自感与互感 简案
- 格式:doc
- 大小:3.09 MB
- 文档页数:5
第六节 互感和自感[学习目标] 1.了解互感现象及其应用. 2.能够通过电磁感应的有关规律分析通电自感和断电自感现象. 3.了解自感电动势的表达式E =L ΔI Δt ,知道自感系数的决定因素. 4.了解自感现象中的能量转化.[学生用书P 29]一、互感现象(阅读教材第22页第1段至第3段)1.互感:两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势.这种现象叫做互感,这种感应电动势叫做互感电动势.2.互感的应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的.3.互感的危害:互感现象能发生在任何两个相互靠近的电路之间,互感现象有时会影响电路的正常工作.▏拓展延伸►———————————————————(解疑难)1.互感现象是一种常见的电磁感应现象,也满足法拉第电磁感应定律.2.互感能不通过导线相连来传递能量.3.变压器是利用互感制成的,而影响正常工作的互感现象要设法减小.1.(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( )(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用.( ) (3)只有闭合的回路才能产生互感.( )提示:(1)× (2)√ (3)×二、自感现象和自感系数(阅读教材第22页第4段至第24页第3段)1.自感:当一个线圈中的电流自身发生变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势的电磁感应现象.2.自感电动势:由于自感现象而产生的感应电动势.E =L ΔI Δt,其中L 是自感系数,简称自感或电感. 3.自感系数(1)单位:亨利,符号H.(2)决定自感系数大小的因素:与线圈的圈数、大小、形状以及有无铁芯等因素有关. ▏拓展延伸►———————————————————(解疑难)1.自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用.2.自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势的方向与原来电流方向相反;当原来电流减小时,自感电动势的方向与原来电流方向相同.也遵循“增反减同”的规律.3.自感系数是由线圈本身性质决定的,是表征线圈产生自感电动势本领大小的物理量,数值上等于通过线圈的电流在1 s 内改变1 A 时产生的自感电动势的大小.4.线圈的长度越长,截面积越大,单位长度上匝数越多,线圈的自感系数越大,线圈有铁芯比无铁芯时自感系数大得多.2.(1)线圈的自感系数与电流大小无关,与电流的变化率有关.()(2)线圈自感电动势的大小与自感系数L有关,反过来,L与自感电动势也有关.()(3)线圈中电流最大的瞬间可能没有自感电动势.()(4)自感现象中,感应电流一定与原电流方向相反.()(5)一个线圈中的电流均匀增大,自感电动势也均匀增大.()提示:(1)×(2)×(3)√(4)×(5)×三、磁场的能量(阅读教材第24页第4段至第7段)1.线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中.2.线圈中电流减小时:磁场中的能量释放出来转化为电能.▏拓展延伸►———————————————————(解疑难)在自感现象中电能转化为线圈内的磁场能或线圈内的磁场能转化为电能,因此自感现象遵循能量守恒定律.3.断电自感的实验中,为什么开关断开后,灯泡的发光会持续一段时间?试从能量的角度加以解释.提示:开关断开后,线圈中储存的能量释放出来转化为电能,故灯泡发光会持续一段时间.对自感现象的理解[学生用书P30]自感现象的分析思路1.明确通过自感线圈的电流的变化情况(增大或减小).2.根据“增反减同”,判断自感电动势的方向.3.分析阻碍的结果:电流增大时,由于自感电动势的作用,线圈中的电流逐渐增大,与线圈串联的元件中的电流也逐渐增大;电流减小时,由于自感电动势的作用,线圈中的电流逐渐减小,与线圈串联的元件中的电流也逐渐减小.———————————(自选例题,启迪思维)1. 如图所示的电路中,电源电动势为E,内阻r不能忽略.R1和R2是两个定值电阻,L 是一个自感系数较大的线圈.开关S原来是断开的,从闭合开关S到电路中电流达到稳定为止的时间内,通过R1的电流I1和通过R2的电流I2的变化情况是()A.I1开始较大而后逐渐变小B.I1开始很小而后逐渐变大C.I2开始很小而后逐渐变大D.I2开始较大而后逐渐变小[思路探究](1)闭合开关S瞬间,线圈中的电流是如何变化的?线圈中自感电动势如何阻碍电流变化?(2)电阻R1两端电压如何变化?[解析]闭合开关S时,由于L是一个自感系数较大的线圈,产生反向的自感电动势阻碍电流的变化,所以开始I2很小,随着电流达到稳定,自感作用减小,I2开始逐渐变大.闭合开关S时,由于线圈阻碍作用很大,路端电压较大,随着自感作用减小,路端电压减小,所以R1上的电压逐渐减小,电流I1逐渐减小,故选AC.[答案]AC2. 如图所示,带铁芯的电感线圈的电阻与电阻器R的阻值相同,A1和A2是两个完全相同的电流表,则下列说法中正确的是()A.闭合S瞬间,电流表A1的示数小于A2的示数B.闭合S瞬间,电流表A1的示数等于A2的示数C.断开S瞬间,电流表A1的示数大于A2的示数D.断开S瞬间,电流表A1的示数等于A2的示数[解析]闭合开关时,线圈中产生与电流反向的自感电动势起到阻碍作用,所以电流表A1的示数小于电流表A2的示数,A对、B错;断开开关时,线圈中产生与原电流同向的自感电动势,并与R组成临时回路,电流表A1与电流表A2示数相等,C错、D对.[答案]AD3. 如图所示是一种延时装置的原理图,当S1闭合时,电磁铁F将衔铁D吸下,C线路接通;当S1断开时,由于电磁感应作用,D将延迟一段时间才被释放.则() A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变化[解析]线圈A中的磁场随开关S1的闭合而产生,随S1的断开而消失.当S1闭合时,线圈A中的磁场穿过线圈B,当S2闭合,S1断开时,线圈A在线圈B中的磁场变弱,线圈B中有感应电流,B中电流的磁场继续吸引D而起到延时的作用,所以B正确、A错误;若S2断开,线圈B中不产生感应电流而起不到延时作用,所以C正确、D错误.[答案]BC[名师点评](1)电流变化时,电感线圈对电流的变化有阻碍作用.(2)电流稳定时,电感线圈相当于一段导体,阻值即为直流电阻.通、断电自感中灯泡亮度变化分析[学生用书P31]1.通电自感如图甲所示,线圈产生的自感电动势阻碍电流的增加,使线圈的电流从通电瞬间的0逐渐增大到正常值,所以与线圈串联的灯泡的亮度是逐渐亮起来.甲乙2.断电自感如图乙所示,正常工作时线圈和电灯的电流分别为I L和I A.断电后,线圈产生自感电动势,线圈与灯泡组成回路,线圈起到电源作用.线圈产生的自感电动势阻碍电流的减小,使线圈中的电流由I L逐渐减小到0,因此灯泡中的电流也由断电前的I A突变为I L,然后逐渐减小到0,亮度也是逐渐变小到熄灭,当然灯泡中的电流方向由断电前的d→c突变为c→d.若I L>I A,灯泡闪亮一下再逐渐熄灭若I L≤I A,灯泡逐渐熄灭,不闪亮.——————————(自选例题,启迪思维)1. (2015·南京师大附中高二测试)如图所示的电路中,a、b、c为三盏完全相同的灯泡,L是一个自感系数很大、直流电阻为零的自感线圈,E为电源,S为开关.关于三盏灯泡,下列说法正确的是()A.合上开关,c、b先亮,a后亮B.合上开关一会后,a、b一样亮C.断开开关,b、c同时熄灭,a缓慢熄灭D.断开开关,c马上熄灭,b闪一下后和a一起缓慢熄灭[思路探究](1)合上开关时L产生的自感电动势有什么作用?a灯的亮度如何变化?(2)断开开关后L产生的自感电动势有什么作用?b灯闪亮吗?a灯闪亮吗?[解析]闭合开关S时,由于线圈L的自感作用,流过a灯的电流逐渐增大,所以a灯后亮,b、c灯与电源构成回路,所以b、c灯先亮,故A正确.合上开关一会后,电路稳定,L是一个直流电阻为零的自感线圈,可视为导线,a、b灯完全相同,并联电压相同,故a、b灯一样亮,故B正确.断开开关瞬间,a、b灯与线圈构成闭合回路.