高级过程控制系统方案.doc
- 格式:doc
- 大小:834.06 KB
- 文档页数:13
过程控制系统
(ProcessContro1System)
总学时:40学时理论40学时
学分:2.5
课程主要内容:
《过程控制系统》课程是电气工程与自动化专业的一门专业主干课程,具有很强的实践性。
主要内容包括单回路控制系统的方案设计、调节参数整定以及控制系统的投运:为提高控制品质或满足特殊操作要求的复杂过程控制系统及应用中的有关问题;对典型案例的学习,掌握对各典型单元操作静、动态特性的分析方法,和与之相匹配的典型控制方案的设计等三大部分。
通过本课程的学习,要使学生在掌握控制理论和过程检测与控制仪表等知识的基础上,用工程处理的方法去解决控制系统的分析、设计与研究方面的问题。
先修课程:自动控制理论、微机原理、过程检测与控制仪表、微机控制等。
适用专业:电气工程与自动化
教材:
邵裕森.过程控制工程.北京:机械工业出版社,2006年1月。
教学弁考书:
[1]金以慧.过程控制.北京:清华大学出版社,1993年4月。
[2]蒋慰孙.过程与控制.北京:化学工业出版社,1996年10月。
[3]邵裕森.过程控制及仪表(修订版).上海:上海交大出版社,1995年3月。
过程控制系统方案设计(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--过程控制仪表与系统题目:工业含硫废气控制系统方案设计学院:信息科学与工程学院专业班级:测控技术与仪器1503班学号: 7学生姓名:王哲教师:李飞工业含硫废气控制系统方案设计摘要:许多化工厂在厂区内燃料燃烧和生产工艺过程中都会产生各种含有污染的有害气体,其中含硫的气体对环境造成的污染尤为严重。
因此对含硫废气正确合理的处理至关重要。
在我国工业含硫废气一般多采用焚烧工艺,经焚烧炉焚烧,使污染性气体转换成安全物质。
经方案论证后,本设计采用双闭环串级控制系统,控制目标温度在600-800℃设定尾气焚烧炉炉温波动范围不超过±30℃。
该控制系统中运用PID算法,传感器将检测到的模拟信号送到变送器,变送器输出4~20mA的电流信号。
将变送器输出的标准信号送入控制器中,控制器通过分析比较所测参数与预设参数之后输出控制信号,执行器根据传送过来的信号进行变化,最终达到对系统温度的控制。
关键词:双闭环串级控制系统;炉温控制;流量控制;变送器1 引言含硫废气与加氢反应器出口过程器被加热至270-320℃左右与外补富氢气混合后进入加氢反应器在加氢催化剂的作用下转化为H2S。
加氢反应为放热反应,离开反应器的尾气-换热器换冷却后进入冷凝塔。
废气在冷凝塔中利用循环机冷水来降温。
70℃冷凝水自冷凝塔底部流出,经济冷泵加压后经急冷水冷却器用循环水冷却至40℃,循环至冷却塔顶。
部分急冷水经急冷水过滤器过滤后返回急冷水泵入口。
尾气中的水蒸气被冷凝,产生的酸性水由急冷水泵送至酸性水处理处。
为防止酸性水对设备的腐蚀,需向急冷水中注入氨根据ph值大小决定注入氨的量。
冷凝后的尾气离开冷凝塔进入回收塔,用30%的甲基二乙醇胺溶液吸收废气中的硫化氢,同时吸收部分二氧化碳。
吸收塔底富液用富液泵送至溶剂再生部分统一处理。
从塔顶出来的净化气经尾气分液罐分液后进入焚烧炉燃烧,有燃料气流量控制炉膛温度;废气中残留的硫化氢几乎全转化成二氧化硫,最后再对二氧化硫进行处理。
...../第一单元过程控制系统基本概念――系统工作过程(10%)一、填空题。
1、过程控制系统一般由________、________、________和测量变送器组成。
2、对象为气体贮罐时应设置________控制系统,对象为加热炉时应设置_______控制系统。
锅炉上应设置________和________控制系统。
精馏塔上应设置________控制系统和________控制系统等。
(填入被控变量)3、被控对象的输入信号称为_________变量,输出信号称为_________变量。
4、控制器接受________和________两个输入量,按一定的控制规律对二者的_________值进行运算后,再将输出量送给________去执行。
5、过程控制系统的核心是_________,它有_________个输入量,_________个输出量,该输出量将驱动仪表_________。
6、气动仪表的标准统一信号是_________。
8、常规控制系统的_________用计算机替代后,系统就称为计算机控制系统。
9、过程控制系统中五大类参数(被控变量)指_________、_________、_________、_________和_________。
(填写被控变量名称及字母)二、判断题。
()1、自动调节系统的给定值是根据生产要求人为设定的。
()2、锅炉工作中最重要的参数是温度。
()3、仪表的给定值就是它的测量值。
()4、过程控制系统一般由控制器、执行器、被控对象和测量变送器组成。
三、选择题。
夹套式化学反应器的控制系统一般设置为()系统。
(A)成分(B)液位(C)流量(D)温度四、问答题。
1、什么是自动控制系统?什么是过程控制系统?2、过程控制系统主要有哪些环节组成?3、名词解释:被控对象、被控变量、操纵变量、测量值、给定值、比较机构、干扰、闭环和负反馈。
11、下列环节在控制系统工作时各起什么作用:控制器、执行器、被控对象和测量(元件)变送器。
高级过程控制系统实训设备介绍
高级过程控制系统实训设备是一种专门用于培训学生和工程师掌握现代工业自动化控制技术的设备。
这些设备通常具有先进的技术和功能,可模拟真实工业过程,帮助学生实践和掌握过程控制技术及相关知识。
一般来说,高级过程控制系统实训设备集成了多种控制技术和系统,包括PLC(可编程逻辑控制器)、DCS(分布式控制系统)、SCADA(监控和数据采集系统)等。
它们通常由多个组件组成,如传感器、执行器、控制器、通信模块等,可以模拟多种真实工业过程,如化工生产、电力发电、水处理等。
这些实训设备通常配备了完整的控制系统实验平台,学生可以在仿真实验台上实践控制系统的设计、调试、优化等操作。
设备还配备了丰富的实验项目和课程,帮助学生全面了解控制系统的各个方面,包括硬件配置、软件编程、系统调试、故障诊断等。
由于实训设备的高度模拟真实工业过程,学生能够获得更加真实的实践经验,提高他们的实际操作能力和问题解决能力。
这将有助于他们更快速地适应工业自动化控制工作,并在工作中更加熟练地应用控制技术。
总之,高级过程控制系统实训设备是一种非常有价值的教学装备,对于培养学生的实践能力和控制技术应用能力具有重要的意义。
