异面直线所成的角练习题
- 格式:doc
- 大小:67.00 KB
- 文档页数:2
异面直线所成的角专题训练1.在正方体ABCD-A1B1C1D1中,异面直线AC和XXX所成的角为多少度?答案:90度。
2.在正方体ABCD-A1B1C1D1中,AB的中点M,DD1的中点N,则异面直线B1M与CN所成的角是多少度?答案:60度。
3.在正方体ABCD-A1B1C1D1中,E为线段AC的中点,则异面直线DE与B1C所成角的大小为多少度?答案:无法确定,题目中缺少信息。
4.在三棱锥ABC-A1B1C1中,底面为正三角形,侧棱垂直于底面,AB=4,AA1=6.若E是棱BB1上的点,且BE=B1E,则异面直线A1E与AC1所成角的余弦值为多少?答案:1/3.5.在三棱锥P-ABC中,△ABC为等边三角形,△PAC为等腰直角三角形,PA=PC=4,平面PAC⊥平面ABC,D为AB的中点,则异面直线AC与PD所成角的余弦值为多少?答案:-1/2.6.在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,直线AM与CN所成角的余弦值是多少?答案:-3/5.7.在直三棱柱ABC-A1B1C1中,AC⊥BC,且CA=CC1=10,则直线B1C与直线AB1所成角的余弦值为多少?答案:5/13.8.在直三棱柱ABC-A1B1C1中,AA1=2,A1B1=2,AB⊥BC,点M是AC1的中点,则异面直线MB与AA1所成角的余弦值为多少?答案:-1/3.9.正三棱锥A-PBC的侧棱两两垂直,D,E分别为棱PA,BC的中点,则异面直线PC与DE所成角的余弦值为多少?答案:-3/5.10.在正方体ABCD-A1B1C1D1中,点E为BC的中点,点F为B1C1的中点,则异面直线AF与C1D所成角的大小为多少度?答案:无法确定,题目中缺少信息。
中,ABCD是正方形,E是AD的中点,F是BC的中点,异面直线EF与AC所成的角的正弦值为(。
)A.12B.13C.23D.110.在正方体ABCD A1B1C1D1中,E是AD的中点,F是BC的中点,异面直线EF与直线AC所成的角的正切值为(。
人教A版高中数学必修第二册8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练题组一 求异面直线所成的角1.(2024安徽六安期中)如图,已知正四棱锥P-ABCD的所有棱长均为2,E为棱PA的中点,ABCD-A1B1C1D1中,E,F与直线AD1所成角的大小为在正方体ABCD-A(1)求异面直线CD1与BC1所成的角;(2)求证:MN∥平面ABCD.题组二 空间两条直线所成角的应用5.(多选题)(2024山东德州夏津第一中学月考)已知E,F 分别是三棱锥P-ABC 的棱PA,BC 的中点,且PC=6,AB=8.若异面直线PC 与AB 所成角的大小为60°,则线段EF 的长可能为( )A.7B.13C.5D.376.在长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,异面直线AB 与A 1C 所能力提升练在正四面体S-ABC 中3.4.(2024贵州凯里第一中学模拟)平面α过直三棱柱ABC-A 1B 1C 1的顶点B 1,平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,且AA 1=AB=BC,AB ⊥BC,则A 1B 与l 所成角的正弦值为( )A.32 B.22 C.12 D.335.已知正三棱柱ABC-A 1B 1C 1的侧面积为12,当其外接球的表面积取最小值时,异面直线AC 1与B 1C 所成角的余弦值为 .题组二 异面直线所成角的应用6.(2024上海青浦高级中学期末)在棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为底面ABCD 内(包括边界)的动点,满足直线D 1P 与CC 1所成角的大小为π6,则线段DP 扫过的面积为( )A.π12B.π6C.π3D.π27.(2024广东阳江期末)在四面体A-BCD 中,AB=CD=1,BC=2,且AB ⊥BC,CD ⊥BC,异面直线AB 与CD 所成的角为π3,则该四面体外接球的表面积为 .8.(2022河南濮阳第一高级中学月考)在四棱柱ABCD-A 1B 1C 1D 1中,侧面都是矩形,底面ABCD 是菱形且AB=BC=23,∠ABC=120°,若异面直线A 1B 和AD 1所成的角为90°,求AA 1的长度.答案与分层梯度式解析8.6 空间直线、平面的垂直8.6.1 直线与直线垂直基础过关练1.B2.C3.A 5.BD 6.DPC,EO=1PC=1,在所以BB1∥平面AEF,平面DBB1,所以BB1又与直线AD1所成的角为连接B N,CN,因为点M为A1B1的中点,A1B1=AB,所以MB1=AN,又MB1∥AN,所以四边形ANB1M为平行四边形,所以AM∥B1N,所以异面直线AM与B1C所成的角为∠CB1N(或其补角),设∠CB1N=θ,在正△ABC中,由AB=4,可得CN=23,在直角△BNB1中,BB1=3,BN=2,所以B1N=22+32=13,在直角△BCB1中,BC=4,BB1=3,所以B1C=42+32=5,在△B 1CN 中,由余弦定理的推论可得cos θ=B 1C 2+B 1N 2-C N 22B 1C·B 1N=52+(13)2-(23)22×5×13=135.故选A.4.解析 (1)连接A 1B,A 1C 1,因为A 1D 1=BC 且A 1D 1∥BC,所以四边形A 1D 1CB 为平行四边形,所以CD 1∥A 1B,则∠A 1BC 1或其补角为异面直线CD 1与BC 1所成的角,易知A 1C 1=A 1B=BC 1,所以△A 1C 1B 为等边三角形,所以∠A 1BC 1=60°,所以异面直线CD 1与BC 1所成的角为60°.(2)证明:连接C 1D,BD,则N 为C 1D 的中点,又M 为BC 1的中点,所以MN ∥BD,又MN ⊄平面ABCD,BD ⊂平面ABCD,所以MN ∥平面ABCD.5.BD 如图,取AC 的中点H,连接EH,FH,因为E,F 分别为PA,BC 的中点,PC=6,AB=8,所以AB ∥HF,HE ∥PC,HF=4,HE=3,所以异面直线PC 与AB 所成的角即为∠EHF(或其补角),所以∠EHF=60°或∠EHF=120°.当∠EHF=60°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=12,解得EF=13;当∠EHF=120°时,根据余弦定理的推论得cos ∠EHF=HE 2+H F 2-E F 22HE ·HF =9+16−EF 224=-12,解得EF=37.故选BD.易错警示 通过立体图形无法直接判断∠EHF是锐角还是钝角,因此∠EHF可能是异面直线所成的角,也可能是其补角,所以需要进行分类讨论.6.D ∵AB∥DC,∴∠A1CD(或其补角)即为异面直线AB与A1C所成的角,由图可知∠A1CD为.锐角,∴∠A1CD=π3设DD1=x,连接A1D,则A1C=12+12+x2=2+x2,A1D=x2+1.在∴∴7.垂直于上底面于点D,则ADD∥O2A,1∴或其补角,当在当在Rt△ABD中,AB=BD2+A D2=2.综上,AB=2或AB=2.能力提升练1.A2.A3.C4.A 6.A1.A 取SM的中点E,连接EN,AE,如图,∵N是SB的中点,∴EN∥MB,EN=12MB,∴∠ANE或其补角即为异面直线BM与AN所成的角.设正四面体的棱长为4,∵M是SC的中点,N是SB的中点,△SAB和△SBC均为正三角形,∴BM⊥SC,AN⊥SB,且BM=AN=23,∴EN=3,在△ASE中,由余弦定理得AE2=SA2+SE2-2SA·SE·cos∠ASE=16+1-2×4×1×12=13,在△ANE中,由余弦定理的推论得cos∠ANE=AN2+N E2-A E22AN·NE =12+3−132×23×3=16,∴异面直线BM与AN所成角的余弦值为16.故选A.2.A 如图,过点A作AN∥OM,交圆O于点N,连接ON,PN,则∠PAN或其补角即为异面直线OM与AP所成的角,设AO=ON=1,易知∠OAN=∠ONA=∠AOM=30°,则AN=3,因为轴截面PAB为等腰直角三角形,所以PN=PA=2,在△APN中,由余弦定理的推论得cos∠PAN=PA2+A N2-P N22PA·AN =2+3−226=64,所以异面直线OM与AP所成角的余弦值为64.故选A.3.C 如图,连接AD1,AP,易得AD1∥BC1,所以∠AD1P(或其补角)即为异面直线D1P与BC1所成的角.设正方体的棱长为1,DP=x,x∈[0,1],在△AD 1P 中,AD 1=2,AP=D 1P=1+x 2,故cos ∠AD 1P=(2)2+(1+x 2)2-(1+x 2)222·1+x 2=221+x 2,∵x ∈[0,1],∴cos ∠AD 1P=221+x2∈又∠AD 1P 是△AD 1P 的内角,∴∠AD 1P 故选C.B 1则ABC 1,所以B 1C 2∥平面⊂由小题速解 因为平面α∥平面ABC 1,平面α∩平面BB 1C 1C=l,平面ABC 1∩平面BB 1C 1C=BC 1,所以l ∥BC 1,则A 1B 与l 所成的角为∠A 1BC 1(或其补角),下同解析.5.答案 514解析 设正三棱柱的底面边长为a,高为h,外接球的半径为R,由题意知3ah=12,即ah=4,易得△ABC 外接圆的半径r=a2sin π3=a3,则R 2=r 2+ℎ24=a 23+ℎ24≥aℎ3=43,当且仅当a=32h 时取等号,此时外接球的表面积最小.将三棱柱补成一个四棱柱,如图,连接DB 1,DC,则AC 1∥DB 1,∴∠DB 1C(或其补角)为异面直线AC 1与B 1C 所成的角,易得B 1C=DB 1=a 2+ℎ2,DC=3a,∴cos ∠DB 1C=2(a 2+ℎ2)-3a 22(a 2+ℎ2)=514.解题技法 补形平移是常用的一种作平行线的方法,一般是补一个相同形状的几何体,构成一个特殊的几何体,方便作平行线,如此题将三棱柱补成一个四棱柱.6.A 因为DD 1∥CC 1,所以直线D 1P 与CC 1所成的角即为DD 1与D 1P 所成的角,易知DD 1⊥PD,所以DD 1与D 1P 所成的角为∠DD 1P,即∠DD 1P=π6,故tan ∠DD 1P=DPDD 1=33,即DP=33,所以点P 的轨迹是以D 为圆心,33为半径的圆的四分之一,故线段DP 扫过的面积为14π×=π12.故选A.7.答案 16π3或8π解析 由题意,可以将四面体A-BCD 补成一个直三棱柱,如图所示.∵CD∥BE,∴直线AB与CD所成的角为∠ABE或其补角,∵异面直线AB与CD所成的角为π3,∴∠ABE=π3或∠ABE=2π3.设△ABE外接圆的半径为r,当∠ABE=π3时,AE=BE=AB=1,则2r=1sinπ3,解得r=33;当∠ABE=2π3时,AE=3,则则8.BC且A1D1=BC,所以A1B∥CD1,所成的角为∠AD1C,故∠AD1均为矩形,设在故。
