第三章第二节牛顿第二定律和两类动力学问题
- 格式:doc
- 大小:1.00 MB
- 文档页数:23
第二讲 牛顿第二定律 两类动力学问题[小题快练]1.判断题(1)物体加速度的方向一定与合外力方向相同.( √ )(2)质量越大的物体,加速度越小.( × )(3)物体的质量与加速度成反比.( × )(4)可以利用牛顿第二定律确定自由电子的运动情况.( × )(5)物体所受的合外力减小,加速度一定减小,而速度不一定减小.( √ )(6)物体处于超重或失重状态时其重力并没有发生变化.( √ )(7)根据物体处于超重或失重状态,可以判断物体运动的速度方向.( × )(8)物体处于超重或失重状态,完全由物体加速度的方向决定,与速度方向无关.( √ )2.根据牛顿第二定律,下列叙述正确的是( D )A .物体加速度的大小跟它的质量和速度大小的乘积成反比B .物体所受合力必须达到某一定值时,才能使物体产生加速度C .物体加速度的大小跟它所受作用力中的任一个的大小成正比D .当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比3.(多选)关于速度、加速度、合外力之间的关系,正确的是( CD )A .物体的速度越大,则加速度越大,所受的合外力也越大B .物体的速度为零,则加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零考点一 牛顿第二定律的理解 (自主学习)1.牛顿第二定律的五个特性2.合力、加速度、速度间的决定关系(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度.(2)a =Δv Δt是加速度的定义式,a 与Δv 、Δt 无必然联系;a =F m 是加速度的决定式,a ∝F ,a ∝1m.(3)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.1-1.[对牛顿第二定律的理解] (多选)下列对牛顿第二定律的理解,正确的是( )A .如果一个物体同时受到两个力的作用,则这两个力各自产生的加速度互不影响B.如果一个物体同时受到几个力的作用,则这个物体的加速度等于所受各力单独作用在物体上时产生加速度的矢量和C.平抛运动中竖直方向的重力不影响水平方向的匀速运动D.物体的质量与物体所受的合力成正比,与物体的加速度成反比答案:ABC1-2.[应用牛顿第二定律定性分析问题] (多选)如图所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后( )A.木块立即做减速运动B.木块在一段时间内速度仍可增大C.当F等于弹簧弹力时,木块速度最大D.弹簧压缩量最大时,木块加速度为零解析:木块接触弹簧后向右运动,弹力逐渐增大,开始时恒力F大于弹簧弹力,合外力方向水平向右,与木块速度方向相同,木块速度不断增大,A项错,B项正确;当弹力增大到与恒力F相等时,合力为零,速度增大到最大值,C项正确;之后木块由于惯性继续向右运动,但合力方向与速度方向相反,木块速度逐渐减小到零,此时,弹力大于恒力F,加速度大于零,D项错.答案:BC考点二牛顿第二定律的瞬时性 (自主学习)1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路2-1. [弹簧模型] (多选)(2015·海南卷)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O.整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2解析:剪断细线前,把a、b、c看成整体,细线上的拉力为T=3mg.因在剪断瞬间,弹簧弹力未发生突变,因此a、b、c之间的作用力与剪断细线之前相同,则将细线剪断瞬间,对a 隔离进行受力分析,由牛顿第二定律得3mg=ma1得a1=3g,A正确,B错误;由胡克定律知2mg =k Δl 1,mg =k Δl 2,所以Δl 1=2Δl 2,C 正确,D 错误.答案:AC2-2.[弹簧、轻杆模型] 如图所示,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间,有( )A .两图中两球加速度均为g sin θB .两图中A 球的加速度均为零C .图乙中轻杆的作用力一定不为零D .图甲中B 球的加速度是图乙中B 球加速度的2倍解析:撤去挡板前,挡板对B 球的弹力大小为2mg sin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,图甲中A 球所受合力为零,加速度为零,B 球所受合力为2mg sin θ,加速度为2g sin θ;图乙中杆的弹力突变为零,A 、B 球所受合力均为mg sin θ,加速度均为g sin θ,可知只有D 对.答案:D2-3. [轻绳模型] “儿童蹦极”中,拴在腰间左右两侧的是悬点等高、完全相同的两根橡皮绳.质量为m 的小明如图所示静止悬挂时,两橡皮绳的夹角为60°,则( )A .每根橡皮绳的拉力为12mg B .若将悬点间距离变小,则每根橡皮绳所受拉力将变小C .若此时小明左侧橡皮绳在腰间断裂,则小明此时加速度a =gD .若拴在腰间左右两侧的是悬点等高、完全相同的两根轻绳,则小明左侧轻绳在腰间断裂时,小明的加速度a =g解析:根据平行四边形定则知,2F cos 30°=mg ,解得F =33mg .故A 错误;根据共点力平衡得,2F cos θ=mg ,当悬点间的距离变小时,θ变小,cos θ变大,可知橡皮绳的拉力变小,故B 正确;当左侧橡皮绳断裂,断裂的瞬间,右侧弹性绳的拉力不变,则重力和右侧橡皮绳拉力的合力与左侧橡皮绳初始时的拉力大小相等,方向相反,合力大小为33mg ,加速度为33g ,故C 错误;当两侧为轻绳时,左侧绳断裂瞬间,右侧绳上拉力发生突变,将重力沿绳方向和垂直于绳方向正交分解,合力为mg sin 30°,加速度为12g ,故D 错误.答案:B考点三 两类动力学问题 (师生共研)1.解决两类基本问题的思路2.两类动力学问题的解题步骤[典例1] 如图所示,在倾角θ=37°的足够长的固定斜面上,有一质量m =1 kg 的物体,物体与斜面间的动摩擦因数μ=0.2,物体受到沿平行于斜面方向向上的轻绳的拉力F =9.6 N 的作用,从静止开始运动,经2 s 绳子突然断了,求绳断后经多长时间物体速度的大小达到22 m/s.(sin 37°=0.6,取g =10 m/s 2)[审题指导](1)物体在最初2 s 内做匀加速直线运动(第一个过程).(2)绳子断了以后,物体做匀减速直线运动(第二个过程).(3)从最高点开始物体沿斜面向下做匀加速直线运动(第三个过程).解析:第一过程:在最初2 s 内,物体在F =9.6 N 的拉力作用下,从静止开始沿斜面做匀加速直线运动,受力分析如图甲所示.沿斜面方向有 F -mg sin 37°-F f =ma 1①沿垂直斜面方向有F N =mg cos 37°②且F f =μF N ③由①②③式得a 1=F -mg sin 37°-μmg cos 37°m=2 m/s 2 2 s 末绳断时,物体的瞬时速度v 1=a 1t 1=4 m/s第二过程:从撤去F 到物体继续沿斜面向上运动达到速度为零的过程,设此过程物体运动时间为t 2,加速度大小为a 2,受力分析如图乙所示.沿斜面方向有mg sin 37°+F f =ma 2④根据运动学公式得v 1=a 2t 2⑤由②③④⑤得t 2=0.53 s第三过程:物体从运动的最高点沿斜面下滑,设第三阶段物体加速度大小为a 3,所需时间为t 3,受力分析如图丙所示.沿斜面方向有mg sin 37°-F f =ma 3⑥由运动学公式得v 3=a 3t 3⑦由②③⑥⑦得t 3=5 s综上所述,从绳断到物体速度达到22 m/s 所经历的总时间t =t 2+t 3=0.53 s +5 s =5.53 s. 答案:5.53 s[反思总结]解决两类动力学问题的两个关键点3-1.[由受力判断运动] 某人以一定的初速度从P 点竖直向上抛出一个小球,1 s 后小球运动到最高点,若小球运动时受到的空气阻力大小不变(不为零),则又经过1 s 后( )A .小球恰好经过P 点B .小球的位置在P 点下方C .小球的位置在P 点上方D .阻力大小不确定,无法判断小球的位置是在P 点的上方还是下方解析:设空气阻力大小为f ,由牛顿第二定律得:上升过程有mg +f =ma 上,下落过程有mg-f =ma 下,可得a 上>a 下,即上升的加速度比下落的加速度大,根据位移公式x =12at 2可知下落1 s 的位移小于上升1 s 的位移,所以又经过1 s 后小球的位置在P 点上方,故C 正确. 答案:C3-2. [由运动判断受力] 趣味运动会上运动员手持网球拍托球沿水平面匀加速向前跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力及空气阻力不计,则( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .若加速度大于g sin θ,球一定沿球拍向上运动解析:网球受力如图甲所示,根据牛顿第二定律得F N sin θ=ma ,又F N cos θ=mg ,解得a =g tan θ,F N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象,受力如图乙所示,根据平衡条件,在竖直方向上有F ·cos θ=(M +m )g ,则运动员对球拍的作用力为F =(M +m )g cos θ,故C 错误;当a >g tan θ时,网球才向上运动,由于g sin θ<g tan θ,故球不一定沿球拍向上运动,故D 错误.答案:A3-3.[由受力判断运动] (多选)(2016·全国卷Ⅰ)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功解析:设小球在下落过程中所受阻力F 阻=kR ,k 为常数,R 为小球半径,由牛顿第二定律可知:mg -F 阻=ma ,由m =ρV =43ρπR 3知:43ρπR 3g -kR =43ρπR 3a ,即a =g -3k 4ρπ·1R 2,故知:R 越大,a 越大,即下落过程中a 甲>a 乙,C 错误;下落相同的距离,由h =12at 2知,a 越大,t 越小,A 错误;又由2ah =v 2-v 20知,v 0=0,a 越大,v 越大,B 正确;由W 阻=-F 阻h 知,甲球克服阻力做的功更大一些,D 正确.答案:BD考点四 对超重和失重的理解与应用 (师生共研)1.超重、失重和完全失重比较(1)超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).(2)只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.(3)尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.[典例2] “蹦极”是一项刺激的极限运动,运动员将一端固定的长弹性绳绑在踝关节处,从几十米高处跳下.在某次蹦极中,弹性绳弹力F的大小随时间t的变化图象如图所示,其中t2、t4时刻图线的斜率最大.将蹦极过程近似为在竖直方向的运动,弹性绳中弹力与伸长量的关系遵循胡克定律,空气阻力不计.下列说法正确的是( )A.t1~t2时间内运动员处于超重状态B.t2~t3时间内运动员处于超重状态C.t3时刻运动员的加速度为零D.t4时刻运动员具有向下的最大速度解析:在t1~t2时间内,运动员合力向下,加速下降,失重,故A项错误;在t2、t4时刻图线的斜率最大,说明弹力变化最快,由于弹力与长度成正比,说明长度变化最快,即速度最大,而速度最大时弹力与重力平衡;t2~t3时间内弹性绳向上的拉力大于重力,运动员具有向上的加速度,处于超重状态,故B项正确;t3时刻拉力最大,运动员运动到最低点,合力向上,故加速度向上,不为零,故C项错误;t4时刻运动员受到的重力和拉力平衡,加速度为零,具有最大的向上的速度,故D项错误.答案:B[反思总结]判断超重和失重现象的技巧1.从受力的角度判断:当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态.2.从加速度的角度判断:当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.3.从速度变化的角度判断:(1)物体向上加速或向下减速时,超重;(2)物体向下加速或向上减速时,失重.4-1. [超、失重现象的判断] (多选)如图所示,蹦床运动员从空中落到床面上,运动员从接触床面下降到最低点为第一过程,从最低点上升到离开床面为第二过程,运动员( )A.在第一过程中始终处于失重状态B.在第二过程中始终处于超重状态C.