它们不仅可以帮助学生更好地了解控制系统的原理和技
术,还可以提高他们的解决实际工程问题的能力,从而更好地适应未来的工作。
.HUATEC A3000过程控制实验系统实验指导书V3.0北京华晟高科教学仪器有限公司编制目录第一章安全注意事项与设备使用 ........................................................................ - 1 -1.1防止触电........................................................................................................................ - 1 -1.2防止烫伤........................................................................................................................ - 2 -1.3防止损坏........................................................................................................................ - 2 -1.4现场系统组成................................................................................................................ - 2 -1.5控制系统组成................................................................................................................ - 2 - 第二章计算机测控系统实验 ................................................................................ - 5 -实验1 实验系统认知......................................................................................................... - 5 - 实验2 ADAM4000模块的通讯和使用........................................................................... - 10 - 实验3 组态软件编程和数据获取................................................................................... - 18 - 实验4 PLC系统通讯和使用 ........................................................................................... - 21 - 实验5 PLC Step7编程 .................................................................................................. - 28 - 实验6 现场总线技术与DCS实验 ................................................................................. - 33 - 第三章工艺设备和仪器仪表实验 ...................................................................... - 41 -实验1 温度、压力、液位和流量测量实验................................................................... - 41 - 实验2 水泵负载特性测量实验....................................................................................... - 45 - 实验3 管道压力和流量耦合特性测量实验................................................................... - 47 - 实验4 电动调节阀特性测量实验................................................................................... - 50 - 实验5 调压器特性测量实验........................................................................................... - 53 - 实验6 变频器水泵控制特性测量实验........................................................................... - 55 - 第四章工业系统对象特性的测定研究 .............................................................. - 59 -实验1 单容水箱液位数学模型的测定实验................................................................... - 59 - 实验2 双容水箱液位数学模型的测定实验................................................................... - 62 - 实验3 非线性容积水箱液位数学模型的测定实验....................................................... - 64 - 实验4 测定不同阻力下单容水箱液位数学模型实验................................................... - 67 - 