由于L的自感作用,a、b灯的电流要逐渐减小,故c灯马上熄灭,a、b灯缓慢熄灭,C错误.由于电路稳定时,a、b灯中电流相同,故b灯无闪亮现象,D 错误.[答案]AB2. 如图所示,L为一纯电感线圈(即电阻为零),L A是一灯泡,下列说法正确的是()A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间,灯泡中有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流[解析]L的直流电阻为0是指电路稳定后相当于短路.当通电瞬间,L相当于断路,电流通过灯泡且电流从a到b,稳定后,灯泡被短路熄灭.断电后,L和L A组成回路,L A 闪亮一下再逐渐熄灭,所以B、D正确.[答案]BD[名师点评](1)分析通、断电自感灯泡的亮度变化的关键是弄清电路的连接情况,根据自感线圈的自感电动势的方向进行具体分析.(2)断电自感时灯泡是否闪亮一下再熄灭的判断方法是通过比较断电前的线圈的电流和灯泡的电流的大小来确定.[学生用书P32]思想方法——自感现象中图象问题的解决方法1.明确研究对象及所研究的问题.2.分析所研究对象在电路中的位置,与电源、线圈等的关系及其电流、电压在某一段时间内的大小、方向和变化情况.3.看是否规定正方向,若没有说明,可只考虑其数值.4.结合题意和已知条件,利用自感知识和电路知识等进行分析和计算,从而确定出不同时间内某物理量随时间的变化规律.[范例]如图所示电路中,L为自感系数很大、电阻为R L的线圈,A为一阻值为R A的小灯泡,已知R L>R A,电源的电动势为E,内阻不计,某物理实验小组的同学们把S闭合一段时间后开始计时,记录各支路的电流,测得流过L的电流为i1,流过灯A的电流为i2,并在t1时刻将S断开,画出了通过灯泡A的电流随时间变化的图象,你认为正确的是()[解析]当S闭合时,由于R L>R A,故开始一段时间内,各支路电流之间的关系为i2>i1,流过灯A的电流方向从左向右,S断开时,由于L的自感作用,流经L的电流方向从左向右不变,大小由原来的i1逐渐减小,它与灯A构成闭合回路,由此可知灯A的电流方向与原来相反,大小与L中电流相同,即由i1逐渐减小,故A、B、C错,D对.[答案] D如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0 时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是()解析:选B.闭合开关S 后,灯泡D 直接发光,电感L 的电流逐渐增大,电路中的总电流也将逐渐增大,电源内电压增大,则路端电压U AB 逐渐减小;断开开关S 后,灯泡D 中原来的电流突然消失,电感L 中的电流通过灯泡形成的闭合回路逐渐减小,所以灯泡D 中电流将反向,并逐渐减小为零,即U AB 反向逐渐减小为零,故选B.[学生用书P 33][随堂达标]1.下列说法正确的是( )A .当线圈中电流不变时,线圈中没有自感电动势B .当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C .当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D .当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反解析:选AC.由法拉第电磁感应定律可知,当线圈中的电流不变时,不产生自感电动势,A 正确;当线圈中的电流反向时,相当于电流减小,线圈中自感电动势的方向与线圈中原电流的方向相同,B 错误;当线圈中的电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,所以选项C 正确,同理可知选项D 错误.故选AC.2.关于线圈中自感电动势大小的说法中正确的是( )A .电感一定时,电流变化越大,自感电动势越大B .电感一定时,电流变化越快,自感电动势越大C .通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大解析:选B.由自感电动势E =L ΔI Δt 得L 一定时,E 与ΔI Δt成正比,即电感一定时,电流变化越快,自感电动势越大.故A 错误,B 正确.通过线圈的电流为零的瞬间,电流变化率不一定为零,自感电动势不一定为零,通过线圈的电流为最大值的瞬间,电流变化率可能为零,自感电动势也可能为零,故C 、D 均错误.正确答案选B.3.如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A .灯A 立即熄灭B .灯A 慢慢熄灭C.灯A突然闪亮一下再慢慢熄灭D.灯A突然闪亮一下再突然熄灭解析:选A.当开关S断开时,由于通过自感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L与灯A串联,在S断开后,不能形成闭合回路,因此灯A在开关断开后,电源供给的电流为零,灯立即熄灭.故选A.4. (选做题)如图所示,电感线圈L的自感系数足够大,其直流电阻忽略不计,L A、L B 是两个相同的灯泡,且在下列实验中不会烧毁,电阻R2阻值约等于R1的两倍,则() A.闭合开关S时,L A、L B同时达到最亮,且L B更亮一些B.闭合开关S时,L A、L B均慢慢亮起来,且L A更亮一些C.断开开关S时,L A慢慢熄灭,L B马上熄灭D.断开开关S时,L A慢慢熄灭,L B闪亮一下后才慢慢熄灭解析:选D.由于灯泡L A与线圈L串联,灯泡L B与电阻R2串联,当S闭合的瞬间,通过线圈的电流突然增大,线圈产生自感电动势,阻碍电流的增加,所以L B先亮,A、B错误;由于L A所在的支路电阻阻值偏小,故稳定时电流大,即L A更亮一些,当S断开的瞬间,线圈产生自感电动势,两灯组成的串联电路中,电流从线圈中电流开始减小,即从I A 减小,故L A慢慢熄灭,L B闪亮一下后才慢慢熄灭,C错误、D正确.[课时作业]一、选择题1.关于线圈的自感系数,下面说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的性质及有无铁芯决定解析:选D.自感系数是由线圈的大小、形状、圈数、有无铁芯等因素决定的,故B、C 错,D对;自感电动势不仅与自感系数有关,还与电流变化快慢有关,故A错.2.(多选)无线电力传输目前已取得重大突破,在日本展出了一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力.两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示.下列说法正确的是()A.若A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大解析:选BD.根据产生感应电动势的条件,只有处于变化的磁场中,B线圈才能产生感应电动势,A错,B对;根据法拉第电磁感应定律,感应电动势的大小取决于磁通量变化率,所以C错,D对.3.如图所示,闭合电路中的螺线管可自由伸缩,螺线管有一定的长度,灯泡具有一定的亮度.若将一软铁棒从螺线管左边迅速插入螺线管内,则将看到()A.灯泡变暗B.灯泡变亮C.螺线管缩短D.螺线管长度不变解析:选A.当软铁棒插入螺线管中时,穿过螺线管的磁通量增加,故产生反向的自感电动势,使总电流减小,灯泡变暗,每匝线圈间同向电流吸引力减小,螺线管变长.4.(多选)如图所示的电路中,线圈L的自感系数足够大,其直流电阻忽略不计,A、B 是两个相同的灯泡,下列说法中正确的是()A.S闭合后,A、B同时发光且亮度不变B.S闭合后,A立即发光,然后又逐渐熄灭C.S断开的瞬间,A、B同时熄灭D.S断开的瞬间,A再次发光,然后又逐渐熄灭解析:选BD.线圈对变化的电流有阻碍作用,开关接通时,A、B串联,同时发光,但电流稳定后线圈的直流电阻忽略不计,使A被短路,所以A错误,B正确;开关断开时,线圈产生自感电动势,与A构成回路,A再次发光,然后又逐渐熄灭,所以C错误,D正确.5.如图所示为测定自感系数很大的线圈L直流电阻的电路,L的两端并联一个电压表,用来测量自感线圈的直流电压.在测量完毕后,将电路拆解时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电压表解析:选B.