七数上册(人教)同步练习1.3.1 第1课时 有理数的加法法则
- 格式:doc
- 大小:59.72 KB
- 文档页数:2
1.3 有理数的加减法1.3.1 有理数的加法第1课时 有理数的加法法则01 基础题知识点1 有理数的加法法则知识提要:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数. 在每题后面的横线上填写和的符号或结果:(1)(-3)+(-5)=-(3+5)=-8;(2)(-16)+6=-(16-6)=-10.1.下列各式的结果,符号为正的是(C )A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+52.(北海中考)计算(-2)+(-3)的结果是(A )A .-5B .-1C .1D .53.计算:(-12)+5=(B )A .7B .-7C .17D .-174.(玉林中考)下面的数与-2的和为0的是(A )A .2B .-2C .12D .-125.如果两个数的和是正数,那么(D )A .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一知识点2 有理数加法的应用6.(北流期中)比零下3 ℃多6 ℃的温度是(D )A .-9 ℃B .9 ℃C .-3 ℃D .3 ℃7.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动2个单位长度,再向右运动7个单位长度.列式:-2+7;(2)先向左运动5个单位长度,再向左运动7个单位长度.列式:-5+(-7).8.某人某天收入265元,支出200元,则该天节余65元.9.一艘潜艇所在高度为-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在高度为-50米.10.已知飞机的飞行高度为10 000 m ,上升3 000 m 后,又上升了-5 000 m ,此时飞机的高度是8__000m . 02 中档题11.(安顺中考)计算-|-3|+1结果正确的是(C )A .2B .3C .-2D .412.有理数a 、b 在数轴上对应的位置如图所示,则a +b 的值(A )A .大于0B .小于0C .小于aD .大于b13.下列结论不正确的是(D )A .若a>0,b>0,则a +b>0B .若a<0,b<0,则a +b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a <0,b>0,且|a|>|b|,则a +b>014.若x 是-3的相反数,|y|=5,则x +y 的值为(D )A .2B .8C .-8或2D .8或-215.已知A 地的海拔高度为-53米,而B 地比A 地高30米,则B 地的海拔高度为-23米.16.已知两个数556和-823,这两个数的相反数的和是256. 17.计算:(1)120+(-120); (2)0+(-12); 解:原式=0. 解:原式=-12.(3)-9+(-11); (4)15+(-7);解:原式=-20. 解:原式=8.(5)-7+5; (6)-2.5+(-3.5);解:原式=-2. 解:原式=-6.(7)315+(-225); (8)-3.75+(-214). 解:原式=45. 解:原式=-6.03 综合题18.已知|m|=2,|n|=3,求m +n 的值.解:因为|m|=2,所以m =±2.因为|n|=3,所以n =±3.当m =2,n =3时,m +n =2+3=5;当m =2,n =-3时,m +n =2+(-3)=-1; 当m =-2,n =3时,m +n =(-2)+3=1;当m =-2,n =-3时,m +n =(-2)+(-3)=-5. 故m +n 的值为±1或±5.。
11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
2、若2,3==b a ,则=+b a ________。
3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。
4、若1<a <3,求a a -+-31的值。
35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。
2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。
2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。
把同分母的数相结合进行简便运算。
4、756,4310-。
拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
第1章 有理数 1.3.1 有理数的加法 有理数加法的运算规律1. 下列变形运用加法的运算律错误的是( )A .3+(-2)=(-2)+3B .4+(-6)+3=4+3+(-6)C .[5+(-2)]+4=[5+(-4)]+2D. 16+(-1)+(+56)=[16+(+56)]+(-1) 2. 计算:(-1.75)+(+7.3)+(-2.25)+(-8.5)+(+1.5)=[(-1.75)+(-2.25)]+[(+1.5)+(-8.5)]+(+7.3)运用了( )A .加法的交换律B .加法的结合律C .加法的交换律和结合律D .以上都不对3. 七(2)班一学期班费收支情况如下(收入为正,支出为负):+250元、-55元、-120元、+7元.这学期结束时,该班班费结余为( )A .82元B .85元C .35元D .92元4. 计算2016+(-99)+(-2016)+(+100)的结果是( )A .-1B .1C .-199D .1995.三个数-12,-2,+7的和加上它们的绝对值的和为( )A .-14B .14C .-28D .286. 某天早晨的气温是-7 ℃,到了中午升高了4 ℃,晚上又降低了3 ℃,到午夜又降低了4 ℃,则午夜时的气温为( )A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃7. 已知上周五(周末不开市)沪市指数以2900点报收,本周内股市涨跌情况如下表(“+”表示比前一天涨,“-”表示比前一天跌):那么本周五的沪市指数报收点为( )A.2910 B.2940 C.2950 D.29608. 在括号内填上适当的数:(-31)+(+19)+(-5)+(+31)=[(-31)+( )]+[( )+( )]9. 