实验5 锅炉与加热器对象数学模型实验....................................................................... - 69 - 实验6 滞后管数学模型实验........................................................................................... - 72 - 实验7 换热机组数学模型实验....................................................................................... - 75 - 第五章简单设计型控制实验 .............................................................................. - 79 -实验1 单闭环流量控制实验........................................................................................... - 79 - 实验2 单容水箱液位定值控制实验............................................................................... - 82 - 实验3 双容水箱液位定值控制实验............................................................................... - 88 - 实验4 三容水箱液位定值控制实验............................................................................... - 91 - 实验5 锅炉水温定值位式控制实验............................................................................... - 94 - 实验6 锅炉水温定值控制实验....................................................................................... - 98 - 实验7 换热器水温单回路控制实验............................................................................. - 101 - 实验8 联锁控制系统实验............................................................................................. - 104 - 实验9 单闭环压力控制实验......................................................................................... - 107 - 第六章复杂设计型控制系统 ............................................................................ - 110 -实验1下水箱液位和进口流量串级控制实验.............................................................. - 110 - 实验2 闭环双水箱液位串级控制实验......................................................................... - 119 - 实验3 换热器热水出口温度和冷水流量串级控制实验............................................. - 123 - 实验4 单闭环流量比值控制系统实验......................................................................... - 127 - 实验5 下水箱液位前馈反馈控制系统实验................................................................. - 129 - 实验6 锅炉温度和换热器前馈反馈控制系统实验..................................................... - 133 - 实验7 管道压力和流量解耦控制系统实验................................................................. - 136 - 实验8 换热器出口温度与流量解耦控制系统实验..................................................... - 140 -第七章创新型设计与研究 ................................................................................ - 144 -实验1 大延迟系统补偿控制的研究............................................................................. - 144 - 实验2 单神经元自适应PID算法的研究 .................................................................... - 147 - 实验3 模糊控制算法的研究......................................................................................... - 154 - 实验4 现场总线系统控制研究..................................................................................... - 156 - 第八章工程应用型设计 .................................................................................... - 