研究了如何建立坐标系用坐标表示地理位置的问题,使学生体会坐标思想在解决实际问题中的作用.(三)注重学生的认知规律本章编写时,改变了原教科书从数学的角度引出坐标系的做法,而是将本章内容的编写仅仅围绕着确定物体的位置展开,从实际生活中确定物体的位置出发引出坐标系,也就是从实际需要引出坐标系这个数学问题,然后展开对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,最后再利用坐标系解决生活中确定地理位置的问题,让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.也就是经历了一个由实践—理论—实践的认识过程.(四)内容编写生动生动活泼本章编写时,注意结合本章内容的特点,将枯燥的数学问题赋予有趣的实际背景,使内容更符合学生的年龄特点,激发学生学习数学的兴趣.例如教科书习题6.2的第1题“三架飞机p、q、r保持编队飞行,分别写出它们的坐标.30秒后,飞机p飞到p位置,飞机q、r飞到了什么位置?分别写出这三架飞机新位置的坐标”,这个问题实际上是一个三角形平移的问题,再比如,让学生画出本学校的平面示意图,用坐标表示动画制作过程中小鸭子的位置变化,用坐标表示某地古树名木的位置等,从数学上讲这些都是关于点与坐标对应关系的问题,本章编写时注意给这些数学问题加上一个有趣的背景,增加学生学习本章内容的兴趣.三、几个值得关注的问题(一)密切联系实际本章内容的编写仅仅围绕着确定物体的位置展开.教科书首先从建国50周年庆典中的背景图案、确定电影院中座位的位置以及确定教室中学生座位的位置等实际出发,引出有序数对,进而引入平面直角坐标系.通过对坐标系的研究,认识坐标系的有关概念和建立坐标系的方法,然后再利用坐标系解决生活中确定地理位置的问题(如确定同学家的位置等),让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程.这样的一种处理,不是从数学角度引入平面直角坐标系,而是密切联系生活实际,从实际的需要出发学习直角坐标系.教学中可以结合学生的实际情况,利用学生周围熟悉的素材学习本章内容,让学生充分感受平面直角坐标系在解决实际问题中的作用.(二)准确把握教学要求对于某些重要的概念和方法,本套教科书采用了螺旋上升的编排方式.例如,对于平移变换,教课书首先在上一章“相交线与平行线”中安排了一节“平移”,探讨得出“对应点的连线平行且相等”等平移变换的基本性质;在本章又安排了一小节“用坐标表示平移”的内容,用坐标刻画了平移变换,从数的角度进一步认识平移变换;对平移变换以后还要继续学习,例如在本册书第10章“实数”进一步安排了在实数范围内研究平移的内容,在八年级下册“四边形”一章中,将对“对应点的连线平行且相等”这条平移变换的基本性质进行论证,为后续学习利用平移变换探索几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础.对于平面直角坐标系,本章只要求学生会在方格纸中建立直角坐标系,能根据坐标描出点的位置,能由点的位置写出点的坐标,其中点的坐标都是整数,这实际研究了点与有序整数对的对应关系,在第10章“实数”将把点的坐标扩展到实数范围,并建立点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等问题打下基础.因此,教学中要注意内容安排的这个特点,准确把握本章对于平移变换和平面直角坐标系的教学要求,以一个动态的、发展的观点看待教学要求.(三)注意留给学生思考的空间本章编写时,注意结合本章内容特点,利用一些“探究”“思考”“归纳”等栏目,给学生留出了较大的思考空间.例如,在第6.2.2小节中,教科书首先设置一个“探究”栏目,让学生探究将几个已知坐标的点上、下、左、右的平移后得到新的点,各对应点之间的坐标有怎样的变化规律,接下去就设置一个“归纳”栏目,栏目中留有空白,让学生写出平移过程中对应点的坐标的变化规律,这实际上让学生经历一个由特殊到一般的归纳过程.对于这个规律的获得,教科书仅用了两个栏目,很少的篇幅,这样实际上给学生留出了较大的探索空间,因此教学中,要注意留给学生足够的时间,使学生充分活动起来,通过探究发现并总结规律.对于这些规律,不要让学生死记硬背,要让学生在坐标系中,结合图形的变换理解这些结论可在这填写你的名称YOU CAN FILL IN THE NAME Here。
第六章平面直角坐标系数学活动教学设计庄河二中王晓红教材分析:初中数学《人教版》七年级下第六章平面直角坐标系在“数学活动”栏目中安排了两个活动,这两个活动都是围绕着建立平面直角坐标系,用坐标表示地理位置展开的。
通过这两个数学活动,一方面使学生应用所学知识解决实际问题,体会坐标方法在解决实际问题中的作用,培养学生用数学的意识,另一方面对学生的动手能力、合作意识、交流能力等也有进一步的提高。