若先断开S1或先拆除电流表,线圈与电压表组成闭合回路,这时,流过电压表的电流与原来方向相反,电压表的指针将反向偏转,容易损坏电压表.按操作要求,应先断开开关S2,再断开开关S1,然后拆除器材.故选项B正确.6. 如图所示电路中,A、B是相同的两小灯泡.L是一个带铁芯的线圈,电阻可不计,调节R,电路稳定时两灯泡都正常发光,则在开关合上和断开时()A.两灯同时点亮、同时熄灭B.合上S时,B比A先到达正常发光状态C.断开S时,A、B两灯都不会立即熄灭,通过A、B两灯的电流方向都与原电流方向相同D.断开S时,A灯会突然闪亮一下后再熄灭解析:选B.闭合S时,由于L的自感作用,A灯逐渐变亮,B灯立即变亮,稳定时两灯一样亮,故A错B对;断开S时,由于L的自感作用,A、B两灯都不会立即熄灭,通过A灯的电流方向不变,但通过B灯的电流反向,故C错;又因通过A灯的电流不会比原来的大,故A灯不会闪亮一下再熄灭,故D错.7. 在如图所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R.闭合开关S后,调整R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()解析:选B.闭合开关S后,调整R,使两个灯泡L1、L2发光的亮度一样,电流为I,说明R L=R.若t′时刻再闭合S,流过电感线圈L和灯泡L1的电流迅速增大,使电感线圈L产生自感电动势,阻碍了流过L1的电流i1增大,直至达到电流为I,故A错误,B正确;而对于t′时刻再闭合S,流过灯泡L2的电流i2立即达到电流I,故C、D错误.故选B.8.在如图所示的电路中,两个相同的电流表G1和G2的零点均在刻度盘中央,当电流从“+”接线柱流入时,指针向左摆;当电流从“-”接线柱流入时,指针向右摆.在电路接通后再断开开关S的瞬间,下列说法中正确的是()A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两表指针都向右摆D.两表指针都向左摆解析:选B.当开关S闭合时,流经电感线圈L的电流方向自左向右.当断开开关S的瞬间,通过线圈L的电流将变小,根据楞次定律可知,感应电流方向与原电流方向相同,也将是自左向右流,以阻碍原电流减小的变化.这样在由L、G2、R及G1组成的闭合电路中,感应电流将从G2的负接线柱流入,因而G2的指针向右偏;感应电流将从G1的正接线柱流入,因而G1的指针向左偏.9. (2015·天水一中高二检测)在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是()A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:选C.由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股导线中的电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B错误,只有C正确.☆10. (多选)如图所示电路中,自感系数较大的线圈L其直流电阻不计,下列操作中能使电容器C的A板带正电的是()A.S闭合的瞬间B.S断开的瞬间C.S闭合电路稳定后D.S闭合、向右移动变阻器触头解析:选BD.S闭合电路稳定时,线圈两端没有电势差,电容器两板不带电;S闭合的瞬间,电流增大,线圈产生自感电动势的方向与电流方向相反,使B板带正电;S断开的瞬间或S闭合、向右移动变阻器触头时,电流减小,线圈产生自感电动势的方向与电流方向相同,使A板带正电,B、D项正确.二、非选择题11.如图所示,电流表的内阻不计,电阻R1=2.5 Ω,R2=7.5 Ω,电感线圈的直流电阻可以忽略.闭合开关S的瞬时,电流表的读数I1=0.2 A;线圈中的电流稳定后,电流表的读数I2=0.4 A,试求电池的电动势和内电阻.解析:S闭合瞬时,可认为由于线圈的自感作用使得线圈中没有电流;而线圈中的电流稳定时,认为线圈的电阻为零,电阻R2被短路,R2中的电流为零.设电池的电动势为E,内电阻为r,则S闭合的瞬时,由闭合电路欧姆定律得:E=I1(R1+R2+r)稳定后,由闭合电路欧姆定律得:E=I2(R1+r)联立代入数据解得E=3 V,r=5 Ω.答案:见解析☆12.如图甲所示为研究自感实验电路图,并用电流传感器显示出在t=1×10-3 s时断开开关前后一段时间内各时刻通过线圈L的电流(如图乙).已知电源电动势E=6 V,内阻不计,灯泡R1的阻值为6 Ω,电阻R的阻值为2 Ω.甲乙求:(1)线圈的直流电阻R L;(2)开关断开时,该同学观察到的现象是什么?并计算开关断开瞬间线圈产生的自感电动势是多少?解析:(1)由题图可知,开关S闭合电路稳定时流过线圈L的电流I0=1.5 A,由欧姆定律得I0=ER L+R解得R L=EI0-R=2.0 Ω.(2)电路稳定时流过小灯泡的电流I1=ER1=66A=1 A断开开关后,线圈L、电阻R和灯泡R1构成一闭合回路,电流由1.5 A逐渐减小,所以小灯泡会闪亮一下再熄灭.开关断开瞬间自感电动势为E′=I0(R+R L+R1)=15 V.答案:(1)2.0 Ω(2)灯泡闪亮一下后逐渐变暗,最后熄灭15 V。
高中物理自感互感教案一、教学目标1. 理解并掌握自感和互感的概念;2. 能够应用自感和互感的原理解释现象;3. 能够进行实验观察、测量和分析电磁现象。
二、教学重点与难点重点:自感和互感的概念、原理和应用;难点:自感和互感的数学表达和计算。
三、教学内容1. 自感和互感的概念;2. 自感和互感的原理;3. 自感和互感的应用;4. 实验探究:利用螺线管和铁芯线圈测量自感和互感。
四、教学过程1. 概念引入通过引入变压器的原理和结构,引导学生思考变压器中的自感和互感是如何发生的,并引出自感和互感的概念。
2. 知识讲解讲解自感和互感的定义、原理、计算公式和实际应用,引导学生理解自感和互感的重要性和作用。
3. 实验探究利用螺线管和铁芯线圈进行实验观察和测量,让学生亲身体验自感和互感的实际效果,并帮助他们掌握自感和互感的测量方法和计算技巧。
4. 拓展应用通过举例应用自感和互感的场景,如变压器、感应电机等,让学生了解自感和互感在电磁学中的广泛应用。
五、教学总结通过本节课的学习,学生将深入理解自感和互感的概念和原理,并能够应用自感和互感的知识解释各种电磁现象。
同时,通过实验探究和实际应用,学生将培养实验观察、数据分析和问题解决的能力。
六、作业布置1. 阅读相关教材,复习自感和互感的知识点;2. 思考并回答自感和互感在变压器中的作用是什么;3. 完成相关练习题,巩固自感和互感的计算方法。
七、教学反思通过本节课的教学,学生能够全面掌握自感和互感的概念、原理和应用,同时培养实验探究和问题解决的能力。
下节课要继续引导学生深入了解电磁学知识,拓展应用场景,激发学生的兴趣和创造力。
自感和互感互感和自感是对电磁感应的一种总结,起到了承前启后的作用。
在这节教学的过程中,我引导学生从事物的共性中发掘新的个性,从发生电磁感应现象的条件和有关电磁感应得规律,提出自感现象,并推出关于自感的规律。
会用自感知识分析,解决一些简单的问题,并了解自感现象的利弊以及对它们的防止和利用。
我把这堂课设计为“探究性”教学,为了增加学生的感性认识并增强他们对物理学习的兴趣,我利用了演示实验。
教学设计思路分为以下几步:“提出问题→猜想→实验验证→论证探究→得出结论→课堂讲练→巩固练习” 。
在教学导入上,了解了法拉第电磁感应定律的原理,使学生会分析电磁感应现象。
根据法拉第线圈电磁感应现象带出互感现象,并联系生活实际中的变压器、手机充电器,强化学生对互感的认知,并培育了学生自学物理的兴趣。
紧接着明确提出问题,线圈自身磁通量变化,与否在线圈本身也产生感应器电动势?我搞了两个模拟实验,随即明确提出本节课所要探究的问题,然后鼓励学生自己通过观察至的实验现象,探讨并概括自感的条件,使其他同学补足提问完备,最后教师评测。
这种教学方法,这种方法既培育了学生的探究、分析、解决问题的能力,又培育学生的.交流合作的精神,同时也培育了学生的实验观测能力、概括总结能力和语言定义能力。
在整堂课中体现了师生互动,在鼓励学生参予积极探索、辨认出、探讨、交流、评价的自学活动中,能够并使学生体验积极探索的艰苦与欢欣。
这节课中我还存在一些不足之处:本节课为实验探究课,如果能让学生分组探索实验,将更能激发学习兴趣,更有利于学生思维的拓展和延伸,也有利于学生个性的发展。
