【最新】高中数学一轮(理科)浙江专用配套实用课件第八章解析几何探究课5
- 格式:ppt
- 大小:558.00 KB
- 文档页数:49
第4讲直线与圆、圆与圆的位置关系基础巩固题组(建议用时:40分钟)一、选择题1.若直线ax+by=1与圆x2+y2=1相交,则P(a,b)() A.在圆上B.在圆外C.在圆内D.以上都有可能解析由1a2+b2<1,得a2+b2>1,∴点P在圆外.答案 B2.圆x2+y2-4x=0在点P(1,3)处的切线方程为() A.x+3y-2=0 B.x+3y-4=0C.x-3y+4=0 D.x-3y+2=0解析易知圆心C坐标为(2,0),则k CP=31-2=-3,所以所求切线的斜率为33.故切线方程为y-3=33(x-1),即x-3y+2=0.答案 D3.(2015·东阳诊断考试)已知圆O1:(x-a)2+(y-b)2=4,O2:(x-a-1)2+(y-b-2)2=1(a,b∈R),则两圆的位置关系是() A.内含B.内切C.相交D.外切解析由O1:(x-a)2+(y-b)2=4得圆心坐标为(a,b),半径为2;由O2:(x-a-1)2+(y-b-2)2=1得圆心坐标为(a+1,b+2),半径为1,所以两圆圆心之间的距离为|O 1O 2|=12+22=5,因为|2-1|=1<5<2+1=3,所以两圆相交,故选C.答案 C4.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0. 答案 A5.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A .k =12,b =-4 B .k =-12,b =4 C .k =12,b =4D .k =-12,b =-4解析 因为直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则y =kx 与直线2x +y +b =0垂直,且2x +y +b =0过圆心,所以解得k =12,b =-4. 答案 A 二、填空题6.(2015·浙大附中质量检测)直线y =2x +1被圆x 2+y 2=1截得的弦长为________. 解析 圆x 2+y 2=1的圆心O (0,0),半径r =1.圆心O 到直线y =2x +1的距离为d =122+(-1)2=55,故弦长为2r 2-d 2=21-15=455.答案45 57.(2014·学军中学调研)过点P(1,1)的直线,将圆形区域{}(x,y)|x2+y2≤4分为两部分,使得这两部分的面积之差最大,则该直线的方程为________.解析当圆心与P的连线和过点P的直线垂直时,符合条件.圆心O与P点连线的斜率k=1,所以直线OP垂直于x+y-2=0.答案x+y-2=08.(2014·重庆卷)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为________.解析由x2+y2+2x-4y-4=0,得(x+1)2+(y-2)2=9,∴圆C的圆心坐标为(-1,2),半径为3.由AC⊥BC,知△ABC为等腰直角三角形,所以C到直线AB的距离d=322,即|-1-2+a|12+(-1)2=322,所以|a-3|=3,即a=0或a=6.答案0或6三、解答题9.已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.若直线l过P且被圆C截得的线段长为43,求l的方程.解如图所示,AB=43,D是AB的中点,CD⊥AB,AD=23,圆x2+y2+4x-12y+24=0可化为(x+2)2+(y-6)2=16,圆心C(-2,6),半径r=4,故AC=4,在Rt△ACD中,可得CD=2.当直线l 的斜率存在时,设斜率为k ,则直线l 的方程为y -5=kx ,即kx -y +5=0, 由点C 到直线AB 的距离公式,得|-2k -6+5|k 2+(-1)2=2, 解得k =34.此时直线l 的方程为3x -4y +20=0; 当直线l 的斜率不存在时,方程为x =0,则y 2-12y +24=0,∴y 1=6+23,y 2=6-23, ∴|y 2-y 1|=43,故x =0满足题意; ∴所求直线的方程为3x -4y +20=0或x =0. 10.已知直线l :y =kx +1,圆C :(x -1)2+(y +1)2=12. (1)试证明:不论k 为何实数,直线l 和圆C 总有两个交点; (2)求直线l 被圆C 截得的最短弦长. 法一 (1)证明 由⎩⎨⎧y =kx +1,(x -1)2+(y +1)2=12, 消去y 得(k 2+1)x 2-(2-4k )x -7=0, 因为Δ=(2-4k )2+28(k 2+1)>0,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 设直线与圆交于A (x 1,y 1),B (x 2,y 2)两点, 则直线l 被圆C 截得的弦长 |AB |=1+k 2|x 1-x 2| =28-4k +11k 21+k 2=211-4k +31+k 2, 令t =4k +31+k2,则tk 2-4k +(t -3)=0, 当t =0时,k =-34,当t ≠0时,因为k ∈R , 所以Δ=16-4t (t -3)≥0,解得-1≤t ≤4,且t ≠0, 故t =4k +31+k 2的最大值为4,此时|AB |最小为27. 法二 (1)证明 圆心C (1,-1)到直线l 的距离d =|k +2|1+k2,圆C 的半径R =23,R 2-d 2=12-k 2+4k +41+k 2=11k 2-4k +81+k2,而在S =11k 2-4k +8中, Δ=(-4)2-4×11×8<0,故11k 2-4k +8>0对k ∈R 恒成立,所以R 2-d 2>0,即d <R ,所以不论k 为何实数,直线l 和圆C 总有两个交点. (2)解 由平面几何知识, 知|AB |=2R 2-d 2=28-4k +11k 21+k 2,下同法一.法三 (1)证明 因为不论k 为何实数,直线l 总过点P (0,1),而|PC |=5<23=R ,所以点P (0,1)在圆C 的内部,即不论k 为何实数,直线l 总经过圆C 内部的定点P .所以不论k 为何实数,直线l 和圆C 总有两个交点.(2)解 由平面几何知识知过圆内定点P (0,1)的弦,只有和PC (C 为圆心)垂直时才最短,而此时点P (0,1)为弦AB 的中点,由勾股定理,知|AB |=212-5=27, 即直线l 被圆C 截得的最短弦长为27.能力提升题组(建议用时:35分钟)11.已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab 的最大值为( )A.62B.32C.94 D .2 3解析 由两圆相外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和,即(a +b )2=9=a 2+b 2+2ab ≥4ab ,所以ab ≤94,即ab 的最大值是94(当且仅当a =b时取等号),故选C. 答案 C12.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于1的点有( )A .1个B .2个C .3个D .4个解析 因为圆心到直线的距离为|9+12-11|5=2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个.答案 C13.已知两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0,则以两圆公共弦为直径的圆的方程是________________.解析圆C1的圆心为(1,-5),半径为50,圆C2的圆心为(-1,-1),半径为10,则两圆心连线的直线方程为2x+y+3=0,由两圆方程作差得公共弦方程为x-2y+4=0,两直线的交点(-2,1)即为所求圆的圆心,由垂径定理可以求得半径为5,即所求圆的方程为(x+2)2+(y-1)2=5.答案(x+2)2+(y-1)2=514.已知圆M:x2+(y-2)2=1,Q是x轴上的动点,QA,QB分别切圆M于A,B两点.(1)若Q(1,0),求切线QA,QB的方程;(2)求四边形QAMB面积的最小值;(3)若|AB|=423,求直线MQ的方程.解(1)设过点Q的圆M的切线方程为x=my+1,则圆心M到切线的距离为1,∴|2m+1|m2+1=1,∴m=-43或0,∴QA,QB的方程分别为3x+4y-3=0和x=1.(2)∵MA⊥AQ,∴S四边形MAQB=|MA|·|QA|=|QA|=|MQ|2-|MA|2=|MQ|2-1≥|MO|2-1= 3.∴四边形QAMB 面积的最小值为 3. (3)设AB 与MQ 交于P , 则MP ⊥AB ,MB ⊥BQ ,∴|MP |=1-⎝⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |,即1=13|MQ |, ∴|MQ |=3,∴x 2+(y -2)2=9.设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0), ∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.15.(2014·新课标全国Ⅰ卷)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.设M (x ,y ),则CM→=(x ,y -4),MP →=(2-x,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0,即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆.由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为x +3y -8=0.又|OM |=|OP |=22,O 到l 的距离为4105,所以|PM |=4105,S △POM =12×4105×4105=165,故△POM 的面积为165.。