教学目标:知识技能:进一步认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标(坐标为整数)描出点的位置,能由点的位置写出点的坐标(坐标为整数);能根据实际情况建立适当的平面直角坐标系,会用坐标表示地理位置。
数学思考:经历建立平面直角坐标系的过程;体会平面直角坐标系在解决实际问题中的作用;使学生初步体会数形结合的思想。
解决问题:通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识解决数学问题的能力。
情感态度:通过数学活动,促使学生在学习过程中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人;培养学生观察图形的能力,体会数学来源于生活,又服务与生活。
教学重点:会根据实际情况建立适当的平面直角坐标系,用坐标表示地理位置。
教学难点:能建立适当的坐标系描述物体的位置。
教学策略:本节课是数学活动课,学生是活动的主体,教师仅作为活动的组织者、引导者和促进者。
我坚持以学生发展为本,回归学生的主体,充分发挥学生的主观能动性,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程,采用自主探究等教学方法,调动学生学习的积极性,不仅要让学生掌握扎实的数学基础和基本技能,而且要让学生掌握数学思想和方法。
数学思想和方法是数学知识的本质,为分析、处理和解决数学问题提供了指导方针和解题策略,为此要让学生初步感受数形结合的思想,让学生看到平面直角平面直角坐标系的引入,架起了数与形之间的桥梁,加强了知识间的相互联系,它是解决数学问题的一个强有力的工具。
初中数学试卷 桑水出品第6章:平面直角坐标系知识点整合:本章的主要内容包括平面直角坐标系的有关概念和点与坐标(均为整数)的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容.知识结构如下:正确理解和使用概念,是学好数学的前提,试一试你对本章的基本概念掌握了没有。
1、像“9排7号”,“第一列第5行”这样含有两个数的词来表示一个确定的位置,其中有两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“号数”,我们把这种________的两个数a 和b 组成的数对,叫做__________,记为___________。
2、指出下列各点所处的象限或坐标轴。
点33A (,)在__________;点B (-3,-1)在__________;点C (0,-5)在___________; 点D (3,0)在__________;点E (0,0)在__________;3、建立平面直角坐标系时,通常以_______为x 轴,以_______为y 轴,建立平面直角坐标系。
4、利用平面直角坐标系绘制区域内一些地点分布情况平面图的步骤如下:(1)建立________,选择一个__________为原点,确立x 轴、y 轴的_________方向;(2)根据具体问题确定适当的________,在坐标轴上标出_________;(3)在坐标平面内画出这些点,写出各点的________和各个地点的名称。
5、在平面直角坐标系中,将点P (a ,b )向下(或向上)平移m 个单位长度,可以得到对应点P 1(_____,______)或P 1(_____,______);将点P (a ,b )向左(或向右)平移n 个单位长度,可以得到对应点P 2(_____,______)或P 2(_____,______);6、在平面直角坐标系内,如果把一个图形各个点的___坐标都_______(或________)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把一个图形各个点的___坐标都______(或________)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度。
第六章 平面直角坐标系 6.1 平面直角坐标系 6.1.1 有序数对1.从实际生活中感受有序数对的意义,并会确定物体的位置。
2.让学生体会到数学源于生活,又用于解决实际问题。
知识回顾想一想:在地图上我们是怎样确定张家口市的位置的?自主学习1.确定平面内一点的位置一般需要 个数据。
2. 两个数a 和b 组成的数对,叫做有序数对,记作 。
3.利用有序数对,可以很准确地表示出一个点的 。
4.平面内的点与有序数对是 的。
尝试练习1.小明和小刚买了两张票去观看电影,小明的座位号是8排9号记为(8,9),小刚的记为(9,8),其含义是 。
2.生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的点等,你还能1.概念理解:我们把有顺序的两个数a 与b 组成的数对,叫做有序数对。