在算式每一步后面填上这一步所根据的运算律(+7)+(-22)+(-7)=(-22)+(+7)+(-7)( )=(-22)+[(+7)+(-7)]( )=(-22)+0=-2210. 有5袋苹果,以每袋50千克为基准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下(单位:千克):+4,-5,+3,-2,-6.则这5袋苹果的总质量是千克.11. 一只跳蚤从数轴上的原点O开始,第1次向右跳1个单位长度,第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,……,以此规律跳下去,当它跳100次落下时,落点表示的数是____.12. 计算:(1) (+14)+(-7)+(-5)+(+26)+(-3);(2) (-7.6)+2.5+(-1.4)+(-1.3)+7.5;(3) (-0.5)+214+(+2.75)+(-512).13. 计算:(1) (-8)+(+12)+(-11)+(-1);(2) (-314)+(-35)+(+2)+(-34)+35;(3) (-1)+(+2)+(-3)+(+4)+…+(-2017)+(+2018).14. 阅读(1)小题的方法.(1)-556+(-923)+(-312)+1734. 解:原式=[(-5)+(-56)]+[(-9)+(-23)]+[(-3)+(-12)]+(17+34) =[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]=0+(-54)=-54. 上述这种方法叫拆项法,灵活运用加法的交换律、结合律可使运算简便,仿照上面的方法计算:(-201556)+(-201623)+4032+(-112).15. 某巡警骑摩托车在一条南北大道方向的大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶记录如下:(单位:千米)+10,-8,+6,-13,+7,-12,+3,-2.(1)A在岗亭何方距岗亭多远?(2)该巡警巡逻时离岗亭最远是多少千米?(3)在岗亭北面6千米处有个加油站,该巡警巡逻时经过加油站几次?(4)若摩托车每行1千米耗油0.05升,那么该摩托车这天巡逻共耗油多少升?答案;1---7 CCABB BD8. +31 +19 -59. 加法交换律加法结合律10. 24411. -5012. (1) 解:原式=25(2) 解:原式=-0.3(3) 解:原式=-113. (1) 解:原式=-8(2) 解:原式=-2(3) 解:原式=100913. 解:原式=[(-2015)+(-56)]+[(-2016)+(-23)]+4032+ [(-1)+(-12)]=[(-2015)+(-2016)+4032+(-1)]+ [(-56)+(-23)+(-12)]=-2 14. 解:(1)∵(+10)+(-8)+(+6)+(-13)+(+7)+(-12)+(+3)+(-2)=-9,∴A 在岗亭南边9千米处(2)该巡警巡逻时离岗亭最远的是10千米(3)该巡警巡逻时经过加油站4次(4)∵|+10|+|-8|+|+6|+|-13|+|+7|+|-12|+|+3|+|-2|=61,0.05×61=3.05(升)。
第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是()2.如图,点M 表示的数可能是()A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是()A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则()A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是.5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是()A.5个B.4个C.3个D.2个2.多项式3x 2-2x -1的各项分别是( ) A.3x 2,2x,1 B.3x 2,-2x,1 C.-3x 2,2x ,-1 D.3x 2,-2x ,-1 3.多项式1+2xy -3xy 2的次数是( ) A.1 B.2 C.3 D.44.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .5.写出一个关于x ,y 的三次二项式,你写的是 (写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a 千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A.2x +2y B.2y C.2x D.02.已知A =5a -3b ,B =-6a +4b ,则A -B 为( ) A.-a +b B.11a +b C.11a -7b D.-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是()4.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A.(3a +b) B.(2a +2b) C.(a +b) D.(a +3b)5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是()2.方程x +3=-1的解是( ) A.x =2 B.x =-4 C.x =4 D.x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是( ) A.-8 B.0 C.8 D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .5.商店出售一种文具,单价3.5元,若用100元买了x 件,找零30元,则依题意可列方程为 .6.七(2)班有50名学生,男生人数是女生人数的 倍.若设女生人数为x 名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a =b ,则下列变形一定正确的是()2.下列变形符合等式的基本性质的是( ) A.若2x -3=7,则2x =7-3 B.若3x -2=x +1,则3x -x =1-2 C.若-2x =5,则x =5+2 D.3.解方程- x =12时,应在方程两边( ) A.同时乘- B.同时乘4 C.同时除以 D.同时除以-4.由2x -16=5得2x =5+16,此变形是根据等式的性质在原方程的两边同时加上了 .5.