164 -实验1 工业项目设计..................................................................................................... - 164 - 实验2 报警系统设计..................................................................................................... - 168 - 实验3 关键事件处理和记录设计................................................................................. - 175 - 实验4 系统趋势和历史存储设计................................................................................. - 178 - 实验5 系统登录和安全性设计..................................................................................... - 180 - 实验6 网络化控制系统的研究..................................................................................... - 185 -第一章安全注意事项与设备使用安全注意事项:在安装、操作、维护或检查本系统之前.一定仔细阅读以下安全注意事项。
过程控制系统的设计与实现随着工业自动化的不断提高和科技的不断发展,越来越多的企业和生产厂家开始采用过程控制系统,以提高生产效率和产品质量。
过程控制系统是指利用计算机、传感器等技术手段对工艺流程进行实时监测和控制的系统。
本文将着重讨论过程控制系统的设计与实现过程。
具体内容如下:一、需求分析进行过程控制系统的设计与实现,需要首先进行需求分析。
需求分析主要包括以下几个方面:1.生产需求:明确生产厂家的生产要求和目标,制定相应的生产计划。
2.设备要求:确定所需的硬件设备、软件系统及其规格和参数。
3.控制策略:根据生产需求和设备要求,确定相应的控制策略和规则。
4.安全性:保障系统的安全性和可靠性,防止系统被外界攻击或故障。
在需求分析阶段,我们需要与生产厂家充分沟通,了解其需求和要求,制定相应的控制方案,并确定相应的设计方向和目标。
二、系统设计在需求分析阶段完成后,需要对过程控制系统进行系统设计。
系统设计主要包括以下几个步骤:1.系统架构:确定过程控制系统的总体架构,包括硬件、软件和网络架构等。
2.功能设计:确定系统要实现的功能和特性,如控制、监测、报警等。
3.软件设计:设计系统所需要的软件,包括编写代码、测试程序、编写文档等。
4.硬件设计:根据系统架构和功能要求,设计硬件系统,选择合适的传感器、执行器、控制器等等。
5.集成测试:将软件、硬件、网络等各个部分进行集成测试,确保系统能够正常运行。
在系统设计阶段,需要充分考虑系统的可扩展性、灵活性和稳定性等要求。
三、系统实现系统实现是指将以上设计方案付诸实践的过程。
系统实现主要包括以下几个步骤:1.硬件搭建:根据设计方案,选择合适的硬件设备并进行搭建。
2.软件编码:根据设计方案,编写相应的代码并进行调试。
3.测试和调试:对已实现的系统进行测试和调试,确保系统能够正常运行。
4.安装和调试:将系统安装到实际生产环境中,并进行调试和实验,确保系统能够满足生产需求。
在系统实现阶段,需要根据系统设计方案进行具体实现,并进行现场实验和调试,确保系统能够正常运行。
第一节 单容水箱特性的测试一、实验目的1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。
2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。
二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机及相关软件3. 万用电表一只 三、实验原理图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H ,控制量(输入量)是流入水箱中的流量Q 1,手动阀V 1和V 2的开度都为定值,Q 2为水箱中流出的流量。
根据物料平衡关系,在平衡状态时Q 10-Q 20=0 (1)动态时,则有Q 1-Q 2=dtdV(2) 式中V 为水箱的贮水容积,dt dV为水贮存量的变化率,它与H 的关系为Adh dV ,即dtdV = A dt dh(3) A 为水箱的底面积。
把式(3)代入式(2)得Q 1-Q 2=A dtdh(4)基于Q 2=SR h,R S 为阀V2的液阻,则上式可改写为 Q1-S R h = A dtdh 即AR Sdtdh+h=KQ 1 或写作)()(1s Q s H =1+TS K(5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。
式(5)就是单容水箱的传递函数。
若令Q 1(S )=SR 0,R 0=常数,则式(5)可改为H (S )=T S TK 1/+×S R 0=K S R 0-TS KR 10+对上式取拉氏反变换得h(t)=KR 0(1-e -t/T ) (6) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 当t=T 时,则有h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞)式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2所示。
当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%图2-2 单容水箱的单调上升指数曲线所对应的时间,就是水箱的时间常数T 。
过控控制方案第1篇过控控制方案一、方案背景随着我国经济的快速发展,工业生产规模不断扩大,对生产过程的控制要求越来越高。
过程控制系统(Process Control System,简称PCS)在保障生产安全和提高生产效率方面发挥着重要作用。
本方案旨在针对现有过程控制系统存在的问题,提出一套合法合规的过控控制方案,以提高生产过程的自动化、智能化水平,确保生产过程的安全、稳定和高效。