在第一过程中先处于失重状态,后处于超重状态D.在第二过程中先处于超重状态,后处于失重状态解析:运动员刚接触床面时重力大于弹力,运动员向下做加速运动,运动员处于失重状态;随床面形变的增大,弹力逐渐增大,弹力大于重力时,运动员做减速运动,运动员处于超重状态,故A错误,C正确;蹦床运动员在上升过程中和下落过程中是对称的,加速度方向先向上后向下,先处于超重状态,后处于失重状态,故B错误,D正确.答案:CD4-2.[超、失重现象的应用] (2018·江苏连云港高三调研)如图,台秤上放一装有水的杯子,杯底用细线系一光滑小球,若细线发生断裂,在小球加速上升的过程中,不计水的阻力,台秤的读数将( )A.变小B.变大C.不变D.无法确定解析:以容器和小球组成的整体研究对象,将细线割断,在小球加速上升过程中加速度向上,存在超重现象,而小球下降留下的空位由水来填充,所以相当于一个与小球同样大小的水球向下加速运动,存在失重现象,由于同样体积的小球质量小于水球的质量,所以整体存在失重现象,台秤的示数小于系统总重力,台秤的示数减小,A正确.答案:A1.(2018·湖北荆州质检)从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是,我们用很小的力推很重的桌子时,却推不动,这是因为( D )A.牛顿第二定律不适用于很重的物体B.桌子加速度很小,肉眼观察不到C.推力太小,速度增量也很小,眼睛观察不到D.桌子所受合力为零,没有加速度解析:静止物体,加速度为零,合力为零,牛顿第二定律同样适用于静止物体.故A、B错误.推力等于静摩擦力,加速度为零,故C错误;由于水平推力不大于桌子的最大静摩擦力,推不动桌子,桌子的合力等于零,由牛顿第二定律可知,加速度等于零,故D正确.2.(多选)(2018·郑州一模)某星级宾馆安装一高档电梯,在电梯的底板上安装了一压力传感器,在竖直墙壁上的显示盘上可显示人对传感器的作用力,某乘客乘坐电梯从1层直接到10层,之后又从10层直接回到1层,用照相机进行记录了相关的信息,如图所示,则下列说法中正确的是( AD )A.根据图(a)和图(e)可估测出电梯向下制动时的加速度B.根据图(a)和图(c)可知人的机械能在减小C.根据图(a)和图(b)可估测出电梯向上制动时的加速度D.根据图(a)和图(d)可知人的机械能在减小解析:(e)图表示电梯减速下降时这位同学超重时的示数,所以根据图(a)和图(e),能够求出电梯向下制动时的加速度.故A项正确.(c)图表示电梯减速上升时这位同学失重时的示数,此时电梯还在向上运动,电梯对人做正功,人的机械能在增加.故B项错误.(b)图表示电梯加速上升时这位同学超重时的示数,所以根据图(a)和(b)图,能够求出电梯向上起动时的加速度.故C项错误.(d)图表示电梯加速下降时这位同学失重时的示数,此时电梯在向下运动,电梯对人做负功,人的机械能在减小,故D项正确.3.如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( D )A.0 B.2.5 NC.5 N D.3.75 N4. 如图所示,一名消防队员在模拟演习训练中,沿着长为12 m的竖立在地面上的钢管下滑.已知这名消防队员的质量为60 kg,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3 s,g取10 m/s2,那么该消防队员( B )A.下滑过程中的最大速度为4 m/sB.加速与减速过程中所受摩擦力大小之比为1∶7C.加速与减速过程的位移之比为1∶4D.加速与减速过程的时间之比为2∶1[A组·基础题]1.一根轻弹簧的下端挂一重物,上端用手牵引使重物向下做匀速直线运动,从手突然停止到重物下降到最低点的过程中,重物的加速度的数值将( B )A.逐渐减小B.逐渐增大C.先减小后增大D.先增大再减小2.如图所示,质量满足m A=2m B=3m C的三个物块A、B、C,A与天花板之间、B与C之间均用轻弹簧相连,A与B之间用细绳相连,当系统静止后,突然剪断AB间的细绳,则此瞬间A、B 、C 的加速度分别为(取向下为正)( C )A .-56g 、2g 、0 B .-2g 、2g 、0 C .-56g 、53g 、0 B .-2g 、53g 、g 3.(2018·江苏东海高级中学试题)如图所示,斜面AD 和BD 与水平方向的夹角分别为60° 和30° ,两斜面的A 端和B 端在同一竖直面上,现让两个可视为质点的物块分别从两斜面的顶端同时由静止下滑,结果两物块同时滑到斜面底端D ,设两物块与AD 、BD 面间的动摩擦因数分别为μ1和μ2,则μ1μ2为( D ) A.3∶1B .1∶ 3C .1∶3D .3∶1解析:根据牛顿第二定律,物块由AD 下滑时有:mg sin 60° -μ1 mg cos 60° = ma 1,得:a 1=g sin 60° -μ1g cos 60°,由BD 下滑时有: mg sin 30° -μ2 mg cos 30° =ma 2,得:a 2=g sin 30° -μ2g cos 30° .设斜面底部长为d ,由运动学公式有:d cos60°=12a 1t 2;d cos30°=12a 2t 2.联立以上四式解得:μ1μ2=31,故选D. 4.(多选)(2018·武汉华中师大附中高三复习)如图所示为一根质量为m 、长度为L 、质量均匀分布的粗绳AB .在粗绳上与B 端距离为x 的某位置有一质量不计的力传感器,可读出该处粗绳中的张力.粗绳在水平外力F 的作用下,沿水平面做匀加速直线运动,由力传感器读数和已知条件( BD )A .能够判断粗绳运动是否受到摩擦力作用B .可知水平外力F 的大小C .可知粗绳沿水平面做匀加速直线运动的加速度大小D .若水平外力F 的大小恒定,则传感器读数与x 成正比,与是否存在摩擦力无关 解析:设粗绳与水平面间的动摩擦因数为μ,力传感器读数为F T ,对整根绳子,由牛顿第二定律有F -μmg =ma ,对粗绳左侧长度为x 的部分,由牛顿第二定律有F T -μmx L g =mx L a ,解得F T =F ·x L;由力传感器读数和已知条件,不能够判断粗绳运动是否受到摩擦力作用,可知水平外力F 的大小,不能得出粗绳沿水平面做匀加速直线运动的加速度大小,故A 、C 错误,B 正确.若水平外力F 的大小恒定,则传感器读数F T 与x 成正比,D 正确.5.(多选)如图所示,在动摩擦因数μ=0.2的水平面上,质量m=2 kg的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F作用下处于静止状态,此时水平面对物块的弹力恰好为零.g取10 m/s2,以下说法正确的是( ABD )A.此时轻弹簧的弹力大小为20 NB.当撤去拉力F的瞬间,物块的加速度大小为8 m/s2,方向向左C.若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s2,方向向右D.若剪断弹簧,则剪断的瞬间物块的加速度为10 m/s2,方向向右6. (多选)如图所示,小车向右运动的过程中,某段时间内车中悬挂的小球A和车水平底板上的物块B都相对车厢静止,悬挂小球A的悬线与竖直线有一定夹角θ,B与车底板之间的动摩擦因数为0.75,假设B所受最大静摩擦力等于滑动摩擦力.在这段时间内,下述判断中正确的是( BC )A.物块B不受摩擦力作用B.物块B受摩擦力作用,大小恒定,方向向左C.要使A、B和车保持相对静止,θ最大为37°D.要使A、B和车保持相对静止,θ最大为53°解析:根据小球所处的状态可知,小车正在向右做匀减速直线运动,故车厢内的物块B跟随小车一起向右做匀减速直线运动,加速度水平向左保持不变,根据牛顿第二定律可知,物块B一定受水平向左的恒定摩擦力作用,A错误,B正确;设能使A、B和车厢保持相对静止的最大加速度大小为a m,则此时B受到的摩擦力为最大静摩擦力,根据牛顿第二定律可知:μm g =ma m,得a m=μg;以小球A为研究对象进行受力分析,根据牛顿第二定律可知:mg tan θ=ma m,得a m=g tan θ,联立两个加速度表达式得:tan θ=μ=0.75,则此时的θ角为37°.故要使A、B和车保持相对静止,θ最大为37° ,C正确,D错误.7. (2019·抚州七校联考)如图所示,质量为M的小车放在光滑的水平面上,小车上有一水平支架,一质量为m的小球用轻绳悬挂于支架上.现用一水平向右的力拉小球,使小球和车一起向右做匀加速直线运动,稳定时,轻绳与竖直方向的夹角为θ.重力加速度为g.求:(1)绳上的拉力大小F T;(2)拉小球的水平力大小F.解析:(1)对绳上的拉力正交分解可得:F T cos θ=mg,解得:F T=mgcos θ.(2)小车水平方向受到的合力:F合=F T sin θ联立以上解得小车的加速度大小:a =mg tan θM对小球与小车整体分析可得拉小球的水平力大小为:F =(m +M )a =(m +M )mg tan θM .答案:(1)mgcos θ (2)(M +m )mg tan θM[B 组·能力题]8.如图所示,质量为m 2的物块B 放置在光滑水平桌面上,其上放置质量为m 1的物块A ,A 通过跨过光滑定滑轮的细线与质量为M 的物块C 连接.释放C ,A 和B 一起以加速度a 从静止开始运动,已知A 、B 间动摩擦因数为μ1,则细线中的拉力大小为( C )A .MgB .Mg +MaC .(m 1+m 2)aD .m 1a +μ1m 1g9. (2019·四川眉山中学月考)如图,质量为M 的三角形木块A 静止在水平面上.一质量为m 的物体B 正沿A 的斜面下滑,三角形木块A 仍然保持静止.则下列说法中正确的是( A )A .A 对地面的压力可能小于(M +m )gB .水平面对A 的静摩擦力一定水平向左C .水平面对A 的静摩擦力不可能为零D .B 沿A 的斜面下滑时突然受到一沿斜面向上的力F 的作用,如果力F 的大小满足一定条件时,三角形木块A 可能会立刻开始滑动解析:对物体B 受力分析,受重力G 、支持力N 、滑动摩擦力f ,如图所示:再对A 物体受力分析,受重力Mg 、地面的支持力F N 、B 对A 的压力N ′,B 对A 的摩擦力f ′,地面对A 可能有静摩擦力F 静,先假设有且向右,如图所示:当物体B 匀速下滑时,根据共点力平衡条件,可得mg sin θ-f =0,N -mg cos θ=0,当物体B 加速下滑时,有mg sin θ>f ,N -mg cos θ=0,当物体B 减速下滑时,有mg sin θ<f ,N -mg cos θ=0,由于物体A 保持静止,根据共点力平衡条件,有F N -Mg -f ′sin θ-N ′cos θ=0,f ′cos θ-N ′sin θ-F 静=0,根据牛顿第三定律:N =N ′,f =f ′,当物体加速下滑时,联立以上可得:F N <(M +m )g ,故A 正确;当物体加速下滑时,由联立可得到F 静<0,即静摩擦力与假定的方向相反,即向左,当物体匀速下降时,联立以上可得到F 静=0,故B 、C 错误;若B 沿A 的斜面下滑时突然受到一沿斜面向上的力F 的作用,物体B 的加速度立即发生了变化,但由于惯性,速度来不及变化,故摩擦力方向不变,故B 对A 的力不变,故A 依然保持静止,故D 错误.10. (2018·雄安新区高级中学模拟)浙江宁波慈溪方特欢乐世界的“跳楼机”游戏,以惊险刺激深受年轻人的欢迎,它的基本原理是将巨型娱乐器械由升降机送到离地面100 m的高处,然后让座舱自由落下.落到离地面20 m高时,制动系统开始启动,使座舱均匀减速,到达地面时刚好停下.某次游戏中,座舱中小明用手托着重5 N的苹果,(取g=10 m/s2)试求:(1)此过程中的最大速度是多少?(2)当座舱落到离地面40 m的位置时,手对苹果的支持力?(3)当座舱落到离地面15 m的位置时,苹果对手的压力?解析:(1)由题意可知先自由下降h=(100-20)m=80 m,由v2=2gh,有v=40 m/s(2)离地面40 m时,座舱自由下落,处于完全失重状态,所以手对球的支持力为零(3)a=v22s由此得:a=40 m/s2根据牛顿第二定律:F N-Mg=Ma得:F N=25 N根据牛顿第三定律,苹果对手的压力为25 N.答案:(1)40 m/s (2)0 (3)25 N11.某同学近日做了这样一个实验:将一个小铁块(可看成质点)以一定大小的初速度,沿倾角可在0 °~90 °之间任意调整的木板向上滑动,设它沿木板向上能达到的最大位移为x,若木板倾角不同时对应的最大位移x与木板倾角α的关系如图所示.g取10 m/s2.求:(结果如果是根号,可以保留)(1)小铁块初速度的大小v0以及小铁块与木板间的动摩擦因数μ是多少?(2)当α=60 °时,小铁块达到最高点后,又回到出发点,小铁球速度将变为多大?解析:(1)当α=90°时,x=1.25 m,则v0=2gx=2×10×1.25 m/s=5 m/s.当α=30°时,x=1.25 m,a=v202x=522×1.25m/s2=10 m/s2.由牛顿第二定律得a=g sin 30°+μg cos 30°,解得μ=33.(2)当α=60°时,上滑的加速度a1=g sin 60°+μg cos 60°,下滑的加速度a2=g s in 60°-μg cos 60°.v2=2ax,则有v1=a2a1v0=22v0=522m/s.。