总之在以后的教学中我会尽量在课堂上使学生多展现自己,并引导学生多思索,多动手,尽量多的给学生设计和动手的机会。
大学物理自感和互感(一)引言概述:在大学物理学中,自感和互感是电磁现象中非常重要的概念。
自感和互感不仅在电路中起着关键作用,还在电磁场理论中有着广泛的应用。
本文将详细探讨自感和互感的基本概念、定义、计算方法以及它们在电路和电磁场中的应用。
正文:一、自感的概念和基本特性1. 自感的定义和原理2. 自感的单位和表示方式3. 自感的计算方法4. 自感的影响因素5. 自感与能量的关系二、自感的应用1. 自感对直流电路中的影响2. 自感对交流电路中的影响3. 自感在电磁铁和电磁感应中的应用4. 自感在变压器和电感储能中的作用5. 自感在电磁波传输中的应用三、互感的概念和基本特性1. 互感的定义和原理2. 互感的单位和表示方式3. 互感的计算方法4. 互感的影响因素5. 互感与电路传输特性的关系四、互感的应用1. 互感在变压器中的作用2. 互感在电感耦合放大器中的应用3. 互感在电波传输线中的影响4. 互感在共振电路中的应用5. 互感在电磁波传输和通信中的应用五、自感和互感的比较与总结1. 自感和互感的相同点和区别2. 自感和互感的物理意义和实际应用3. 自感和互感对电路和电磁场的影响4. 自感和互感的计算和测量方法5. 自感和互感的研究方向和未来发展趋势总结:通过本文的介绍,我们了解到了自感和互感在大学物理中的重要性及其在电路和电磁场中的应用。
自感和互感的概念、特性、计算方法以及实际应用都被深入探讨。
希望读者通过本文的阐述,对自感和互感有更加全面的理解,并能将其应用于相关领域的研究和实践中。
电磁感应中的自感与互感自感(自感应)和互感(互感应)是电磁感应中的两个重要概念。
它们描述了电流变化所产生的磁场对电路中其他线圈或电流的影响。
本文将详细介绍自感和互感的定义、原理及应用。
一、自感(自感应)自感是指电流通过线圈时,在线圈内部产生的磁场引起的感应电动势。
当电流通过一个线圈时,线圈内部的磁场变化,产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与电流的变化率成正比。
自感系数L用来描述线圈的自感大小,单位为亨利(H)。
自感现象在电路中具有重要的作用。
首先,自感限制了电流的变化速度。
当电路开关打开或关闭时,线圈内的自感会阻碍电流变化,导致电流的“冲击”效应。
这也是为什么要在开关电路中使用电感等元件的原因之一。
其次,自感也影响电路中的交流信号。
交流信号在线圈中产生交变的磁场,从而引起感应电动势。
自感使得线圈对不同频率的交流信号具有不同的阻抗。
在高频电路中,自感对电路的阻抗有显著影响。
二、互感(互感应)互感是指当两个或更多的线圈靠近时,其中一个线圈中的变化电流在其他线圈中引起感应电动势。
互感现象的存在基于电磁感应定律,即磁场的变化会导致感应电动势的产生。
互感是电磁感应的重要应用之一。
它在变压器中起着关键作用,实现了电压和电流的变换。
变压器由两个或更多线圈组成,当其中一个线圈中的交流电流变化时,产生的磁场被其他线圈感应,从而在这些线圈中引起电压的变化。
此外,互感还广泛应用于电子领域中的滤波器、耦合电容器等元件中。
通过合理设计线圈之间的互感关系,可以实现信号的转换、过滤和传递等功能。
总结:电磁感应中的自感和互感是描述线圈中磁场变化对电路的影响的重要概念。
自感影响电路中电流的变化速度和交流信号的阻抗,而互感实现了电压和电流的转换。
它们在电路设计和电子技术中有着广泛的应用,对于实现各种功能和优化电路性能起着关键作用。
注:本文内容仅供参考,如需详细了解电磁感应中的自感和互感,请参考相关教材或专业资料。
学案:自感和互感学习目标:1. 认识互感和自感的现象2. 了解自感现象产生的原因3. 会用自感知识分析、解决一些简单的问题新课学习1. 产生感应电流的条件是什么?产生感应电动势的条件又是什么?2. 怎样得到这种条件?也就是怎样让闭合回路中磁通量发生变化? 【探究1】重走法拉第发现之路%1.互感现象:互感:_____________________________________________________ 互感电动势:_______________________________________________问题情景:如图断开闭合开关瞬间,CD中会有感应电流吗?这是互感吗?小结:【探究2】“千人震”体验%1. 自感现象:[探究3】通电自感[现象】:在闭合开关S 瞬间,灯& _______【原因】:思考:(1) 当最后扁达到稳定之后,两个灯泡的发光情况又有什么区别?(2) 从开关S 闭合到电路中的电流达到稳定的短暂过程中,两个灯泡里面的电流 随时间的变化关系分别是怎样的?【探究4】断电自感思考与讨论思考:如果当电路达到稳定状态后,再断开开关S,则该灯泡的发光情况又如何变化?【现象】【原因】(1) 电源断开时,通过乙的电流减小,这时会出现感应电动势。
感应电动势的作 用是什么?(2) 产生感应电动势的线圈乙可以看做电源,它能向外供电。
由于开关已经断开, 由线圈提供的感应电流将沿什么途径流动? (3) 开美断开后,通过灯泡的感应电流与原来电流方向是否一致?【总结】实验表明线圈电流发生变化时,自身产生,且总原电流的变化。
自感:由于导体 发生变化而产生的电磁感应现象L ZYW\ZYW\自感电动势:由自感现象产生的电动势叫做自感电动势。
B 、在电路中,断开S后,人将先变得更亮, 然后逐渐变暗当开关S断开前后,灯泡A里面电流随时间的变化关系是怎样的?【例1】、如图所示,电阻R和白感线圈乙的电阻值都很小,旦小于等A的电阻, 接通S,使电路达到稳定,灯泡A发光,则( )A、在电路(。
高中物理互感自感教案
教学目标:了解互感和自感的概念,掌握相关公式和计算方法,能够解决相关问题。
教学重点:1. 互感和自感的定义和公式
2. 互感和自感的计算方法
教学难点:如何理解互感和自感的物理概念,并能够运用相关知识解决实际问题。
教学准备:教材、PPT、实验器材、习题等
教学过程:
一、导入
通过展示一些实际应用场景,引出互感和自感的概念。
二、讲授
1. 互感和自感的定义
- 互感:两个或多个线圈之间存在变化的磁通量,由此而产生的感应电动势。
- 自感:线圈自身存在变化的磁通量,由此而产生的感应电动势。
2. 互感和自感的公式
- 互感系数M:M = k√(L1L2),其中k为系数,L1和L2分别为两个线圈的自感。
- 互感电动势:ε = -M(dI2/dt),其中I2为第二个线圈的电流变化率。
- 自感系数L:L = (μ0N^2A) / l,其中N为匝数,A为截面积,l为线圈长度。
- 自感电动势:ε = -L(dI/dt),其中I为线圈电流的变化率。
三、实验
通过实验观察互感和自感的现象,并通过计算得出相关结果。
四、练习
学生进行相关习题的训练,巩固所学知识。
五、总结
总结互感和自感的概念、公式和计算方法,并展示相关应用。
六、作业
布置作业,让学生进一步巩固所学知识。
教学反思:在教学过程中,要重点讲解互感和自感的物理概念,并通过实验和练习让学生加深理解和掌握相关知识。
同时,要引导学生运用所学知识解决实际问题,提升其物理学习能力。
自感与互感教案教案标题:自感与互感教学目标:1. 让学生了解自感和互感的概念,理解它们在人际关系中的重要性。
2. 培养学生的自我认知和情感表达能力。
3. 培养学生的倾听和共情能力,提高他们的人际交往能力。
教学重点:1. 自感与互感的概念和特点。
2. 自感与互感在人际关系中的作用。
3. 如何培养自感和互感能力。
教学准备:1. PowerPoint演示文稿。
2. 学生活动手册。
3. 图片或视频资源,用于示范和引发讨论。
教学过程:引入活动:1. 引导学生回顾他们在与他人交往中的经验,让他们思考自感和互感的概念。
2. 展示图片或视频资源,让学生观察其中的情感表达和共情行为,并引发他们的思考和讨论。
知识讲解:1. 通过PowerPoint演示文稿,向学生介绍自感和互感的概念和特点。
2. 解释自感是指个体对自身情感和需求的认知和表达,互感是指个体对他人情感和需求的感知和回应。
3. 强调自感和互感在人际关系中的重要性,它们可以增进人际关系的亲密度和和谐度。
案例分析:1. 提供一些案例,让学生分析其中的自感和互感行为。
2. 引导学生讨论这些行为对人际关系的影响,以及他们在类似情境中的反应和行为选择。