第四讲 空间角(异面直线所成角线面角二面角)A 组题一、选择题1.下面正确的序号是①两直线的方向向量所成的角就是两条直线所成的角.②直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ③两个平面的法向量所成的角是这两个平面所成的角.④两异面直线夹角的范围是(00,90⎤⎦,直线与平面所成角的范围是0090⎡⎤⎣⎦,,二面角的范围是[0,1800] ( ).A.①B.②C.③D.④【答案】D【解析】对于①,因为两异面直线夹角的范围是(00,90⎤⎦,而两直线的方向向量所成的角可能为钝角. 所以①错. 对于②,直线的方向向量和平面的法向量所成的角是直线与平面所成的角或其补角. 所以②错.对于③,两个平面的法向量所成的角是这两个平面所成的角是这两个平面所成的角或其补角. 所以③错. 故选D .2.如图,在正方体ABCD -A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与C N 所成的角是( ). A.90° B.75° C.60° D.45°【答案】A【解析】取AA′的中点Q ,连接QN ,B Q ,且B Q 与B′M 相交于点H ,则QN 綉AD 綉BC ,从而有四边形NQ BC 为平行四边形,所以N C ∥Q B ,则有∠B′H B 为异面直线B′M 与C N 所成的角. 又∵B′B =BA ,∠B′B M =∠BA Q =90°,B M =A Q ,∴△B′B M ≌△BA Q , ∴∠M B′B =∠Q B M .而∠B′M B +∠M B′B =90°,从而∠B′M B +∠Q B M =90°,∴∠MH B =90°.故选A. 3.如图,在四棱锥P -ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△P AB 和△P AD 都是等边三角形,则异面直线CD 与P B 所成角的大小为( ) A.90° B.75° C.60° D.45°【答案】 A【解析】如图,过点B 作直线B E ∥CD ,交DA 的延长线于点E ,连接PE .∴∠P B E (或其补角)是异面直线CD 与P B 所成角.∵△P AB 和△P AD 都是等边三角形,∴∠P AD =60°,DA =P A =AB=P B =A E ,∴∠P A E =120°.设P A =AB =P B =A E =a ,则PE .又∠ABC =∠BAD =90°,∴∠BA E =90°,∴B E a ,∴在△P B E 中,P B 2+B E 2=PE 2,∴∠P B E =90°.即异面直线CD 与P B 所成角为90°.故选A.4.已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形,AA 1=2AB ,E 为AA 1的中点,则异面直线B E 与CD 1所成角的余弦值为( )B.15 D.35【答案】C【解析】如图,连接BA 1,因为BA 1∥CD 1,所以∠E B A 1是异面直线B E 与CD 1所成角,设AB =1,则111,EB A E A B ===,作EF ⊥BA 1, 11A E AB EF A B ⋅==FB =∠E B A 1.选C.5. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB, 则异面直线A P 与BC 所成角的大小; A.90°B. 60°C. 75°D.45°【答案】B【解法】∵P C ⊥平面ABC ,⊂A B 平面ABC , ∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .过点A 作A F //BC ,且A F =BC ,连结PF ,C F . 则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F ,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AFPF==3,∴异面直线P A 与BC 所成的角为60°.选B.6. 如图,正方形ABCD 所在平面与正方形,AB EF 所在平面成60ο角,求异面直线AD 与B F 所成角的余弦值. A.42 B.2C. 3D.【答案】A 【解析】∵CB ∥AD, ∴∠CB F 为异面直线AD 与B F 所成的角.连接C F 、C E 设正方形ABCD 的边长为α,则B F =a 2∵CB ⊥AB, E B ⊥AB ∴∠C E B 为平面ABCD 与平面AB EF所成ABC DPE F的角,∴∠CB E =∠60ο ∴C E =a F C =a 2 ,∴cos ∠CB F =42,选A. 7. 如图,已知棱柱1111D C B A ABCD -的底面是菱形,且⊥1AA 面ABCD , 60=∠DAB ,1AA AD =,F 为棱1AA 的中点,M 为线段1BD 的中点,则面1BFD 与面ABCD 所成二面角的大小. A .30° B .45° C .60° D .90°【答案】C【解析】 底面是菱形, BD AC ⊥∴ 又⊥B B 1 面ABCD ,⊂AC 面ABCD B B AC 1⊥∴,⊥∴AC 面11B BDD 又AC MF // ⊥∴MF 面11B BDD 延长F D 1、DE 交于点E ,F 是A A 1的中点且ABCD 是菱形AB AE DA ==∴ 又 60=∠DAB 90=∠∴DBE ∴BE B D ⊥1 BD D 1∠∴为所求角 在菱形ABCD 中, 60=∠DAB BD BC 3=∴ 3t a n 11==∠BDDD BD D 601=∠∴BD D ,选C .8.在一个45°的二面角的一个面内有一条直线与二面角的棱成45°,则此直线与二面角的另一个面所成的角为( ) A .30° B .45° C .60° D .90° 【答案】A【解析】如图,二面角α-l -β为45°,β,且与棱l 成45°角,过A 作A O ⊥α于O ,作A H ⊥l 于H .连接OH 、O B ,则∠A HO 为二面角α-l -β的平面角,∠AB O 为AB 与平面α所成角.不妨设A HRt △A OH 中,易得A O =1;在Rt △AB H 中,易得AB =2.故在Rt △AB O 中,sin ∠AB O =12AO AB =,∴∠AB O =30°,为所求线面角.选A. 二、填空题9. 如图所示,在正四面体S -ABC 中,D 为S C 的中点,则BD 与S A所成角的余弦值是A BC DA 1B 1C 1D 1F MOE________.【解析】取AC 中点E ,连接D E ,B E ,则BD 与D E 所成的角即为BD 与S A 所成的角.设S A =a ,则BD =B Ea ,D E =2a .由余弦定理知cos ∠BD E.10. 如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小的正切为23,则该正四棱柱的高等于____________.【答案】【解析】由题意得11122tan 33DD DBD DD BD ∠===⇒=. 11. A 、B 是直二面角α-l -β的棱l 上的两点,分别在α,β内作垂直于棱l 的线段AC ,BD ,已知AB =AC =BD =1,那么CD 的长为【解析】如图,由于此题的二面角是直角,且线段AC ,BD 分别在α,β内垂直于棱l ,AB =AC =BD =1,作出以线段AB ,BD ,AC 为棱的正方体,CD 即为正方体的对角线,由正方体的性质知,CD三、解答题 12. 如图,三棱锥P —ABC 中, P C ⊥平面ABC ,P C =AC =2,AB =BC ,D 是P B 上一点,且CD ⊥平面P AB .(1) 求证:AB ⊥平面P CB ;(2 求异面直线A P 与BC 所成角的大小;(3π) 【解析】(1) ∵P C ⊥平面ABC ,⊂A B 平面ABC ,BDPE∴P C ⊥AB .∵CD ⊥平面P AB ,⊂A B 平面P AB , ∴CD ⊥AB .又C CD PC = , ∴AB ⊥平面P CB .(2) 过点A 作A F //BC ,且A F =BC ,连结PF ,C F .则 PAF ∠为异面直线P A 与BC 所成的角.由(Ⅰ)可得AB ⊥BC ,∴C F ⊥A F .由三垂线定理,得PF ⊥A F .则A F =C F =2,PF =6 CF PC 22=+,在PFA Rt ∆中, tan ∠P A F =26AF PF ==3, ∴异面直线P A 与BC 所成的角为3π.13.如图所示,在多面体111A B D DCBA 中,四边形11AA B B,11,ADD A ABCD均为正方形,点E 为11B D的中点,过点1A ,D ,E 的平面交1CD 于点F .(1)求证:1//EF B C ;(2)求二面角11EA DB ﹣﹣余弦值.【解析】(1)证明:由题可得1//AD B C ,又因为1A D ⊄平面11B CD ,1B C ⊂平面11B CD ,所以1//A D 平面11B CD .又平面1A DEF平面11B CD EF =,所以1//A D EF .又因为11//A D B C ,所以1//EF B C .(2)将原图形补全成正方体,如图所示,则平面1A CD 即为平面1A EFD ,所以求二面角11E A D B --的余弦值可以转化为求二面角111C A D B --的余弦值。
原创精品资源学科网独家享有版权,侵权必究!