考点一牛顿第二定律的理解1.内容及表达式物体加速度的大小跟所受外力的合力成正比,跟它的质量成反比,加速度的方向跟合外力方向相同.表达式:F=ma.2.对定律的理解(1)矢量性a为研究对象在合外力作用下产生的加速度;a与合外力方向一致.(2)瞬时对应性一物体所受合外力恒定时,加速度恒定,物体做匀变速直线运动;合外力随时间改变时,加速度也随时间改变;合外力为0时,加速度为0,物体就处于静止或匀速直线运动状态.[思维深化]1.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度.可是我们用力提一个很重的物体时却提不动它,这跟牛顿第二定律有无矛盾?为什么?答案没有矛盾,使物体运动,要有合力产生加速度,由于重力很大,合加速度仍为0.2.判断下列说法是否正确.(1)物体所受合外力越大,加速度越大.()(2)物体所受合外力越大,速度越大.()(3)物体在外力作用下做匀加速直线运动,当合外力逐渐减小时,物体的速度逐渐减小.()(4)物体的加速度大小不变一定受恒力作用.()1.[对牛顿第二定律的基本理解](多选)下列对牛顿第二定律的理解,正确的是()A.如果一个物体同时受到两个力的作用,则这两个力各自产生的加速度互不影响B.如果一个物体同时受到几个力的作用,则这个物体的加速度等于所受各力单独作用在物体上时产生加速度的矢量和C.平抛运动中竖直方向的重力不影响水平方向的匀速运动D.物体的质量与物体所受的合力成正比,与物体的加速度成反比2.[速度、加速度、合外力之间的关系](多选)下列关于速度、加速度、合外力之间的关系,正确的是() A.物体的速度越大,则加速度越大,所受的合外力也越大B.物体的速度为0,则加速度为0,所受的合外力也为0C.物体的速度为0,则加速度可能很大,所受的合外力也可能很大D.物体的速度很大,但加速度可能为0,所受的合外力也可能为03.[应用定律定性分析](多选)如图1所示,一木块在光滑水平面上受一恒力F作用,前方固定一足够长的弹簧,则当木块接触弹簧后()A.木块立即做减速运动B.木块在一段时间内速度仍可增大C.当F等于弹簧弹力时,木块速度最大D.弹簧压缩量最大时,木块加速度为01.分析物体的运动性质,要从受力分析入手,求合力,然后根据牛顿第二定律分析加速度的变化.2.特别要注意加速度与合力具有瞬时对应关系,而速度是不能突变的,速度的变化是需要时间的,Δv=aΔt.考点二应用牛顿第二定律分析瞬时问题两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.[思维深化](1)如图2、图3中小球m1、m2原来均静止,现如果均从图中B处剪断,则图2中的弹簧和图3中的下段绳子,它们的拉力将分别如何变化?(2)如果均从图中A处剪断,则图2中的弹簧和图3中的下段绳子的拉力又将如何变化呢?(3)由(1)(2)的分析可以得出什么结论?答案(1)弹簧和下段绳的拉力都变为0.(2)弹簧的弹力来不及变化,下段绳的拉力变为0.(3)绳的弹力可以突变而弹簧的弹力不能突变.4.[静态的瞬时问题](多选)质量均为m的A、B两个小球之间连接一个质量不计的弹簧,放在光滑的台面上.A 球紧靠墙壁,如图4所示,今用恒力F将B球向左挤压弹簧,达到平衡时,突然将力撤去,此瞬间()A.A球的加速度为F2m B.A球的加速度为0C.B球的加速度为F2m D.B球的加速度为Fm5.[静态的瞬时问题](2015·海南单科·8)(多选)如图5所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长量分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间()A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2考点三动力学中的图象问题1.动力学中常见的图象v-t图象、x-t图象、F-t图象、F-a图象等.2.解决图象问题的关键(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原来是否从0开始.(2)理解图象的物理意义,能够抓住图象的一些关键点,如斜率、截距、面积、交点、拐点等,判断物体的运动情况或受力情况,再结合牛顿运动定律求解.[思维深化]图象问题反映的是两个变量之间的函数关系,因此在某些情况下,要用有关物理规律和公式进行推导,得到两个变量的关系来分析图象的有关问题.6.[图象物理意义的理解](2014·山东·15)(多选)一质点在外力作用下做直线运动,其速度v随时间t变化的图象如图6所示.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有()A.t1B.t2C.t3D.t47.[图象和牛顿第二定律的结合](2015·新课标全国Ⅰ·20)(多选)如图7a,一物块在t=0时刻滑上一固定斜面,其运动的v t图线如图b所示.若重力加速度及图b中的v0、v1、t1均为已知量,则可求出()A.斜面的倾角B.物块的质量C.物块与斜面间的动摩擦因数D.物块沿斜面向上滑行的最大高度8.[图象的应用]如图8所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是下列选项中的()求解图象问题的基本思路看清坐标轴所表示的物理量及单位并注意坐标原点是否从0开始,明确因变量与自变量间的制约关系,明确物理量的变化趋势,分析图线进而弄懂物理过程,写出相应的函数关系式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.考点四应用整体法与隔离法处理连接体问题1.连接体问题的类型物物连接体、轻杆连接体、弹簧连接体、轻绳连接体.2.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).3.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.4.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”.9.[物体与物体构成的连接体](2015·新课标全国Ⅱ·20)(多选)在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉力大小为F ;当机车在西边拉着车厢以大小为23a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( )A .8B .10C .15D .1810.[弹簧与物体构成的连接体]如图9所示,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀加速直线运动(m 1在光滑地面上,m 2在空中).已知力F 与水平方向的夹角为θ.则m 1的加速度大小为( )A.F cos θm 1+m 2B.F sin θm 1+m 2C.F cos θm 1D.F sin θm 211.[轻绳与物体构成的连接体]如图10所示,装有支架的质量为M (包括支架的质量)的小车放在光滑水平地面上,支架上用细线拖着质量为m 的小球,当小车在光滑水平地面上向左匀加速运动时,稳定后绳子与竖直方向的夹角为θ.求小车所受牵引力的大小.图1012.[轻杆与物体构成的连接体]如图11所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m 的小球,下列关于杆对球的作用力F 的判断中,正确的是( )A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右以加速度a 运动时,一定有F =ma sin θD .小车向左以加速度a 运动时,F =(ma )2+(mg )2,方向斜向左上方,与竖直方向的夹角满足tan α=a g轻绳、轻杆和轻弹簧三种模型的异同1.三个模型的相同点:(1)“轻”——质量和重力均不计.(2)在任何情况下,绳中张力相等,绳、杆和弹簧两端受到的弹力也相等.2.三个模型的不同点:(1)施力和受力特点轻绳——只能产生沿绳方向的拉力.轻杆——不仅可以产生和承受沿杆方向的拉力和压力,还可以产生和承受不沿杆方向的拉力和压力. 轻弹簧——可以产生和承受沿弹簧伸缩方向的拉力和压力.(2)力的变化特点轻绳——拉力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻杆——拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性.轻弹簧——弹力的产生、变化或消失需要时间,不具有突变性,即只能渐变,但具有瞬时性,即不同形变的瞬间,对应不同的弹力.(注意:当轻弹簧的自由端无重物时,形变消失不需要时间,即具有突变性)考点五 动力学两类基本问题1.已知物体的受力情况,求解物体的运动情况 解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况. 2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.13.[已知运动分析受力]如图12所示,一物体以v 0=2 m /s 的初速度从粗糙斜面顶端下滑到底端用时t =1 s .已知斜面长度L =1.5 m ,斜面的倾角θ=30°,重力加速度取g =10 m/s 2.求:(1)物体滑到斜面底端时的速度大小;(2)物体沿斜面下滑的加速度大小和方向;(3)物体与斜面间的动摩擦因数.14.[已知受力分析运动]如图13所示,楼梯口一倾斜的天花板与水平面成θ=37°,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F =10 N ,刷子的质量为m =0.5 kg ,刷子可视为质点,刷子与天花板间的动摩擦因数为0.5,天花板长为L =4 m ,取sin 37°=0.6,试求:(1)刷子沿天花板向上运动的加速度大小;(2)工人把刷子从天花板底端推到顶端所用的时间.15.[已知受力分析运动](2014·新课标全国Ⅰ·24)公路上行驶的两汽车之间应保持一定的安全距离.当前车突然停止时,后车司机可以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰.通常情况下,人的反应时间和汽车系统的反应时间之和为1 s .当汽车在晴天干燥沥青路面上以108 km/h 的速度匀速行驶时,安全距离为120 m .设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的25.若要求安全距离仍为120 m ,求汽车在雨天安全行驶的最大速度.解决两类动力学问题的两个关键点1.把握“两个分析”“一个桥梁”两个分析:物体的受力情况分析和运动过程分析.一个桥梁:加速度是联系物体运动和受力的桥梁.2.寻找多过程运动问题中各过程间的相互联系.如第一个过程的末速度就是下一个过程的初速度,画图找出各过程的位移之间的联系.1.(2013·新课标Ⅱ·14)一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a 表示物块的加速度大小,F 表示水平拉力的大小.能正确描述F 与a 之间的关系的图象是( )2.如图14所示,弹簧左端固定,右端自由伸长到O 点并系住物体m ,现将弹簧压缩到A 点,然后释放,物体一直可以运动到B 点.如果物体受到的阻力恒定,则( )A .物体从A 到O 先加速后减速B .物体从A 到O 加速运动,从O 到B 减速运动C .物体运动到O 点时所受合力为0D .物体从A 到O 的过程中加速度逐渐减小3.如图15所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0 B.233g C .g D.33g4.如图16所示,一小车上有一个固定的水平横杆,左边有一轻杆与竖直方向成θ角与横杆固定,下端连接一质量为m 的小球P .横杆右边用一根细线吊一相同的小球Q .当小车沿水平面做加速运动时,细线保持与竖直方向的夹角为α.已知θ<α,则下列说法正确的是( )A .小车一定向右做匀加速运动B .轻杆对小球P 的弹力沿轻杆方向C .小球P 受到的合力大小为mg tan θD .小球Q 受到的合力大小为mg tan α5.