2. 有序数对的记法:两个有序数对记作(a ,b )。
3.利用有序数对,可以很准确地表示一个位置。
4.特别提醒:①有序数对有两个要点:一是一对数,二是有顺序.如(3,2)与(2,3)是两个不同的点;②书写平面内点的坐标时,横坐标写在前面,纵坐标写在后面,中间用逗号隔开,最后用小括号括起来。
5.知识结构图有序数对影剧院中座位教室中的座位用有顺序的两个数表示 ………………一个确定的位置 有序数对,记作(a ,b ). 典型例题分析【例】 如图6.1-1 如果用(0,0)表示A 点的位置,用(2,1)表示 B 点的位置,那么图中五角星五个顶点的位置如何表示?【思路】先根据表示A,B 两点的有序数对,可知列数在前排数在后,再在图上标出列数与排数,即可确定出C 、D 、E 、F 、G 五点的位置对应的5个有序数对。
【解析】C (4,2),D (10,2),E (11,7), F (7,10),G (3,7)。
【注意】用有序数对表示点的位置时,表示点的字母写在有序数对前面。
基础练习1.军训时,李军站在一排二列可记作(1,2),孙军站在三排四列可记作 。
2.下列语句:①5排6号;②西偏东26O;③解放路58号;④北纬80O;东经90O;⑤人民广场南,其中能确定物体的位置的是 。
(填上序号) 3.如图6.1-2所示,线段AB 的中点为C ,如果用(1,2)表示A 点,用(3,6)表示B 点,那么C 点可以表示为( )A (4,2);B (2,4);C (3,3);D (3,5) 拓展思维4.将正整数按图6.1-3所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示数9,则表示数17有序数对是 。
图6.1-35.小红利用office 电子表格计算(B,2)到(F ,2)的和,电子表格示意图如6.1-4图所示,其结果是 ( )A 、 25B 、 27C 、 30D 、 39 6.如图6.1-5是中国象棋一次对局时的部分示意图,若“帅”所在的位置用有序数对(5,1)表示。
①请你用有序数对表示其它棋子的位置。
②我们知道马行“日”字,如图中的“马”下一步可以走到(3,4)的位置,问还可以走的位置有几个?分别如何表示?中考窗口7.(2008,恩施)将杨辉三角形中的每一个数都换成分数,得到一个如图6.1-6所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n )表示第m 行,从左到右第n 个数,如(4,3)表示分数112.那么(9,2)表示的分数是 .6.1.2 平面直角坐标系第一课时1.理解平面直角坐标系,以及横轴、纵轴、原点坐标等概念。
2.认识并能画出平面直角坐标系。
3.掌握平面内的点与有序数对的对应关系,并能熟练地根据坐标找出平面的点。
知识回顾1.有理数都可以用数轴上的一个 来表示;2.数轴上的每一个点都可以用 个数来表示;自主学习1.数轴上点的坐标可以用一个数表示,这个数叫做这个点的 。
2.在平面内画两条 、 的数轴,组成平面直角坐标系,水平的数轴称为 或 ,习惯上取向右的方向为正方向;竖直的数轴称为 或 ,取向上的方向为正方向;两坐标轴的交点为平面直角坐标系的 。
3.由平面一点向两坐标轴作垂线,垂足在x 轴上的坐标叫做这个点的,垂足在y轴上的坐标叫做这个点的。
图6.1-6∙ ∙ ∙第4行第3行第2行第1行14112112141613131212114.若一个点的横坐标为a,纵坐标为b,那么这个点的坐标可记作。
尝试练习1.当a= 时,点p(a,a-1)在x轴上。
2.点(1,-2)与x轴的距离是,与y轴的距离是。
3.若P(x,y)满足:xy=0,则点P必在()A.原点B.x轴上C.y轴上D.坐标轴上1.概念理解在平面内画两条互相垂直,原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。
由A点分别向x轴和y轴作垂线,两垂足分别在x轴上的坐标是a, 在y轴上的坐标是b,就说点A的横坐标是a,纵坐标是b,有序数对(a,b)就叫做点A的坐标.记作A(a,b).建立了平面直角坐标系以后,两轴所在的平面叫做坐标平面。
坐标平面被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限、第四象限.2.坐标轴上的点不属于任何象限。
3.特别提醒:①平面直角坐标系的四个要素:a.在同一平面内;b.两条数轴;c.互相垂直;d.有公共原点.②注意两个规定:a.横轴取向右为正方向,纵轴取向上为正方向;b.一般情况下,横坐标与纵坐标单位长度相同,为实际需要有时两轴单位可以不同。
4.知识结构图平面直角坐标系(一)典型例题分析【例1】如图6.1-7所示的围棋盘放在第一个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋①的坐标为。