利用等式的性质解下列方程: (1)x +1=6; (2)3-x =7;(3)-3x =21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形 第1课时 立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个 4.将下列几何体分类:其中柱体有 ,锥体有 ,球体有 (填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形 个,圆 个.6.把下列图形与对应的名称用线连起来:圆柱 四棱锥 正方体 三角形 圆第2课时 从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是()2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是()3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是()4.下面图形中是正方体的展开图的是()5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是()A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明 ; (2)用棉线“切”豆腐表明 ;(3)旋转壹元硬币时看到“小球”表明 . 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时 线段的长短比较与运算1.如图所示的两条线段的关系是( ) A.a =b B.a <b C.a >b D.无法确定第1题图 第2题图2.如图,已知点B 在线段AC 上,则下列等式一定成立的是( ) A.AB +BC >AC B.AB +BC =AC C.AB +BC <AC D.AB -BC =BC3.如图,已知D 是线段AB 的延长线上一点,C 为线段BD 的中点,则下列等式一定成立的是()A.AB +2BC =ADB.AB +BC =ADC.AD -AC =BDD.AD -BD =CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是 .5.如图,已知线段AB =20,C 是线段AB 上一点,D 为线段AC 的中点.若BC =AD +8,求AD 的长.4.3 角4.3.1 角1.图中∠AOC 的表示正确的还有( ) A.∠O B.∠1 C.∠AOB D.∠BOC第1题图 第2题图2.如图,直线AB ,CD 交于点O ,则以O 为顶点的角(只计算180°以内的)的个数是( ) A.1个 B.2个 C.3个 D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是 °.4.把下列角度大小用度分秒表示: (1)50.7°; (2)15.37°.5.把下列角度大小用度表示: (1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( ) A.∠AOC B.∠BOD C.∠AOD D.∠COB第1题图 第2题图2.如图,OC 为∠AOB 内的一条射线,且∠AOB =70°,∠BOC =30°,则∠AOC 的度数为 °.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC 为∠AOB 内的一条射线,OM ,ON 分别平分∠AOC ,∠COB.若∠AOM =30°,∠NOB =35°,求∠AOB 的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是()2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为()A.14B.10C.8D.73.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213.。
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。
这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。
本节课的内容将为后续的乘法、除法、减法运算打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。
但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。
因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。
三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。
2.培养学生的运算能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的逻辑思维能力。
四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。
2.教学难点:符号的判断和运算顺序的掌握。
五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。
通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。
六. 教学准备1.准备教学课件,包括例题、练习题等。
2.准备黑板、粉笔等教学工具。
3.准备相关的生活情境案例。
七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。
例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。
2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。
讲解加法法则的内涵,让学生理解并掌握加法运算的规律。
3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。
可设置一些具有挑战性的题目,激发学生的学习兴趣。
4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。
教师引导学生总结加法运算的注意事项,巩固所学知识。