如图17甲所示,质量m =1 kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5 s 时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v -t 图象)如图乙所示,g 取10 m/s 2,求:(1)2 s 内物块的位移大小x 和通过的路程L ;(2)沿斜面向上运动两个阶段加速度大小a 1、a 2和拉力大小F .练出高分 基础巩固1.(多选)由牛顿第二定律表达式F =ma 可知( )A .质量m 与合外力F 成正比,与加速度a 成反比B .合外力F 与质量m 和加速度a 都成正比C .物体的加速度的方向总是跟它所受合外力的方向一致D .物体的加速度a 跟其所受的合外力F 成正比,跟它的质量m 成反比2.一个小孩从滑梯上滑下的运动可看成匀加速直线运动.第一次小孩单独从滑梯上滑下,加速度为a 1,第二次小孩抱上一只小狗后再从滑梯上滑下(小狗不与滑梯接触),加速度为a 2,则( )A .a 1=a 2B .a 1<a 2C .a 1>a 2D .无法判断3.滑雪运动员由斜坡高速向下滑行时的v -t 图象如图1乙所示,则由图中AB 段曲线可知,运动员在此过程中( )A .所受外力的合力一定不断增大B .运动轨迹一定是曲线C .加速度一定减小D .斜坡对运动员的作用力一定是竖直向上的4.(多选)如图2所示,一质量为m 的滑块,以初速度v 0从倾角为θ的斜面底端滑上斜面,当其速度减为零后又沿斜面返回底端,已知滑块与斜面间的动摩擦因数为μ,若滑块所受的摩擦力为F f 、所受的合外力为F 合、加速度为a 、速度为v ,规定沿斜面向上为正方向,在滑块沿斜面运动的整个过程中,这些物理量随时间变化的图象大致正确的是( )5.如图3所示,放在固定粗糙斜面上的物块以加速度a 沿斜面匀加速下滑,若在物块上再施加一个竖直向下的恒力F ,则( )A .物块可能匀速下滑B .物块将以加速度a 匀加速下滑C .物块将以大于a 的加速度匀加速下滑D .物块将以小于a 的加速度匀加速下滑6.如图4所示,将一个质量为m 的三角形物体放在水平地面上,当用一水平推力F 经过物体的重心向右推物体时,物体恰好以一较大的速度做匀速直线运动,某一时刻保持力的大小不变立即使推力反向变成拉力,则推力反向的瞬间( )A .物体的加速度大小为F m ,方向水平向左B .物体的加速度大小为2F m,方向水平向右 C .地面对物体的作用力大小为mgD .地面对物体的作用力大小为(mg )2+F 27.如图5所示,A 、B 两球质量相等,光滑斜面的倾角为θ,图甲中,A 、B 两球用轻弹簧相连,图乙中A 、B 两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A .两图中两球加速度均为g sin θB .两图中A 球的加速度均为0C .图乙中轻杆的作用力一定不为0D .图甲中B 球的加速度是图乙中B 球加速度的2倍综合应用8.(多选)如图6所示,bc 为固定在小车上的水平横杆,上面穿着质量为M的滑块,滑块又通过细线悬吊着一个质量为m的小铁球.此时小车正以大小为a的加速度向右做匀加速直线运动,而滑块、小铁球均相对小车静止,细线与竖直方向的夹角为θ.若小车的加速度逐渐增大,滑块始终和小车保持相对静止,当加速度增大到2a时()A.横杆对滑块向上的弹力不变B.横杆对滑块的摩擦力变为原来的2倍C.细线对小铁球的竖直方向的分力增大了D.细线对小铁球的水平方向的分力增大了,增大的倍数小于29.成都“欢乐谷”是大型的游乐性主题公园,园内有一种大型游戏机叫“跳楼机”.让人体验短暂的“完全失重”,非常刺激,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面50 m高处,然后由静止释放,为研究方便,认为人与座椅沿轨道做自由落体运动2 s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面5 m高处时速度刚好减小到0,然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10 m/s2)求:(1)座椅在自由下落结束时刻的速度是多大?(2)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?10.观光旅游、科学考察经常利用热气球,保证热气球的安全就十分重要,科研人员进行科学考察时,气球、座舱、压舱物和科研人员的总质量为M=800 kg,在空中停留一段时间后,由于某种故障,气球受到的空气浮力减小,当科研人员发现气球在竖直下降时,气球速度为v0=2 m/s,此时开始计时经过t0=4 s时间,气球匀加速下降了h1=16 m,科研人员立即抛掉一些压舱物,使气球匀速下降.不考虑气球由于运动而受到的空气阻力,重力加速度g=10 m/s2.求:(1)气球匀加速下降阶段的加速度大小a.(2)抛掉的压舱物的质量m是多大?(3)抛掉一些压舱物后,气球经过时间t1=5 s,气球下降的高度是多大?11.如图7甲所示,质量为m=1 kg的物体置于倾角为37°的固定斜面上(斜面足够长),对物体施加平行于斜面向上的恒力F,作用时间t1=1 s时撤去力F,物体运动的部分v-t图象如图乙所示,设物体受到的最大静摩擦力等于滑动摩擦力,取g=10 m/s2.求:(1)物体与斜面间的动摩擦因数;(2)拉力F的大小;(3)t=4 s时物体的速度.。
2023新考案一轮复习第三章第2讲牛顿第二定律两类动力学问题一、多选题1.关于牛顿第二定律,下列说法正确的是()A.加速度与合力的关系是瞬时对应关系,即〃与尸同时产生、同时变化、同时消失B.加速度的方向总是与合外力的方向相同C.同一物体的运动速度变化越大,受到的合外力也越大D.物体的质量与它所受的合外力成正比与它的加速度成反比二、单选题2.在国际单位制(简称SI)中,力学的基本单位有:m (米)、kg (千克)、 s (秒)。
导出单位J (焦耳)用上述基本单位可表示为()A. kg ∙ m ∙ s 1B. kg ∙ m' ∙ s 1C. kg ∙ m ∙ s 2D. kg ∙ m2∙s ’3.如图所示,在里约奥运会男子跳高决赛中,加拿大运动员德劳因突出重围, 以2米38的成绩夺冠,则()A.德劳因在最高点处于平衡状态B.德劳因起跳以后在上升过程中处于失重状态C.德劳因起跳时地面对他的支持力等于他所受的重力D.德劳因在下降过程中处于超重状态4.某同学自主设计了墙壁清洁机器人的模型,利用4个吸盘吸附在接触面上,通过吸盘的交替伸缩吸附,在竖直表面上行走并完成清洁任务,如图所示。
假设这个机器人在竖直玻璃墙面上由A点沿直线“爬行”到右上方B点,设墙面对吸盘摩擦力的合力为E 下列分析正确的是( )则F 的方向可能沿A3方向 则尸的方向一定竖直向上则尸的方向可能沿AB 方向 则尸的方向一定竖直向上5 .图1所示的长江索道被誉为“万里长江第一条空中走廊”。
索道简化示意图如图2所示,索道倾角为30° ,质量为机的车厢通过悬臂固定悬挂在承载索 上,在牵引索的牵引下一起斜向上运动。
若测试运行过程中悬臂和车厢始终处 于竖直方向,缆车开始以加速度〃尸IOm/s,向上加速,最后以加速度@=10m/s2 向上减速,重力加速度大小g=10m∕T,则向上加速阶段和向上减速阶段悬臂对 车厢的作用力之比为( )三、多选题6 .京张高铁是北京冬奥会的重要配套工程,其开通运营标志着冬奥会配套建设 取得了新进展。
第2节牛顿第二定律、两类动力学问题一、牛顿第二定律、单位制1.牛顿第二定律(1)内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。
加速度的方向与作用力的方向相同。
(2)表达式a=Fm或F=ma。
(3)适用范围①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
2.单位制(1)单位制由基本单位和导出单位组成。
(2)基本单位基本量的单位。
力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。
(3)导出单位由基本量根据物理关系推导出的其他物理量的单位。
二、超重与失重1.实重和视重(1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。
(2)视重①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较超重现象失重现象完全失重概念物体对支持物的压物体对支持物的压力物体对支持物的压1.两类动力学问题(1)已知物体的受力情况求物体的运动情况。
(2)已知物体的运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:1.思考辨析(正确的画“√”,错误的画“×”)(1)牛顿第二定律的表达式F=ma在任何情况下都适用。
(×)(2)物体只有在受力的前提下才会产生加速度,因此,加速度的产生要滞后于力的作用。
(×)(3)物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系。
(√)(4)失重说明物体的重力减小了。
(×)(5)物体超重时,加速度向上,速度也一定向上。
(×)(6)研究动力学两类问题时,做好受力分析和运动分析是关键。
(√)2.(鲁科版必修1P134T3)在粗糙的水平面上,物体在水平推力作用下由静止开始做匀加速直线运动。
第2节 牛顿第二定律 两类动力学问题1.(2019·4月浙江选考)如下物理量属于根本量且单位属于国际单位制中根本单位的是( )A .功/焦耳B .质量/千克C .电荷量/库仑D .力/牛顿解析:选B.质量是根本物理量,其国际单位制根本单位是千克,故B 正确;功、电荷量和力都是导出物理量,焦耳、库仑和牛顿均是导出单位.2.(多项选择)关于速度、加速度、合外力之间的关系,正确的答案是( )A .物体的速度越大,如此加速度越大,所受的合外力也越大B .物体的速度为零,如此加速度为零,所受的合外力也为零C .物体的速度为零,但加速度可能很大,所受的合外力也可能很大D .物体的速度很大,但加速度可能为零,所受的合外力也可能为零解析:选CD.物体的速度大小与加速度大小与所受合外力大小无关,故C 、D 正确,A 、B 错误.3.趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力与空气阻力不计,如此( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .假设加速度大于g sin θ,球一定沿球拍向上运动解析:选A.网球受力如图甲所示,根据牛顿第二定律得F N sinθ=ma ,又F N cos θ=mg ,解得a =g tan θ,F N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象,受力如图乙所示,根据平衡,运动员对球拍的作用力为F =〔M +m 〕g cos θ,故C 错误;当a >g tan θ时,网球才向上运动,由于g sin θ<g tan θ,故球不一定沿球拍向上运动,故D 错误.4.(2020·嘉兴检测)如下列图,某次滑雪训练,运动员站在水平雪道上第一次利用滑雪杖对雪面的作用获得水平推力F =84 N ,而从静止向前滑行,其作用时间为t 1=1.0 s ,撤除水平推力F 后经过t 2=2.0 s ,他第二次利用滑雪杖对雪面的作用获得同样的水平推力,作用距离与第一次一样.该运动员连同装备的总质量为m =60 kg ,在整个运动过程中受到的滑动摩擦力大小恒为F f =12 N ,求:(1)第一次利用滑雪杖对雪面作用获得的速度大小与这段时间内的位移;(2)该运动员(可视为质点)第二次撤除水平推力后滑行的最大距离.解析:(1)运动员利用滑雪杖获得的加速度为a 1=F -F f m =84-1260m/s 2=1.2 m/s 2 第一次利用滑雪杖对雪面作用获得的速度大小v 1=a 1t 1=1.2×1.0 m/s =1.2 m/s位移x 1=12a 1t 21=0.6 m. (2)运动员停止使用滑雪杖后,加速度大小为a 2=F f m经时间t 2速度变为v ′1=v 1-a 2t 2第二次利用滑雪杖获得的速度大小v 2,如此v 22-v ′21=2a 1x 1第二次撤除水平推力后滑行的最大距离 x 2=v 222a 2解得:x 2=5.2 m.答案:(1)1.2 m/s 0.6 m (2)5.2 m[课后达标]一、选择题1.(2018·4月浙江选考)用国际单位制的根本单位表示能量的单位,以下正确的答案是( )A .kg ·m 2/s 2B .kg ·m/s 2C .N/mD .N ·m 答案:A2.如下关于单位制的说法中,不正确的答案是( )A .根本单位和导出单位一起组成了单位制B .在国际单位制中,长度、质量、时间三个物理量被选作力学的根本物理量C .