小组活动:1. 将学生分成小组,让他们共同讨论和分享自己在不同情境中的自感和互感经历。
2. 每个小组选择一位代表,向全班汇报他们的讨论结果和心得体会。
角色扮演:1. 指导学生进行角色扮演活动,让他们模拟不同情境中的自感和互感行为。
2. 角色扮演结束后,学生互相评价对方的表现,并提出改进建议。
总结与展望:1. 总结自感与互感的概念和作用,强调培养自感和互感能力的重要性。
2. 展望学生在今后的人际交往中如何运用自感和互感来建立良好的人际关系。
作业:要求学生回顾自己在一天中的交往经历,选择一次自感或互感的经历进行描述,并写下自己的感受和反思。
教学反思:1. 观察学生在小组活动和角色扮演中的表现,及时给予肯定和指导。
2. 鼓励学生积极参与讨论和分享,提高他们的自我认知和表达能力。
互感和自感教案教案标题:互感和自感教案目标:1. 理解互感和自感的概念及其在电磁感应中的作用。
2. 能够区分互感和自感的异同点。
3. 掌握计算互感和自感的公式,并能够应用于相关问题的解决。
4. 培养学生的实验探究能力,通过实验观察和数据分析来验证互感和自感的影响。
教学重点:1. 互感和自感的概念及其作用。
2. 互感和自感的计算公式。
教学难点:1. 区分互感和自感的异同点。
2. 解决实际问题时如何应用互感和自感的公式。
教学准备:1. 教师准备:电磁感应的相关知识、互感和自感的概念及公式、实验设备和材料。
2. 学生准备:课前预习电磁感应的基础知识。
教学过程:Step 1:导入(5分钟)教师通过提问或展示相关实例,引导学生回顾电磁感应的基础知识,激发学生对互感和自感的兴趣和思考。
Step 2:概念讲解(15分钟)教师简要介绍互感和自感的概念,并通过图示和实例解释其作用和意义。
重点强调互感和自感在电路中的应用和影响。
Step 3:互感和自感的异同点(10分钟)教师通过对比互感和自感的定义、产生原因、计算公式等方面的异同点,帮助学生更好地理解两者之间的区别。
Step 4:计算公式的引入(10分钟)教师介绍互感和自感的计算公式,并通过示例演示如何应用公式解决相关问题。
鼓励学生积极参与讨论和思考。
Step 5:实验探究(20分钟)教师组织学生进行实验,通过改变线圈的匝数、电流大小等条件,观察互感和自感的变化,并记录实验数据。
学生根据实验数据进行分析和总结,验证互感和自感的影响。
Step 6:巩固练习(15分钟)教师布置相关的练习题,让学生独立或合作完成,巩固所学的互感和自感的计算方法和应用。
教师及时给予指导和反馈。
Step 7:拓展延伸(10分钟)教师引导学生思考互感和自感在实际生活中的应用,如变压器、电感器等。
鼓励学生展开自主学习,了解更多相关知识。
Step 8:课堂总结(5分钟)教师对本节课的内容进行总结,并强调互感和自感的重要性。
《互感和自感》讲义一、什么是互感当两个线圈靠近时,一个线圈中的电流变化会引起另一个线圈中产生感应电动势,这种现象叫做互感。
举个简单的例子,假如有两个相邻的线圈 A 和 B。
当线圈 A 中的电流发生变化时,比如说电流增大或减小,这个变化的电流会产生一个变化的磁场。
而这个变化的磁场会穿过线圈 B,从而在线圈 B 中产生感应电动势。
如果线圈 B 构成了一个闭合回路,那么就会有感应电流产生。
互感现象在生活中有很多应用。
比如变压器,它就是利用互感原理来实现电压的变换。
在变压器中,初级线圈和次级线圈绕在同一个铁芯上。
当初级线圈中通有交流电流时,由于电流的变化,产生的磁场也在不断变化,通过铁芯传递到次级线圈,从而在次级线圈中产生感应电动势。
互感的大小与两个线圈的匝数、相对位置以及是否有铁芯等因素有关。
一般来说,匝数越多、相对位置越近、有铁芯时,互感系数就越大,互感现象就越明显。
二、什么是自感自感则是指由于线圈自身电流的变化而产生的电磁感应现象。
当线圈中的电流发生变化时,它自身就会产生一个变化的磁场。
这个变化的磁场又会反过来影响线圈中的电流,从而在线圈中产生感应电动势。
例如,当一个闭合的线圈中电流突然增大时,电流的变化会导致磁场增强。
根据电磁感应定律,这个增强的磁场会在线圈中产生一个阻碍电流增大的感应电动势,使得电流的增大不会瞬间完成,而是有一个逐渐变化的过程。
同理,当线圈中的电流突然减小时,磁场减弱,也会在线圈中产生一个感应电动势,这个感应电动势的方向是阻碍电流的减小,使得电流不会瞬间降为零。
自感现象在实际生活中也有广泛的应用。
日光灯中的镇流器就是利用自感现象来工作的。
在日光灯启动时,镇流器会产生一个瞬时高压,帮助日光灯启动。
三、互感与自感的区别互感和自感虽然都是电磁感应现象,但它们有着明显的区别。
首先,产生的原因不同。
互感是由于一个线圈中的电流变化引起另一个线圈中的电磁感应,而自感是由于线圈自身电流的变化产生的电磁感应。
高中物理《电磁感应的自感和互感》教案本节课我们将学习电磁感应的自感和互感。
一、自感1. 什么是自感?自感是指导体内部某一部分电流变化所产生的电动势。
当导体内部的电流发生变化时,由于导体内部存在磁场,这个磁场会产生电动势,这个电动势就是自感电动势。
2. 自感的公式自感电动势的公式为:ε=-L(dI/dt),其中ε为自感电动势,L 为自感系数,dI/dt为导体内部电流的变化率。
3. 自感系数自感系数是一个物理量,通常用L表示。
对于线圈,自感系数可以通过下面的公式来计算:L=μN²S/l其中μ为磁导率,N为线圈匝数,S为线圈面积,l为线圈长度。
二、互感1. 什么是互感?互感是指两个导体之间相互作用所产生的电动势。
当两个导体之间有相对运动或者其中之一有电流变化时,它们之间会产生互感电动势。
2. 互感的公式互感电动势的公式为:ε=-M(dI1/dt),其中ε为互感电动势,M为互感系数,dI1/dt为一个导体内部电流的变化率。
3. 互感系数互感系数是一个物理量,通常用M表示。
对于两个线圈之间,互感系数可以通过下面的公式来计算:M=μN1N2S/l其中μ为磁导率,N1和N2分别为两个线圈的匝数,S为两个线圈的交叉面积,l为两个线圈的距离。
三、实验我们可以通过实验来验证自感和互感的存在。
具体实验步骤如下:1. 自感实验将一个线圈连接到一个电源上,并将另一个线圈放在第一个线圈旁边。
然后改变第一个线圈中的电流,观察第二个线圈中是否会产生电流。
2. 互感实验将两个线圈放在一起并连接到两个不同的电源上。
然后改变其中一个线圈中的电流,观察另一个线圈中是否会产生电流。
四、总结本节课我们学习了电磁感应的自感和互感。
自感是指导体内部某一部分电流变化所产生的电动势;互感是指两个导体之间相互作用所产生的电动势。
通过实验我们可以验证它们的存在。
4 互感和自感[学习目标] 1.了解互感现象及其应用.2.能够通过电磁感应的有关规律分析通电自感和断电自感现象.3.了解自感电动势的表达式E =L ΔI Δt ,知道自感系数的决定因素.4.了解自感现象中的能量转化. 一、互感现象 1.互感和互感电动势:两个相互靠近且没有导线相连的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫作互感,这种感应电动势叫作互感电动势. 2.应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的.3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作.二、自感现象当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势,这种现象称为自感.由于自感而产生的感应电动势叫作自感电动势.三、自感系数1.自感电动势:E =L ΔI Δt ,其中ΔI Δt是电流的变化率;L 是自感系数,简称自感或电感.单位:亨利,符号:H.2.自感系数与线圈的大小、形状、匝数,以及是否有铁芯等因素有关.四、磁场的能量1.线圈中电流从无到有时,磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.3.自感电动势有阻碍线圈中电流变化的性质.1.判断下列说法的正误.(1)自感现象中,感应电动势一定与原电流方向相反.( × )(2)线圈中产生的自感电动势较大时,其自感系数一定较大.( × )(3)对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大.