第一章有理数1.3 有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.(-56)+(-16)=_________,___________+(-32)=0.3.计算(1)(-21)+(-31)= (2)-15+0= ;(3)(-13)+(+12)= (4)(-313)+0.3= ;.4.(-5)+______= - 8; ______+(+4)= -95.若a,b互为相反数,c、d互为倒数,则( a + b )+ cd =________ 6.下列各组运算结果符号为负的有()(+35)+(-45),(-67)+(+56),(-313)+0,(-1.25)+(-34)A.1个 B.2个 C.3个 D.4个7.若两数的和为负数,则这两个数一定()A.两数同正 B.两数同负; C.两数一正一负 D.两数中一个为0 8.两个有理数相加,如果和小于每一个加数,那么()A.这两个加数同为负数; B.这两个加数同为正数C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零9.有理数a,b 在数轴上对应位置如图所示,则a + b 的值为()A.大于0B.小于0C.等于0D.大于a10.计算:(1)(-423)+(+316);(2)(-823)+(+4.5);(3)(-723)+(-356);(4)│-7│+│-9715│;(5)(+4.85)+(-3.25);(6)(-3.1)+(6.9);(7)(-22914)+0;(8)(-3.125)+(+318)(9) -34+(-45); (10) 4.23+(-2.76);11、 某城市一天早晨的气温是-25℃,中午上升了11℃,夜间又下降了13℃,那么 这天夜间的气温是多少?高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷基础卷(时间:90分钟,满分:100分)一、选择题(每小题4分,共28分)1.两数相加,如果和不是正数,这两个数()A.都是负数B.都是正数C.一正一负D.至少有一为负2.若a为有理数,则∣a∣+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能3.若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是()A.0 B.1 C.2 D.±24.若a,b互为相反数,则a+b的值为()A.0 B.1 C.2 D.±25、绝对值大于2且小于5的所有整数的和是()A、7B、-7C、0D、46、下列说法中正确的是()A、最小的整数是0B、有理数分为正数和负数C、如果两个数的绝对值相等,那么这两个数相等D、互为相反数的两个数的绝对值相等7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A、在家B、在学校C、在书店D、不在上述地方二、填空题(每空2分,共34分)8.(1);(2);(3);(4);(5);(6)。
9.已知两个数是15和-21,这两个数的和的绝对值是___,绝对值的和是__。
10.绝对值小于3的所有整数的和是___。
11、加法交换律用字母表示为:______;加法结合律用字母表示为:___。
12、如果a>0,b>0,那么a+b___0;如果a<0,b<0,那么a+b___0;如果a>0,b<0,且∣a∣>∣b∣,那么a+b___0;如果a<0,b>0,且∣a∣<∣b∣,那么a+b___0。
13、有理数的减法法则,用字母表示为:a-b=____。
14、若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是____.三、解答题(共38分)15、(14分)计算(1)-17+23+(-16)-(-7);(2)1+(-21)+∣-2-3∣-25。
新人教版七年级数学上册1.3.1《有理数的加法(一)》教学设计2一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法(一)》是学生学习有理数运算的第一部分,为学生今后的数学学习打下基础。
本节课主要介绍有理数的加法运算,通过加法运算的学习,使学生掌握有理数加法的基本规则,培养学生对数学运算的兴趣。
二. 学情分析七年级的学生已经掌握了整数和分数的概念,对基本的运算规则有一定的了解。
但是,对于有理数的加法运算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生利用已有的知识经验,探究有理数加法运算的规律,提高学生的运算能力。
三. 教学目标1.理解有理数加法的基本概念,掌握有理数加法的基本规则。
2.能够进行简单的有理数加法运算,并能解释运算过程。
3.培养学生的运算能力,提高学生对数学运算的兴趣。
四. 教学重难点1.教学重点:有理数加法的基本概念,有理数加法的基本规则。
2.教学难点:有理数加法运算的规律,有理数加法运算的灵活运用。
五. 教学方法1.情境教学法:通过生活情境,引导学生理解有理数加法的基本概念。
2.引导发现法:教师引导学生利用已有的知识经验,发现有理数加法的基本规则。
3.实践操作法:学生通过实际的运算练习,掌握有理数加法的基本运算方法。
六. 教学准备1.教学课件:制作有关有理数加法的教学课件,帮助学生直观地理解有理数加法的基本概念和运算规则。
2.练习题:准备一些有关有理数加法的练习题,用于学生的课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过生活情境,如购物场景,引导学生理解有理数加法的基本概念。
例如,小明买了一支铅笔2元,又买了一块橡皮1元,他一共花了多少钱?通过这样的情境,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件展示有理数加法的基本概念和运算规则,让学生直观地理解有理数加法的基本概念。
例如,有理数加法的定义,有理数加法的法则等。
初中七年级数学上册第一章:有理数——1.3.1:有理数的加法(解析)一:知识点讲解知识点一:有理数加法法则有理数加法法则:✧同号两数相加,取相同的符号,并把绝对值相加;✧绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
✧一个数同0相加,仍得这个数。
有理数的加法运算遵循“一定二求三加减”的顺序:1)确定和的符号;2)求加数的绝对值;3)依据加法法则确定是把绝对值相加还是相减。