在国际单位制中,力学的三个根本单位分别是m 、kg 、sD .力的单位牛顿是国际单位制中的一个根本单位答案:D3.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变.从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m答案:C4.(2020·浙江十校联考)如下列图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2,重力加速度大小为g .如此有( )A .a 1=g ,a 2=gB .a 1=0,a 2=gC .a 1=0,a 2=m +M M g D .a 1=g ,a 2=m +M Mg 答案:C5.(2020·浙江猜题卷)有种台阶式自动扶梯,无人乘行时运转很慢,有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,正好经历了这两个过程,用G 、N 、f 表示乘客受到的重力、支持力和摩擦力,如此能正确反映该乘客在这两个过程中的受力示意图的是( )解析:选D.人和扶梯匀速运动时,人受到重力和支持力的作用,且二力平衡,不受摩擦力.人随台阶式自动扶梯加速运动时,加速度沿运动方向斜向上,台阶水平,摩擦力与接触面平行,故摩擦力是水平的.D 正确.6.(多项选择)如下列图,质量为m 的小球与弹簧Ⅰ和水平细绳Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P 、Q 两点.小球静止时,Ⅰ中拉力的大小为F 1,Ⅱ中拉力的大小为F 2,当仅剪断Ⅰ、Ⅱ其中一根的瞬间,球的加速度a 应是( )A .假设剪断Ⅰ,如此a =g ,方向竖直向下B .假设剪断Ⅱ,如此a =F 2m ,方向水平向左C .假设剪断Ⅰ,如此a =F 1m,方向沿Ⅰ的延长线方向D .假设剪断Ⅱ,如此a =g ,方向竖直向上解析:选AB.没有剪断Ⅰ、Ⅱ时小球受力情况如下列图.在剪断Ⅰ的瞬间,由于小球的速度为0,绳Ⅱ上的力突变为0,如此小球只受重力作用,加速度为g ,选项A 正确、C 错误;假设剪断Ⅱ,由于弹簧的弹力不能突变,F 1与重力的合力大小仍等于F 2,所以此时加速度为a =F 2m,方向水平向左,选项B 正确、D 错误. 7.(2020·湖州质检)如图甲所示,一物体沿倾角为θ=37°的固定粗糙斜面由静止开始运动,同时受到水平向右的风力作用,水平风力的大小与风速成正比.物体在斜面上运动的加速度a 与风速v 的关系如图乙所示,如此(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)( )A .当风速为3 m/s 时,物体沿斜面向下运动B .当风速为5 m/s 时,物体与斜面间无摩擦力作用C .当风速为5 m/s 时,物体开始沿斜面向上运动D .物体与斜面间的动摩擦因数为0.025解析:选A.由题图乙得物体做加速度逐渐减小的加速运动,物体的加速度方向不变,当风的初速度为零时,加速度为a 0=4 m/s 2,沿斜面方向有a =g sin θ-μg cos θ,解得μ=0.25,D 错误;物体沿斜面方向开始加速下滑,随着速度的增大,水平风力逐渐增大,摩擦力逐渐增大,如此加速度逐渐减小,但加速度的方向不变,物体仍然加速运动,直到速度为5 m/s 时,物体的加速度减为零,此后物体将做匀速运动,A 正确,B 、C 错误.8.(2020·东阳中学期中)如下列图,在水平面上有三个质量分别为m 1、m 2、m 3的木块,木块1和2、2和3间分别用一原长为L 、劲度系数为k 的轻弹簧连接起来,木块1、2与水平面间的动摩擦因数为μ,木块3和水平面之间无摩擦力.现用一水平恒力向右拉木块3,当三木块一起匀速运动时,1和3两木块间的距离为(木块大小不计)( )A .L +μm 2g kB .L +μ〔m 1+m 2〕g kC .2L +μ〔2m 1+m 2〕g k D .2L +2μ〔m 1+m 2〕g k 解析:选C.对木块1受力分析,受重力、支持力、拉力和摩擦力,根据共点力平衡条件,有:kx 1-μm 1g =0对木块1和木块2整体受力分析,受总重力、总支持力、右侧弹簧的拉力和总摩擦力,有:kx 2-μ(m 1+m 2)g =0木块1与木块3之间的总长度为x =2L +x 1+x 2,由以上各式解得x =2L +μ〔2m 1+m 2〕g k,故C 正确. 9.一条足够长的浅色水平传送带自左向右匀速运行.现将一个木炭包无初速度地放在传送带的最左端,木炭包将会在传送带上留下一段黑色的径迹.如下说法中正确的答案是( )A .黑色的径迹将出现在木炭包的左侧B .木炭包的质量越大,径迹的长度越短C .传送带运动的速度越大,径迹的长度越短D .木炭包与传送带间动摩擦因数越大,径迹的长度越短解析:选D.放上木炭包后木炭包在摩擦力的作用下向右加速,而传送带仍匀速,虽然两者都向右运动,但在木炭包的速度达到与传送带速度相等之前木炭包相对于传送带向左运动,故黑色径迹出现在木炭包的右侧,A 错误.由于木炭包在摩擦力作用下加速运动时加速度a =μg 与其质量无关,故径迹长度与其质量也无关,B 错误.径迹长度等于木炭包相对传送带通过的位移大小,即二者对地的位移差:Δx =vt -0+v 2t =12vt =v 22μg,可见传送带速度越小、动摩擦因数越大,相对位移越小,黑色径迹越短,C 错误,D 正确.10.(2020·湖州质检)如下列图,质量为m 1的足够长的木板静止在光滑水平面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是( )解析:选A.t=0时刻起,给木块施加一水平恒力F,两者可能一起加速运动,选项A 正确,B错误;可能木块的加速度大于木板的加速度,选项C、D错误.二、非选择题11.(2020·宁波选考适应考试)小物块以一定的初速度v0沿斜面(足够长)向上运动,由实验测得物块沿斜面运动的最大位移x与斜面倾角θ的关系如下列图.取g=10 m/s2,空气阻力不计.可能用到的函数值:sin 30°=0.5,sin 37°=0.6.(1)求物块的初速度v0;(2)求物块与斜面之间的动摩擦因数μ;(3)计算说明图线中P点对应的斜面倾角为多大?在此倾角条件下,小物块能滑回斜面底端吗?说明理由(设最大静摩擦力与滑动摩擦力相等).解析:(1)当θ=90°时,物块做竖直上抛运动,末速度为0由题图得上升最大位移为x m=3.2 m由v20=2gx m,得v0=8 m/s.(2)当θ=0°时,物块相当于在水平面上做匀减速直线运动,末速度为0由题图得水平最大位移为x=6.4 m由运动学公式有:v20=2ax由牛顿第二定律得:μmg=ma,得μ=0.5.(3)设题图中P点对应的斜面倾角值为θ,物块在斜面上做匀减速运动,末速度为0由题图得物块沿斜面运动的最大位移为x′=3.2 m由运动学公式有:v20=2a′x′由牛顿第二定律有:mg sinθ+μmg cos θ=ma′得10sin θ+5cos θ=10,得θ=37°.因为mg sin θ=6m>μmg cos θ=4m,所以能滑回斜面底端.答案:(1)8 m/s (2)0.5(3)37°能滑回底端,理由见解析12.(2020·杭州质检)如下列图,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.A点距水平面的高度h=0.8 m,B点距C点的距离L =2.0 m.(滑块经过B点时没有能量损失,取g=10 m/s2)求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.解析:(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大,设为v max,设滑块在斜面上运动的加速度大小为a1,如此mg sin 30°=ma1v2max=2a1hsin 30°解得:v max=4 m/s.(2)设滑块在水平面上运动的加速度大小为a2如此μmg=ma2v2max=2a2L解得:μ=0.4.(3)设滑块在斜面上运动的时间为t1,v max=a1t1,得t1=0.8 s,由于t>t1,故滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s,设t=1.0 s时速度大小为v,如此v=v max-a2(t-t1)解得:v=3.2 m/s.答案:(1)4 m/s (2)0.4 (3)3.2 m/s13.(2018·4月浙江选考)可爱的企鹅喜欢在冰面上玩游戏.如下列图,有一企鹅在倾角为37°的倾斜冰面上,先以加速度a=0.5 m/s2从冰面底部由静止开始沿直线向上“奔跑〞,t=8 s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变).假设企鹅肚皮与冰面间的动摩擦因数μ=0.25,sin 37°=0.6,cos 37°=0.8.求:(1)企鹅向上“奔跑〞的位移大小;(2)企鹅在冰面滑动的加速度大小;(3)企鹅退滑到出发点时的速度大小.(计算结果可用根式表示)解析:(1)在企鹅向上奔跑过程中:x =12at 2,解得:x =16 m. (2)在企鹅卧倒以后将进展两个过程的运动,第一个过程是从卧倒到最高点,第二个过程是从最高点滑到最低点,两次过程由牛顿第二定律分别有:mg sin 37°+μmg cos 37°=ma 1,mg sin 37°-μmg cos 37°=ma 2,解得:a 1=8 m/s 2,a 2=4 m/s 2.(3)企鹅卧倒滑到最高点的过程中,做匀减速直线运动,设时间为t ′,位移为x ′;t ′=at a 1,x ′=12a 1t ′2,解得:x ′=1 m .企鹅从最高点滑到出发点的过程中,设末速度为v t ,初速度为0,如此有:v 2t -02=2a 2(x +x ′),解得:v t =234 m/s.答案:(1)16 m (2)8 m/s 2 4 m/s 2 (3)234 m/s。
2012年物理一轮精品复习学案:第2节 牛顿第二定律、两类动力学问题【考纲知识梳理】一、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。
这就是牛顿第二定律。
2、其数学表达式为:m Fa =ma F =牛顿第二定律分量式:⎩⎨⎧==yy x x ma F ma F用动量表述:t PF ∆=合3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题; 二、两类动力学问题1.由受力情况判断物体的运动状态;2.由运动情况判断的受力情况 三、单位制1、单位制:基本单位和导出单位一起组成了单位制。
(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位: 长度一cm 、m 、km 等; 质量一g 、kg 等; 时间—s 、min 、h 等。
(2)导出单位:根据物理公式和基本单位,推导出其它物理量的单位叫导出单位。
2、由基本单位和导出单位一起组成了单位制。
选定基本物理量的不同单位作为基本单位,可以组成不同的单位制,如历史上力学中出现了厘米·克·秒制和米·千克·秒制两种不同的单位制,工程技术领域还有英尺·秒·磅制等。
【要点名师精解】一、对牛顿第二定律的理解1、牛顿第二定律的“四性”(1)瞬时性:对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(2)矢量性(加速度的方向与合外力方向相同);合外力F是使物体产生加速度a的原因,反之,a是F产生的结果,故物体加速度方向总是与其受到的合外力方向一致,反之亦然。