(√)(4)没有发生自感现象时,即使有磁场也不会储存能量.(×)(5)线圈的自感系数与电流大小无关,与电流的变化率有关.(×)2.如图所示,电路中电源内阻不能忽略,L的自感系数很大,其直流电阻忽略不计,A、B 为两个完全相同的灯泡,当S闭合时,A灯________变亮,B灯________变亮.当S断开时,A灯________熄灭,B灯________熄灭.(均选填“立即”或“缓慢”)答案缓慢立即缓慢缓慢一、互感现象导学探究如图所示,在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?答案两个线圈之间并没有导线相连,当一个线圈中的电流变化时,它所产生的变化的磁场会使穿过另一个线圈的磁通量发生变化,从而产生感应电动势.知识深化1.当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势.2.一个线圈中电流变化越快(电流的变化率越大),另一个线圈中产生的感应电动势越大.3.应用与危害(1)应用:变压器、收音机的磁性天线都是利用互感现象制成的.(2)危害:在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感.例如在电路板刻制时就要设法减小电路间的互感现象.例1(多选)(2022·惠州市第一次调研)目前无线电力传输已经比较成熟,如图所示为一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力,两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示.利用这一原理,可以实现对手机进行无线充电.下列说法正确的是()A.只要A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大答案BD解析根据感应电流产生的条件,若A线圈中输入恒定的电流,则A产生恒定的磁场,B中的磁通量不发生变化,B线圈中不会产生感应电动势,故A错误;若A线圈中输入变化的电可知,B线圈中会产生感应电动势,A线圈中电流变化流,根据法拉第电磁感应定律E=nΔΦΔt越快,A线圈中电流产生的磁场变化越快,B线圈中感应电动势越大,故B、D正确,C错误.二、自感现象导学探究1.按照如图所示电路图连接电路.(1)开关S接通时,灯泡1和2的发光情况有什么不同?(2)根据楞次定律结合电路图分析该现象产生的原因.答案(1)灯泡2立即发光,而灯泡1是逐渐亮起来的.(2)接通电源的瞬间,电流增加,线圈L中产生感应电动势.根据楞次定律,感应电动势会阻碍电流的增加,所以灯泡1慢慢地亮起来.2.按照如图所示电路图连接电路.(1)若灯泡的电阻小于线圈L的直流电阻,先闭合开关使灯泡发光,稳定后断开开关.观察开关断开时灯泡的亮度变化,并解释原因.若灯泡电阻大于线圈L的直流电阻,灯泡的亮度如何变化?(2)开关断开前后,流过灯泡的电流方向相同吗?答案(1)灯泡逐渐熄灭.开关断开时,通过线圈L的电流减小,这时会出现感应电动势阻碍线圈L中的电流减小,线圈中产生与原方向相同的电流,与灯泡构成闭合回路,所以灯泡逐渐熄灭.若灯泡电阻大于线圈L的直流电阻,则灯泡先闪亮一下再逐渐熄灭.(2)开关闭合时,灯泡中的电流方向向左,开关断开瞬间,灯泡中的电流方向向右,所以开关断开前后,流过灯泡的电流方向相反.知识深化1.对自感现象的理解自感现象是一种电磁感应现象,遵守法拉第电磁感应定律和楞次定律.2.对自感电动势的理解(1)产生原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在线圈上产生感应电动势.(2)自感电动势的方向当原电流增大时,自感电动势的方向与原电流方向相反;当原电流减小时,自感电动势的方向与原电流方向相同(即:增反减同).(3)自感电动势的作用阻碍原电流的变化,而不是阻止,原电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.3.对电感线圈阻碍作用的理解(1)若电路中的电流正在改变,电感线圈会产生自感电动势阻碍电路中电流的变化,使通过电感线圈的电流不能突变.(2)若电路中的电流是稳定的,电感线圈相当于一段导线,其阻碍作用是由绕制线圈的导线的电阻引起的.(3)线圈通电和断电时线圈中电流的变化规律如图.考向1通电自感现象例2如图所示,电路中电源的内阻不能忽略,A、B为两个完全相同的灯泡,当S闭合时,下列说法正确的是(线圈L的自感系数很大,直流电阻较小)()A.A比B先亮,然后A逐渐熄灭B.B比A先亮,然后B逐渐变暗C.A、B一起亮,然后A逐渐熄灭D.A、B一起亮,然后B逐渐熄灭答案 B解析S闭合时,线圈上产生很大的自感电动势,阻碍电流的增大,所以B比A先亮,电路稳定后线圈L的直流电阻较小,故流过B灯支路的电流变小,所以B灯逐渐变暗,故B正确.考向2断电自感现象例3(2022·哈尔滨三中高二月考)如图是用于观察自感现象的电路图,设线圈L的自感系数较大,线圈的直流电阻R L与灯泡的电阻R满足R L>R,则在开关S由闭合到断开的瞬间,可以观察到()A.灯泡立即熄灭B.灯泡逐渐熄灭C.灯泡有闪亮现象D.只有在R L>R时,才会看到灯泡有明显的闪亮现象答案 B解析开关S闭合且电路稳定时,由于线圈直流电阻大于灯泡电阻,所以流过线圈的电流小于流过灯泡的电流,开关S断开瞬间,线圈上产生自感电动势,阻碍电流的减小,原来通过灯泡的电流随着开关断开而消失,而灯泡和线圈形成闭合回路,流过线圈的电流也流过灯泡,因此灯泡逐渐熄灭.若线圈直流电阻小于灯泡电阻,断开开关时,会出现灯泡闪亮现象.故选B.例4在如图所示的电路中,开关S闭合且稳定后流过自感线圈的电流是2 A,流过灯泡D 的电流是1 A,现将开关S突然断开,能正确反映流过灯泡的电流i在开关S断开前后随时间t 变化关系的图像是( )答案 D解析 开关S 断开前,通过灯泡D 的电流是稳定的,其值为1 A .开关S 断开瞬间,自感线圈的支路由于自感现象会产生与线圈中原电流方向相同的自感电流,使线圈中的电流从2 A 逐渐减小,方向不变,且与灯泡D 构成闭合回路,通过灯泡D 的电流和线圈L 中的电流相同,也应该是从2 A 逐渐减小到零,但是方向与原来通过灯泡D 的电流方向相反,故D 对.三、自感系数和磁场的能量 导学探究(1)自感电动势与哪些因素有关?(2)在断电自感现象中,断开开关后,灯泡仍然亮一会,是否违背能量守恒定律?答案 (1)根据公式E =L ΔI Δt可知,自感电动势与自感系数和电流的变化率有关. (2)不违背.断电时,储存在线圈内的磁场能转化为电能,用以维持回路保持一定时间的电流,直到电流为零时,磁场能全部转化为电能并通过灯泡(或电阻)转化为内能,可见自感现象遵循能量守恒定律.知识深化1.自感电动势(1)表达式:E =L ΔI Δt. (2)理解:①公式中ΔI Δt为电流的变化率,电流变化越快,电流变化率越大,自感电动势也越大. ②公式中L 为线圈的自感系数.2.自感系数例5关于自感现象、自感系数、自感电动势,下列说法正确的是()A.当线圈中通恒定电流时,线圈中没有自感现象,线圈自感系数为零B.线圈中电流变化越快,线圈的自感系数越大C.自感电动势与原电流方向相反D.对于确定的线圈,其产生的自感电动势与其电流变化率成正比答案 D解析当线圈中通恒定电流时,线圈中没有自感现象,不产生自感电动势,但是线圈自感系数不为零,选项A错误;线圈中电流变化越快,产生的自感电动势越大,线圈的自感系数与电流变化快慢无关,选项B错误;根据楞次定律,当线圈中电流增大时,自感电动势阻碍电流增大,自感电动势方向与原电流方向相反;当线圈中电流减小时,自感电动势阻碍电流减小,自感电动势方向与原电流方向相同,选项C错误;对于确定的线圈,自感系数L一定,其产生的自感电动势与其电流变化率ΔI成正比,选项D正确.Δt考点一互感现象1.(多选)(2022·正定中学高二月考)下列关于互感现象的说法正确的是()A.一个线圈中的电流变化时,与之靠近的另一线圈中产生感应电动势的现象称为互感现象B.互感现象的实质是电磁感应,同样遵循楞次定律和法拉第电磁感应定律C.利用互感现象能够将能量由一个线圈传递到另一个线圈,人们制造了收音机的“磁性天线”D.