1
异面直线所成的角
1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角或夹角.
2.异面直线所成的角θ的取值范围:(090]︒︒,
3.当θ=o 90时,a 与b 互相垂直,记作a b ⊥.
【例】设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( )
A .有无数条
B .有两条
C .至多有两条
D .有一条
【答案】A
【规律总结】异面直线所成的角的大小与O 点的位置无关,即O 点位置不同时,这一角的大小是不会改变的.
1.如图所示,在长方体1111ABCD A B C D -中,AB 11BC CC ==,则异面直线11AC BB 与所成角的大。
异面直线及其所成的角(一)1.在正方体1111ABCD A B C D -中,M 、N 分别为棱BC 和棱1CC 的中点,则异面直线AC 和MN 所成的角为( ) A .30︒ B .45︒ C .90︒ D .60︒ 2.如图,正方体1111ABCD A B C D -中,AB 的中点M ,1DD 的中点N ,则异面直线1B M 与CN 所成的角是( )A .30︒B .45︒C .60︒D .90︒ 3.如图,在正方体1111ABCD A B C D -中,E 为线段11AC 的中点,则异面直线DE 与1B C 所成角的大小为( )A .3π B .4π C .6π D .12π 4.如图,在三棱锥111ABC A B C -中,底面为正三角形,侧棱垂直于底面,4AB =,16AA =.若E 是棱1BB 上的点,且1BE B E =,则异面直线1A E 与1AC 所成角的余弦值为( )A 13B 213C 513D 8135.如图,在三棱锥P ABC -中,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A .14B 2C .2D .126.在棱长为1的正方体1111ABCD A B C D -中,M 和N 分别为11A B 和1BB 的中点,那么直线AM 与CN 所成角的余弦值是( ) A .25- B .25C .35D .10 7.如图,直三棱柱111ABC A B C -,AC BC ⊥,且12C A C C C B==,则直线1BC 与直线1AB 所成角的余弦值为( )A .5 B .5 C .25 D .358.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .22C .32D .129.正三棱锥A PBC -的侧棱两两垂直,D ,E 分别为棱PA ,BC 的中点,则异面直线PC 与DE 所成角的余弦值为( )A .3 B .5 C .3 D .6 10.如图所示,在正方体1111ABCD A B C D -中,若点E 为BC 的中点,点F 为11B C 的中点,则异面直线AF 与1C E 所成角的余弦值为( )A .23B 5C 5D 2511.在三棱柱111ABC A B C -中,ABC ∆是等边三角形,1AA ⊥平面ABC ,2AB =,12AA =,则异面直线1AB 和1BC 所成角的正弦值为( )A .1B 7C .12D 312.在正方体1111ABCD A B C D -中,E 为BC 的中点,F 为11B C 的中点,则异面直线AF 与1C E 所成角的正切值为( )A 5B .23C 25D 5异面直线及其所成的角(二)1.正四棱锥的侧棱与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为( )A .13BC .23D 2.如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,12AA =,1AC BC ==,则异面直线1A B 与AC 所成角的余弦值是( )3.四棱锥P ABCD -中,底面ABCD 为正方形,且PA ⊥平面ABCD ,PA AB =,则直线PB 与直线AC 所成角的大小为( )A.6π B.4π C.3π D.2π 4.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,2AB =,AD =,2PA =,则异面直线BC 与AE 所成的角的大小为( )A.6π B.4π C.3π D.2π 5.在如图所示的正方体1111A B C D ABCD 中,E 是11C D 的中点,则异面直线DE 与AC 夹角的余弦值为( )A. B.120- C.1206.正方体1111ABCD A B C D -中,E 是AD 的中点,则直线1C E 与BC 所成的角的余弦值是( )C.137.如图,在正四面体ABCD 中,E 为AB 的中点,F 为CD 的中点,则异面直线EF 与AC 所成的角为( )A.90︒B.60︒C.45︒D.30︒ 8.在正方体1111ABCD A B C D -中,P 为11AC 的中点,则直线1DC 与AP 所成角的余弦值为( )C.129.在长方体1111ABCD A B C D -中,1AB BC ==,12AA =,则异面直线1AD 与1DB 所成角的余弦值为( )C.1510.已知直三棱柱111ABC A B C -,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与BC 所成角的余弦值为( )A.1511.如图,在三棱锥A BCD -中,三条棱DA 、DB 、DC 两两垂直,且DA DB DC ==,M 、N 分别是棱BC 、AD 的中点,则异面直线AM 与BN 所成角的余弦值为( )A.1212.如图,在正方体1111ABCD A B C D -中,M ,N 分别为11C D 和1CC 的中点,则异面直线AM 与BN 所成角的余弦值为( )13.三棱柱ABC A B C ''-'的所有棱长都等于2,并且AA '⊥平面ABC ,M 是侧棱BB '的中点,则直线MC '与A B '所成的角的余弦值是( )异面直线及其所成的角(一)答案1-6 DDCABB 7-12 ABDBAC异面直线及其所成的角(二)答案1-6 DDCBDC 7-13 CDABDAA。
第三节 利用空间向量求异面直线所成角及直线与平面所成角 一、异面直线所成角设AB 、CD 为异面直线,所成角为θ则=θcos练习:如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,则OE 和FD 1所成角的余弦值为________.探讨:如图,正四面体A-BCD 中,E 、F 分别是BC 、AD求AE 和CF 所成角的余弦值。
例1、如图,ABCD-A 1B 1C 1D 1是正四棱柱,(1)求证BD ⊥平面ACC 1A 1 (2)若二面角C 1-BD-C 的大小为︒60,求异面直线BC1与AC 所成角大小 。
(06北京文)二、直线与平面所成角1、法向量:如表示向量→a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥→a 。
如果α⊥→a ,那么向量→a 叫平面α的法向量。
例2,如图所示,ABCD 是直角梯形AD //BC ,︒=∠90ABC SA ⊥平面ABCD ,SA=AB=BC=1 ,AD=21, (1) 求平面SBC 的一个法向量; (2) 求平面SCD 的一个法向量; (3) 求平面SAD 的一个法向量;D 1 C 1ABC DA 1B 1(4)求平面ABCD的一个法向量。
2,若AB是平面α的一条斜线,→n是α的一个法向量,设AB与α所成角为θ,则sinθ。
例3,如图,正三棱柱ABC-A1B1C1中,AB=AA1,求AC1与平面BB1C1C所成角。
练习:在正方体ABCD-A1B1C1D1中,M、NB 1C1、AD的中点,求直线A1D1与平面BMD1N的余弦值。
例4,如图,AB⊥平面BCD,BC⊥CD,AB=BC,AD 平面BCD所成角为30°。
(1)求AD与平面ABC所成的角;(2)AC与平面ABD所成角。
作业:1.如图,在长方体ABCD-A1B1C1D1中BC=22,214=CD ,51=DD ,求A 1C 和B 1D 1所成角的 大小。
异面直线所成的角专题—异面直线所成的角求法异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的.准确选定角的顶点,平移直线构造三角形是解题的重要环节.本次课对此类题的解题方法做了一些归纳和总结,仅供参考.例1:在正方体ABCD -A 1BC 11D 1中,E , F 分别为AD , AA 1的中点 (1)求直线AB 1和CC 1所成角的大小 (2)求直线AB 1和EF 所成角的大小E ,F 分别为AB 和的中点,例2:在正方体ABCD -A 求异面直线B 1C 与EF 所1BC 11D 1中,成的大小一、异面直线的定义:把不同在任何一个平面内的两条直线叫异面直线(即既不相交也不平行的直线); 从而空间中直线与直线的位置关系分三种:平行、相交、异面二、异面直线所成角的概念(画法):如图,已知两条异面直线a , b ,经过空间任意一点O 作直线a ' //a , b ' //b ,我们把a ' 与b ' 所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)例3:如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点,求异面直线EF 与SA 所成的角Bθ角的取值范围:(00,900] 三、异面直线所成的角求解步骤:1. 恰当选点,作两条异面直线的平行线,构造平面角θ;2. 证明这个角θ就是异面直线所成角;3. 解三角形,求出所构造角θ的三角函数值,得出度数;异面直线所成的角求法简记为:一作、二证、三求;例4:如图,AB 和CD 是两条异面直线,AB =CD =3,AE BF 1=E , F 分别为线段AD , BC 上的点,且=, ED FC 2EF =7,求AB 和CD 所成的角。
异面直线测试题一.选择题:1.直线a , b 是异面直线是指① a ∩b =?, 且a 与b 不平行;② a ?面α,b ?面β,且平面α∩β=?;③ a ?面α,b ?面β,且a ∩b =?;④ 不存在平面α,能使a ?α且b ?α成立。
两异面直线所成的角题目解法大全(配有高考真题练习题)异面直线所成角的求法例一、已知正四棱锥P—ABCD侧棱长与底面边长相等,E、F分别为PC、PD的中点,求异面直线BE与CF所成的角的余弦值.绿色通道:法一、BE不动,在面PDC内过点E平移CF;法二、CF不动,过F平移EB,其中是以平行四边形BEFH为依托;法三、利用空间向量知识来求解.解法一:如下图1,设正四棱锥的侧棱长与底面边长为2,在面PDC内过E作EG平行于∠或其补角为BE与CF所成角. BD=22,又PB=PD=2, CF,交PD于G,连结BG. 则BEG所以BPD ∠为直角, BG 2=PB 2+PD 2=22+2)21(=417.又CF=3, EG=23.在BEG∆中,cos BEG ∠=EG BE BG EG BE .2222-+= —61,所以BE 与CF 所成角是BEG ∠的补角,大小CBAP为arccos61. 解法二:如上图2.设各棱长均为2,H 为AB 的中点,连结EF ,FH ,则EF=BH //21CD ,∴BEFH 为平行四边形,FH //BE ,∴∠CFH 为BE 与CF 所成的角,且FH=BE=3.连结HC ,则HC=5,CF=3.在∆CFH 中,cos ∠CFH = FH CF CH FH CF ⋅-+2222=61,所以BE 与CF 所成角大小为arccos61.解法三:如上图.建立空间直角坐标系 .设各棱长均为2, PO=2,则 B (2,0,0 ), C( 0,2,0), E(0,22,22),F(—22,0,22) , 则= (—2,22,22),=(—22,—2,22),与的夹角为θ, cos θ61,所以BE 与CF 所成的角为arccos 61. 例题1:如图:表示正方体1111D C B A ABCD -,求异面直线11CC BA 和所成的角。