二、方案目标1. 提高生产过程的自动化水平,降低人工干预程度,减少人为操作失误。
2. 提高生产过程的稳定性,降低生产过程中的波动,提高产品质量。
3. 提高生产效率,缩短生产周期,降低生产成本。
4. 确保生产过程符合国家相关法律法规和行业标准,保障生产安全。
三、方案内容1. 系统架构本方案采用分布式控制系统(Distributed Control System,简称DCS)作为过程控制系统的基础架构。
DCS具有高可靠性、高灵活性、易于扩展和维护等优点,能够满足复杂生产过程的需求。
2. 系统硬件(1)控制器:选用具有高性能、高可靠性的控制器,负责采集现场仪表数据,执行控制算法,输出控制信号。
(2)现场仪表:根据生产过程需求,选用合适的传感器、执行器等现场仪表,实现生产过程的实时监测和控制。
(3)通信网络:采用工业以太网技术,实现控制器与现场仪表、控制器与上级监控系统之间的数据通信。
3. 系统软件(1)控制策略:根据生产工艺要求,制定合理的控制策略,包括PID控制、前馈控制、模糊控制等。
(2)数据处理与分析:对采集到的数据进行处理和分析,为优化控制策略提供依据。
(3)监控与报警:实时监控生产过程,对异常情况进行报警,并采取相应措施。
4. 人机界面(1)操作界面:设计简洁、直观的操作界面,方便操作人员实时监控生产过程,进行手动控制和参数调整。
(2)报警界面:设计明确的报警界面,显示报警信息,便于操作人员及时处理。
(3)趋势分析:提供历史数据和实时数据趋势分析功能,帮助操作人员掌握生产过程变化。
目录第一章概述 (1)1.1 设计目的 (1)1.2 具体任务 (1)1.3 氧化铝生产的意义 (2)第二章氧化铝高压溶出工序介绍 (3)2.1 铝工业的国内外现状 (3)2.2 氧化铝生产过程 (4)2.3 高压溶出工序 (9)第三章氧化铝高压溶出工序生产设备及控制要求 (12)3.1 双程预热器 (12)3.2 溶出器 (12)3.3 自蒸发器 (13)3.4 蒸汽缓冲器 (14)第四章氧化铝高压溶出工序3#溶出器温度控制系统设计 (16)4.1 方案论证 (16)4.2 硬件设计 (17)4.3 控制算法 (20)4.4 软件设计 (21)第五章总结 (24)5.1 方案评价及改进方向 (24)5.2 收获及体会 (24)参考文献 (26)第一章概述现代工业生产过程,随着生产规模的不断扩大,生产过程的强化,对产品质量的严格要求,以及各公司的激烈竞争,人工操作与控制已远远不能满足现代化生产的要求,工业过程控制系统已成为工业生产过程必不可少的设备,因为,它是保证现代企业安全、优化、低功耗和高效益生产的主要技术手段。
由于工业生产过程各种各样而且非常复杂,工业生产过程可分连续的生产过程和离散的生产过程。
因此,在设计工业生产过程控制系统时,必须花大量的时间和精力了解该工业生产过程的基本原理、操作过程和过程特性,这是设计和实现一个工业生产过程控制系统的首要条件。
工业生产过程由简单到复杂,规模由小到大。
至今,已有各种各样的生产工业过程,生产出各种各样的产品满足人们的生活需要。
作为工业生产过程的一部分的工业过程控制系统也在不断发展和提高。
在工业生产过程中,通常需要测量和控制变量有:温度、压力、流量、物位(液位)、物质成分和物性(PH值)等。
1.1 设计目的经过一个学期的过程控制系统课程的学习,对过程控制有了一个基本的了解。
然而仅仅在理论方面是远远不够的,需要将所学的应用于实际生产过程中,只有这样才能真正的对过程控制有一个比较深入的认识,为以后的学习和工作打下一个良好的基础。
DCS整套解决方案DCS(Distributed Control System)是一种广泛应用于工业自动化领域的控制系统,用于监控和控制生产过程中的各种设备和系统。
DCS整套解决方案是指为了实现自动化控制和优化生产效率,提供了从硬件设备到软件系统的完整解决方案。
下面将从硬件设备、软件系统和集成服务三个方面进行详细介绍。
硬件设备方面,DCS整套解决方案通常包括以下组成部分:1. 控制器(Controller):控制器是DCS系统的核心部分,负责接收和处理各个子系统的信号,并根据预设的逻辑进行实时控制和调节。
常见的DCS控制器包括PLC(可编程逻辑控制器)和PAC(可编程自动控制器)等。
2. 输入/输出模块(I/O Module):输入/输出模块用于与外部设备进行数据交换,将传感器采集到的实时数据输入到控制器中,同时将控制器的输出信号传输到执行器或其他外部设备中。
输入/输出模块通常支持多种通信协议和接口标准,如Modbus、Profibus、Ethernet等。
3. 人机界面(Human-Machine Interface,HMI):HMI是DCS系统与操作人员之间的交互界面,用于实时监控和直观显示生产过程中的各项参数和状态。
HMI一般采用可触摸屏或键盘鼠标等交互方式,操作人员可以通过HMI对系统进行控制和调整。
5.其他外围设备:根据具体应用需求,DCS系统还可以包括一些特定的外围设备,如温度传感器、流量计、电动执行器等,用于实时监控和控制生产过程中的各项参数。
软件系统方面,DCS整套解决方案通常包括以下功能模块:2. 监控与调度系统(Supervisory Control and Data Acquisition,SCADA):SCADA系统用于实时监控和调度生产过程中的各项参数和状态,并提供报警、故障诊断等功能。
SCADA系统可以通过图形界面直观显示生产过程中的各个设备和系统,并允许操作人员实时监控和干预。
过程控制系统方案设计过程控制系统是指将传感器、执行器和控制算法等组成的一套系统,用于监测和控制工业过程中的温度、压力、流量等参数。
本文将从系统组成、功能设计、安全性设计和可扩展性设计等方面,详细介绍过程控制系统的方案设计。
1.系统组成-传感器:用于采集工业过程中的参数,如温度传感器、压力传感器、液位传感器等。
-执行器:用于根据控制算法的输出执行动作,如电动阀门、电机等。
-控制算法:通过对传感器采集的参数进行处理,并根据设定的控制策略输出控制信号给执行器。
-人机界面:通过图形化界面使操作人员能够监视和控制整个系统。
-通信网络:用于传输传感器采集的数据和控制信号。
-数据存储和处理单元:用于存储历史数据和对数据进行处理分析。
-电源供应:为系统提供电力。
2.功能设计-参数采集:通过传感器采集工业过程中的参数,并将其转化为数字信号。
-数据处理:对传感器采集的数据进行滤波、去噪等处理,以满足控制算法的要求。