在电力工程以及电子电路中,互感现象不会影响电路的正常工作答案ABC解析两个相互靠近的线圈,当一个线圈的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感现象,选项A正确;之所以会在另一个线圈中产生感应电动势,是因为变化的电流产生变化的磁场,引起另一个线圈中的磁通量发生变化,发生电磁感应现象,选项B正确;收音机的“磁性天线”是利用互感原理工作的,也就是利用互感现象将能量由一个线圈传递到另一个线圈,选项C正确;互感现象能发生在任何两个相互靠近的电路之间,会影响电路的正常工作,选项D错误.2.(多选)如图所示,线圈P、Q同轴放置,P与开关S、电源和滑动变阻器R组成回路,Q与电流计G相连,要使Q线圈产生图示方向的电流,可采用的方法有()A.闭合开关S后,把R的滑片右移B.闭合开关S后,把R的滑片左移C.闭合开关S后,把Q靠近PD.无需闭合开关S,只要把Q靠近P即可答案BC解析闭合开关S后,若把R的滑片右移,Q中的磁场方向从左向右,且在减小,根据楞次定律,Q线圈中电流方向与题图电流方向相反,故A错误;同理可知,B正确;闭合开关S 后,将Q靠近P,Q中的磁场方向从左向右,且在增强,根据楞次定律,Q线圈中的电流方向与题图电流方向相同,故C正确;若S不闭合,则Q线圈中无磁场,故Q中不会有电流产生,故D错误.考点二自感现象3.如图所示,L是电感足够大的线圈,其直流电阻可忽略不计,A和B是两个参数相同的灯泡,若将开关S闭合,等灯泡亮度稳定后,再断开开关S,则()A.开关S闭合时,灯泡A比B先亮B.开关S闭合时,灯泡A、B同时亮,最后一样亮C.开关S闭合后,灯泡A逐渐熄灭,灯泡B逐渐变亮,最后亮度保持不变D.开关S断开瞬间,A、B闪亮一下逐渐熄灭答案 C解析开关S闭合时,由于L的阻碍作用,电流从两灯中流过,故两灯同时亮,此后,有电流流过L,且流过L的电流逐渐增大,流过A的电流逐渐减小,电路稳定后,灯泡A被短路而熄灭,B灯比原来更亮且最后亮度保持不变,故C正确,A、B错误;开关S断开瞬间,B 中电流消失,故立即熄灭,由于电感线圈中产生自感电动势,且L和A构成回路,所以A 闪亮一下后逐渐熄灭,故D错误.4.(多选)如图所示,用电流传感器研究自感现象.电源内阻不可忽略,线圈L的自感系数较大,其直流电阻小于电阻R的阻值.t=0时刻闭合开关S,电路稳定后,t1时刻断开S,电流传感器连接计算机分别描绘了整个过程线圈中的电流I L和电阻中的电流I R随时间t变化的图像.下列图像中可能正确的是()答案AD5.图甲和图乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈.实验时,闭合开关S1,电路稳定后,断开开关S1瞬间,灯A1突然闪亮,随后逐渐变暗;闭合开关S2,灯A2逐渐变亮.而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同.下列说法正确的是()A.图甲中,A1与L1的电阻值相同B.图甲中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图乙中,变阻器R与L2的电阻值相同D.图乙中,闭合S2瞬间,L2中电流与变阻器R中电流相等答案 C解析断开开关S1瞬间,线圈L1产生自感电动势,阻碍电流的减小,通过L1的电流反向通过A1,灯A1突然闪亮,随后逐渐变暗,说明I L1>I A1,即R L1<R A1,故A错;闭合S1,电路稳定后,因为R L1<R A1,所以A1中电流小于L1中电流,故B错;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立即变亮,最终A2与A3的亮度相同,说明变阻器R与L2的电阻值相同,故C对;闭合S2瞬间,通过L2的电流增大,由于电磁感应,线圈L2产生自感电动势,阻碍电流的增大,则L2中电流与变阻器R中电流不相等,故D错.6.(2021·合肥市高二期末)如图所示是演示自感现象的电路,A1与A2是完全相同的灯泡,电阻均为R;在开关S2断开、S1闭合并且电路稳定时两灯的亮度一样.现闭合开关S2,待电路稳定后,突然断开开关S1的瞬间,下列说法正确的是()A.A1立即熄灭B.A1先是变得更亮,再逐渐变暗直至熄灭C.有短暂电流流过A2,方向向右D.有短暂电流流过A1,方向向左答案 D解析开始S2断开、S1闭合,电路稳定时两灯的亮度相同,且已知A1、A2是完全相同的灯泡,电阻均为R,故线圈的直流电阻为R.S1、S2都闭合且电路稳定时,流过L、A1、A2、定值电阻的电流都相同.此时断开S1,线圈L和灯泡A1、开关S2组成回路,由于线圈L的自感作用,产生自感电动势,回路中的电流从原来电流大小逐渐减小,灯泡A1从原来亮度逐渐变暗,流过A1的电流从右向左,而灯泡A2立即熄灭.综上可知,选项A、B、C错误,选项D正确.7.(多选)在如图所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,分别用i1、i2表示流过D1、D2的电流,则下列图像中能定性描述电流随时间变化关系的是()答案BC解析闭合开关S后,通过D1、D2和D3的电流方向都是由上向下,D1中电流逐渐增大至稳定,且D1中稳定电流为D2、D3中稳定电流的2倍,断开开关S后,由于自感现象,通过D1的电流方向不变,电流逐渐减为0,故选项A错误,B正确;开关断开后,D2和D3中电流方向与原方向相反,大小由D1中的稳定电流值逐渐减为0,故选项C正确,D错误.8.(2021·驻马店市高二上期末)如图所示的电路中,L为电感线圈,其电阻与电阻R相等,C 为电容器,A、B为两灯泡,电源内阻r不可忽略,当开关S由闭合状态断开时()A.A灯立即熄灭B.A灯突然闪亮一下再熄灭,c点电势比d点高C.B灯无电流通过,不可能变亮D.电容器立即充电,有电流从a点到b点流过B灯答案 D解析当开关S由闭合变为断开时,线圈中产生自感电动势,与灯泡A和电阻R构成闭合回路放电,由于断开开关前流过线圈的电流大于流过灯泡A的电流,故灯泡A突然闪亮一下再缓慢熄灭,电流从d到c流过灯泡A,故d点电势比c点电势高,A、B错误;当开关S由闭合变为断开时,电容器两端的电压变大,故电容器充电,有充电电流,故灯泡B有电流通过,电流方向由a到b,C错误,D正确.9.(2021·恩施市高二下月考)如图,小明做自感现象实验时,连接电路如图所示,其中L是自感系数较大、直流电阻不计的线圈,L1、L2是规格相同的灯泡,D是理想二极管.则()A.闭合开关S,L2逐渐变亮,然后亮度不变B.闭合开关S,L1、L2都逐渐变亮,最后亮度相同C.断开开关S,L1逐渐变暗至熄灭,L2变亮后再与L1同时熄灭D.断开开关S,L1逐渐变暗至熄灭,L2一直不亮答案 C解析闭合开关S,由于二极管有单向导电性,L2中无电流,始终不亮,线圈L产生自感现象,L1逐渐变亮,A、B错误;断开开关S的瞬间,线圈L产生自感现象,与灯泡L1和L2串联,二极管正向导通,所以L1逐渐变暗至熄灭,L2变亮后再与L1同时熄灭,C正确,D 错误.。
自感和互感教案教案标题:自感和互感教案教案目标:1. 了解自感和互感的概念及其在人际交往中的重要性。
2. 培养学生的自感和互感能力,提高他们的情商和人际交往技巧。
3. 通过实践活动,让学生体验和理解自感和互感的价值。
教学准备:1. PPT或黑板。
2. 学生手册或笔记本。
3. 活动材料:纸、笔等。
教学过程:引入:1. 利用图片或故事情节引起学生对自感和互感的兴趣,让他们思考这两个概念的意义。
概念讲解:2. 使用PPT或黑板,向学生解释自感和互感的概念。
自感是指个体对自己的情感和需求的认知和理解,互感是指个体对他人情感和需求的认知和理解。
3. 强调自感和互感在人际交往中的重要性,它们可以帮助我们更好地理解自己和他人,建立良好的人际关系。
案例分析:4. 提供一些案例,让学生分析其中的自感和互感因素。
例如,一个学生在班级中感到孤独和被排斥,其他同学应该怎么做才能帮助他感受到关爱和支持?5. 分组讨论案例,让学生分享他们的观点和解决方案。
鼓励他们思考自己如何在类似情况下改善自己的自感和互感能力。
实践活动:6. 分发纸和笔,要求学生写下自己在某个场景中的自感和互感体验。
例如,他们在某次团队合作中的感受以及对他人的理解和支持。
7. 学生可以自愿分享自己的体验,其他同学可以提供反馈和建议。
这样可以促进学生之间的互动和理解。
总结:8. 对学生进行总结,强调自感和互感的重要性,并鼓励他们在日常生活中积极应用这些技巧。
9. 鼓励学生进行自我反思,思考如何改善自己的自感和互感能力,并制定个人目标。