第五讲椭圆知识梳理·双基自测错误!错误!错误!错误!知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F 2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程错误!+错误!=1(a>b>0)错误!+错误!=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴对称中心:原点错误!错误!错误!错误!1.a+c与a-c分别为椭圆上的点到焦点距离的最大值和最小值.2.过椭圆的焦点且与长轴垂直的弦|AB|=错误!,称为通径.3.若过焦点F1的弦为AB,则△ABF2的周长为4a.4.e=错误!.5.椭圆的焦点在x轴上⇔标准方程中x2项的分母较大,椭圆的焦点在y轴上⇔标准方程中y2项的分母较大.6.AB为椭圆错误!+错误!=1(a>b>0)的弦,A(x1,y1),B(x2,y2),弦中点M(x0,y0),则(1)弦长l=错误!|x1-x2|=错误!|y1-y2|;(2)直线AB的斜率k AB=-错误!.7.若M、N为椭圆错误!+错误!=1长轴端点,P是椭圆上不与M、N重合的点,则K PM·K PN=-错误!.错误!错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆的离心率e越大,椭圆就越圆.(×)(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(4)错误!+错误!=1(a>b>0)与错误!+错误!=1(a>b>0)的焦距相同.(√)题组二走进教材2.(必修2P42T4)椭圆x210-m+错误!=1的焦距为4,则m等于(C)A.4 B.8C.4或8 D.12[解析]当焦点在x轴上时,10-m>m-2>0,10-m-(m-2)=4,∴m=4.当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)=4,∴m=8.∴m=4或8.3.(必修2P68A组T3)过点A(3,-2)且与椭圆错误!+错误!=1有相同焦点的椭圆的方程为(A)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1题组三走向高考4.(2018·课标全国Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C 上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(D)A.1-错误!B.2-错误!C.错误!D.错误!-1[解析]设|PF2|=x,则|PF1|=3x,|F1F2|=2x,故2a=|PF1|+|PF2|=(1+错误!)x,2c=|F1F2|=2x,于是离心率e=错误!=错误!=错误!=错误!-1.5.(2019·课标Ⅰ,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为(B)A.x22+y2=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析]设|F2B|=x(x>0),则|AF2|=2x,|AB|=3x,|BF1|=3x,|AF1|=4a-(|AB|+|BF1|)=4a-6x,由椭圆的定义知|BF1|+|BF2|=2a=4x,所以|AF1|=2x.在△BF1F2中,由余弦定理得|BF1|2=|BF2|2+|F1F2|2-2|F2B|·|F1F2|cos∠BF2F1,即9x2=x2+22-4x·cos∠BF2F1,①在△AF1F2中,由余弦定理可得|AF1|2=|AF2|2+|F1F2|2-2|AF2|·|F1F2|cos∠AF2F1,即4x2=4x2+22+8x·cos∠BF2F1,②由①②得x=错误!,所以2a=4x=2错误!,a=错误!,所以b2=a2-c2=2.所以椭圆的方程为错误!+错误!=1.故选B.考点突破·互动探究考点一椭圆的定义及应用——自主练透例1 (1)(2021·泉州模拟)已知椭圆的焦点是F1、F2,P是椭圆上的一个动点,如果M是线段F1P的中点,那么动点M的轨迹是(B)A.圆B.椭圆C.双曲线的一支D.抛物线(2)已知F是椭圆5x2+9y2=45的左焦点,P是此椭圆上的动点,A(1,1)是一定点.则|PA|+|PF|的最大值和最小值分别为__6+错误!,6-错误!__.(3)已知F1,F2是椭圆C:错误!+错误!=1(a>b>0)的两个焦点,P为椭圆C上的一点,且∠F1PF2=60°.若△PF1F2的面积为3错误!,则b=__3__.[解析](1)如图所示,由题知|PF1|+|PF2|=2a,设椭圆方程:错误!+错误!=1(其中a>b>0).连接MO,由三角形的中位线可得:|F1M|+|MO|=a(a>|F1O|),则M的轨迹为以F1、O为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F1,则|PF|+|PF1|=6.∴|PA|+|PF|=|PA|-|PF1|+6.由椭圆方程x29+y25=1知c=错误!=2,∴F1(2,0),∴|AF1|=错误!.利用-|AF1|≤|PA|-|PF1|≤|AF1|(当P、A、F1共线时等号成立).∴|PA|+|PF|≤6+错误!,|PA|+|PF|≥6-错误!.故|PA|+|PF|的最大值为6+2,最小值为6-错误!.(3)|PF1|+|PF2|=2a,又∠F1PF2=60°,所以|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=|F1F2|2,即(|PF1|+|PF2|)2-3|PF1||PF2|=4c2,所以3|PF1||PF2|=4a2-4c2=4b2,所以|PF1||PF2|=错误!b2,又因为S△PF1F2=错误!|PF1||PF2|sin 60°=错误!×错误!b2×错误!=错误!b2=3错误!,所以b=3.故填3.[引申]本例(2)中,若将“A(1,1)”改为“A(2,2)”,则|PF|-|PA|的最大值为__4__,|PF|+|PA|的最大值为__8__.[解析]设椭圆的右焦点为F1,则∵|PF1|+|PA|≥|AF1|=2(P在线段AF1上时取等号),∴|PF|-|PA|=6-(|PF1|+|PA|)≤4,∵|PA|-|PF1|≤|AF1|=2,(当P在AF1延长线上时取等号),∴|PF|+|PA|=6+|PA|-|PF1|≤8.名师点拨(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用:椭圆上一点P与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2021·大庆模拟)已知点M(3,0),椭圆错误!+y2=1与直线y=k(x+错误!)交于点A、B,则△ABM的周长为__8__.(2)(2019·课标Ⅲ,15)设F1,F2为椭圆C:错误!+错误!=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为__(3,错误!)__.(3)(2021·河北衡水调研)设F1、F2分别是椭圆错误!+错误!=1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|-|PF1|的最小值为__-5__.[解析](1)直线y=k(x+错误!)过定点N(-错误!,0).而M、N恰为椭圆错误!