牛顿第二定律 两类动力学问题一、单项选择题1.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为( )A .m 2·kg·s -4,A -1B .m 2·kg·s -3·A -1C .m 2·kg·s -2·A -1D .m 2·kg·s -1·A -1解析:根据P =UI 、P =Fv 、F =ma 可导出U =mav I ,即V =kg·m·s -2·m·s -1A =m 2·kg·s-3·A -1,B 项正确. 答案:B2.(2019·山东临沂检测)如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 挨在一起但A 、B 之间无弹力.已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g3C .物块B 的加速度为0D .物块B 的加速度为g2解析:剪断细线前,弹簧的弹力:F弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统,加速度为:a =3mg sin 30°-F 弹3m=g3,即A 和B 的加速度均为g3,故选B.答案:B3.(2019·湖北襄阳模拟)在欢庆节日的时候,人们会在夜晚燃放美丽的焰火.按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4 s 末到达离地面100 m 的最高点时炸开,构成各种美丽的图案.假设礼花弹从炮筒中竖直射出时的初速度是v 0,上升过程中所受的平均阻力大小始终是自身重力的k 倍,那么v 0和k 分别等于(重力加速度g 取10 m/s 2)( )A .25 m/s 1.25B .40 m/s 0.25C .50 m/s 0.25D .80 m/s 1.25解析:根据h =12at 2,解得a =12.5 m/s 2,所以v 0=at =50 m/s ;上升过程礼花弹所受的平均阻力F f =kmg ,根据牛顿第二定律得a =mg +F f m=(k +1)g =12.5 m/s 2,解得k =0.25,故选项C 正确.答案:C4.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a 上行,如图所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m 的小物块,小物块相对斜面静止(设缆车保持竖直状态运行),则( )A .小物块受到的摩擦力方向平行斜面向上B .小物块受到的摩擦力方向平行斜面向下C .小物块受到的滑动摩擦力为12mg +maD .小物块受到的静摩擦力为ma解析:小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力.缆车以加速度a 上行,小物块的加速度也为a ,以物块为研究对象,则有F f -mg sin 30°=ma ,F f =12mg +ma ,F f 为静摩擦,方向平行斜面向上,故A 正确,B 、C 、D 均错误.答案:A5.(2019·湖北重点中学联考)据国外媒体报道,欧洲最大的直升机公司计划研制一款X3型高速直升机.该公司已完成X3型直升机原型机的首次试飞.设X3型直升机原型机的质量为m ,某次试飞时,主旋翼提供大小为2mg 向上的升力,每个向前螺旋推进器提供大小为mg 、方向向前的推力.不考虑空气的阻力影响,下列说法正确的是( )A .该直升机原型机可能处于平衡状态B .该直升机原型机以加速度g 做匀加速直线运动C .空气对直升机原型机的作用力为22mgD .空气对直升机原型机的作用力为4mg解析:直升机原型机的受力如图所示,所受合外力大小为5mg ,方向斜向右上方,加速度大小为5g ,故选项A 、B 均错误;空气对直升机原型机的作用力为2mg2+2mg2=22mg ,故选项C 正确,D 错误.本题也可以由水平方向的加速度a x =2g 和竖直方向的加速度a y =g 合成得到原型机的加速度a =a x 2+a y 2=5g .答案:C 二、多项选择题6.(2019·安徽马鞍山三校联考)氢气球下系一小重物G ,重物只在重力和绳的拉力作用下做直线运动,重物运动的方向如图中箭头所示虚线方向,图中气球和重物G 在运动中所处的位置可能是( )解析:重物只在重力和绳的拉力作用下做直线运动,故合力为零或者与速度共线,可能做匀速直线运动,故A 正确;可能做匀减速直线运动,故B 正确;可能做匀加速直线运动,故C 正确;重力和绳的拉力的合力与速度必须共线,故D 错误.答案:ABC7.一放在粗糙的水平面上的物体在一斜向上的拉力F 的作用下沿水平面向右以加速度a 做匀加速直线运动,力F 在水平和竖直方向的分量分别为F 1、F 2,如图所示.现将力F 突然改为大小为F 1、方向水平向右的恒力,则此后( )A .物体将仍以加速度a 向右做匀加速直线运动B .物体将可能向右做匀速直线运动C .物体将可能以大于a 的加速度向右做匀加速直线运动D .物体将可能以小于a 的加速度向右做匀加速直线运动解析:设地面与物体间的动摩擦因数为μ,当在斜向上的拉力F 的作用下运动时,加速度a =F 1-μmg -F 2m,将力F 突然改为大小为F 1、方向水平向右的恒力,则加速度a ′=F 1-μmgm<a ,所以物体可能以小于a 的加速度向右做匀加速直线运动,故A 、C 错误,D 正确;若μmg =F 1,则加速度为零,所以物体将可能向右做匀速直线运动,故B 正确.答案:BD8.(2019·湖北黄石高三质检)如图所示,轻弹簧两端拴接质量均为m 的小球a 、b ,拴接小球的细线固定在天花板上,两小球静止,两细线与水平方向的夹角α=30°,弹簧水平,重力加速度为g ,则以下说法中正确的是( )A .细线拉力的大小为mgB .弹簧弹力的大小为32mg C .剪断左侧细线的瞬间,小球a 的加速度为2g D .剪断左侧细线的瞬间,小球b 的加速度为零解析:对小球a 分析,由共点力平衡条件得,弹簧的弹力F =3mg ,细线的拉力为2mg ,故A 、B 错误;剪断左侧细线的瞬间,弹簧的弹力不变,小球a 所受的合力F 合=2mg ,根据牛顿第二定律得,a =2g ,小球b 受力不变,合力仍然为零,所以加速度为零,故C 、D 正确.答案:CD[能力题组]一、选择题9.(多选)如图所示,总质量为460 kg 的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s 2,当热气球上升到180 m 时,以5 m/s 的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g 取10 m/s 2.关于热气球,下列说法正确的是( )A .所受浮力大小为4 830 NB .加速上升过程中所受空气阻力保持不变C .从地面开始上升10 s 后的速度大小为5 m/sD .以5 m/s 匀速上升时所受空气阻力大小为230 N解析:热气球从地面刚开始上升时,由牛顿第二定律有F 合=F 浮-mg =ma ,得热气球所受的浮力F 浮=m (g +a )=460×(10+0.5)N =4 830 N ,则A 项正确;气球受重力、浮力和空气阻力,若空气阻力不变,合力不变,气球应匀加速上升,与题矛盾,可知阻力是变化的,则B 项错误;热气球以5 m/s 的速度匀速上升时,由平衡条件知,所受的空气阻力F f =F 浮-mg =4 830 N -460×10 N=230 N ,则D 项正确;热气球从地面上升10 s 内,它做变加速运动,故10 s 时其速度大小不是5 m/s ,则C 项错误.答案:AD10.(2019·河南开封质检)某实验小组设计了一个模型火箭,由测力计测得其重力为G .通过测量计算此火箭发射时刻提供大小为F =2G 的恒定推力,且持续时间为t .随后小明又对设计方案进行了改进(火箭的推力大小仍为2G ),采用二级推进的方式,即当火箭飞行经过t 2时,火箭丢弃一半的质量,剩余t2时间,火箭推动剩余的一半继续飞行.若采用原来的方法火箭可上升的高度为H ,则采用改进后方案火箭最高可上升的高度为(重力加速度取g ,不考虑燃料消耗引起的质量变化及空气阻力的影响)( )A .1.5HB .2HC .2.75HD .3.25H解析:原方案,加速上升过程,由牛顿运动定律,有F -G =ma ,解得a =g ;加速上升高度h 1=12at 2=12gt 2,t 时刻向上的速度v =at =gt ,失去推力后,做竖直上抛运动,上升高度h 2=v 22g =gt22g=12gt 2,H =h 1+h 2=gt 2.改为二级推进后,开始加速上升过程,由牛顿运动定律,有F -G =ma 1,解得a 1=g ;t 2时间加速上升高度H 1=12a 1(t 2)2=18gt 2,t2时刻向上的速度v 1=a 1t 2=gt2,丢弃一半质量后,由牛顿运动定律,有F -12G =12ma 2,解得a 2=3g ,t2时间加速上升高度H 2=v 1 t 2+12a 2(t 2)2=58gt 2,t 时刻向上的速度v 2=v 1+a 2t2=2gt ,失去推力后,做竖直上抛运动,上升高度H 3=v 222g =2gt22g=2gt 2,H ′=H 1+H 2+H 3=18gt 2+58gt 2+2gt 2=114gt 2=114H =2.75H ,选项C 正确. 答案:C11.某同学探究小球沿光滑斜面顶端下滑至底端的运动规律,现将两质量相同的小球同时从斜面的顶端释放,在甲、乙图的两种斜面中,通过一定的判断分析,你可以得到的正确结论是( )A .甲图中小球在两个斜面上运动的时间相同B .甲图中小球下滑至底端的速度大小与方向均相同C .乙图中小球在两个斜面上运动的时间相同D .乙图中小球下滑至底端的速度大小相同解析:小球在斜面上运动的过程中只受重力mg 和斜面的支持力F N 作用,做匀加速直线运动,设斜面倾角为θ,斜面高为h ,底边长为x ,根据牛顿第二定律可知,小球在斜面上运动的加速度为a =g sin θ,根据匀变速直线运动规律和图中几何关系有s =12at 2,s =hsin θ=x cos θ,解得小球在斜面上的运动时间为t =1sin θ2hg=2xg sin θcos θ,根据机械能守恒定律有mgh =12mv 2,解得小球下滑至底端的速度大小为v =2gh ,显然,在甲图中,两斜面的高度h 相同,但倾角θ不同,因此小球在两个斜面上运动的时间不同,故选项A 错误;在甲图中,小球下滑至底端的速度大小相等,但沿斜面向下的方向不同,故选项B 错误;在乙图中,两斜面的底边长x 相同,但高度h 和倾角θ不同,因此小球下滑至底端的速度大小不等,故选项D 错误;又由于在乙图中两斜面倾角θ的正弦与余弦的积相等,因此小球在两个斜面上运动的时间相等,故选项C 正确.答案:C 二、非选择题12.(2019·广西桂林高三月考)放在水平地面上一质量为m =2 kg 的质点,在水平恒定外力作用下由静止开始沿直线运动,4 s 内通过8 m 的距离,此后撤去外力,质点又运动了2 s 停止,质点运动过程中所受阻力大小不变,求:(1)撤去水平恒定外力时质点的速度大小; (2)质点运动过程中所受到的阻力大小; (3)质点所受水平恒定外力的大小.解析:(1)质点开始做匀加速直线运动x 0=0+v 02t 1,解得v 0=2x 0t 1=4 m/s.(2)质点减速过程加速度a 2=0-v 0t 2=-2 m/s 2由牛顿第二定律有-F f =ma 2 解得F f =4 N(3)设开始加速过程中加速度为a 1,由运动学公式可得x 0=12a 1t 2,由牛顿第二定律有F-F f =ma 1解得F =F f +ma 1=6 N.答案:(1)4 m/s (2)4 N (3)6 N13.(2019·河南重点中学联考)北京已获得2022年冬奥会举办权!如图所示,俯式冰橇是冬奥会的比赛项目之一,其赛道可简化为起点和终点高度差为120 m 、长度为1 200 m 的斜坡.假设某运动员从起点开始,以平行赛道的恒力F =40 N 推动质量m =40 kg 的冰橇开始沿斜坡向下运动,出发4 s 内冰橇发生的位移为12 m,8 s 末迅速登上冰橇与冰橇一起沿直线运动直到终点.设运动员登上冰橇前后冰橇速度不变,不计空气阻力,求:(g 取10 m/s 2,取赛道倾角的余弦值为1,正弦值按照题目要求计算)(1)出发4 s 内冰橇的加速度大小; (2)冰橇与赛道间的动摩擦因数; (3)比赛中运动员到达终点时的速度大小.解析:(1)设出发4 s 内冰橇的加速度为a 1,出发4 s 内冰橇发生的位移为x 1=12a 1t 12解得a 1=1.5 m/s 2.(2)由牛顿第二定律有F +mg sin θ-μmg cos θ=ma 1 解得μ=0.05.(3)8 s 后冰橇的加速度为a 2,由牛顿第二定律有 (m +M )g sin θ-μ(m +M )g cos θ=(m +M )a 2 8 s 末冰橇的速度为v 1=a 1t 2出发8 s 内冰橇发生的位移为x 2=12a 1t 22=48 m到达终点时速度最大,设最大速度为v 2,则v 22-v 12=2a 2(x -x 2)解得v 2=36 m/s.答案:(1)1.5 m/s 2(2)0.05 (3)36 m/s。