例2.空间四边形ABCD 中,2AD BC ==,,E F 分别是,AB CD的中点,EF =求异面直线,AD BC 所成的角。
1.如图,在正方体ABCD - A B C D中,异面直线 A1D 与 BC1所成的角为1111A.30°B.45°C. 60°D. 90°【答案】 D【分析】试题剖析:以下图,连结B1C,则B1C∥A1D,B1C⊥BC1,∴ A1D⊥BC1,∴ A1D 与 BC1所成的角为 90°.应选: D.考点:异面直线及其所成的角2.已知平行六面体 ABCD - A1B1C1D1中,底面 ABCD是边长为 1 的正方形,AA= 2,∠ A AB=∠ A AD=120°,则异面直线 AC 与 A D所成角的余弦值(1)1111A.6B. 14C. 15D. 10 3755【答案】 B【分析】uuur r uuur r uuur r uuuur r r r uuuur r r试题剖析:设向量AB a, AD b, AA1 c ,则 AC1a b c, A1D b c ,uuuur uuuurAC12, A1Duuuur uuuur cos AC1 , A1D7,uuuur uuuurAC1 A1 Duuuur uuuurAC1 A1 D14。
7考点:空间向量的会合运算及数目积运算。
3.正方体ABCD A1B1C1D1中,E, F , G, H 分别是 AA1, AB , BB1, B1C1的中点,则直线 EF 与GH所成的角是()A.30°B.45°C.60°D.90°【答案】 C【分析】试题剖析:由三角形中位线可知EF PA1 B,GH PBC1,所以异面直线所成角为A1 BC1,大小为60°考点:异面直线所成角4.在正方体ABCD A1 B1C1D1中,E是 B1C1的中点,则异面直线DC1与BE所成角的余弦值为()A.2 5B .10C .10D . 2 5 5555【答案】 B【分析】试题剖析:取 BC 中点F,连结FD , FC1,则DC1F为异面直线所成角,设边长为 2,C1F5, DC18, DF5cos10 DC1F5考点:异面直线所成角5.如图,正四棱柱ABCD A B C D 中(底面是正方形,侧棱垂直于底面),AA3AB ,则异面直线 A B 与 AD 所成角的余弦值为()A、9B、4C、7D、3 105105【答案】 A【分析】试题剖析:连结 BC ',异面直线所成角为A' BC ',设 AB 1,在A'BC'中' '''10AC2, A B BC考点:异面直线所成角6.点P在正方形 ABCD 所在平面外,PA⊥平面 ABCD ,PA AB ,则 PB 与AC 所成的角是.60B .90C.45D30A.【答案】 A【分析】试题剖析:作出空间几何体以以下图所示:设正方形的边长为 2 ,.所以 PB 与AC所成的角就是FEA ,由题意可知:EF AE AF 2 ,所以FEA 60.考点:异面直线的地点关系.7.以下图,在棱长为 1 的正方体ABCD A1B1C1D1中, M 是棱CD的中点,则 A1M 与 DC1所成角的余弦值为()A.2B.2C.10D.10 661010【答案】 A 【分析】试题剖析:以 D为原点,分别以DA, DC , DD1为 x, y, z 轴的正半轴成立空间直角坐标系 D - xyz ,由棱长为1,则 D (0,0,0), A1(1,0,1), M (0, 1,0), C1 (0,1,1) ,所以2uuuur1uuuur 0 +1- 122= -,应选 A.A1M = (- 1,2, - 1), DC1 = (0,1,1) ,故 cos < A1M , DC1 >=3262考点:空间向量所成角的余弦值.8.在正方体 ABCD A1 B1C1 D1中, E、 F 分别为 AB、BC 中点,则异面直线EF 与AB1所成角的余弦值为A.3 B .3C.2 D .12322【答案】 D【分析】试题剖析:联络 AC、 B1C则 B1AC即为所成的角。
异面直线所成的角和线面角平移法:①体内平移———中位线平移法1、如图各棱都相等的三棱锥S—ABC,E,F分别为SC,AB的中点,求1)异面直线EF与SA所成的角()A450 B 300 C 60 0 D 9002、如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,∠PBD=60°. (1)求四棱锥的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.3、如图,四面体ABCD中,AB⊥BC,AB⊥BD,BC⊥CD,且AB=BC=6,BD=8,E是AD中点,求BE与CD所成角的余弦值4、如图,四面体ABCD中, O、E分别是BD、BC的中点,758D(第9题)CA=CB=CD=BD=2,AB=AD=(I)求证:AO⊥平面BCD;(II)求异面直线AB与CD所成角的大小;BE体内平移———平行四边形平移法5、如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD求AE与D1F所成的角。
1A6、在棱长为1的正方体ABCD—A1B1C1D1中,M和N分别为A1B1和BB1的中点,求直线DAM与CN所成角的余弦值AC1 1C②体外补形平移:7、如图,PA⊥平面ABC,∠ACB=90︒且PA=AC=BC=a,则异面直线PB与AC所成角的正切值等于_____.解:将此多面体补成正方体DBCA-D'B'C'P,PB与AC所成的角的大小即此正方体主对角线PB与棱BD所成角的大小,在Rt△PDB中,即D (第6题)PACPDtan∠DBA=DBD11B AC8、如图ABCD,ABEF是边长为a的正方形,直线FA垂直平面ABEF的所有直线,求异面直线AC和BF所成的角练习:.如图长方体ABCD—A1B1C1D1中,已知AB=a,BC=b(a>b),AA1=c,求异面直线D1B和AC所成角的余弦值。
立体几何之所成角1 异面直线所成的角①范围(0∘ ,90∘];②作异面直线所成的角:平移法.如图,在空间任取一点O,过O作a′ // a ,b′ // b,则a′ ,b′所成的θ角为异面直线a ,b所成的角.特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.2 线面所成的角①定义如下图,平面的一条斜线(直线l)和它在平面上的射影(AO)所成的角,叫做这条直线和这个平面所成的角.一条直线垂直平面,则θ=90°;一条直线和平面平行或在平面内,则θ=0°.②范围[0∘ ,90∘]3 二面角①定义从一条直线出发的两个半平面所组成的图形叫做二面角.在二面角的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB 构成的∠AOB叫做二面角的平面角.②范围[0° ,180°].【题型一】异面直线所成的角【典题1】如图,正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°【解析】连结A1D、BD、A1B,∵正方体ABCD—A1B1C1D1中,点E ,F分别是AA1,AD的中点,EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD ,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选 C.【点拨】①找异面直线所成的角,主要是把两条异面直线通过平移使得它们共面,可平移一条直线也可以同时平移两条直线;②平移时常利用中位线、平行四边形的性质;【典题2】如图所示,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1 ,AD 的中点,那么异面直线OE和FD1所成角的余弦值等于.【解析】取BC的中点G.连接GC1,则GC1∥FD1,再取GC的中点H,连接HE、OH,则∵E是CC1的中点,∴GC1∥EH,∴∠OEH为异面直线所成的角.在△OEH中,OE=√3,HE=√52,OH=√52.由余弦定理,可得cos∠OEH=OE 2+EH2−OH22OE⋅EH=3⋅√2=√155.故答案为√155【点拨】本题利用平移法找到异面直线所成的角(∠OEH)后,确定含有该角的三角形(△OEH),利用解三角形的方法(正弦定理,余弦定理等)把所求角∠OEH最终求出来.【典题3】如图,已知P是平行四边形ABCD所在平面外一点,M,N分别是AB ,PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4 ,PA=4√3,求异面直线PA与MN所成的角的大小.【解析】(1)证明:取PD中点Q,连AQ、QN,则AM∥QN,且AM=QN,∴四边形AMNQ为平行四边形∴MN∥AQ又∵AQ在平面PAD内,MN不在平面PAD内∴MN∥面PAD;(2)解方法一∵MN∥AQ∴∠PAQ即为异面直线PA与MN所成的角∵MN=BC=4 ,PA=4√3,∴AQ=4,设PQ=x,根据余弦定理可知cos∠AQD+cos∠AQP=0即16+x 2−488x +16+x2−168x=0,解得x=4在三角形AQP中,AQ=PQ=4 ,AP=4√3∴cos∠PAQ=2×4×4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°方法二过点A作AH⊥PD交PD于H,如图∵MN=BC=4,∴H是QD的中点设HD=x,则QH=x,PQ=2x,在Rt△AQD和Rt△APH利用勾股定理可得AH2=16−x2=48−9x2,解得x=2∴cos∠PAQ=PHAP =4√3=√32,即∠PAQ=30°∴异面直线PA与MN所成的角的大小为30°【点拨】本题中所成角∠PAQ找到后,无法在一个三角形里求出,此时把问题转化为平面几何问题, 再利用解三角形的方法进行求解.【题型二】线面所成的角【典题1】如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB= 2CD=2BC,EA⊥EB.(1)求证:AB⊥DE;(2)求直线EC与平面ABE所成角的正弦值.【解析】(1)证明:取AB中点O,连接EO,DO.∵EB=EA,∴EO⊥AB.∵四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,∴四边形OBCD为正方形,∴AB⊥OD.又∵EO∩OD=O,∴AB⊥平面EOD.∴AB⊥ED.(2)∵平面ABE⊥平面ABCD,且AB⊥BC,∴BC⊥平面ABE.