-控制策略生成:根据设定的控制策略,利用控制算法对传感器采集的数据进行处理,从而生成控制信号。
-执行动作控制:将控制信号传递给执行器,通过调节执行器的状态来控制工业过程中的参数。
3.安全性设计-可靠性:系统需要具备高可靠性,能够正常工作并保证工业过程的稳定性。
-网络安全:通过加密通信、防火墙等措施,确保系统在网络通信中的安全性。
-级联保护:当系统中的一些部分出现故障时,能够及时发出警报并采取相应的保护措施。
-系统备份:对系统进行定时备份,以保证系统数据的安全性。
-权限管理:通过设定用户权限,限制非授权人员对系统的访问和操作。
4.可扩展性设计-模块化设计:将系统划分为多个模块,每个模块具有独立的功能和接口,方便对系统的扩展和维护。
-开放式接口:提供开放式接口,允许第三方设备和软件与系统进行集成。
-标准化协议:采用标准化协议,方便系统与其他设备进行通信和交互。
-可定制性:根据用户需求,对系统进行定制化开发,以满足不同工业过程的需求。
2 目录一、设计目的 2二、设计要求 3三、实现过程3 1、 系统概述 (3)1.1加热炉 (3)1.2加热炉工艺过程 ...................................................... 4 13控制参数的选择及控制燃烧方案的确定 . (5)1.4加热炉的工艺结构及其设备组成 (6)1.5生产线的特点 ........................................................ 6 2、 设计与分析 .. (7)2.1加热炉生产工艺和控制要求 (7)2.2燃烧控制系统及仿真 (7)四、总结 11五、附录 12六、参考文献12 一、设计目的经过一个学期的过程控制系统课程的学习,对过程控制有了一个基本的了 解。
然而仅仅在理论方面是远远不够的,需要将所学的应用于实际生产过程中, 惟独这样才干真正的对过程控制有一个比较深入的认识,为以后的学习和工作打 下一个良好的基础。
通过这次课程设计,我们可以了解具体生产工业过程控制系 统设计的基本步骤和方法。
同时也对氧化铝的生产工艺有一个大概的认识,惟独 弄清晰生产工艺对控制的具体要求,才干去设计一个过程控制系统。
同时:1、 提高对所学自动化仪表和过程控制的原理、结构、特性的认识和理解, 加深对所学知识的巩固和融会贯通。
2、针对一个小型课题的设计开辟,培养查阅参考书籍资料的自学能力,通过独立思量,学会分析问题的方法。
3、综合运用专业及基础知识,解决实际工程技术问题的能力。
4、培养学生严谨的工作作风,相互合作的团队精神,提髙其综合素质,获得初级工程应用经验,为将来从事专业工作建立基础。
二、设计要求燃烧量对蒸汽母线压力:G(s)= —?——r+ 100^+11、査阅资料,深入掌握钢铁工业过程的工作原理及控制要求,绘制出钢铁工业生产过程工艺流程图。
2、设计控制方案。
(1)根据燃烧对象特性及控制要求,完成燃烧量的选择、执行器、变送器的选择、控制仪表选择等方案设计。
过程控制系统方案设计过程控制系统是一种用于监测和控制工业过程的自动化系统,能够实时收集和处理过程数据,并根据设定的控制策略自动调节设备和参数,以达到最优的生产效果。
在过程控制系统的方案设计中,需要考虑多个因素,包括硬件设备的选择、软件系统的设计、通信协议的确定等。
本文将从这些方面对过程控制系统的方案设计进行详细介绍。
一、硬件设备的选择在过程控制系统的方案设计中,硬件设备的选择是十分重要的一环。
根据具体的控制需求,可以选择合适的传感器、执行器、PLC等设备。
传感器用于采集过程数据,执行器用于调节设备参数,PLC用于控制逻辑的实现。
在选择硬件设备时,要考虑其性能、可靠性、兼容性等因素,并保证其与软件系统的适配性。
二、软件系统的设计软件系统是过程控制系统的核心,对于实现控制策略和数据处理起到至关重要的作用。
软件系统的设计包括数据采集、控制算法、人机界面等方面。
在数据采集方面,可以使用实时数据库进行数据存储和管理,以方便后续的数据处理和分析。
在控制算法方面,要根据具体的控制需求选择合适的算法,并采用合理的控制策略。
在人机界面方面,可以使用图形化界面进行操作和监控,方便用户进行参数设置和过程状态的监测。
三、通信协议的确定通信协议是过程控制系统与外部设备之间实现数据交换的桥梁,确定合适的通信协议可以提高系统的可靠性和性能。
常用的通信协议包括Modbus、Profibus、CAN等。
在确定通信协议时,要考虑系统的实时性和响应性能要求,以及设备的兼容性和可扩展性。
四、系统安全性的考虑过程控制系统在设计时应考虑系统的安全性,保证系统的数据和操作的安全可靠。
可以采用多种方法提高系统的安全性,包括密码学技术、访问控制、数据加密等。
此外,还要做好系统的备份和恢复工作,以防止数据丢失和系统故障。
五、系统测试和调试在过程控制系统的方案设计完成后,还需要进行系统测试和调试工作,以保证系统的正常运行和稳定性。
测试和调试包括软件测试、硬件测试、联调测试等。
最新一代高级多功能过程控制实训系统SMPT-1000介绍(西门子杯全国大学生控制仿真挑战赛指定比赛设备)北京化工大学计算机模拟与系统安全工程研究中心(教育部化工安全工程中心,原仿真中心)西门子(中国)A&D有限公司联合推出一、 产品背景与理念过程工业包括石油、化工、电力、核能、水处理、食品、生物、制药、水泥、冶金等诸多行业,过程控制是自动化专业中一个重要的组成部分,过程控制技能也是控制工程师所应具备的重要技能之一。
近年来,教育部强调教育人才要与市场相结合,突出工程能力的培养,并对实验环节提出了设计型、综合型、创新型和探索型等更高的教学目标。
这就要求我们过程控制专业的学生在校期间能够尽可能多地进行动手训练,从实践中获得工程技能。
然而,由于过程工业具有流程复杂、规模庞大等特点,生产过程常常伴有高温、高压等环节,因此很难在实验室中构建与工业装置相近的实验对象。
缺乏理想的过程控制实验装置是目前国内高校、职校等在过程控制工程型人才培养方面面临的最重要的问题之一。
该问题直接导致了学生工程实践能力较弱,无法很好地满足行业对人才的需求。
过去,许多学校采用以水槽液位为主要被控对象的过程控制实验装置。
这类实物仿真装置具有外形直观的优点,学生可以看到变送器、控制器、执行机构的实物,在入门阶段对于认识控制系统组成具有相当好的教学意义。
但是,其表现的对象特性、系统复杂程度与工业真实装置相差太远,仅仅能够满足认知型实验的要求。
这类实验装置的突出不足在于:●实验对象过于简单,与真实生产装置差别太大。