第二节牛顿第二定律两类动力学问题一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.1.(单选)根据牛顿第二定律,下列叙述正确的是()A.物体加速度的大小跟它的质量和速度大小的乘积成反比B.物体所受合力必须达到一定值时,才能使物体产生加速度C.物体加速度的大小跟它所受作用力中的任一个的大小成正比D.当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比答案:D二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.2.(多选)如图所示,总质量为460 kg 的热气球,从地面刚开始竖直上升时的加速度为0.5 m/s2,当热气球上升到180 m时,以5 m/s的速度向上匀速运动.若离开地面后热气球所受浮力保持不变,上升过程中热气球总质量不变,重力加速度g=10 m/s2.关于热气球,下列说法正确的是()A.所受浮力大小为4 830 NB.加速上升过程中所受空气阻力保持不变C.从地面开始上升10 s后的速度大小为5 m/sD.以5 m/s匀速上升时所受空气阻力大小为230 N答案:AD三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.3.(单选)在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为()A.m2·kg·s-4·A-1B.m2·kg·s-3·A-1C.m2·kg·s-2·A-1D.m2·kg·s-1·A-1答案:B考点一用牛顿第二定律求解瞬时加速度1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.(多选)(2015·高考海南卷)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合力F=mg+F T1=mg+2mg=3mg,故加速度a1=Fm=3g,A正确、B错误;设弹簧S2的拉力为F T2,则F T2=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC(单选)如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有() A.a1=a2=a3=a4=0B.a1=a2=a3=a4=gC .a 1=a 2=g ,a 3=0,a 4=m +MMg D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +MMg解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为mg ,因此物块3满足mg =F ,a 3=0;由牛顿第二定律得物块4满足a 4=F +Mg M =M +mMg ,所以C 对.考点二 动力学两类基本问题求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.已知受力求运动(2016·洛阳市期中考试)某电视台在娱乐节目中曾推出一个游戏节目——推矿泉水瓶.选 手们从起点开始用力推瓶子一段时间后,放手让它向前滑动,若瓶子最后停在桌上有效区域内(不能压线)视为成功;若瓶子最后没有停在桌上有效区域内或在滑行过程中倒下均视为失败.其简化模型如图所示,AC 是长度L 1=5.5 m 的水平桌面,选手们将瓶子放在A 点,从A 点开始用一恒定不变的水平推力推它,BC 为有效区域.已知BC 长度L 2=1.1 m ,瓶子质量m =0.5 kg ,与桌面间的动摩擦因数μ=0.2,g =10 m/s 2.某选手作用在瓶子上的水平推力F =11 N ,瓶子沿AC 做直线运动,假设瓶子可视为质点,该选手要想游戏获得成功,试求:在手推瓶子过程中瓶子的位移取值范围.(令5=2.2)[审题突破] (1)推瓶子阶段,瓶子做________运动,放开手后做________运动,瓶子前段的末速度________于后段的初速度;(2)要获得成功,两段的总位移应满足:________<x 总<________.[解析] 要想获得成功,瓶子滑到B 点时速度恰好为0,力作用时间最短,滑到C 点时速度恰好为0,力作用时间最长.设力作用时的加速度为a 1、位移为x 1,撤力时瓶子的速度为v 1,撤力后瓶子的加速度为a 2、位移为x 2,则F -μmg =ma 1 -μmg =ma 2 2a 1x 1=v 212a 2x 2=-v 21L 1-L 2<x 1+x 2<L 1 由以上各式联立可解得: 0.4 m<x 1<0.5 m. [答案] 0.4 m ~0.5 m已知运动求受力(单选)(2015·高考重庆卷)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2gh t+mgB.m 2gh t-mgC.m gh t +mgD.m gh t-mg[审题突破] (1)安全带作用的过程,可认为人做________运动;(2)安全带达到最大伸长时,人的速度为________.[解析] 设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at解得F =m 2gh t +mg .[答案] A两类动力学问题的解题步骤考点三 动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况. (2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图象中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.已知F -t 图象求运动(单选)(2016·陕西西安联考)质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0到t =12 s 这段时间内的位移大小为( )A .18 mB .54 mC .72 mD .198 m[审题突破] (1)物体所受最大静摩擦力(滑动摩擦力)为________ N ,因此0~3 s ,物体________;(2)物体在3~6 s 内做________运动,在6~9 s 内做________运动,在9~12 s 内做________运动.[解析] 由题中条件可得最大静摩擦力F fm =4 N.拉力只有大于最大静摩擦力时,物体才会由静止开始运动. 0~3 s 内:F =F fm ,物体保持静止,x 1=0;3~6 s 内:F >F fm ,物体由静止开始做匀加速直线运动,a =F -F fm m =8-42 m/s 2=2 m/s 2,6 s 末的速度v =at =6 m/s ,3~6 s 内的位移x 2=12at 2=12×2×32 m =9 m ;6~9 s 内:F =F fm ,物体做匀速直线运动,x 3=v t =18 m ;9~12 s 内:F >F fm ,物体以6 m/s 为初速度,以2 m/s 2为加速度继续做匀加速直线运动,x 4=v t +12at 2=27 m.所以0~12 s 内物体的位移为x =x 1+x 2+x 3+x 4=54 m ,选项B 正确. [答案] B已知v -t 图象求受力(2016·福建福州质检)如图甲所示,质量m =1 kg 的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t =0.5 s 时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v -t 图象)如图乙所示,g 取10 m/s 2,求:(1)2 s 内物块的位移大小x 和通过的路程L ;(2)0~0.5 s 和0.5 s ~1 s 两个阶段加速度大小a 1、a 2和拉力大小F . [审题突破] (1)0~0.5 s 内物体沿斜面向________做________运动; (2)0.5~1 s 内物体沿斜面向________做________运动; (3)1~2 s 内物体沿斜面向________做________运动. [解析] (1)在2 s 内,由题图乙知:物块上升的最大距离:x 1=12×2×1 m =1 m ①物块下滑的距离:x 2=12×1×1 m =0.5 m ②所以位移大小x =x 1-x 2=0.5 m ③ 路程L =x 1+x 2=1.5 m .④(2)由题图乙知,所求两个阶段加速度的大小 a 1=4 m/s 2⑤ a 2=4 m/s 2⑥设斜面倾角为θ,斜面对物块的摩擦力为F f ,根据牛顿第二定律有0~0.5 s内:F-F f-mg sin θ=ma1⑦0.5~1 s内:F f+mg sin θ=ma2⑧由⑤⑥⑦⑧式得F=8 N.[答案](1)0.5 m 1.5 m(2)4 m/s2 4 m/s28 N数形结合解决动力学问题1.物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.2.解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.物理模型——传送带模型的分析1.模型特征(1)水平传送带模型2.模型动力学分析(1)传送带模型问题的分析流程(2)判断方法 (2)判断方法 ①水平传送带情景1 若v 22μg ≤l ,物、带能共速;情景2 若|v 2-v 20|2μg ≤l ,物、带能共速;情景3 若v 202μg ≤l ,物块能返回.②倾斜传送带情景1 若v 22a ≤l ,物、带能共速;情景2 若v 22a≤l ,物、带能共速;若μ≥tan θ,物、带共速后匀速; 若μ<tan θ,物体以a 2加速(a 2<a ). 3.模型功能关系分析(1)传送带问题中各力做功情况①传送带对物体做功的实质就是摩擦力对物体做的功,即W f =F f ·x 物; ②外部动力对传送带做的功W F =F ·x 带; ③因相对滑动产生的热量Q =F f ·x 相对. (2)功能关系①水平传送带:W F =ΔE k +Q ;②倾斜传送带:W F =ΔE k +ΔE p +Q .(16分)如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,取g =10 m/s 2,求:(1)工件与传送带间的动摩擦因数;(2)电动机由于传送工件多消耗的电能.[审题突破] (1)运动过程分析:1.9 s 内工件是否一直加速?若工件先匀加速运动后匀速运动,所受摩擦力是否相同?(2)能量转化分析:多消耗的电能转化成了哪几种能量?各如何表示?(1)由题图可知,皮带长x =h sin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1(2分) 匀速运动的位移为x -x 1=v 0(t -t 1)(1分)解得加速运动的时间t 1=0.8 s(1分)加速运动的位移x 1=0.8 m(1分)所以加速度a =v 0t 1=2.5 m/s 2(1分) 由牛顿第二定律有:μmg cos θ-mg sin θ=ma (2分)解得:μ=32.(1分) (2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功发出的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m(1分)在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m(1分)在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J(2分)工件获得的动能E k =12m v 20=20 J(1分) 工件增加的势能E p =mgh =150 J(1分)电动机多消耗的电能W =Q +E k +E p =230 J .(1分)[答案] (1)32(2)230 J1.分析传送带问题的关键是判断.一是摩擦力方向的判断;二是物、带能否共速的判断;三是共速后物体能否与传送带保持相对静止的判断.2.水平传送带:共速后不受摩擦力,不再有能量转化.倾斜传送带:共速后仍有静摩擦力,仍有能量转化.滑动摩擦力做功,其他能量转化为内能,静摩擦力做功,不产生内能.(单选)(2016·贵州六校联考)如图所示,传送带足够长,与水平面间的夹角θ=37°,并以v =10 m/s 的速率逆时针匀速转动着,在传送带的A 端轻轻地放一个质量为m =1 kg 的小物体,若已知物体与传送带之间的动摩擦因数μ=0.5,(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)则下列有关说法正确的是( )A .小物体运动1 s 后,受的摩擦力大小不适用公式F =μF NB .小物体运动1 s 后加速度大小为2 m/s 2C .在放上小物体的第1 s 内,系统产生50 J 的热量D .在放上小物体的第1 s 内,至少给系统提供能量70 J 才能维持传送带匀速转动 解析:选B.刚放上小物体时,小物体相对于传送带向上运动,小物体受到的摩擦力方向沿传送带斜向下,大小为F f1=μmg cos θ,其加速度大小a 1=mg sin θ+μmg cos θm=10 m/s 2,方向沿传送带斜向下.1 s 末小物体的速度为v =a 1t =10 m/s ,又μ<tan θ,则此后小物体相对于传送带向下滑动,受到的摩擦力沿传送带斜向上,大小为F f2=μmg cos θ,其加速度大小a 2=g sin θ-μg cos θ=2 m/s 2,方向沿传送带斜向下,故A 错、B 对;在第1 s 内小物体与传送带产生的热量为Q =F f L =μF N L =μmgL cos θ,又知L =v t -12a 1t 2,解得Q =20 J ,故C 错;第1 s 内小物体的位移为x =12v t =5 m ,其增加的动能为E k =12m v 2=50 J ,需向系统提供的能量E =E k +Q -mg sin θ·x =40 J ,D 项错.1.