+y2=1的两个焦点,由椭圆定义知△ABM的周长为4a=4×2=8.(2)因为F1,F2分别是椭圆C的左,右焦点,由M点在第一象限,△MF1F2是等腰三角形,知|F1M|=|F1F2|,又由椭圆方程错误!+错误!=1,知|F1F2|=8,|F1M|+|F2M|=2×6=12,所以|F1M|=|F1F2|=8,所以|F2M|=4.设M(x0,y0)(x0>0,y0>0),则错误!解得x0=3,y0=错误!,即M(3,错误!).(3)由题意可知F2(3,0),由椭圆定义可知|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|=错误!=5,2a=10,∴|PM|-|PF2|≥5-10=-5,即|PM|-|PF1|的最小值为-5.考点二椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程:(1)长轴是短轴的3倍且经过点A(3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为错误!;(3)经过点P(-2错误!,1),Q(错误!,-2)两点;(4)与椭圆错误!+错误!=1有相同离心率,且经过点(2,-错误!).[解析](1)若焦点在x轴上,设方程为错误!+错误!=1(a >b>0).∵椭圆过点A(3,0),∴错误!=1,∴a=3.∵2a=3×2b,∴b=1.∴方程为错误!+y2=1.若焦点在y轴上,设方程为错误!+错误!=1(a>b>0).∵椭圆过点A(3,0),∴9b2=1,∴b=3.又2a=3×2b,∴a=9.∴方程为错误!+错误!=1.综上所述,椭圆方程为错误!+y2=1或错误!+错误!=1.(2)由已知,有错误!解得错误!从而b2=a2-c2=9.∴所求椭圆方程为x212+错误!=1或错误!+错误!=1.(3)设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),∵点P(-2错误!,1),Q(错误!,-2)在椭圆上,∴错误!解得m=错误!,n=错误!.故椭圆方程为错误!+错误!=1.(4)若焦点在x轴上,设所求椭圆方程为错误!+错误!=t(t>0),将点(2,-错误!)代入,得t=错误!+错误!=2.故所求方程为错误!+错误!=1.若焦点在y轴上,设方程为错误!+错误!=λ(λ>0)代入点(2,-3),得λ=错误!,∴所求方程为错误!+错误!=1.综上可知椭圆方程为x28+错误!=1或错误!+错误!=1.名师点拨(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a>|F1F2|这一条件.(2)用待定系数法求椭圆标准方程的一般步骤:①作判断:根据条件判断焦点的位置;②设方程:焦点不确定时,要注意分类讨论,或设方程为mx2+ny2=1(m>0,n>0,m≠0);③找关系:根据已知条件,建立关于a,b,c或m,n的方程组;④求解,得方程.(3)椭圆的标准方程的两个应用①方程错误!+错误!=1(a>b>0)与错误!+错误!=λ(λ>0)有相同的离心率.②与椭圆错误!+错误!=1(a>b>0)共焦点的椭圆系方程为错误!+错误!=1(a>b>0,k+b2>0),恰当运用椭圆系方程,可使运算简便.〔变式训练2〕(1)“2<m<6”是“方程错误!+错误!=1表示椭圆”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2021·广东深圳二模)已知椭圆C:x2a2+错误!=1(a>0)的右焦点为F,O为坐标原点,C上有且只有一个点P满足|OF|=|FP|,则C的方程为(D)A.错误!+错误!=1 B.错误!+错误!=1C.错误!+错误!=1 D.错误!+错误!=1[解析](1)错误!+错误!=1表示椭圆⇔错误!⇔2<m<6且m≠4,∴“2<m<6”是方程“错误!+错误!=1表示椭圆”的必要不充分条件,故选B.(2)根据对称性知P在x轴上,|OF|=|FP|,故a=2c,a2=3+c2,解得a=2,c=1,故椭圆方程为:错误!+错误!=1.故选:D.考点三,椭圆的几何性质-—师生共研例3 (1)(2017·全国)椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,F2P=2,∠F1F2P=错误!,则C的长轴长为(D)A.2 B.2错误!C.2+错误!D.2+2错误!(2)(2021·河北省衡水中学调研)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(B)A.错误!B.错误!C.错误!D.错误!(3)(2021·广东省期末联考)设F1,F2分别是椭圆错误!+错误!=1(a >b>0)的左、右焦点,若在直线x=错误!上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是(D)A.错误!B.错误!C.错误!D.错误![解析](1)椭圆C的焦点为F1(-1,0),F2(1,0),则c=1,∵|PF2|=2,∴|PF1|=2a-|PF2|=2a-2,由余弦定理可得|PF1|2=|F1F2|2+|PF2|2-2|F1F2|·|PF2|·cos 错误!,即(2a-2)2=4+4-2×2×2×错误!,解得a=1+错误!,a=1-错误!(舍去),∴2a=2+2错误!,故选D.(2)不妨设直线l:错误!+错误!=1,即bx+cy-bc=0⇒椭圆中心到l的距离错误!=错误!⇒e=错误!=错误!,故选B.(3)如图F2H⊥PF1,∴|F1F2|=|PF2|,由题意可知错误!-c≤2c,∴e2=错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.故选D.名师点拨椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.椭圆离心率的范围问题一般借助几何量的取值范围求解,遇直线与椭圆位置关系通常由直线与椭圆方程联立所得方程判别式Δ的符号求解.求椭圆离心率的取值范围的方法方法解读适合题型几何法利用椭圆的几何性质,如|x|≤a,|y|≤b,0<e<1,建立不等关系,或者根据几何图形的临界情况建立题设条件有明显的几何关系〔变式训练3〕(1)(2017·全国卷Ⅲ)已知椭圆C:x2a2+错误!=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx -ay+2ab=0相切,则C的离心率为(A)A.错误!B.错误!C.错误!D.错误!(2)(2021·内蒙古呼和浩特市质检)已知椭圆C:错误!+错误!=1(a>b>0)的左、右顶点分别为A1,A2,点P是椭圆上的动点,若∠A1PA2的最大可以取到120°,则椭圆C的离心率为(D)A.错误!B.错误!C.错误!D.错误!(3)已知F1,F2是椭圆x2a2+错误!=1(a>b>0)的左、右焦点,若椭圆上存在点P,使∠F1PF2=90°,则椭圆的离心率的取值范围是__错误!__.[解析](1)由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bx-ay+2ab=0与圆相切,∴圆心到直线的距离d=错误!=a,解得a=错误!b,∴ba=错误!,∴e=错误!=错误!=错误!=错误!=错误!.故选A.(2)当P为短轴端点时∠A1PA2最大,由题意可知错误!=tan 60°=错误!,∴错误!=错误!,∴e=错误!=错误!,故选D.(3)由题意可知当P为椭圆短轴端点时∠OPF1=∠OPF2≥45°,即c≥b,∴c2≥a2-c2,∴错误!≥错误!,即e≥错误!,又0<e<1,∴错误!≤e<1.考点四,直线与椭圆—-多维探究角度1直线与椭圆的位置关系例4 若直线y=kx+1与椭圆x25+错误!=1总有公共点,则m的取值范围是(D)A.m>1 B.m>0C.0<m<5且m≠1D.m≥1且m≠5[解析]解法一:由于直线y=kx+1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<错误!≤1且m≠5,故m≥1且m≠5.故选D.解法二:由错误!消去y整理得(5k2+m)x2+10kx+5(1-m)=0.由题意知Δ=100k2-20(1-m)(5k2+m)≥0对一切k∈R 恒成立,即5mk2+m2-m≥0对一切k∈R恒成立,∴错误!,即m≥1,又m≠5,∴m≥1且m≠5.故选D.角度2中点弦问题例5 (1)(2021·湖北省宜昌市调研)过点P(3,1)且倾斜角为错误!的直线与椭圆错误!+错误!=1(a>b>0)相交于A,B两点,若AP→=错误!,则该椭圆的离心率为(C)A.错误!B.错误!C.错误!D.错误!(2)已知椭圆错误!+y2=1,点P错误!,则以P为中点的椭圆的弦所在直线的方程为__2x+4y-3=0__.