实验装置在相当小的尺寸范围内采用水作为介质进行模拟生产装置。
实验系统过于简单,时间常数过小,动态特性与实际装置相比差异很大。
非线性环节、大滞后、高阶等过程工业常见的被控对象特性都无法在实验装置中体现。
除了流体流动与传热实验外,化学反应、物料混合、组分变化、气体压缩、复杂的传质过程等过程工业的精髓内容都无法实现。
许多在这类实验装置上进行训练的学生都误以为过程控制就是流量与液位的控制。
第一章认识设备1.1历程控制装置主要器件主要器件位置如下图:1)左水箱;2)右水箱;3)称重装置;4)称重传感器;5)原水箱;6)锅炉;7)消防小屋;8)涡轮流量计;9)电磁流量计;10)电动调治阀;11)压力表;12)单相水泵;13)三相水泵;主要器件参数检测器件执行器件1.2控制柜主要技能参数主要器件位置LC各模块位置1.2.3接线端子SM322的3号端子接变频器的3号端子DIN0,5号端子接电磁阀的24V;SM331的2、3号端子接左水箱液位传感器,4、5号端子接涡轮流量计,6、7号端子接右水箱液位传感器,8、9号端子接接热电偶温度传感器,12、13号端子接Pt100热电阻温度传感器,14、15号端子接称重传感器,16、17号端子接电磁流量传感器,18、19号端子接Cu50温度传感器;sm332的2号端子接变频器的ADC端子,5号端子接变频器的0V。
第二章实训实训一 S7 PLC硬件组态一、实训目的1.掌握STEP7 软件硬件组态的步调与要领,并凭据系统实际配置制作硬件组态二、实训设备PCS3000型现场总线高级历程控制系统实训设备(DCS漫衍式历程控制系统)二、实训步调创建一个新项目并进入硬件组态的步调:1、双击盘算机桌面上的SIMATIC Manager图标,打开STEP7 主画面。
2、点击文件→新建,出现新建对话框。
在“名称”下输入项目名称(PCS)。
在“存储位置(路径)”下输入项目存储的路径,然后点击“确定”。
系统将自动生成项目。
3、右击项目名称,选中“插入新东西”→“SIMATIC 300 站点”,插入一个S7-300的项目。
4、单击项目名称前面的+号或双击项目名称,再选中“SIMATIC 300(1)”,然后右击“硬件”→“打开东西”或直接双击“硬件”,进入“HW Config”进行站点的硬件组态。
硬件组态画面打开如下。
下面开始硬件组态。
1、放入一个机架。
在“硬件模块库”中找到SIMATIC 300→RACK-300→Rail,然后将Rail 拖入“硬件组态区”。
项目名称:东北石油大学验室设备及用品采购项目编号:DZC100913来文编号:ZCB101015、ZCB101016技术协议哈尔滨君威科技有限公司2011年3月高级过程控制系统方案高级自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。
随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。
方案概述网络架构方案特色高级过程控制实训设备具有如下特点:(1) 过程控制实训设备结构:实训控制对象装置、实训控制系统。
实训设备总体具结构开放性、设备真实性,实训活动能突出工程性、实践性、现场情景化、操作实际化。
(2) 实训控制对象:实训控制对象仿工业设备结构。
具有较强现场设备感;具有较丰富的设备种类,包括加热炉、液位容器、换热器、阀门与管道等;利用现场阀门与管路实现对象间的组合与分隔,单套实训对象装置至少能形成两个可同时运行的独立控制系统;通过阀门与管路切换,能构造多种控制系统所需环节组合。
现场检测与控制类设备、信号管线便于实训装拆训练。
(3) 现场仪表:具有多种流量检测仪表;能通过电动调节法、变频调速两种典型方式实现控制任务;现场设备及管路上用于组建联锁保护系统的检测与控制点不少于5点;突出现场仪表,能体现现场仪表、信号管线的工业安装。
(4) 控制信号管线控制信号管线敷设为可拆装式,与现场装置、控制台(柜)接点为接线端子连接;现场桥架引线,控制台(站)地沟引线方式。
所有引线均应便于学生进行线路连接、敷设实训。
(5) 实训系统功能要求:能完成过程控制系统结构认识、系统连接与组态、仪表及系统投运、系统调试与控制参数整定、系统运行维护与故障处理。
(6) 控制系统类型要求:能实现四大热工量的检测与简单控制实训;能实现温度、流量、压力间串级控制实训;能实现流量、液位间均匀控制实训;能实现两种流量间的比值控制实训;能实现选择性控制实训;能实现联锁保护控制实训。
(7) 系统控制方式要求:具有智能仪表控制、PLC控制、DCS控制方式,并能进行灵活的切换。
(8) 实训设备物料:冷水、热水(为了安全,尽量不要出现蒸汽)、空气三种介质。
(9) 可以很方便的实现以多变量预测控制技术为基础的先进控制实验。
(10) 能够实现压力报警、连锁及自动停车等实验。
对象系统工艺流程高级过程控制实验平台对象以反应罐和电加热罐、换热器为核心,同时还配置了温度大滞后单元,以进行特殊控制算法研究。
装置配备循环水泵(分别通过变频器和调节阀控制流量)、压力连锁装置、自动停车系统、供水水槽和手动、自动切换阀组成的供排水系统。
对象中采用了工业生产中实际使用的各类检测、变送仪表和执行机构。
此外,高级过程控制实验装置还提供了一套可视的具有可变纯延迟的纯滞后对象。
该纯滞后对象由一个电加热罐、换热器和一个温度纯滞后管组成,该对象由一个可控硅控制的电加热管提供热源,通过调节电加热管功率或待加热水量以达到控制电加热罐出水温度的目的。
借助于该纯滞后对象,可方便地实现SMITH 补偿、内模控制等纯滞后及先进控制实验方案对象系统优势我们对现场系统进行了很大的改进,提供全开放式、模块化设计。
对象系统比较优势如下所示:(1) 更符合工业现场提供圆罐非线性容器。
圆罐容器具有很好的耐压特性,所以化工等行业使用很多。
同行基本都是简单的线性容积水箱。
提供现场电力供配电,而和控制系统之间的连接只有控制器所支持的标准信号。
变频器和调压模块封装在现场配电柜,使得电力线与信号线分离,减少干扰。
符合工业现场的真实情况,更加具有安全性。
提供方便的PCB端子排连接,方便可靠连接、检查、调试。
同行一般使用航空插头,不好维护,也不好检测,更难以方便地扩展。
(2) 更具有安全性和控制系统没有任何强电连接,在控制柜中,面板上只使用24V直流电。
可以更加安全地让学生对控制器进行各种带电操作。
同行产品控制柜提供强电设备,并且通过连接线连接到现场系统上,不安全。
加热容器提供了一个护套,避免烫伤。