则∠CEB为直线EC与平面ABE所成的角.设BC=a,则AB=2a,BE=√2a,∴CE=√3a,在直角三角形CBE中,sin∠CEB=CBCE =√3=√33.即直线EC与平面ABE所成角的正弦值为√33.【点拨】本题中的“直线EC与平面ABE所成的角”是根据线面角的定义直接在题目原图上找到的,在含所求角∠CEB的直角三角形CBE中求出角度!【典题2】如图,四边形ABCD为正方形,PA⊥平面ABCD,且AB=4,PA=3,点A在PD上的射影为G点,E点在AB边上,平面PEC⊥平面PDC.(1)求证:AG∥平面PEC;(2)求BE的长;(3)求直线AG与平面PCA所成角的余弦值.【解析】(1)证明:∵CD ⊥AD,CD ⊥PA∴CD ⊥平面PAD ∴CD ⊥AG,又PD ⊥AG∴AG ⊥平面PCD作EF ⊥PC 于F,因面PEC ⊥面PCD∴EF ⊥平面PCD∴EF ∥AG,又AG ⊄面PEC,EF ⊂面PEC,∴AG ∥平面PEC(2)由(1)知A 、E 、F 、G 四点共面,又AE ∥CD ∴AE ∥平面PCD∴AE ∥GF ∴四边形AEFG 为平行四边形,∴AE =GF∵PA =3,AD =AB =4 ∴PD =5,AG =125, 在Rt △PAGP 中,PG 2=PA 2−AG 2=8125 ∴PG =95 又GF CD =PG PD∴GF =3625 ∴AE =3625,故BE =6425(3)∵EF ∥AG,所以AG 与平面PAC 所成角等于EF 与平面PAC 所成的角,过E 作EO ⊥AC 于O 点,易知EO ⊥平面PAC,又EF ⊥PC,∴OF 是EF 在平面PAC 内的射影∴∠EFO 即为EF 与平面PAC 所成的角EO =AEsin45°=3625×√22=18√225,又EF =AG =125,∴sin∠EFO=EOEF =18√225×512=3√210故cos∠EFO=√1−sin2∠EFO=√8210所以AG与平面PAC所成角的余弦值等于√8210.【点拨】①若在题目中不能直接找到所求线面角,则可用“作高法”确定所求角,比如下图中,求直线AP与平面α所成的角,具体步骤如下:(1) 如图,过点P作平面α的高PO,垂足为O,则AO是线段AP在平面α上的投影;(2) 找到所求角θ;(3) 求解三角形APO进而求角θ.(此方法关键在于找到垂足O的位置,证明到PO⊥平面α,如本题中EO⊥平面PAC的证明)②本题若直接求“AG与平面PAC所成角”,过点G做高有些难度,则由EF∥AG,能把“AG与平面PAC所成角”转化为“EF与平面PAC所成的角”,这方法称为“间接法”吧.【典题3】如图,正四棱锥S-ABCD中,SA=AB=2,E,F,G分别为BC,SC,CD的中点.设P为线段FG上任意一点.(Ⅰ)求证:EP⊥AC;(Ⅰ)当P为线段FG的中点时,求直线BP与平面EFG所成角的余弦值.【解析】证明:(Ⅰ)连接AC交BD于O,∵S-ABCD是正四棱锥,∴ SO⊥平面ABCD,∴SO⊥AC,又∵AC⊥BD,SO∩BD=O,∴AC⊥平面SBD,∴AC⊥SD,∵F,G分别为SC,CD的中点,∴SD∥FG,∴AC⊥GF,同理AC⊥EF,∴AC⊥平面GEF,又∵PE⊂平面GEF,∴EP⊥AC.(Ⅰ) 方法一过B作BH⊥GE于点H,连接PH,∵BD⊥AC,BD∥GF,∴BH∥AC,由(Ⅰ)知:AC⊥平面GEF,∴BH⊥平面GEF,∴∠BPH就是直线BP与平面EFG所成的角,∵SA=AB=2,∴在Rt△BHP中,解得BH=√22,PH=√132,PB=√152,(易知△BHE是等腰直角三角形,又由斜边BE=1,∴BH=√22;在三角形PGH中,PG=12,GH=3√22,∠PGH=π4,用余弦定理可得PH=√132)则cos∠BPH=PHPB =√19515,故直线BP与平面EFG所成角的余弦值为√19515.方法二设过点B作平面EFG的垂直,垂直为T,则∠BPT就是直线BP与平面EFG所成的角,BT是点B到平面PGE的距离,由已知条件可求GF=EF=1,GE=√2,则∠GFE=90°,∴S△PEG=12S△GFE=12×12=14,由于P、F是中点,易得点P到平面ABCD的距离ℎ1=14SO=√24,而S△GEB=12S△GCB=12×1=12,对于三棱锥P−GEB,由V B−PEG=V P−GEB⇒13×BT×S△PEG=13×ℎ1×S△GEB⇒112BT=√224⇒BT=√22,在正四棱锥S-ABCD中可求PB=√152,(方法较多,提示过点P作平面ABCD的高PI)∴sin∠BPT=BTBP =√3015∴cos∠BPT=√1−sin∠BPT=√19515,故直线BP与平面EFG所成角的余弦值为√19515.【点拨】①本题第二问中方法一就是用“做高法”,计算量有些大;方法二是觉得垂足H的位置难确定,可设点B到平面EFG的投影为T(即垂足),再用“等积法”求高BT,则sin∠BPT=BTBP,可求所求角∠BPT,这种方法称为“等积法”;②思考:上一题试试用“等积法”!【题型三】二面角【典题1】如图,在棱长为a的正方体ABCD-A1B1C1D1中,AC 与BD相交于点O.求二面角 A1-BD-A 的正切值.【解析】在正方体中BD⊥平面A1ACC1,∴AO⊥BD,A1O⊥BD,∴二面角A1-BD-A的平面角为∠A1OA由题中的条件求出:AO=√22a ,AA1=a∴tan∠A1OA=√22a=√2,所以二面角 A1-BD-A 的正切值为√2.【点拨】本题根据二面角的定义找到二面角二面角A1-BD-A的平面角为∠A1OA,再在三角形AOA1内用解三角形的方法求解角∠A1OA.【典题2】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=√6,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=√3,求二面角A-EC-D的平面角的余弦值.【解析】(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,可得△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,∵BC⊥AB,BC⊥PA,∴BC⊥平面PAB ∴BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=√6,所以AE=12PB=12√PA2+AB2=√3(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,连接DG,则∠DFG为所求的二面角的平面角.由(1)知BC⊥AE,又AD∥BC,得AD⊥AE,从而DE=√AE2+AD2=√6在Rt△CBE中,CE=√BE2+BC2=√6,由CD=√6,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•sinπ3=3√22因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.∴G点为AC的中点,FG=12AE=√32,则在Rt△ADC中,DG=12√AD2+CD2=32,所以cos∠DFG=DF 2+FG2−DG22DF⋅FG=√63【点拨】若在题目中不能直接得到所求二面角,就需要构造出二面角,比如本题求二面角A-EC-D,解题具体步骤如下(1) 过点D作DF⊥EC,过点F作FG⊥EC交AC于点D,则二面角∠DFG为所求的二面角的平面角;(2) 确定含角∠DFG的三角形DFG,利用解三角形的方法求出角∠DFG,常见的是求出三角形三边再用余弦定理.【典题3】如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.(1)求证:PC⊥BC.(2)求二面角M-AC-B的大小.【解析】(1)证明:由PA⊥平面ABC,∴PA⊥BC,又因为∠ACB=90°,即BC⊥AC.∴BC⊥面PAC,∴PC⊥BC.(2)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,∵M是PB的中点,∴MO∥PA,又∵PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M-AC-B的平面角.设AC=2,则BC=2√3,MO=1,OH=√3,在Rt△MHO中,tan∠MHO=MOHO =√3=√33.二面角M-AC-B的大小为30∘.【点拨】求二面角也可以转化为线面角,比如求二面角D-AB-C,解题思路如下过点D作DE⊥AB,则二面角D-AB-C等于直线ED与平面ABC所成的角或其补角,若过点D作DF⊥平面ABC,则二面角D-AB-C是锐角,等于角∠DEF;二面角D-AB-C是钝角,等于角∠DEF的补角.1(★)在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0 <θ <π2B.0 <θ≤π2C.0≤θ≤π3D.0 <θ≤π3【答案】D【解析】∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为π3,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0 <θ≤π3.故选D.2(★★)如图所示的几何体,是将高为2、底面半径为1的圆柱沿过旋转轴的平面切开后,将其中一半沿切面向右水平平移后形成的封闭体.O1,O2,O2′分别为AB ,BC ,DE的中点,F为弧AB的中点,G为弧BC的中点.则异面直线AF与GO2′所成的角的余弦值为.【答案】√1010【解析】如图,连接AF、FB、BG、GC,∵F为半圆弧AFB的中点,G为半圆弧BGC的中点,由圆的性质可知,G、B、F三点共线,且AF=CG,FB=GB,AB=BC,∴△AFB≌△CGB,∴AF∥CG,则∠CGO2′即为所求的角或其补角,又∵半径为1,高为2,且△AFB,△CG B都是等腰Rt△,∴CG=√2,CO2′=GO2′=√1+22=√5,∴在△CGO2′中,cos∠CGO2′=√52√22√522√2⋅√5=√1010,即异面直线AF与GO2′所成的角余弦值√1010.故答案为√1010.3 (★★)如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点, MN⊥平面A1DC.(1)求证:AD1⊥平面A1DC;(2)求MN与平面ABCD所成的角.【答案】(1) 见解析(2)π4【解析】(1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1,AD1⊂平面ADD1A1∴CD⊥AD1,又AD1⊥A1D,且A1D∩CD=D,∴AD1⊥平面A1DC;(2)解:∵MN⊥平面A1DC,又由(1)知AD1⊥平面A1DC,∴MN∥AD1,∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,∵D1D⊥平面ABCD,∴∠D1AD即为AD1与平面ABCD所成的角,,由正方体可知∠D1AD=π4∴MN与平面ABCD所成的角为π.44(★★★) 如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P ,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.【答案】(1) 见解析(2)√55【解析】(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ 平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB. 故CQ⊥平面ABE.EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,由(1)有PQ∥DC,又PQ=12∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=√5,DP=1,sin∠DAP=√5,即AD与平面ABE5。