[解析](1)由题意可知P为AB的中点,且k AB=-1,设A (x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1,两式相减得错误!=-错误!,∴k AB=错误!=-错误!=-错误!=-1,即错误!=错误!,∴e =错误!=错误!,故选C .(2)设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有错误!+y 错误!=1,错误!+y 错误!=1.两式作差,得错误!+(y 2-y 1)(y 2+y 1)=0.∵x 1+x 2=2x 0,y 1+y 2=2y 0,错误!=k AB ,代入后求得k AB =-错误!=-错误!,∴其方程为y -错误!=-错误!错误!,即2x +4y -3=0.角度3 弦长问题例6 已知椭圆E :x 2a 2+错误!=1(a >b >0)经过点P 错误!,椭圆E 的一个焦点为(3,0).(1)求椭圆E 的方程;(2)若直线l 过点M (0,错误!)且与椭圆E 交于A ,B 两点,求|AB |的最大值.[解析] (1)依题意,设椭圆E 的左、右焦点分别为F 1(-错误!,0),F 2(3,0).由椭圆E 经过点P 错误!,得|PF 1|+|PF 2|=4=2a ,∴a =2,c =错误!,∴b 2=a 2-c 2=1.∴椭圆E 的方程为错误!+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +2,A(x1,y1),B(x2,y2).由错误!得(1+4k2)x2+8错误!kx+4=0.由Δ>0得(8错误!k)2-4(1+4k2)×4>0,∴4k2>1.由x1+x2=-错误!,x1x2=错误!得|AB|=错误!·错误!=2错误!.设t=11+4k2,则0<t<错误!,∴|AB|=2错误!=2错误!≤错误!,当且仅当t=错误!时等号成立.当直线l的斜率不存在时,|AB|=2<错误!.综上,|AB|的最大值为错误!.名师点拨直线与椭圆综合问题的常见题型及解题策略(1)直线与椭圆位置关系的判断方法①联立方程,借助一元二次方程的判别式Δ来判断;②借助几何性质来判断.(2)求椭圆方程或有关几何性质.可依据条件寻找满足条件的关于a,b,c的等式,解方程即可求得椭圆方程或椭圆有关几何性质.(3)关于弦长问题.一般是利用根与系数的关系、弦长公式求解.设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=错误!=错误!(其中k为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.(4)对于中点弦或弦的中点问题,一般利用点差法求解.若直线l与圆锥曲线C有两个交点A,B,一般地,首先设出A(x1,y1),B(x2,y2),代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.注意答题时不要忽视对判别式的讨论.〔变式训练4〕(1)(角度1)直线y=kx+k+1与椭圆错误!+错误!=1的位置关系是__相交__.(2)(角度2)(2021·广东珠海期末)已知椭圆错误!+错误!=1(a >b>0)的右焦点为F,离心率错误!,过点F的直线l交椭圆于A,B两点,若AB中点为(1,1),则直线l的斜率为(D)A.2 B.-2C.错误!D.-错误!(3)(角度3)斜率为1的直线l与椭圆错误!+y2=1相交于A,B 两点,则|AB|的最大值为(C)A.2 B.错误!C.错误!D.错误![解析](1)由于直线y=kx+k+1=k(x+1)+1过定点(-1,1),而(-1,1)在椭圆内,故直线与椭圆必相交.(2)因为错误!=错误!,∴4c2=2a2,∴4(a2-b2)=2a2,∴a2=2b2,设A(x1,y1),B(x2,y2),且x1+x2=2,y1+y2=2,错误!,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以2b2(x1-x2)+2a2(y1-y2)=0,所以2b2+4b2错误!=0,所以1+2k=0,∴k=-错误!,选D.(3)设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为y=x+t,由错误!消去y,得5x2+8tx+4(t2-1)=0,则x1+x2=-错误!t,x1x2=错误!.∴|AB|=错误!|x1-x2|=1+k2·错误!=2·错误!=错误!·错误!,当t=0时,|AB|max=错误!.故选C.名师讲坛·素养提升利用换元法求解与椭圆相关的最值问题例7如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为__4__.[解析]e2=错误!=1-错误!=1-错误!=错误!,∴b2=3,∴椭圆方程为x24+错误!=1,且F(-1,0),A(2,0),设P(2sin θ,错误!cos θ),则错误!·错误!=(-1-2sin θ,-错误!cos θ)·(2-2sin θ,-错误!cos θ)=sin2θ-2sin θ+1=(sin θ-1)2≤4.当且仅当sin θ=-1时取等号,故错误!·错误!的最大值为4.另解:设P(x,y),由上述解法知错误!·错误!=(-1-x,-y)·(2-x,-y)=x2+y2-x-2=错误!(x-2)2(-2≤x≤2),显然当x =-2时,错误!·错误!最大且最大值为4.名师点拨遇椭圆错误!+错误!=1(a>b>0)上的点到定点或定直线距离相关的最值问题,一般用三角换元法求解,即令x=a sin θ,y=b cos θ,将其化为三角最值问题.〔变式训练5〕椭圆错误!+错误!=1上的点到直线x+2y-错误!=0的最大距离是(D)A.3 B.11C.2错误!D.错误![解析]设椭圆错误!+错误!=1上的点P(4cos θ,2sin θ),则点P 到直线x+2y-2=0的距离为d=错误!=错误!,∴d max=错误!=错误!.。
第2讲两直线的位置关系基础巩固题组(建议用时:40分钟)一、选择题1.直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是() A.3x+2y-1=0 B.3x+2y+7=0C.2x-3y+5=0 D.2x-3y+8=0解析由题意知,直线l的斜率是-32,因此直线l的方程为y-2=-32(x+1),即3x+2y-1=0.答案 A2.(2014·乐清中学模拟)已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+3=0平行,则a=() A.-1 B.2C.0或-2 D.-1或2解析若a=0,两直线方程分别为-x+2y+1=0和x=-3,此时两直线相交,不平行,所以a≠0;当a≠0时,两直线若平行,则有a-11=2a≠13,解得a=-1或2.答案 D3.两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A.4 B.2 1313C.52613 D.72010解析把3x+y-3=0化为6x+2y-6=0,则两平行线间的距离d=|1-(-6)|62+22=7 2010. 答案 D4.(2015·金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析 解方程组⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k得两直线的交点坐标为⎝ ⎛⎭⎪⎪⎫k k -1,2k -1k -1,因为0<k <12,所以kk -1<0,2k -1k -1>0,故交点在第二象限.答案 B5.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析 直线l 1:y =k (x -4)经过定点(4,0),其关于点(2,1)对称的点为(0,2),又直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,故直线l 2经过定点(0,2). 答案 B 二、填空题6.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =________. 解析 由两直线垂直的条件得2a +3(a -1)=0, 解得a =35. 答案 357.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 解析 由⎩⎪⎨⎪⎧ y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.答案 -98.(2015·温州中学检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________.