(3) 可维护性和扩展性好全部采用端子到点的接线方式,方便检测、维护、更改各个端子。
所有的接线部分不用拆任何螺钉,就可以打开,并方便地维修。
打开现场控制箱和控制柜的各个门,全部设备都露在用户面前,没有任何见不到的、隐蔽的设备。
提供了接线电路板,大大减少了连线。
任何故障,可以通过简单的替换芯片,或者更换板子就可以解决。
(4) 设计更具有合理性模块化设计,用户可以随时增加仪器仪表,或者智能设备。
同行不具有这样方便的扩展能力。
尽可能使管道更粗,更符合真实工业现场。
截面积非常大的水箱系统。
加热容器具有两个液位开关,一个联锁保护系统,以及用户可编程的联锁保护和紧急停车系统。
提供经典的管道压力和流量耦合实验。
静态单位矩阵法解偶,两输入两输出,非常典型,而且与温度、时间无关,可以快速地容易地重复。
(5) 配电系统特点:孔屏。
完全符合工业立盘设计,自由接线,方便维护。
全部接线直接连接到孔屏。
包括所有变频器,调压模块,电压表,调节阀供电,电磁流量计供电,继电器驱动等等设备安装到孔屏上。
学生方便拆装,调节和维护。
(6) 先进控制实验本实验平台提供了2个先进控制实验方案,可以让实验者很方便的从理解先进控制的原理到实际动手设计先进控制器。
同时以实验平台为基础,还可以自行开发出更多的先进控制实验方案,非常适合需要进行高级过程控制实验的硕士、博士等高端研究人才的实验需求。
仪表控制系统控制系统提供两种安装模式:机柜中孔屏安装,包括转接电路板,配电系统。
系统更加工业化,模块安装自由,维护操作方便。
IO连接板把现场的PCB端子排连接到控制系统,并使用实验专用连接端子连接。
除了与现场IO一一对应的接口之外,也为两线制变送器、数字量干接点提供了自由的电源连接。
为PT100提供可选的温度变送器连接。
并提供硬件比值器,可调电流源,数字电流表。
方便了某些系统的连接。
艾默生DCS基本网络结构:图1 DeltaV系统结构DeltaV系统结构由工作站、控制器和I/O子系统组成,各工作站及各控制器之间用以太网方式连接。
现场智能设备或常规设备的信号将接入DeltaV卡件,具备HART、FUNDATION TM现场总线、Profibus DP总线,AS-i总线,DeviceNet总线及RS485串口通讯的设备也将连接到DeltaV的各总线卡件上。
DeltaV的工作站包含主工程师站、工程师站、操作站、应用站等,其中应用站具备OPC Server功能并可通过第三块网卡以以太网的方式连接到其它系统,实现系统间的实时数据交换等功能。
根据系统配置功能的需要,应用站也可以用作批量管理站、Web Server站等。
控制器及I/O子系统包含控制器、供电模块和各类卡件,卡件负责现场信号采集及处理,由控制器执行控制策略。
DeltaV系统支持将控制策略下装到现场总线设备中执行,使控制风险更加分散并提高回路的集成度。
DeltaV系统可根据应用场合的需要采用冗余系统控制网络、冗余控制器、冗余电源、冗余卡件等冗余措施。
控制器和卡件将安装在底板上,各类卡件可根据需要随意安装在底板上,无需特定的卡件安装特定的位置上。
DeltaV控制网络DeltaV系统的控制网络是以100M以太网为基础的,局域网(LAN)网速可达到100M/1000M。
DeltaV系统的控制网络可以是冗余的或单网,上图是典型的冗余控制网络。
在DeltaV系统中,控制网络采用的设备包括交换机、以太网线及光缆。
DeltaV系统的节点包括工作站和控制器,各节点到交换机的距离小于100m时,用以太网线连接各节点到交换机上,不需要增加任何额外的中间设备;各节点到交换机的距离大于100m时,需要用光缆进行扩展。
DeltaV系统的控制网络考虑到通讯的完整性,往往采用冗余的方式,并建立两条完全独立的控制网络,即主副控制网络。
主副控制网络中的交换机、以太网线及工作站和控制器的网络接口也完全是独立的。
每个DeltaV控制器都有主副2个网络接口,在采用冗余控制器的配置时,每对控制器会有2个网络接口连接到主交换机上,另2个网络接口连接到副交换机上。
DeltaV系统的各工作站都配有3块以上的网卡,其中2块用于建立控制网络,另1块用于备用或连接其它系统如工厂网络等。
DeltaV系统的控制网络采用TCP/IP的通讯协议,系统自动分配各节点的IP地址。
每套DeltaV可支持最多120个节点,系统结构灵活,规模可变,易于扩展。
控制器DeltaV系统的控制器用于管理所有在线I/O 子系统、控制策略的执行及通讯网络的维护。
同时时间标签和报警趋势记录也是由控制器管理的。
控制器从输入通道读取数据,然后执行控制策略,到最后送到输出通道的整个过程会在100ms中完成。
控制器主频为266MHz,内存为48M。
对于冗余配置的控制器,在工作时会有一个处于激活状态,而另一个待机状态的控制器会拥有相同的设置,并会映射在线控制器的所有操作。
一旦,在线控制器发生故障,待机状态的控制器将会自动切换到激活状态。
并且,系统可以在故障控制器被替换后自动执行初始化,使系统恢复冗余配置。
当网络发生故障的时候,控制器会保留最后收到的有效数据。
图4 DeltaV系统控制器与I/O卡件控制器的特点包括:•自动分配地址-每个控制器作为一个网络节点对于整个DeltaV 系统具有唯一性,一旦上电,系统会自动分配网络地址,无需拨动开关或做另外的设置。
•自动I/O检测-控制器能够检测到所有安装在子系统上的I/O接口通道。
一插入IO卡件,控制器就能精确地知道I/O卡件所连接的现场设备的常用属性。
这就减少了组态有关的无价值工作量,大大提高工作效率。
•数据保护-将数据下装到控制器时,DeltaV系统会保存下装信息。
同样,用户在线改变控制器组态时,系统也保存这些组态更改。
这样,系统将保存所有下装到控制器的数据的完整记录及所有曾做过的在线更改;•冷启动-当系统因故障断电时,控制器可以在一定时间内保存在线数据和所有组态设置,使得在重新上电后无需初始化就可直接启动正常工作。
•数据通道-控制器可以将智能HART信息从现场设备传送到控制网络中的任何节点。
即通过运行先进的设备管理软件应用,如艾默生过程控制公司的设备管理系统(AMS)实现现场HART设备或基金会现场总线设备的智能信息的远程管理。
•安装-即插即用的系统结构使系统可以从一个控制器逐步扩大,还可以远程安装在Class 1 Div 2环境中。
I/O 子系统DeltaV系统的所有I/O卡件均为模块化设计,可即插即用、自动识别、带电插拔。
系统可以要提供二大类I/O卡件:一类是传统I/O卡件,另一类是现场总线接口卡件。
这二大类卡件可任意混合使用。