例1:计算:①()()8.25.3++-;②⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-31272;解:原式=﹣0.7解:原式=21132-③527435+⎪⎭⎫ ⎝⎛-;④⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-653653;解:原式=20131 解:原式=0⑤()05+-解:原式=﹣5知识点二:有理数的加法运算律加法运算律:✧ 加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
a b b a +=+。
✧ 加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
()()c b a c b a ++=++。
在运算时,一定要根据需要灵活运用一下规律,以达到简化运算的目的:✧ 相反数结合法:互为相反数的两个数可先相加; ✧ 同分母结合法:同分母的分数可先相加; ✧ 凑整法:几个数相加得整数时,可先相加; ✧ 同号结合法:符号相同的数可先相加;✧ 同形结合法:带分数可拆成整数和真分数两部分再相加。
例2:计算:1) ()()781312-++-+;解:原式=02) ()6.081523125.1-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+;解:原式=﹣33)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++21746571;解:原式=212-4) ()()⎪⎭⎫ ⎝⎛++-++-+85275.18335.6431。
解:原式=﹣0.5二:知识点复习知识点一:有理数加法法则1. 计算()53+-的结果等于( A )A. 2B. ﹣2C. 8D. ﹣82. 下列计算错误的是( B )A. 15.0211-=+⎪⎭⎫ ⎝⎛-B.()()422=-+-C.()71071-=+-D.()42125.1-=⎪⎭⎫⎝⎛-+-3. 下列说法中,正确的是( D )A. 两个有理数相加,符号不变,绝对值相加B. 两个有理数的和一定大于任意一个加数C.()()25757-=--=-+-D. 两个负数相加,和取负号,并把它们的绝对值相加4. 一个数是15,另一个数比15的相反数大4,则这两个数的和是( D )A. 26B. ﹣4C. ﹣26D. 45.31与绝对值等于32的数的和等于( D ) A.31B. 1C. ﹣1D.31-或1 6. 绝对值不大于414的所有整数的和是 0 。
人教版七年级数学上册第一章 1.3.1.2 有理数的加法运算律 同步测试题一、选择题1.计算314+(-235)+534+(-825)时,用运算律最为恰当的是( )A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .(314+534)+(235+825)2.下列变形运用加法运算律正确的是( )A .3+(-5)=5+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+(+56)=(16+56)+(+1)3.计算0.75+(-114)+0.125+(-57)+(-418)的结果是( )A .657B .-657C .527D .-5274.计算(-35)+14+(-34)+(+35)时,下列所运用的运算律恰当的是( )A .[(-35)+14]+[(-34)+(+35) ]B .[14+(-34)]+[(-35)+(+35)]C .(-35)+[14+(-34)]+(+35) D .以上都不对二、填空题5.(1)3+(-2)=______+3,即a +b =______;(2)(-5)+(-31)+(+31)=(-5)+[______+______],即(a +b)+c =______. 6.在下面横线上填上适当的运算律: (+7)+(-22)+(-7) =(-22)+(+7)+(-7)(______)=(-22)+[(+7)+(-7)](______)=(-22)+0=-22.7.若a,b互为相反数,则(-2 020)+a+2 019+b=______.8.一架直升机从海拔1 000米的高原上起飞,第一次上升了1 500米,第二次上升了-1 200米,第三次上升了2 100米,第四次上升了-1 700米,此时这架飞机离海平面______米.9.绝对值小于2 019的所有整数的和为______.10.上周五股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6则在本周五收盘时,每股的价格是______.11.马冰写作业时不慎将墨水滴在数轴上,根据图中的数值,被墨迹盖住的部分有9个整数,这些整数的和为______.三、解答题12.运用加法的运算律计算下列各题:(1)18+(-12)+(-18)+12;(2)24+(-15)+7+(-20).13.某公司2022年前四个月盈亏的情况如下(盈余为正):-160.5万元,-120万元,+65.5万元,280万元.试问2022年前四个月该公司总的盈亏情况.14.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米): +15,-4,+13,-10,-12,+3,-13,-17.(1)将最后一名老师送到目的地时,小王在出发地点的东方还是西方?距出发地点的距离是多少?(2)若出租车耗油量为0.1升/千米,这天上午汽车共耗油多少升?15.用适当的方法计算:(1)0.36+(-7.4)+0.5+(-0.6)+0.14;(2)(-2.125)+(+315)+(+518)+(-3.2);(3)(-235)+(+314)+(-325)+(+234)+(-112)+(+113).16.用简便方法计算:某产粮专业户出售余粮10袋,每袋重量如下(单位:千克): 199,201,197,203,200,195,197,199,202,196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克; (2)这10袋余粮一共多少千克?17.《填幻方》解决下列问题:(1)将-4,-3,-2,-1,1,2,3,4这8个数分别填入如图1所示的方阵图中,其中0已经给出,使得每一行,每一列,斜对角的三个数相加都相等;(2)根据图2中给出的数,请你完成图2的方阵图,使得每一行,每一列,斜对角的三个数相加都相等.图1 图2参考答案一、选择题1.计算314+(-235)+534+(-825)时,用运算律最为恰当的是(B )A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .(314+534)+(235+825)2.