(考点一)(单选)(2016·孝感统测)如图所示,弹簧一端固定在天花板上,另一端连一质量为M =2 kg 的秤盘,盘内放一个质量为m =1 kg 的物体,秤盘在竖直向下的拉力F 的作用下保持静止,F =30 N ,突然撤去拉力F 的瞬间,物体对秤盘的压力为(g =10 m/s 2)( )A .10 NB .15 NC .20 ND .40 N解析:选C.由于拉力F 撤去之前秤盘和物体均保持静止,系统受力平衡,在拉力F 撤去的瞬间,系统所受合力方向向上,对整体由牛顿第二定律可得F =(M +m )a ,对物体再根据牛顿第二定律可得F N -mg =ma ,两式联立解得F N =20 N ,再根据牛顿第三定律可知物体对秤盘的压力大小为20 N ,方向竖直向下,C 正确.2.(考点二)(多选)如图所示,质量为m 2的物体2放在车厢底板上,用竖直细线通过定滑轮与质量为m 1的物体1连接,不计滑轮摩擦,车厢正在水平向右做加速直线运动,连接物体1的细线与竖直方向成θ角,物体2仍在车厢底板上,则( )A .细线拉力为m 1g cos θB .车厢的加速度为g tan θC .底板对物体2的支持力为m 2g -m 1g cos θD .底板对物体2的摩擦力为零解析:选BC.以物体1为研究对象,水平方向有F T sin θ=m 1a ,竖直方向有F T cos θ=m 1g ,解得a =g tan θ,F T =m 1gcos θ,选项A 错误、B 正确;以物体2为研究对象,水平方向有F f =m 2a ,竖直方向有F T +F N =m 2g ,解得F f =m 2g tan θ,F N =m 2g -m 1g cos θ,选项C 正确、D 错误.3.(考点三)(多选)(2015·高考全国卷Ⅰ)如图甲,一物块在t =0时刻滑上一固定斜面,其运动的v -t 图线如图乙所示.若重力加速度及图中的v 0、v 1、t 1均为已知量,则可求出( )A .斜面的倾角B .物块的质量C .物块与斜面间的动摩擦因数D .物块沿斜面向上滑行的最大高度解析:选ACD.由题图乙可以求出物块上升过程中的加速度为a 1=v 0t 1,下降过程中的加速度为a 2=v 1t 1.物块在上升和下降过程中,由牛顿第二定律得mg sin θ+F f =ma 1,mg sin θ-F f =ma 2,由以上各式可求得sin θ=v 0+v 12t 1g ,滑动摩擦力F f =m (v 0-v 1)2t 1,而F f =μF N =μmg cos θ,由以上分析可知,选项A 、C 正确.由v -t 图象中横轴上方的面积可求出物块沿斜面上滑的最大距离,可以求出物块沿斜面向上滑行的最大高度,选项D 正确.4.(微专题8)(多选)(2016·湖北黄冈模拟)三角形传送带以1 m/s的速度逆时针匀速转动,两边的传送带长都是2 m,且与水平方向的夹角均为37°.现有两个小物块A、B从传送带顶端都以v0的初速度沿传送带下滑,物块与传送带间的动摩擦因数都是0.5,下列说法正确的是() A.若v0≥1 m/s,则物块A先到达传送带底端B.若v0≥1 m/s,则物块A、B同时到达传送带底端C.若v0<1 m/s,则物块A先到达传送带底端D.若v0<1 m/s,则物块A、B同时到达传送带底端解析:选BC.因为μ<tan 37°,若v0≥1 m/s,两物块以相同的初速度和加速度沿传送带下滑,摩擦力均阻碍物块的运动,所以物块A、B同时到达传送带底端,B选项正确;若v0<1 m/s,开始运动的一段时间内,物块A的加速度大于物块B的加速度,然后加速度相等,所以物块A先到达传送带底端,即C选项正确.5.(考点二)(2016·太原质检)如图所示,倾角θ=37°的斜面固定在水平面上.质量m=1.0 kg的小物块受到沿斜面向上的F=9.0 N的拉力作用,小物块由静止沿斜面向上运动.小物块与斜面间的动摩擦因数μ=0.25(斜面足够长,取g=10 m/s2.sin 37°=0.6,cos 37°=0.8).(1)求小物块运动过程中所受摩擦力的大小;(2)求在拉力的作用过程中,小物块加速度的大小;(3)若在小物块沿斜面向上运动0.80 m时,将拉力F撤去,求此后小物块沿斜面向上运动的距离.解析:(1)F作用时,物体受力如图甲所示.F f=μmg cos 37°=2.0 N.(2)设加速度为a1,根据牛顿第二定律有F-F f-mg sin 37°=ma1解得a1=1.0 m/s2.(3)设撤去拉力前小物块运动的距离为x1,撤去拉力时小物块的速度为v,撤去拉力后小物块的加速度和向上运动的距离大小分别为a2、x2,有v2=2a1x1①撤去F后,物体受力如图乙所示.由牛顿第二定律得:mg sin 37°+F f=ma2②v2=2a2x2③联立①②③式并代入数据解得:x2=0.10 m.答案:(1)2.0 N(2)1.0 m/s2(3)0.10 m一、单项选择题1.(2016·海南三亚一中月考)竖直起飞的火箭在推力F的作用下产生10 m/s2的加速度,若推力增大到2F,则火箭的加速度将达到(g取10 m/s2,不计空气阻力)() A.20 m/s2B.25 m/s2C.30 m/s2D.40 m/s2解析:选C.根据牛顿第二定律可知F-mg=ma1,当推力为2F时,有2F-mg=ma2,代入数据解得a2=30 m/s2,则C正确.2.(2016·宝鸡高三质检)如图所示,将质量为M的U形框架开口向下置于水平地面上,用轻弹簧1、2、3将质量为m的小球悬挂起来.框架和小球都静止时弹簧1竖直,弹簧2、3水平且长度恰好等于弹簧原长,这时框架对地面的压力大小等于(M+m)g.现将弹簧1从最上端剪断,则在剪断后瞬间()A.框架对地面的压力大小仍为(M+m)gB.框架对地面的压力大小为0C.小球的加速度大小等于gD.小球的加速度为0解析:选D.剪断弹簧1瞬间,弹簧的形变不改变,小球所受合外力为0,由牛顿第二定律可知此时小球的加速度大小为0,C项错误、D项正确;框架受重力和支持力作用,F N=Mg,由牛顿第三定律可知,框架对地面的压力大小为Mg,A、B项错误.3.如图所示,光滑细杆BC、DC和AC构成矩形ABCD的两邻边和对角线,AC∶BC∶DC =5∶4∶3,AC杆竖直,各杆上分别套有一可视为质点的小球a、b、d,a、b、d三小球的质量比为1∶2∶3,现让三小球同时从各杆的顶点由静止释放,不计空气阻力,则a、b、d 三小球在各杆上滑行的时间之比为()A.1∶1∶1 B.5∶4∶3C.5∶8∶9 D.1∶2∶3解析:选A.由题可知A、B、C、D恰好在以AC为直径的圆上,且C为最低点,由等时圆知识可知三小球在杆上滑行时间相等,A对.4.(2016·唐山一中模拟)一皮带传送装置如图所示,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦.现将滑块轻放在皮带上,弹簧恰好处于自然长度且轴线水平.若在弹簧从自然长度到第一次达到最长的过程中,滑块始终未与皮带达到共速,则在此过程中滑块的速度和加速度变化情况是()A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先增大后减小D.速度先增大后减小,加速度先减小后增大解析:选D.因滑块始终未与皮带达到共速,故滑块始终受到水平向左的滑动摩擦力,由μmg-kx=ma可知,滑块的加速度先减小后反向增大,而滑块的速度先增大后减小,直到速度为零,故只有D项正确.5.(2016·河北衡水调研)如图甲所示,在木箱内粗糙斜面上静置一个质量为m的物体,木箱竖直向上运动的速度v与时间t的变化规律如图乙所示,物体始终相对斜面静止.斜面对物体的支持力和摩擦力分别为F N和F f,则下列说法正确的是()A.在0~t1时间内,F N增大,F f减小B.在0~t1时间内,F N减小,F f增大C.在t1~t2时间内,F N增大,F f增大D.在t1~t2时间内,F N减小,F f减小解析:选D.在0~t1时间内,由题图乙可知,物体做加速运动,加速度逐渐减小,设斜面倾角为θ,对物体受力分析,在竖直方向上有F N cos θ+F f sin θ-mg=ma1,在水平方向上有F N sin θ=F f cos θ,因加速度减小,则支持力F N和摩擦力F f均减小.在t1~t2时间内,由题图乙可知,物体做减速运动,加速度逐渐增大,对物体受力分析,在竖直方向上有mg -(F N cos θ+F f sin θ)=ma2,在水平方向上有F N sin θ=F f cos θ,因加速度增大,则支持力F N和摩擦力F f均减小,故选D.6.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动D.不论μ大小如何,粮袋从A端到B端一直做匀加速运动,且加速度a≥g sin θ解析:选A.若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B端时的速度小于v;若μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v 相同;若μ<tan θ,则粮袋先做加速度为g (sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g (sin θ-μcos θ)的匀加速运动,到达B 端时的速度大于v ,选项A 正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a =mg sin θ+μmg cos θm=g (sin θ+μcos θ),选项B 错误;若μ≥tan θ,粮袋从A 到B 可能一直是做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.二、多项选择题7.(2014·高考山东卷)一质点在外力作用下做直线运动,其速度v 随时间t 变化的图象如图.在图中标出的时刻中,质点所受合外力的方向与速度方向相同的有( )A .t 1B .t 2C .t 3D .t 4解析:选AC.当合外力方向与速度方向相同时,质点做加速运动.由v -t 图象可知,质点在t 1、t 3时刻做加速运动,在t 2、t 4时刻做减速运动.故选项A 、C 正确,选项B 、D 错误.8.(2016·高考江苏卷)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中( )A .桌布对鱼缸摩擦力的方向向左B .鱼缸在桌布上的滑动时间和在桌面上的相等C .若猫增大拉力,鱼缸受到的摩擦力将增大D .若猫减小拉力,鱼缸有可能滑出桌面解析:选BD.将桌布从鱼缸下拉出的过程,鱼缸相对桌布向左运动,因此桌布对它的摩擦力方向向右,A 项错误.设动摩擦因数为μ,鱼缸在桌布对它的滑动摩擦力的作用下做初速度为零的匀加速运动,加速度大小为μg ,设经过t 1时间鱼缸滑离桌布,滑离时的速度为v ,则v =μgt 1;鱼缸滑到桌面上后,做匀减速运动,加速度大小也为μg ,因此鱼缸在桌面上运动的时间t 2=v μg,因此t 1=t 2,B 项正确.若猫增大拉力,鱼缸受到的摩擦力仍为滑动摩擦力,大小为μmg ,保持不变,C 项错误.若猫减小拉力,则鱼缸与桌布间的摩擦力有可能小于滑动摩擦力,则鱼缸与桌布一起运动,从而滑出桌面,D 项正确. 9.如图所示,一倾角θ=30°的光滑斜面固定在箱子底板上,一小球用一细绳拴于箱子顶部,细绳与斜面间夹角也为θ,细绳对小球的拉力为F T ,斜面对小球的支持力为F N ,重力加速度为g ,小球始终相对斜面静止,则下列运动能确保F T 、F N 中只有一个为0的是( )A .箱子自由下落B .箱子水平向右做加速运动,且加速度大小为33g C .箱子水平向右做减速运动,且加速度大小为33g D .箱子以任意加速度竖直向上做加速运动解析:选BC.当箱子自由下落时,小球的加速度为g ,F T 、F N 均为0,A 错;箱子水平向右加速,此时斜面对小球的支持力可以为0,则有tan 60°=mg ma ,即加速度大小为33g ,B 对;箱子水平向右减速时,绳的拉力可以为0,则有tan 30°=ma mg ,即加速度大小为33g ,C 对;当箱子以任意加速度竖直向上加速时,绳的拉力F T 和斜面的支持力F N 均不为0,D 错.10.如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 1时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离达到最大C .0~t 2时间内,小物块受到的摩擦力方向一直向右。