【思路】要求黑棋①的坐标,由已知条件,小方格的长度是单位1,并且可以据此找出坐标原点的位置,从而可以写出黑棋①的坐标【解】(-3,-7).【例2】如果点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)在第象限,点Q(x-1,1-y)在第象限。
【解析】由M(1-x,1-y)在第二象限可知1-x<0,1- y>0,进而知x-1>0,y-1<0所以N(-,-)Q(+,+)答:N在第三象限,Q在第一象限。
基础练习1.点A(-2,1)在第象限。
2.X轴上点的坐标特征是坐标是0,Y轴上点的坐标特征是坐标是0,原点的坐标是。
3.点P(X+1,X-1)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限4.在平面直角坐标系中,P(-3,4)到X轴的距离为()A、3B、-3C、4D、-45.已知坐标平面内点A(n,m)在第四象限,那么点B(m,n)在()A、第一象限B、第二象限C、第三象限D、第四象限6.已知A(6,0),B(2,1),O(0,0),则ΔABO的面积为()A、1 ;B、2 ;C、3 ;D、4.拓展思维7.在平面直角坐标系中,画出点A(-3,3),B(-3,-1), C(2,-1),D(2,3),用线段顺次连接各点,它是什么样的几何图形?并求它的面积。
中考窗口8.(2008,大连)如图 6.1-8所示,下列各个点在阴 影区域内的是( )A.(3,2);B.(-3,2)C.(3,-2);D.(-3,-2)第二课时1.能根据坐标描出点的位置(坐标都为整数)。
2.能在方格纸上建立适当的平面直角坐标系,描出物体的位置。
3.根据点的位置关系探索坐标之间的关系探索点的位置关系。
知识回顾1.已知点A(a,b),其中a=0,b <0,那么点A 在 。
2.点(2a ,3a-1)在x 轴上,则a= 。
3.若A(a,b)、B(b,a)表示同一点,则这点在( ) A.平行于x 轴的直线上 B. 平行于y 轴的直线上.C.第一、三象限内两条坐标轴夹角平分线上.D. 第二、四象限内两条坐标轴夹角平分线上.尝试练习1.平行于y 轴的一条直线上的点的横坐标( ) A.大于0 B.小于0 C.相等 D.相反2.设P (m ,n )为平面直角坐标系中的点,当m>0,n<0时,点p 位于第 象限;当mn>0时,点p 在第 象限;当m 为任意数,且n<0时,直角坐标系的诞生一天,数学家笛卡尔躺在病榻上,仰望着天花板出神,只见蜘蛛正忙着在墙角落结网,它一会在雪白的天花板上爬来爬去,一会又顺着蛛丝爬上爬下,这精彩的“杂技”牢牢地把笛卡尔吸引住了。
这一有趣的现象使笛卡尔受到启发,他马上联系到了那个他朝思暮想而自今悬而未决的难题。
他想:这只悬在半空中的蜘蛛不正是一个移动点吗?能不能用两面墙的交线及墙与天花板的交线来确定它的空间位置呢?他在纸上画了三条两两垂直的直线分别表示两墙的交线及墙与天花板的交线,并在空间点出一个P 点,代表蜘蛛,P 到两墙的距离分别用X 和Y 表示,到天花板的距离用与Z 表示,这样X 、Y 、Z 就有了准确的数值。
P 点的位置就完全确定了。
于是,直角坐标系诞生了。
他这一伟大发现开辟了用代数方法研究几何图形的先河。
知识要点1.确定平面直角坐标系中任意一点的方法:过该点分别向x轴y轴作垂线,垂足在x轴、y轴上对应的数分别是该点的横、纵坐标,有时为便于求点的坐标需借助数形结合的思想方法。
2.知识结构图平面直角坐标系(二)点的坐标←→确定点的位置点的坐标在各个象限及坐标轴的符号典型例题分析【例1】已知点P是X轴上的点,且到Y轴的距离为3,则点P 坐标为多少?【解析】∵点P 在X轴上∴点P的纵坐标为0又∵点P到Y轴的距离为3∴点P的横坐标为3或-3∴点P的坐标为(3,0)或(-3,0)【反思】点A(a,b)到x轴的距离是b的绝对值;到y轴的距离是a的绝对值.【例2】若点P(2X-1,X+3)在第二、四象限的角平分线上,求点P 到X轴的距离。
【思路】因为点P在第二、四象限的角平分线上,所以点P横纵坐标是一对互为相反数,由此可求得点P的坐标,点P到X轴的距离就是该点纵坐标的绝对值。
【解析】由题可得(2X-1)+(X+3)=0∴X=-2/3 即P(-7/3,7/3)∴点P到X轴的距离为7/3【反思】点的横坐标与纵坐标相同时在一、三象限的角平分线上;点的横坐标与纵坐标相反时在二、1.指出下列各点所在的象限或坐标轴。
A(-1,-2.5) B(5,-4)C(-1/3,1)D(7,9)E(-π,0)F(0,-3)G(0,0)2.若点M(2,K-1)在第四象限内,则K的取值范围是()A、K>1B、K>-1C、K<1D、K<-1 3.点P(-2,-3)到x轴的距离是,到Y轴的距离是。
4.在平面直角坐标系中,长方形ABCD的三个顶点坐标为A(-1,2),B(3,2),C(3,-1),则D 点的坐标为。