下列变形运用加法运算律正确的是(B)A .3+(-5)=5+3B .4+(-6)+3=(-6)+4+3C .[5+(-2)]+4=[5+(-4)]+2 D.16+(-1)+(+56)=(16+56)+(+1)3.计算0.75+(-114)+0.125+(-57)+(-418)的结果是(B )A .657B .-657C .527D .-5274.计算(-35)+14+(-34)+(+35)时,下列所运用的运算律恰当的是(B)A .[(-35)+14]+[(-34)+(+35) ]B .[14+(-34)]+[(-35)+(+35)]C .(-35)+[14+(-34)]+(+35) D .以上都不对二、填空题5.(1)3+(-2)=(-2)+3,即a +b =b +a ;(2)(-5)+(-31)+(+31)=(-5)+[(-31)+(+31)],即(a +b)+c =a +(b +c). 6.在下面横线上填上适当的运算律: (+7)+(-22)+(-7)=(-22)+(+7)+(-7)(加法交换律) =(-22)+[(+7)+(-7)](加法结合律) =(-22)+0 =-22.7.若a ,b 互为相反数,则(-2 020)+a +2 019+b =-1.8.一架直升机从海拔1 000米的高原上起飞,第一次上升了1 500米,第二次上升了-1 200米,第三次上升了2 100米,第四次上升了-1 700米,此时这架飞机离海平面1_700米. 9.绝对值小于2 019的所有整数的和为0.10.上周五股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6则在本周五收盘时,每股的价格是34元.11.马冰写作业时不慎将墨水滴在数轴上,根据图中的数值,被墨迹盖住的部分有9个整数,这些整数的和为-4.三、解答题12.运用加法的运算律计算下列各题:(1)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12]=0+0=0.(2)24+(-15)+7+(-20).解:原式=(24+7)+[(-15)+(-20)]=31+(-35)=-4.13.某公司2022年前四个月盈亏的情况如下(盈余为正):-160.5万元,-120万元,+65.5万元,280万元.试问2022年前四个月该公司总的盈亏情况.解:(-160.5)+(-120)+(+65.5)+280=[(-160.5)+(+65.5)]+[(-120)+280]=(-95)+160=65(万元).答:2022年前四个月该公司总盈余65万元.14.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17.(1)将最后一名老师送到目的地时,小王在出发地点的东方还是西方?距出发地点的距离是多少?(2)若出租车耗油量为0.1升/千米,这天上午汽车共耗油多少升?解:(1)(+15)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(-17)=[(+15)+(+3)]+[(+13)+(-13)]+[(-4)+(-10)+(-12)+(-17)]=(+18)+(-43)=-25(千米).答:将最后一名老师送到目的地时,小王在出发地点的西方,距出发地点25千米.(2)(|+15|+|-4|+|+13|+|-10|+|-12|+|+3|+|-13|+|-17|)×0.1=87×0.1=8.7(升).答:这天上午出租车共耗油8.7升.15.用适当的方法计算:(1)0.36+(-7.4)+0.5+(-0.6)+0.14;解:原式=(0.36+0.14)+[(-7.4)+(-0.6)]+0.5=0.5+(-8)+0.5=-7.(2)(-2.125)+(+315)+(+518)+(-3.2);解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.(3)(-235)+(+314)+(-325)+(+234)+(-112)+(+113).解:原式=[(-235)+(-325)]+[(+314)+(+234)]+[(-112)+(+113)]=(-6)+6+(-16)=-16.16.用简便方法计算:某产粮专业户出售余粮10袋,每袋重量如下(单位:千克): 199,201,197,203,200,195,197,199,202,196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克; (2)这10袋余粮一共多少千克?解:(1)以200千克为标准,超过200千克的数记作正数,不足200千克的数记作负数,则这10袋余粮对应的数分别为-1,+1,-3,+3,0,-5,-3,-1,+2,-4.所以(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11(千克).答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989(千克).答:这10袋余粮一共1 989千克.17.《填幻方》解决下列问题:(1)将-4,-3,-2,-1,1,2,3,4这8个数分别填入如图1所示的方阵图中,其中0已经给出,使得每一行,每一列,斜对角的三个数相加都相等;(2)根据图2中给出的数,请你完成图2的方阵图,使得每一行,每一列,斜对角的三个数相加都相等.图1图2解:(1)答案不唯一,如:-14-3-2023-41(2)答案不唯一,如:-32-5-4-201-6-1精品 Word 可修改 欢迎下载1、在最软入的时候,你会想起谁。