第03讲异面直线所成的角(核心考点讲与练) 求异面直线所成的角的三步曲 异面直线所成角的概念及辨析一、单选题1.(2021·上海师范大学第二附属中学高二期中)已知异面直线a 、b 所成角为80︒,P 为空间一定点,则过P 点且与a 、b 所成角都是50︒的直线有且仅有( )条.A .2B .3C .4D .62.(2021·上海市延安中学高二期中)已知正方体1111ABCD A B C D -,P 为1CC 中点,对于下列两个命题:(1)过点P 有且只有一条直线与直线AB ,11A D 都相交;(2)过点P 有且只有一条直线与直线AB ,11A D 都成45°角.则以下判断正确的是( )A .(1)为真命题;(2)为真命题B .(1)为真命题;(2)为假命题C .(1)为假命题;(2)为真命题D .(1)为假命题;(2)为假命题二、填空题 3.(2021·上海·位育中学高二阶段练习)空间中三条直线a b c 、、两两垂直,若直线d 与直线a b c 、、所成角都为θ,则cos θ=_______4.(2021·上海奉贤区致远高级中学高二阶段练习)已知直线a .如果直线b 同时满足条件:①a 与b 异面;②a 与b 成定角;③a 与b 的距离为定值.那么这样的直线b 有__________条.考点考向方法技巧5.(2021·上海奉贤区致远高级中学高二阶段练习)若两异面直线a、b所成的角为60,过空间内一点P作与直线a、b所成角均是60的直线l,则所作直线l的条数为_________.证明异面直线垂直一、单选题1.(2017·上海交大附中高二期中)如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有()①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行③平面ABCE内存在直线与平面SAE平行;④存在点E使得SE⊥BA.A.1个B.2个C.3个D.4个二、填空题2.(2022·上海长宁·高二期末)如图是一个边长为2的正方体的平面展开图,在这个正方体中,则下列说法中正确的序号是___________.①直线AF与直线CN垂直;②直线BM与直线CN相交;③直线ME与直线CN平行;④直线AB与直线CN异面;求异面直线所成的角1.(2022·上海·复旦附中高二期中)如图所示,在三棱锥D ABC -中,2==AC BD ,E 、F 分别为AD 与BC 的中点,2EF =,则异面直线AC 与BD 所成角的大小是______.2.(2021·上海市徐汇中学高二期中)如图,P 是平行四边形ABCD 所在平面外一点,,M N 分别是,AB PC 的中点,若2,23MN BC PA ===,则异面直线PA 与MN 所成角的大小为________.3.(2021·上海市进才中学高二阶段练习)在正方体上,a ,b 是两条异面直线的面对角线,则它们所成的角大小可能为___________4.(2021·上海市南洋模范中学高二阶段练习)正方体1111ABCD A B C D -的面对角线中,与1AD 所成角为60︒的有__________条.5.(2021·上海·华东师范大学松江实验高级中学高二阶段练习)在正方体1111ABCD A B C D -中,与1AD 成60角的面对角线的条数是________6.(2021·上海师范大学第二附属中学高二期末)空间内有三条直线,其中任意两条都不相交但相互垂直,若直线l 与这三条直线所成的角的大小都是θ,则tan θ=______.7.(2021·上海市建平中学高二期中)已知圆锥的轴截面PAB 是等边三角形,C 为底面弧AB 的中点,D 为母线PB 的中点,则异面直线PA 和CD 所成角的大小为________三、解答题8.(2021·上海浦东新·高二期中)在三棱锥P ABC -中,M ,N 分别是PA ,BC 的中点,已知2AC PB ==,3MN AC ,PB 所成角的大小.由异面直线所成的角求其他量一、填空题1.(2021·上海市控江中学高二期中)异面直线a 、b 所成角为3π,直线c 与a 、b 垂直且分别交于A 、B ,点C 、D 分别在直线a 、b 上,若1AC =,2AB =,3BD =,则CD =________.2.(2021·上海市洋泾中学高二期中)已知异面直线,a b 所成角为3π,过空间一点P 有且仅有2条直线与,a b 所成角都是θ,则θ的取值范围是___________.3.(2021·上海市建平中学高二阶段练习)在空间四边形ABCD 中,8AB CD ==,M 、N 分别是对角线AC 、BD 的中点,若异面直线AB 、CD 所成角的大小为30,则MN 的长为___________. 4.(2021·上海市行知中学高二阶段练习)已知四面体ABCD 中,4AB CD ==,E 、F分别为BC 、AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =___________. 5.(2019·上海市嘉定区第二中学高二期中)空间四边形ABCD ,AB =CD =8,M 、N 、P 分别为BD 、AC 、BC 的中点,若异面直线AB 和CD 所成的角为60°,则线段MN 的长为___________.6.(2021·上海·华师大二附中高二开学考试)如图,空间四边形ABCD 的对角线AC=BD=8,M 、N 分别为AB 、CD 的中点,且AC BD ⊥,则MN 等于_____________7.(2021·上海市徐汇中学高二期中)空间四边形两对角线的长分别为6和8﹐所成的角为60°,连接各边中点所得四边形的面积是_______________.8.(2021·上海市宝山中学高二阶段练习)若两条异面直线所成的角为60︒,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.二、解答题9.(2021·上海师范大学附属外国语中学高二阶段练习)已知四棱锥P -ABCD ,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD .(1)若PC =5,求四棱锥P - ABCD 的体积;(2)若直线AD 与BP 的夹角为60°,求PD 的长.10.(2020·上海交大附中高二期中)如图,圆锥的顶点是S ,底面中心为O ,OC 是与底面直径AB 垂直的一条半径,D 是母线SC 的中点.(1)求证:BC 与SA 不可能垂直;(2)设圆锥的高为4,异面直线AD 与BC 所成角的余弦值为26,求圆锥的体积. 一、单选题1.(2021·上海市延安中学高二期中)如图,已知正方体1111ABCD A B C D -中,F 为线段1BC 的中点,E 为线段11A C 上的动点,则下列四个结论正确的是( )A .存在点E ,使EF ∥BDB .存在点E ,使EF ⊥平面11ABC DC .EF 与1AD 所成的角不可能等于60°巩固提升D .三棱锥1B ACE -的体积随动点E 变化而变化2.(2021··高二阶段练习)如图,在正方体1111ABCD A B C D -中,过点A 作平面1A BD 的垂线,垂足为点H ,给出以下命题:①H 是1A BD 的垂心;②AH 垂直于平面11CB D ;③AH 的延长线过点1C ;④直线AH 和1BB 所成角的大小为45︒,其中正确的命题个数为( )A .1B .2C .3D .43.(2021·上海市松江二中高二期中)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点,设P 是CE 上的一点,且AP BE ⊥,则AG 与BP 所成角的大小为( )A .45︒B .15︒C .30D .0︒4.(2021·上海市市西中学高二期中)如图是正方体的平面展开图,在这个正方体中,①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60°;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④二、填空题5.(2021·上海交大附中闵行分校高二阶段练习)如图甲,将三棱锥P ﹣ABC 沿三条侧棱剪开后,展开成如图乙所示的形状,其中点P 1,A ,P 3共线,点P 1,B ,P 2共线,点P 2,C ,P 3共线,且P 1P 2=P 2P 3,则在如图甲所示的三棱锥P ﹣ABC 中,P A 与BC 所成角的大小为___________.6.(2021·上海外国语大学闵行外国语中学高二期中)如图已知A 是BCD △所在平面外一点,AD BC =,E 、F 分别是AB CD 、的中点,若异面直线AD 与BC 所成角的大小为3π,则AD 与EF 所成角的大小为___________. 7.(2021·上海交大附中高二期中)在长方体1111ABCD A B C D -中,11AA AD ==,2AB =,则直线AC 与1A D 所成的角的余弦值等于______.8.(2021·上海师范大学第二附属中学高二期中)在四面体ABCD 中,8AB =,6CD =,M 、N 分别是BC 、AD 的中点,且5MN =,则AB 与CD 所成角的大小是________.三、解答题9.(2022·上海·复旦附中高二期中)在长方体1111ABCD A B C D -中,AB =1,AD =2,14AA =,E 、F 分别为线段BC 、1CC 上的点,且CE =1,CF =1.(1)求证:EF ∥平面11ADD A ;(2)求异面直线EF 与1A D 所成角的余弦值.10.(2021·上海市洋泾中学高二阶段练习)已知边长为1的正方形ABCD 绕BC 边旋转一周得到圆柱体.(1)求该圆柱体的表面积;(2)正方形ABCD 绕BC 边逆时针旋转2π至11A BCD ,求证:1A D AC ⊥. 11.(2021·上海市南洋模范中学高二期中)在长方体1111ABCD A B C D -中,2AB BC ==,过1A 、1C 、B 三点的平面截去长方体的一个角后,得到如图所示的几何体111ABCD AC D -,且这个几何体的体积为10. (1)求棱1AA 的长;(2)若11A C 的中点为1O ,求异面直线1BO 与11A D 所成角的余弦值.12.(2021·上海大学附属南翔高级中学高二期中)如图,在正方体1111ABCD A B C D -中,E F ,分别为11A D 和1CC 的中点.(1)画出由A ,E ,F 确定的平面β截正方体所得的截面,(保留作图痕迹,使用铅笔作图);(2)求异面直线EF 和AC 所成角的大小. 13.(2021·上海浦东新·高二期中)在长方体1111ABCD A B C D -中(如图),2AB =,11AD AA ==,点E 是棱AB 的中点.(1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体1D CDE 是否为鳖臑?并说明理由.14.(2021·上海市行知中学高二阶段练习)如图,三棱柱111ABC A B C -中,1A BCB -是底面边长为2的正三棱锥.(1)求证:1AC CC ⊥;(2)若异面直线1AB 与1CC 所成的角为3π,求三棱锥1B ACC -的体积. 15.(2021·上海市奉贤区奉城高级中学高二期中)如图所示,在长方体1111ABCD A B C D -中,1AB =,2BC =,15CC =,M 为棱1CC 上一点.(1)若132C M =,求异面直线1A M 和11CD 所成角的正切值;(2)若11C M =.试证明:BM ⊥平面11A B M .16.(2021·上海市进才中学高二期中)如图,在三棱柱111ABC A B C -中,侧面11ACC A ⊥底面ABC ,BC AC ⊥.(1)求证:11//B C 平面1A BC ;(2)求证:平面1A BC ⊥平面11ACC A .(3)若12A B BC =,求异面直线1A B 与11B C 所成角的大小.。