解析 显然直线l 斜率不存在时不满足题意,设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案 2x +3y -18=0或2x -y -2=0 三、解答题9.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得: (1)l 1与l 2相交;(2)l 1⊥l 2;(3)l 1∥l 2;(4)l 1,l 2重合. 解 (1)由已知1×3≠m (m -2), 即m 2-2m -3≠0,解得m ≠-1且m ≠3. 故当m ≠-1且m ≠3时,l 1与l 2相交. (2)当1·(m -2)+m ·3=0,即m =12时,l 1⊥l 2.(3)当1×3=m (m -2)且1×2m ≠6×(m -2)或m ×2m ≠3×6,即m =-1时,l 1∥l 2. (4)当1×3=m (m -2)且1×2m =6×(m -2),即m =3时,l 1与l 2重合.10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程. 解 依题意知:k AC =-2,A (5,1), ∴l AC 为2x +y -11=0,联立l AC ,l CM 得⎩⎨⎧2x +y -11=0,2x -y -5=0,∴C (4,3).设B (x 0,y 0),AB 的中点M 为⎝ ⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,∴⎩⎨⎧2x 0-y 0-1=0,x 0-2y 0-5=0,∴B (-1,-3), ∴k BC =65,∴直线BC 的方程为y -3=65(x -4), 即6x -5y -9=0.能力提升题组(建议用时:35分钟)11.(2015·东阳中学一模)若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0.欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值,而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小为2.所以m 2+n 2的最小值为4. 答案 C12.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析 易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1(4,2)与A 2(-2,0)两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案 A13.l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,直线l 1的方程是________.解析 当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两条平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0. 答案 x +2y -3=014.已知直线l :x -2y +8=0和两点A (2,0),B (-2,-4). (1)在直线l 上求一点P ,使|P A |+|PB |最小; (2)在直线l 上求一点P ,使||PB |-|P A ||最大. 解 (1)设A 关于直线l 的对称点为A ′(m ,n ), 则⎩⎪⎨⎪⎧n -0m -2=-2m +22-2·n +02+8=0,解得⎩⎨⎧m =-2n =8,故A ′(-2,8).P 为直线l 上的一点,则|P A |+|PB |=|P A ′|+|PB |≥|A ′B |,当且仅当B ,P ,A ′三点共线时,|P A |+|PB |取得最小值,为|A ′B |,点P 即是直线A ′B 与直线l 的交点,解⎩⎨⎧ x =-2x -2y +8=0得⎩⎨⎧x =-2y =3, 故所求的点P 的坐标为(-2,3).(2)A ,B 两点在直线l 的同侧,P 是直线l 上的一点,则||PB |-|P A ||≤|AB |,当且仅当A ,B ,P 三点共线时,||PB |-|P A ||取得最大值,为|AB |,点P 即是直线AB 与直线l 的交点,又直线AB 的方程为y =x -2,解⎩⎨⎧ y =x -2x -2y +8=0得⎩⎨⎧x =12y =10, 故所求的点P 的坐标为(12,10).15.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12;(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0, 解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。
浙江专用高考数学一轮复习第八章平面解析几何第五节曲线与方程教案含解析第五节 曲线与方程1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1x ,y =0,F 2x ,y =0的实数解.若此方程组无解,则两曲线无交点. [小题体验]1.如果曲线C 上的点的坐标满足方程F (x ,y )=0,则下列说法正确的是( ) A .曲线C 的方程是F (x ,y )=0 B .方程F (x ,y )=0的曲线是CC .坐标不满足方程F (x ,y )=0的点都不在曲线C 上D .坐标满足方程F (x ,y )=0的点都在曲线C 上解析:选C 原说法写成命题形式即“若点M (x ,y )是曲线C 上的点,则点M 的坐标适合方程F (x ,y )=0”,其逆否命题是“若点M 的坐标不适合方程F (x ,y )=0,则M 点不在曲线C 上”,此即说法C ,故选C.2.(教材习题改编)和点O (0,0),A (c,0)距离的平方和为常数c 的点的轨迹方程为________.解析:设点的坐标为(x ,y ), 由题意知(x -02+y -02)2+(x -c2+y -02)2=c ,即x 2+y 2+(x -c )2+y 2=c , 即2x 2+2y 2-2cx +c 2-c =0. 答案:2x 2+2y 2-2cx +c 2-c =01.曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).2.求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响. [小题纠偏]1.(教材习题改编)已知M (-1,0),N (1,0),|PM |-|PN |=2,则动点P 的轨迹是( ) A .双曲线 B .双曲线左支 C .一条射线D .双曲线右支解析:选C 由于|PM |-|PN |=|MN |,所以D 不正确,应为以N 为端点,沿x 轴正向的一条射线.2.在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理得|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,故动点A 是以B ,C 为焦点,a2为实轴长的双曲线右支.即动点A 的轨迹方程为16x 2a 2-16y23a 2=1(x >0且y ≠0).答案:16x 2a 2-16y23a2=1(x >0且y ≠0)考点一 直接法求轨迹方程基础送分型考点——自主练透[题组练透]1.(2019·杭二月考)F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两焦点,P 是椭圆上任意一点,从任一焦点引∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:选A 如图,由题意,延长F 2P ,与F 1Q 的延长线交于M 点,连接Q O ,∵P Q 是∠F 1PF 2的外角平分线,且P Q ⊥MF 1, ∴△F 1MP 中,|PF 1|=|MP |且Q 为MF 1的中点. 在△F 1MF 2中,由三角形中位线定理, 得|O Q|=12|MF 2|=12(|MP |+|PF 2|),∵|PF 1|+|PF 2|=2a , ∴|MP |+|PF 2|=2a , ∴|O Q|=12(|MP |+|PF 2|)=a ,可得动点Q 的轨迹方程为x 2+y 2=a 2,∴点Q 的轨迹为以原点为圆心,半径为a 的圆.故选A.2.(2018·上虞期初)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,点P 是动点,且直线AP 与BP 的斜率之积为-13,则点P 的轨迹方程为( )A .3x 2+y 2=4 B .3x 2+y 2=1 C .x 2+3y 2=4D .x 2+3y 2=1解析:选C 设P (x ,y ),由题可得,B (1,-1).