1.3.1有理数的加法(运算律)一、单选题1.小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ).A .加法的交换律和结合律B .加法的交换律C .加法的结合律D .无法判断2.下列交换加数的位置的变形中,正确的是( )A .14451454-+-=-+-B .111111364436---=--C .12342143-+-=-+-D .4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 3.计算246810(2610)(48)-+-+=+++--时,运用了加法( )A .交换律B .结合律C .分配律D .交换律与结合律 4.下列各式中正确使用了加法运算律的是( )A .(+5)+(-7)+(-5)=(+5)+(-5)+(-7)B .1()2-+1()3+=1()3-+1()2+C .(-1)+(-2)+(+3)=(-3)+(+l)+(-2)D .(-1.5)+(+2.5)=(-2.5)+(+1.5)5.运用运算律计算3+(-7)+5+(-3)+2+(-4)+6,错误的是( )A .[3+(-3)]+[(-7)+5+2]+[(-4)+6]B .(3+5+2+6)+[(-7)+(-3)+(-4)]C .(3+5+2)+[(-7)+(-3)]+[(-4)+6]D .(3+5+2)+(7+3)+[(-4)+6]6.下列变形中,运用运算律正确的是( )A .5(3)35+-=+B .8(5)9(5)89+-+=-++C .[6(3)]5[6(5)]3+-+=+-+D .1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭7.计算0.75+11()4-+0.125+5()7-+1(4)8-的结果是( ) A .657 B .-657 C .527 D .-5278.计算:5+(-3)+7+(-9)+12=(5+7+12)+(-3-9)是应用了()A.加法交换律B.加法结合律C.分配率D.加法的交换律和结合律9.计算112.5(3) 1.75742---+-的最好方法是()A.按顺序计算B.运用结合律C.运用分配律D.运用交换律和结合律10.计算(-20)+379+20+(-79),比较合适的做法是()A.把第一、三两个加数结合,第二、四两个加数结合B.把第一、二两个加数结合,第三、四两个加数结合C.把第一、四两个加数结合,第二、三两个加数结合D.把第一、二、四这三个加数结合二、填空题11.绝对值不大于6的整数的和是______.12.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].13.在下面的计算过程后面填上运用的运算律.(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( ________) =[(-2)+(-5)]+[(+3)+(+4)]( ________)=(-7)+(+7)=0.14.利用加法运算律,将1515212626-+--写成_______________,可使运算简便.15.计算:(1)(-5)+(-9)+(-4)+(+9)=___;(2)1243143543⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=___.三、解答题16.用加法运算律计算:(1)25.7(7.3)(13.7)7.3+-+-+(2)-2.4+(-3.7)+(-4.6)+5.7;(3)12-13-1733+++();(4)(-913)+|-456|+|0-516|+(-23);17.已知||5x =,||9y =.(1)求x ,y 的值;(2)若0xy <,求x y +的值.参考答案1.A解:将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了:加法的交换律和结合律故选:A .2.D解:A .1445=1454-+---+,故A 错误.B .111111=364436------,故B 错误. C .1234=2143-+--+-+,故C 错误.D .4.5 1.7 2.5 1.8=4.5 2.5 1.8 1.7--+-+-,故D 正确.故选:D .3.D解:24681-+-+0=261048++--(加法交换律)=()()261048+++-- (加法结合律)故选:D .4.A解:A 、(+5)+(-7)+(-5)=(+5)+(-5)+(-7),正确运用了加法运算律,故本选项符合题意;B 、1()2-+1()3+=1()3-+1()2+,交换加数的位置时,改变了加数的符号,故本选项不符合题意;C 、(-1)+(-2)+(+3)=(-3)+(+l)+(-2),交换加数的位置时,改变了加数的符号,故本选项不符合题意;D 、(-1.5)+(+2.5)=(-2.5)+(+1.5),交换加数的位置时,改变了加数的符号,故本选项不符合题意.故选:A .5.D解:A 中,互为相反数的先相加,正确,故该选项不符合题意;B 中,符号相同的先相加,正确,故该选项不符合题意;C 中,正确,故该选项不符合题意;D 中,应该是(3+5+2)-(7+3)+[(-4)+6],错误,故该选项符合题意.故选:D .6.B解:A 、5(3)(3)5+-=-+,故此选项错误;B 、8(5)9(5)89+-+=-++,故此选项正确;C 、[6(3)]5(65)(3)+-+=++-,故此选项错误;D 、1212(2)(2)3333⎛⎫⎛⎫+-++=++- ⎪ ⎪⎝⎭⎝⎭,故此选项错误. 故选B .7.B解:原式=331152444887⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()5247⎛⎫-+-+-⎪⎝⎭ =-657. 故选:B .8.D解:计算5+(-3)+7+(-9)+12=(5+7+12)+(-3-9)是应用了加法的交换律和结合律. 故选:D .9.D解:原式 2.5( 3.25) 1.757.5=---+-2.53.25 1.757.5=-++-(3.25 1.75)(2.57.5)=+-+510=-5=-故答案选D.10.A解:计算(-20)+379+20+(-79),比较合适的做法是把一、三两个加数结合,二、四两个加数结合.故选A.11.0解:绝对值不大于6的整数有:±6,±5,±4,±3,±2,±1,0.根据互为相反数的两数的和为0.可知它们的和为0.故答案为0.12.1621(3)3-解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.13.加法交换律加法结合律解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律)=(-7)+(+7)=0.故答案为:加法交换律;加法结合律.14.1155 21.2266 --+-解:15151155 2121.26262266 -+--=--+-故答案为:1155 21.2266 --+-15.-96 5 -解:(1)原式=[(-5)+(-4)]+[(-9)+9]=(-9)+0=-9;(2)原式=1344⎡⎤⎛⎫⎛⎫-+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦+2133⎡⎤⎛⎫⎛⎫-+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦+45=(-1)+(-1)+45=-65.16.(1)12;(2)-5;(3)29;(4)0.解:(1)25.7(7.3)(13.7)7.3+-+-+=(25.7+7.3)+[(-7.3)+(-13.7)]=33-21=12;(2)-2.4+(-3.7)+(-4.6)+5.7=[(-2.4)+(-4.6)]+[(-3.7)+5.7]=-7+2=-5;(3)12-13-17 33+++()=[(13-)+(23-)]+(13+17)=-1+30 =29;(4)(-913)+|-456|+|0-516|+(-23)=(-913)+456+516+(-23)=[(-913)+(-23)]+(456+516)=-10+10=0.17.(1)x=±5,y=±9;(2)4或-4.解:(1)∵|x|=5,|y|=9,∵x=±5,y=±9;(2)∵0xy<∵x=-5,y=9;x=5,y=-9;x y+=4或-4.。