线线角、线面角、面面角专题一、异面直线所成的角1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。
2.角的取值范围:090θ<≤︒;垂直时,异面直线当b a ,900=θ。
例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点求异面直线1AC 与1B C 所成角的余弦值二、直线与平面所成的角1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角2.角的取值范围:︒︒≤≤900θ。
例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。
(2)SC 与平面ABC 所成的角的正切值。
BMH S CA _ C _1_1_ A _1A_ C一、 二面角:1. 从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
2. 二面角的取值范围:︒︒≤≤1800θ 两个平面垂直:直二面角。
3.作二面角的平面角的常用方法有六种:1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。
2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。
3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。
二面角就是该夹角或其补角。
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。
例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. 巩固练习A 1D 1B 1C 1 EDBCA1.若直线a 不平行于平面α,则下列结论成立的是( )A.α内所有的直线都与a 异面;B.α内不存在与a 平行的直线;C.α内所有的直线都与a 相交;D.直线a 与平面α有公共点.2.空间四边形ABCD 中,若AB AD AC CB CD BD =====,则AD 与BC 所成角为( )A.030B.045C.060D.090 3.正方体ABCD-A 1B 1C 1D 1中,与对角线AC 1异面的棱有( )条A.3B.4C.6D.84.如图长方体中,AB=AD=23,CC 1=2,则二面角C 1—BD —C 的大小为( ) A.300B.450C.600D.9005.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD .(2)平面EFC ⊥平面BCD .6.如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值.ABC D A 1B 1C 1D 17.如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,设SA=4,AB=2,求点A到平面SBD的距离;。
异面直线—经典一.选择题(共27小题)1.如图,正三棱锥A ﹣BCD 中,E 在棱AB 上,F 在棱CD 上.并且(0<λ<+∞),设α为异面直线EF 与AC 所成的角,β为异面直线EF 与BD 所成的角,则α+β的值是( )D.与λ的值有关2.(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC ﹣A 1B 1C 1,CA=CC 1=2CB ,则直线BC 1与直线AB 13.(2010•江西)过正方体ABCD ﹣A 1B 1C 1D 1的顶点A 作直线L ,使L 与棱AB ,AD ,AA 1所成的角都相等,这样的直线L 可以作( )4.(2008•四川)一个正方体的展开图如图所示,B ,C ,D 为原正方体的顶点,A 为原正方体一条棱的中点.在原来的正方体中,CD 与AB 所成角的余弦值为( )C5.(2007•福建)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、BC 1的中点,则异面直线EF 与GH 所成的角等于( )6.(2004•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、7.(2003•北京)如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE、DEE1F1的底面边长为1,侧棱长为,则这个棱柱侧面对角线E1D8.(2002•天津)正六棱柱ABCDEF﹣A1B1C1D110.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O为底面的中心,E是CC1的中点,那么异面直线A1D与12.如图所示,棱长都相等的棱锥A ﹣BCD 中,E 、F 分别在棱AB 、CD 上,使(λ>0)设f (λ)=αλ+βλ,αλ表示EF 与AC 所成的角的度数,βλ表示EF 与BD 所成角的度数,则( )13.在等边三角形ABC 中,M 、N 、P 分别为AB 、AC 、BC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所在二面角的余弦值为,则直线AM 与NP 所成角的大小为( )arccosarccosarccos.20.长方体ABCD ﹣A 1B 1C1D 1中AB=AA 1=2,AD=1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )21.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 的中点,则异面直线AE 、BC 所成角的25.已知三棱柱ABC ﹣A 1B 1C 1,底面是正三角形,侧棱和底面垂直,直线B 1C 和平面ACC 1A 1成角为30°,则异27.在正四棱锥P ﹣ABCD 中,PA=AB ,E 、N 、F 分别为棱AB 、棱BC 和棱PC 的中点,则异面直线PE 与FN 所成角为( ) arccosarccos高中数学异面直线专题参考答案与试题解析一.选择题(共27小题)1.重复题目如图,正三棱锥A﹣BCD中,E在棱AB上,F在棱CD上.并且(0<λ<+∞),设α为异面直线EF与AC所成的角,β为异面直线EF与BD所成的角,则α+β的值是()=,使∵,,∵,,2.(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向∴==•=0,且,与所成的角(或其补角)就是直线=3.(2010•江西)过正方体ABCD﹣A1B1C1D1的顶点A作直线L,使L与棱AB,AD,AA1所成的角都相等,这样的直线L可以作()4.(2008•四川)一个正方体的展开图如图所示,B,C,D为原正方体的顶点,A为原正方体一条棱的中点.在原来的正方体中,CD与AB所成角的余弦值为(),5.(2007•福建)如图,在正方体ABCD﹣A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、BC1的中点,则异面直线EF与GH所成的角等于()6.(2004•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于(),,.OEH=7.(2003•北京)如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE、DE 的中点.将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为()8.(2002•天津)正六棱柱ABCDEF﹣A1B1C1D1E1F1的底面边长为1,侧棱长为,则这个棱柱侧面对角线E1DF=10.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O为底面的中心,E是CC1的中点,那么异面直线A1D与EO所成角的余弦值为()=>=11.如图的正方体ABCD﹣A′B′C′D′中,异面直线AA′与BC所成的角是()12.如图所示,棱长都相等的棱锥A﹣BCD中,E、F分别在棱AB、CD上,使(λ>0)设f(λ)=αλ+βλ,αλ表示EF与AC所成的角的度数,βλ表示EF与BD所成角的度数,则()13.在等边三角形ABC中,M、N、P分别为AB、AC、BC的中点,沿MN将△AMN折起,使得面AMN与面MNCB 所在二面角的余弦值为,则直线AM与NP所成角的大小为()=∴∵,∴∴arccos arccos arccosBE==E=∴=所成的角为15.如图的正方体ABCD﹣A1B1C1D1中,异面直线A1B与B1C所成的角是()16.如图,正方体AC1中,E、F分别是DD1、BD的中点,则直线AD1与EF所成的角余弦值是().EF=,A=E=AE=,18.如图正方体ABCD﹣A1B1C1D1中,M是正方形ABCD的中心,则直线A1D与直线B1M所成角大小为()C=MC=C=,20.长方体ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为>═所成角的余弦值为21.将正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,E是CD的中点,则异面直线AE、BC所成角的正切值为()AO=AEO=22.如图,在正方体ABCD﹣A1B1C1D1中,点P是CD上的动点,则直线B1P与直线BC1所成的角等于(),)=)=,﹣),>═=.所成角的余弦值是.25.已知三棱柱ABC﹣A1B1C1,底面是正三角形,侧棱和底面垂直,直线B1C和平面ACC1A1成角为30°,则异面26.如图,在正方形ABCD中,PB=BC,PB⊥平面ABCD,则PC与BD所成的角是()BD PC BE=PA27.在正四棱锥P﹣ABCD中,PA=AB,E、N、F分别为棱AB、棱BC和棱PC的中点,则异面直线PE与FN所arccos arccos∠BPA=本资料仅限下载者本人学习或教研之用,未经菁优网授权,不得以任何方式传播或用于商业用途。