因为直线AP 与BP 的斜率之积为-13,所以k AP ·k BP =y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4. 3.(2018·金华五中模拟)已知|AB |=3,A ,B 分别在x 轴和y 轴上运动,O 为原点,OP =13OA +23OB ,则动点P 的轨迹方程为( ) A .x 2+y 29=1B.x 29+y 2=1 C .x 2+y 24=1D.x 24+y 2=1解析:选C 设A (a,0),B (0,b ),P (x ,y )是所求曲线上任意一点,由OP =13OA +23OB ,得⎩⎪⎨⎪⎧x =13a ,y =23b ,所以⎩⎪⎨⎪⎧a =3x ,b =32y ,又|AB |=3,所以a 2+b 2=9,即9x 2+94y 2=9,所以动点P 的轨迹方程为x 2+y 24=1.[谨记通法]直接法求轨迹方程的2种常见类型及解题策略(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.但要注意完备性易忽视.考点二 定义法求轨迹方程重点保分型考点——师生共研[典例引领]1.(2019·稽阳联考)已知圆C :(x -2)2+y 2=25,M 为圆C 上一动点,定点A (-2,0),点P 在AM 上,点N 在CM 上,且满足AM =2AP ,AM ·NP =0,则点N 的轨迹方程为( )A.x 22+y 2=1B.y 22+x 2=1 C.4x 225+4y29=1 D.4y 225+4x29=1解析:选C ∵AM =2AP ,AM ·NP =0,∴NP 为AM 的垂直平分线,∴|NA |=|NM |.∵|NC |+|NM |=5,∴|NC |+|NA |=5>4,∴动点N 的轨迹是以A ,C 为焦点的椭圆,且椭圆的长轴长为5,焦距为4,则a =52,c =2,b =32,故点N 的轨迹方程为4x 225+4y29=1.2.(2018·宁波月考)设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),(1)当a =3时,点P 的轨迹是________; (2)当a ≠3时,点P 的轨迹是________. 解析:∵a +9a≥2a ·9a =6(a >0). (1)当a =3时,a +9a=6,此时|PF 1|+|PF 2|=|F 1F 2|,P 点的轨迹为线段F 1F 2, (2)当a ≠3,a >0时,|PF 1|+|PF 2|>|F 1F 2|. 由椭圆定义知点P 的轨迹为椭圆. 答案:(1)线段F 1F 2 (2)椭圆[由题悟法]定义法求曲线方程的一般策略(1)求轨迹方程时,若动点与定点、定线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,其方程是何形式的情况,利用条件把待定系数求出来,使问题得解.(3)利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.[即时应用]已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2,则曲线Γ的方程为________.解析:法一:设S (x ,y )为曲线Γ上任意一点,依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等,所以曲线Γ是以点F (0,1)为焦点、直线y =-1为准线的抛物线,所以曲线Γ的方程为x 2=4y .法二:设S (x ,y )为曲线Γ上任意一点, 则|y -(-3)|-x -02+y -12=2,依题意,点S (x ,y )只能在直线y =-3的上方, 所以y >-3, 所以x -02+y -12=y +1,化简,得曲线Γ的方程为x 2=4y . 答案:x 2=4y考点三 代入法求轨迹方程重点保分型考点——师生共研[典例引领]已知P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,且O Q ―→=PF 1―→+PF 2―→,则动点Q 的轨迹方程是________.解析:由于O Q ―→=PF 1―→+PF 2―→, 又PF 1―→+PF 2―→=2PO ―→=-2OP ―→,设Q(x ,y ),则OP ―→=-12O Q ―→=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x2,-y 2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.答案:x 24a 2+y 24b2=1[由题悟法]代入法求轨迹方程的4个步骤(1)设点:设所求点坐标为(x ,y ),与之相关点坐标为(x 0,y 0).(2)寻求关系:求出动点P (x ,y )与已知动点Q(x ′,y ′)之间的关系式⎩⎪⎨⎪⎧x 0=f x ,y ,y 0=g x ,y .(3)代换:将上述关系式代入已知动点满足的曲线方程,便可得到所求动点的轨迹方程. (4)检验:说明化简后的方程的解为坐标的点都在曲线上.[即时应用]已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB ―→=-2MA ―→.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),∵B (0,2),M ⎝⎛⎭⎪⎫33,0, 故MB ―→=⎝ ⎛⎭⎪⎫-33,2,MA ―→=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB ―→=-2MA ―→, ∴⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0. ∴x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1. ∵A ,B 都在曲线E 上,∴⎩⎪⎨⎪⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·-12=1,解得⎩⎪⎨⎪⎧a =1,b =14.∴曲线E 的方程为x 2+y 24=1.一抓基础,多练小题做到眼疾手快1.(2018·深圳调研)已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且Q P ―→·Q F ―→=FP ―→·F Q ―→,则动点P 的轨迹方程为( )A .x 2=4y B .y 2=3x C .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q(x ,-1). ∵Q P ―→·Q F ―→=FP ―→·F Q ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y ,∴动点P 的轨迹方程为x 2=4y .2.方程x =1-4y 2所表示的曲线是( ) A .双曲线的一部分 B .椭圆的一部分 C .圆的一部分D .直线的一部分解析:选B x =1-4y 2两边平方,可变为x 2+4y 2=1(x ≥0),表示的曲线为椭圆的一部分.3.(2018·奉化期末)已知△ABC 中,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,则△ABC 的重心G 的轨迹方程为( )A .y =x 2-1 B .y =9x 2+12x +3 C .y =3x 2+4x +1D .y =3x 2+1解析:选B 设△ABC 的重心G (x ,y ),C (x 1,y 1),则有x =-2+0+x 13,y =0-2+y 13,所以有x 1=3x +2,y 1=3y +2,因为点C 在曲线y =3x 2-1上移动,所以有3y +2=3(3x +2)2-1,化简得y =9x 2+12x +3.4.(2019·韶关模拟)设M 是圆O :x 2+y 2=9上的动点,直线l 过M 且与圆O 相切,若过A (-2,0),B (2,0)两点的抛物线以直线l 为准线,则抛物线焦点F 的轨迹方程是( )A.x 29-y 25=1(y ≠0)B.x 25-y 29=1(y ≠0) C.x 29+y 25=1(y ≠0) D.x 25+y 29=1(y ≠0)解析:选C 设A ,B 两点到直线l 的距离分别为d 1,d 2,则d 1+d 2=2r =6,又A ,B 两点在抛物线上,由定义可知|AF |+|BF |=6>|AB |,所以由椭圆定义可知,动点F 的轨迹是以A ,B 为焦点,长轴长为6,焦距为4的椭圆(不包括与x 轴的交点).则a =3,c =2,b =5,故抛物线焦点F 的轨迹方程是x 29+y 25=1(y ≠0).5.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,动点P (x ,y )满足OA ―→+OB ―→=2OP ―→OP ―→,则点P 的轨迹方程为___________;该轨迹所围区域的面积为________.