作业:10. 要求学生写一篇关于自感和互感的心得体会,并提出自己在未来如何提高自感和互感能力的计划。
教学延伸:- 鼓励学生参与社交活动,如辩论赛、演讲比赛等,提高他们的自感和互感能力。
- 组织角色扮演活动,让学生在模拟情景中体验和实践自感和互感的技巧。
教学评估:- 观察学生在案例分析和实践活动中的表现,包括他们对自感和互感的理解和应用能力。
互感和自感一、互感现象1.定义两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象。
产生的电动势叫做互感电动势。
2.应用互感现象可以把能量由一个线圈传递到另一个线圈,变压器、收音机的“磁性天线”就是利用互感现象制成的。
3.危害互感现象能发生在任何两个相互靠近的电路之间。
在电力工程和电子电路中,互感现象有时会影响电路正常工作。
二、自感现象和自感系数1.自感现象 当一个线圈中的电流变化时,它产生的变化的磁场在它本身激发出感应电动势的现象。
2.自感电动势 由于自感而产生的感应电动势。
4.自感电动势的大小E =L ΔI Δt,其中L 是自感系数,简称自感或电感,单位:亨利,符号为H 。
5.自感系数大小的决定因素自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关。
三、磁场的能量1.自感现象中的磁场能量(1)线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中。
(2)线圈中电流减小时:磁场中的能量释放出来转化为电能。
2.电的“惯性”自感电动势有阻碍线圈中电流变化的“惯性”。
1、如图4-6-2所示,灯L 1、L 2完全相同,带铁芯的线圈L 的电阻可忽略,则( )A .S 闭合的瞬间,L 1、L 2同时发光,接着L 1变暗,L 2更亮,最后L 1熄灭B .S 闭合瞬间,L 1不亮,L 2立即亮C .S 闭合瞬间,L 1、L 2都不立即亮D .稳定后再断开S 的瞬间,L 2熄灭,L 1比L 2(原先亮度)更亮2、如图4-6-3所示,线圈L的电阻和电源内阻都很小,可忽略不计,电路中两个电阻的阻值均为R,开始时开关S断开,此时电路中电流为I0。
现将开关S闭合,线圈L中有自感电动势产生,下列说法中正确的是() A.由于自感电动势有阻碍电流的作用,电路中电流最终由I0减小到零B.由于自感电动势有阻碍电流的作用,电路中电流最终小于I0C.由于自感电动势有阻碍电流的作用,电路中电流将保持I0不变D.自感电动势有阻碍电流增大的作用,但电路中电流最终还要增大到2I03、(多选)如图4-6-4所示的电路中,电源电动势为E,内阻r不能忽略。
第6节互感和自感
江苏省如东高级中学张小龙
一、教学目标
(一)知识与技能
1.知道什么是互感现象和自感现象。
2.知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。
3.知道自感现象的利与弊及对它们的利用和防止。
4.能够通过电磁感应部分知识分析通电、断电自感现象的原因及磁场的能量转化问题。
(二)过程与方法
1.通过对两个自感实验的观察和讨论,培养学生的观察能力和分析推理能力。
2.通过自感现象的利弊学习,培养学生客观全面认识问题的能力。
(三)情感、态度与价值观
自感是电磁感应现象的特例,使学生初步形成特殊现象中有它的普遍规律,而普遍规律中包含了特殊现象的辩证唯物主义观点
二、重点和难点
1. 教学重点:
引导学生正确理解自感现象的产生原因和结果,探究自感现象的规律
2. 教学难点:
(1)分析自感电动势对原电流变化产生的阻碍作用;
(2)应用自感现象解决实际问题。
三、教学手段
以演示实验为先导,引导学生在实验现象的基础上,运用电磁感应的相关知识分析互感和自感的实质;以分组讨论的方法,调动学生积极思考;以电脑和传感器为手段,得到准确的I-t图象,得到更有说服力的结论
四、教学过程
引入新课:
1、发生电磁感应现象的条件是什么?感应电动势的公式是?
2、感应电流方向如何判断?
新课学习:
【实验演示1】变压器、干电池、导线等——闭合瞬间,学生触感
(一)互感现象
1.两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁
场会在另一个线圈中产生感应电动势。
这种现象叫做互感,这种感应电动势叫做互感电动势。
2. 互感现象可以把能量从一个线圈传递到另一个线圈。
互感现象在日常生活中的应用
3.在电力工程中和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感现象。
例如在电路板的刻制时就要设法减小电路间的互感现象。
(二)自感现象
【实验演示2】
将线圈、两节干电池和开关用导线串联,请同学用双手接触线圈两端裸露的接线柱。
【实验演示】
演示(1)把电灯泡与线圈并联,观察现象
演示(2)将与灯泡并联的线圈取掉。
再演示上述实验,这时灯泡不再闪亮。
引导学生分析得出:在开关断开这一瞬间,电压是线圈产生的。
【分析】
引导学生运用已学过的电磁感应的知识来分析实验现象。
【结论】
由于导体本身的电流变化,而在导体自身产生的电磁感应现象,叫做自感。
自感现象中产生的感应电动势,叫做自感电动势。
【实验演示3】
【分析】
讨论:组织学生讨论。
出示实验电路图,引导学生运用已学过的楞次定律来分析实验现象。
引导学生本质还是电磁感应现象!
【结论】
断电时,由于线圈的自感电动势阻碍原电流变化,所以线圈中的电流并没有立即变为零,而是要继续流过与线圈组成的这个闭合回路,因此,电灯没有立即熄灭。
断电后通过灯泡的电流方向与原来通过灯泡的电流方向相反。
此时线圈相当于电源,将以磁场形式储存的能量转化为电能后提供给小灯泡。
【实验演示4】
现象:开关接通时,可以看到,灯泡2立即正常发光,而灯泡1是逐渐亮起来的。
【分析】
开关接通时,线圈中的电流从无到有,使得穿过线圈的磁通量从无到有,线圈中产生了自感电动势,使灯1逐渐亮起来
教学任务:用电流传感器探究自感现象
【实验演示5】通过电脑作图精确分析通电自感过程中的电流变化
【分析】
讨论:组织学生讨论分析现象。
引导学生运用已学过的楞次定律来分析实验现象。
【结论】
自感现象是________的一种特殊情况,其产生条件仍然是线圈中的________发生变化,感应电流方向遵循________定律。
在自感现象中,自感电动势的产生是由于导体本身的电流发生了变化而引起的,而自感电动势却总是阻碍导体中原来电流的变化的。
(三)自感电动势
特点:自感电动势总是阻碍导体中原来电流的变化的。
1. 方向判定:(楞次定律)
① 如果导体中原来的电流是增大的,自感电动势就要阻碍原来电流的增大。
I 原↑,则ε自(I 自)与I 原相反
② 如果导体中原来的电流是减小的,自感电动势就要阻碍原来电流的减小。
I 原↓,则ε自(I 自)与I 原相同
讨论:比较以下两个电路图,灯泡何时回出现闪亮的情况?
2. 大小: E =L ΔI Δt
3. 自感系数:是用来表示线圈的自感特性的物理量
(1)线圈越大,越粗,匝数越多,自感系数越大;
带有铁芯的线圈的自感系数比没有铁芯时大得多。
(2)单位:亨利,符号H 还有毫亨(mH )、微亨(μH )
1H=103 mH 1H=106μH
(四)磁场的能量
开关闭合时线圈中有电流,电流产生磁场,能量储存在磁场中,开关断开时,线圈作用相当于电源,把磁场中的能量转化成电能。
习题反馈:
例1.下列关于自感现象的说法,正确的是( )
A .自感现象是由电流的变化产生的,与磁通量变化无关
B .感应电流一定和原电流方向相反
C .产生自感电动势较大的线圈其自感系数一定较大
D .对于同一线圈,当电流变化较快时,线圈中的自感电动势较大
例2.如图所示,L 是电感足够大的线圈,其直流电阻可忽略不计,D1和D2是两个相同的灯泡,若将电键S 闭合,等灯泡亮度稳定后,再断开电键S ,则 ( )
A .电键S 闭合时,灯泡D1、D2同时亮,然后D1会变暗直到不
亮,D2更亮
B .电键S 闭合时,灯泡D1很亮,D2逐渐变亮,最后一样亮
C .电键S 断开时,灯泡D2随之熄灭,而D1会亮一下后才熄灭
D .电键S 断开时,灯泡D1随之熄灭,而D2会更亮后一下才熄
灭
你能否设计出一个永不产生自感现象的线圈?
1.大型电动机定子绕组电路的开关油浸(防止)2.电阻双线绕法(防止)
3.自感现象的应用——日光灯(应用)
发光
课堂小结(略)。