【异面直线所成的角】 1.步骤(1)造角:根据异面直线所成角的定义,用平移法作出异面直线所成角或补角的平面角。
(2)证明:证明作出的角就是所求的角或是补角。
(3)计算:求角度,常利用解三角形求解 (4)结论:注意异面直线所成角的范围。
2.平移法作异面直线所成角的策略直接平移;找等分点(如中点、三等分点等)平移;补形法1.(2017全国卷2)已知直三棱柱ABC-A 1B 1C 1中,∠ABC=120°,AB=2,BC=CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.23 B.515 C.510 D.332.如图所示,在三棱锥A-BCD 中,AB=CD,AB 上CD,E,F 分别为BC,AD 的中点,求EF 与AB 所成的角.3.(2018年全国2)在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=,则异面直线AD 1与DB 1所成角的余弦值为( )A. B . C . D .4.如图所示,在等腰直角三角形ABC ,DA ⊥AC,DA ⊥AB,若DA=1,且E 为DA 的中点,求异面直线BE 与CD 所成角的余弦值.5.(2018年北京)如图,在正三棱柱ABC ﹣A 1B 1C 1中,AB=AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.求异面直线BP 与AC 1所成角的余弦值.6.(2016课标Ⅰ,理11)平面α过正方体ABCD-A 1B 1C 1D 1的顶点A,α∥平面CB 1D 1,α∩平面ABCD=m,α∩平面ABB 1A 1=n,则m,n 所成角的正弦值为( ) A .√32B √22C√33D 13方法:1.垂线法 2.等三棱锥体积法1.(2019全国1文)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.2.(2018全国2)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.1.如图,四棱锥P-ABCD的底面是边长为1的正方形﹐PA⊥.(1)求证:PA⊥平面ABCD;(2)求四棱锥P-ABCD的体积.2.(2017全国卷3节选)如图,四面体ABCD中,△ABC是正三角形,AD=CD.证明:AC⊥BD.3.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面,E,F分别是AD,PC的中点.求证:PC⊥平面BEF.4.(2018年全国2)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.证明:PO⊥平面ABC.=.ABC是底面5.(2020全国1)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD的内接正三角形,P为DO上一点,PO=.证明:PA⊥平面PBC;【线面平行】1.(2019天津)如图,AE⊥平面ABCD,CF∥AE,AD∥BC,AD⊥ AB, AB=AD=1, AE= BC=2.求证:BF∥平面ADE;2.(2016山东节选)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O'的直径,FB是圆台的一条母线.已知G,H分别为EC,FB的中点。
一、单选题(共10道,每道10分)1.如图,E, F分别是三棱锥P-ABC的棱AP, BC的中点,PC=& AB=6, EF=5,则异面直线AB 与PC 所成的角是()A.30°B.60°C.90°D.120°答案:C解题思路:如图,取刖中点G,连接GE GF,•・・E, F分别是丸匕EC的中点,PC=& AB=6, GEII AB, GFII PC, GE=3, GF=4,异面直线•仞与PC所成的角即为/EGF,在ZkEFG 中,满足GE2^GF2 =EF2,/- AEFG是直角三角形,且Z£GF=90。
,即异面直线肋与PC所成的角是90。
・故选C.2.如图,在长方体曲仞一40&。
1中,羽= 2"="°, G是cq的中点,则直线4G与EG所成角的大小是()A.30°B.45°C.60°D.120°答案:C解题思路:如图,取44]的中点E,连接EG, BE,易证,EG,・・・直线4G与PG所成的角可转化为EG与BG所成的角,即ZBGE,T AA X— 2AB = 2AD , G是CQ 的中点,/. /\BGE是等边三角形,••厶GE=6g即直线赵C芍BG所成的角是60。
・故选C.试题难度:三颗星知识点:界面直线及其所成的角3.如图,在正方体曲CD-40iCi£)i屮,点p在线段上运动,则异面直线CP与牌所成的角&的取值范围是()A.O。
<^<90°B 0° GW 90°C.0。
W0W 60°D 0°60°答案:D解题思路:如图,连接川C, CD1,则码II CD,,异面直线CP与码所成的角即为CP与C®所成的角, 即e=ZPCD\,•・• △zpc是等边三角形,・•・当点P和点加重合时,扫60。
异面直线所成的角例题
在几何学中,异面直线是指两条直线不在同一个平面内,但相交于一个点。
异面直线所成的角是一个重要的几何概念,它可以帮助我们理解空间中线线的交错。
在这篇文章中,我们将讨论异面直线所成的角的例题,并探讨这个概念在我们生活中的应用。
异面直线所成的角可以是一个有趣的数学问题,也可以在我们的日常生活中起到重要作用。
例如,在我们的日常生活中,异面直线所成的角常常被用来确定两个物体之间的角度。
例如,当我们站在一条街道上,我们可以通过观察对面建筑物的角度来确定我们与对面建筑物的角度。
另一个应用异面直线所成角的是在我们学习几何学时。
异面直线所成的角是几何学中一个重要的概念,可以帮助我们理解两个异面直线之间的角度。
例如,在学习平面几何时,我们可以学习如何计算异面直线所成的角。
通过学习这个概念,我们可以更好地理解异面直线在几何学中的作用。
此外,异面直线所成的角在我们日常生活中还有另一个应用,那就是在我们进行三维建模时。
当我们进行三维建模时,我们需要确定异面直线之间的角度,以便能够构建出更加准确和真实的产品模型。
总之,异面直线所成的角是一个非常重要的几何概念,在我们的日常生活中有着广泛的应用。
通过学习这个概念,我们可以更好地理解异面直线在几何学中的作用,以及如何计算它们之间的角度。
A B C S
E F A B C D D 1
C 1 B 1 A 1
M
N
N M
F
E D
C
B A
高二数学练习(二)
一、选择题
1.分别和两条异面直线都相交的两条直线一定是 ( ) (A )不平行的直线 (B )不相交的直线
(C )相交直线或平行直线 (D )既不相交又不平行直线
2.已知EF 是异面直线a 、b 的共垂线,直线l ∥EF ,则l 与a 、b 交点的个数为 ( ) (A )0 (B )1 (C )0或1 (D )0,1或2
3.两条异面直线的距离是 ( ) (A )和两条异面直线都垂直相交的直线 (B )和两条异面直线都垂直的直线 (C )它们的公垂线夹在垂足间的线段的长 (D )两条直线上任意两点间的距离
4.设a, b, c 是空间的三条直线,下面给出三个命题:① 如果a, b 是异面直线,b, c 是异面直线,则a, c 是异面直线;② 如果a, b 相交,b, c 也相交,则a, c 相交;③ 如果a, b 共面,b, c 也共面,则a, c 共面.上述命题中,真命题的个数是 ( ) (A )3个 (B )2个 (C )1个 (D )0个
5.异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( )
(A )[30°,90°] (B )[60°,90°]
(C )[30°,60°] (D )[60°,120°]
6.如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于 ( ) (A )90°(B )45°(C )60°(D )30° 7.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 和N 分别为A 1B 1和的
中点,那么直线AM 与CN 所成角的余弦值是 ( ) (A )23(B )1010(C )5
3(D )54
8.右图是正方体的平面展开图,在这个正方体中,
①BM 与ED 平行; ②CN 与BE 是异面直线; ②③CN 与BM 成 60角;④DM 与BN 垂直.
以上四个命题中,正确命题的序号是 ( ) (A )①②③ (B )②④ (C )③④ (D )②③④
9.梯形ABCD 中AB//CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是
( )(A )平行 (B )平行和异面 (C )平行和相交 (D )异面和相交 10.在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且AE :EF =AF :FD
=1 :4,又H 、G 分别为BC 、CD 的中点,则 ( ) (A )BD//平面EFGH 且EFGH 是矩形 (B )EF//平面BCD 且EFGH 是梯形
(C )HG//平面ABD 且EFGH 是菱形 (D )HE//平面ADC 且EFGH 是平行四边形
二、填空题 11.如图,在正三角形ABC 中,D 、E 、F G ,H ,I ,J 分别为AF ,AD ,BE ,DE DE ,EF ,DF 折成三棱锥以后,GH 与IJ
12.在四面体ABCD 中,若AC 与BD 成60°角,且AC =BD =a ,则连接AB 、BC 、CD 、DA 的中点的四边形面积为 .
B
A C
D A
F E P C B
A N M D
C B
A D C
B
A
P Q
D 1
C 1
B 1
A 1
13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值
为 .
14.把边长为a 的正方形ABCD 沿对角线BD 折起, 使A 、C 的距离等于a ,如图所示,则异面直线AC 和BD 的距离为 .
三、解答题
15.已知AB 、BC 、CD 为不在同一平面内的三条线段,AB ,BC ,CD 的中点P 、Q 、R 满足PQ =2,QR
PR =3,求AC 与BD 所成的角.
16.已知P 为△ABC 所在平面外的一点,PC ⊥AB ,PC =AB =2,E 、F 分别为PA 和BC 的中点. (1)求证:EF 与PC 是异面直线; (2)EF 与PC 所成的角;
(3)线段EF 的长.
17.如图,AB 和CD 是两异面直线,BD 是它们的公垂线,AB =CD ,M 是BD 的中点,N 是AC 的中点. (1)求证:MN ⊥AC ; (2)当AB =CD =a ,BD =b ,AC =c 时,求MN 的长.
18.(如图)已知P 、Q 是棱长为a 的正方体ABCD -A 1B 1C 1D 1的面AA 1D 1D 和A 1B 1C 1D 1的中心.
(1)求线段PQ 的长; (2)证明:PQ ∥AA 1B 1B .。