解析:设B (x 0,y 0),由⎩⎪⎨⎪⎧4+x 0=2x ,y 0=2y ,得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y ,代入圆方程得(2x -4)2+4y 2=4, 即(x -2)2+y 2=1.该轨迹是以(2,0)为圆心,半径为1的圆,所以所围区域的面积为π. 答案:(x -2)2+y 2=1 π二保高考,全练题型做到高考达标1.已知方程ax 2+by 2=1的曲线经过点(0,2)与(1,2),则a +b 为( ) A.12B.34C .1D.32解析:选B 由题意得⎩⎪⎨⎪⎧4b =1,a +2b =1.解得⎩⎪⎨⎪⎧a =12,b =14,∴a +b =34,故选B.2.(2018·嘉兴一中质检)若方程x 2+y 2a=1(a 是常数),则下列结论正确的是( )A .任意实数a ,方程表示椭圆B .存在实数a ,方程表示椭圆C .任意实数a ,方程表示双曲线D .存在实数a ,方程表示抛物线解析:选B 当a >0且a ≠1时,方程表示椭圆,故选B.3.(2018·江西金太阳联考)过点A (0,1)作直线与圆(x -2)2+y 2=1交于B ,C 两点,在线段BC 上取满足BP ∶PC =AB ∶AC 的动点P 的轨迹是一条直线l 的一部分,则轨迹的长度为( )A.255B.355 C.55D.455解析:选D 由题意知,过点A 的直线斜率存在且不为0.设过点A (0,1)的直线方程为y =kx +1,联立圆的方程整理得(1+k 2)x 2+(2k -4)x +4=0,设B (x 1,y 1),C (x 2,y 2),P (x ,y ),则x 1+x 2=4-2k 1+k 2,x 1x 2=41+k 2,由BP ∶PC =AB ∶AC ,得x -x 1x 2-x =x 1x 2,所以x =2x 1x 2x 1+x 2=42-k,y =kx +1=3k +22-k ,消去k ,得直线l 的方程为2x -y -3=0,根据弦长公式得轨迹长为455. 4.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段A Q 的垂直平分线与C Q 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y225=1B.4x 221+4y225=1 C.4x 225-4y221=1 D.4x 225+4y221=1解析:选D 因为M 为A Q 垂直平分线上一点, 则|AM |=|M Q|,所以|MC |+|MA |=|MC |+|M Q|=|C Q|=5,故M 的轨迹为以点C ,A 为焦点的椭圆,所以a =52,c =1,则b 2=a 2-c 2=214,所以椭圆的方程为4x 225+4y221=1.5.(2019·临汾模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,点M ,N 是椭圆C 上关于长轴对称的两点,若直线AM 与BN 相交于点P ,则点P 的轨迹方程是( )A .x =±a (y ≠0)B .y 2=2b (|x |-a )(y ≠0)C .x 2+y 2=a 2+b 2(y ≠0)D.x 2a 2-y 2b2=1(y ≠0)解析:选D 由题意可知A (-a,0),B (a,0), 设M (x 0,y 0),N (x 0,-y 0),y 0≠0,P (x ,y ),y ≠0, 则直线PA 的斜率k =y 0x 0+a,则直线PA 的方程为y =y 0x 0+a(x +a ),① 同理,直线PB 的斜率k =y 0a -x 0,直线PB 的方程为y =y 0a -x 0(x -a ),②①②相乘得y 2=y 20a 2-x20(x 2-a 2),由x 20a 2+y 20b 2=1,得y 20=b 2a2(a 2-x 20), 则y 2=b 2a 2(x 2-a 2),整理得x 2a 2-y 2b2=1(a >b >0,y ≠0),故点P 的轨迹方程是x 2a 2-y 2b2=1(a >b >0,y ≠0).6.已知动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4,则动圆圆心Q 的轨迹方程为__________________.解析:设Q(x ,y ).因为动圆Q 过定点A (2,0)且与y 轴截得的弦MN 的长为4, 所以⎝ ⎛⎭⎪⎫MN 22+|x |2=|A Q|2,所以|x |2+22=(x -2)2+y 2,整理得y 2=4x . 所以动圆圆心Q 的轨迹方程是y 2=4x . 答案:y 2=4x7.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是____________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)8.(2019·浙江百校联考)已知椭圆C 1:y 2a 2+x 2b 2=1(a >b >0)的离心率e =33,且经过点⎝ ⎛⎭⎪⎫1,62,抛物线C 2:x 2=2py (p >0)的焦点F 与椭圆的一个焦点重合.过F 的直线与抛物线C 2交于M ,N 两点,过点M ,N 分别作抛物线C 2的切线l 1,l 2,则直线l 1,l 2的交点Q 的轨迹方程为__________.解析:设椭圆的半焦距为c ,则c a =33,即a =3c ,则b =2c ,故椭圆C 1的方程为y 23c 2+x 22c 2=1,将⎝⎛⎭⎪⎫1,62代入,得c 2=1,所以椭圆C 1的方程为y 23+x 22=1,焦点坐标为(0,±1),故抛物线C 2的方程为x 2=4y .设直线MN 的方程为y =kx +1,代入抛物线C 2的方程得x 2-4kx-4=0,设M ⎝⎛⎭⎪⎫x 1,x 214,N ⎝ ⎛⎭⎪⎫x 2,x 224,则x 1+x 2=4k ,x 1x 2=-4,因为y =x 24,所以y ′=x 2,故直线l 1的斜率为x 12,l 1的方程为y -x 214=x 12(x -x 1),即y =x 12x -x 214,同理,直线l 2的方程为y =x 22x -x 224,由⎩⎪⎨⎪⎧y =x 12x -x 214,y =x 22x -x224,得⎩⎪⎨⎪⎧x =x 1+x22=2k ,y =x 1x24=-1,即直线l 1,l 2的交点Q 为(2k ,-1), 故点Q 的轨迹方程为y =-1. 答案:y =-19.已知点M 在椭圆x 236+y 29=1上,MP ′垂直于x 轴,垂足为P ′,并且M 为线段PP ′的中点,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点M 的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1. ∵M 是线段PP ′的中点, ∴⎩⎪⎨⎪⎧ x 0=x ,y 0=y 2,把⎩⎪⎨⎪⎧ x 0=x ,y 0=y 2代入x 2036+y 209=1, 得x 236+y 236=1,即x 2+y 2=36. ∴点P 的轨迹方程为x 2+y 2=36.10.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1,动点C 的轨迹为曲线M .求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|C Q|+|AP |+|B Q|=2|CP |+|AB |=4>|AB |,所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b2=1(a >b >0,y ≠0), 则a 2=4,b 2=a 2-12=3,所以曲线M :x 24+y 23=1(y ≠0)为所求. 三上台阶,自主选做志在冲刺名校1.(2018·辽宁葫芦岛调研)在△ABC 中,已知A (2,0),B (-2,0),G ,M 为平面上的两点且满足GA ―→+GB ―→+GC ―→=0,|MA |―→=|MB |―→=|MC |―→,GM ―→∥AB ―→,则顶点C 的轨迹为( )A .焦点在x 轴上的椭圆(长轴端点除外)B .焦点在y 轴上的椭圆(短轴端点除外)C .焦点在x 轴上的双曲线(实轴端点除外)D .焦点在x 轴上的抛物线(顶点除外)解析:选B 设C (x ,y )(y ≠0),则由GA ―→+GB ―→+GC ―→=0, 即G 为△ABC 的重心,得G ⎝ ⎛⎭⎪⎫x 3,y3. 又|MA |―→=|MB |―→=|MC |―→,即M 为△ABC 的外心,所以点M 在y 轴上,又GM ―→∥AB ―→,则有M ⎝ ⎛⎭⎪⎫0,y 3. 