人教版七年级数学上册1.3.1.2有理数的加法运算律同步训练卷一、选择题(共10小题,3*10=30)1.对算式(-8)+(+6)+(+18)运用加法交换律正确的是( )A.(-8)+(-18)+(+6)B.(+8)+(-6)+(+18)C.(+6)+(-18)+(+8)D.(-8)+(+18)+(+6)2.下列变形,运用运算律正确的是( )A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D .13+(-2)+⎝⎛⎭⎫+23=⎝⎛⎭⎫13+23+(+2)3.计算33+(-32)+7+(-8)的结果是( )A .0B .2C .-1D .54.下面的计算运用的运算律是( )-13+3.2+⎝⎛⎭⎫-23+7.8=-13+⎝⎛⎭⎫-23+3.2+7.8=-⎝⎛⎭⎫13+23+(3.2+7.8)=-1+11=10. A .加法交换律B .加法结合律C .先用加法交换律,再用加法结合律D .先用加法结合律,再用加法交换律5.下列运算中正确的是( )A .7+13+(-8)=13B .(-3.5)+4+(-3.5)=4C .334+(-334)+(-3)=-3 D .3.14+(-7)+3.14=-86. 某地一天早晨的气温是-3 ℃,到中午升高了5 ℃,下午又降低了3 ℃,到晚上又降低了5 ℃,则晚上的气温是( )A .6 ℃B .10 ℃C .-6 ℃D .-8 ℃7.对于算式⎝⎛⎭⎫-12+14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310,下列运算律运用恰当的是( ) A.⎣⎡⎦⎤⎝⎛⎭⎫-12+14+⎣⎡⎦⎤⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 B.⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫+310 C.⎝⎛⎭⎫-12+⎣⎡⎦⎤14+⎝⎛⎭⎫-25+⎝⎛⎭⎫+310 D.⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-25+⎣⎡⎦⎤14+⎝⎛⎭⎫+310 8.计算(-20)+379+20+⎝⎛⎭⎫-79,最简便的做法是( ) A .把一、三两个加数结合,二、四两个加数结合B .把一、二两个加数结合,三、四两个加数结合C .把一、四两个加数结合,二、三两个加数结合D .把一、二、四这三个加数先结合9.在数+6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( )A .-3B .-1C .3D .210.在防范新冠病毒疫情的例行体温检测中,检查人员将高出37 ℃的部分记作正数,将低于37 ℃的部分记作负数,体温正好是37 ℃的记作“0”.一人在一周内的体温结果分别为+0.1,-0.3,-0.5,+0.1,+0.2,-0.6,-0.4,那么该人一周中测量体温的平均值是( )A .37.1 ℃B .37.31 ℃C .36.69 ℃D .36.8 ℃二.填空题(共8小题,3*8=24)11.计算:(-32)+72+(-8)=____.12. 运用加法结合律计算:[10+(-6)]+(-7)=10+________________=________.13.检修小组从A 地出发,在东西路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3.则收工时在A 地的____边____千米处.14.等式5+(-3)+7+(-9)+12=(5+7+12)+[(-3)+(-9)]运用了___________________________。
第一章人教版七年级数学上册
第二章有理数
1.3 有理数的加减法
1.3.1 有理数的加法
第1课时有理数的加法法则
1.(-5
6
)+(-
1
6
)=_________,___________+(-
3
2
)=0.
3.计算(1)(-21)+(-31)= (2)-15+0= ;
(3)(-1
3
)+(+
1
2
)= (4)(-3
1
3
)+0.3= ;.
4.(-5)+______= - 8; ______+(+4)= -9
5.若a,b互为相反数,c、d互为倒数,则( a + b )+ cd =________ 6.下列各组运算结果符号为负的有()
(+3
5
)+(-
4
5
),(-
6
7
)+(+
5
6
),(-3
1
3
)+0,(-1.25)+(-
3
4
)
A.1个 B.2个 C.3个 D.4个
7.若两数的和为负数,则这两个数一定()
A.两数同正 B.两数同负; C.两数一正一负 D.两数中一个为0 8.两个有理数相加,如果和小于每一个加数,那么()
A.这两个加数同为负数; B.这两个加数同为正数
C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零
9.有理数a,b 在数轴上对应位置如图所示,则a + b 的值为()
A.大于0
B.小于0
C.等于0
D.大于a
10.计算:
(1)(-42
3
)+(+3
1
6
);(2)(-8
2
3
)+(+4.5);
(3)(-72
3
)+(-3
5
6
);(4)│-7│+│-9
7
15
│;
(5)(+4.85)+(-3.25);(6)(-3.1)+(6.9);
(7)(-22
9
14
)+0;(8)(-3.125)+(+3
1
8
)
(9) -3
4
+(-
4
5
);(10) 4.23+(-2.76);
11、某城市一天早晨的气温是-25℃,中午上升了11℃,夜间又下降了13℃,那么这天夜间的气温是多少?。