所以x 2+⎝ ⎛⎭⎪⎫y -y 32=4+y 29, 化简得x 24+y 212=1,y ≠0. 所以顶点C 的轨迹为焦点在y 轴上的椭圆(除去短轴端点).2.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是P Q 的中点,证明AR ∥F Q ;(2)若△P Q F 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解:由题意知F ⎝ ⎛⎭⎪⎫12,0,设直线l 1的方程为y =a ,直线l 2的方程为y =b ,则ab ≠0, 且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b . 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:R ⎝ ⎛⎭⎪⎫-12,a +b 2, 由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,F Q 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a =-b =b -0-12-12=k 2. 所以AR ∥F Q.(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12, S △P Q F =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1或x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE ,可得2a +b =y x -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0), 满足方程y 2=x -1.所以所求的轨迹方程为y 2=x -1.。
探究课五 圆锥曲线问题中的热点题型(建议用时:80分钟)1.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解 (1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线定义得:|AB |=x 1+x 2+p =5p4+p =9, 所以p =4,从而抛物线方程为y 2=8x .(2)由于p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0, 从而x 1=1,x 2=4,y 1=-22,y 2=42, 从而A (1,-22),B (4,42);设C (x 3,y 3),则OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.2.已知定点A (1,0)和直线x =-1上的两个动点E ,F ,且AE →⊥AF →,动点P 满足EP →∥OA →,FO→∥OP →(其中O 为坐标原点). (1)求动点P 的轨迹C 的方程;(2)过点B (0,2)的直线l 与(1)中的轨迹C 相交于两个不同的点M ,N ,若AM →·AN →<0,求直线l 的斜率的取值范围.解 (1)设P (x ,y ),E (-1,y E ),F (-1,y F ). ∵AE →·AF →=(-2,y E )·(-2,y F )=y E ·y F +4=0, ∴y E ·y F =-4,①又EP →=(x +1,y -y E ),FO →=(1,-y F ),且EP →∥OA →,FO →∥OP →,∴y -y E =0且x (-y F )-y =0,∴y E =y ,y F =-yx ,代入①得y 2=4x (x ≠0), ∴动点P 的轨迹C 的方程为y 2=4x (x ≠0).(2)设l :y -2=kx (易知k 存在),联立y 2=4x 消去x , 得ky 2-4y +8=0,令M (x 1,y 1),N (x 2,y 2), 则y 1+y 2=4k ,y 1·y 2=8k , AM →·AN →=(x 1-1,y 1)·(x 2-1,y 2) =x 1x 2-(x 1+x 2)+1+y 1y 2=y 21·y 2216-y 21+y 224+1+y 1y 2 =⎝ ⎛⎭⎪⎫y 1y 242-(y 1+y 2)24+32y 1y 2+1=12k +1<0,∴-12<k <0, 则实数k 的取值范围为(-12,0).3.(2015·衢州模拟)抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF→=2FB →,求直线AB 的斜率; (2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解 (1)依题意知F (1,0),设直线AB 的方程为x =my +1. 将直线AB 的方程与抛物线的方程联立,消去x 得 y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2.② 联立①和②,消去y 1,y 2,得m =±24. 所以直线AB 的斜率是±2 2. (2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点, 从而点O 与点C 到直线AB 的距离相等, 所以四边形OACB 的面积等于2S △AOB . 因为2S △AOB =2×12·|OF |·|y 1-y 2| =(y 1+y 2)2-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.4.(2014·陕西卷)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.解 (1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2. ∴a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0). 易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0), 代入C 1的方程,整理得 (k 2+4)x 2-2k 2x +k 2-4=0.(*) 设点P 的坐标为(x P ,y P ),∵直线l 过点B ,∴x =1是方程(*)的一个根. 由求根公式,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,∴点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4. 同理,由⎩⎨⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0) 得点Q 的坐标为(-k -1,-k 2-2k ). ∴AP→=2k k 2+4(k ,-4),AQ →=-k (1,k +2).∵AP ⊥AQ ,∴AP →·AQ →=0,即-2k 2k 2+4[k -4(k +2)]=0, ∵k ≠0,∴k -4(k +2)=0,解得k =-83. 经检验,k =-83符合题意, 故直线l 的方程为y =-83(x -1).5.如图,已知点E (m,0)(m >0)为抛物线y 2=4x 内一个定点,过E 作斜率分别为k 1,k 2的两条直线交抛物线于点A ,B ,C ,D ,且M ,N 分别是AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值; (2)若k 1+k 2=1,求证:直线MN 过定点. (1)解 当m =1时,E 为抛物线y 2=4x 的焦点,∵k 1k 2=-1,∴AB ⊥CD .设直线AB 的方程为y =k 1(x -1),A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧y =k 1(x -1),y 2=4x ,得k 1y 2-4y -4k 1=0, y 1+y 2=4k 1,y 1y 2=-4.∵M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,∴M ⎝ ⎛⎭⎪⎫2k 21+1,2k 1,同理,点N (2k 21+1,-2k 1),∴S △EMN =12|EM |·|EN |=12⎝ ⎛⎭⎪⎫2k 212+⎝ ⎛⎭⎪⎫2k 12·(2k 21)2+(-2k 1)2=2k 21+1k21+2≥22+2=4,当且仅当k 21=1k 21,即k 1=±1时,△EMN 的面积取得最小值4. (2)证明 设直线AB 的方程为y =k 1(x -m ),A (x 1,y 1),B (x 2,y 2), 由⎩⎨⎧y =k 1(x -m ),y 2=4x得k 1y 2-4y -4k 1m =0, y 1+y 2=4k 1,y 1y 2=-4m ,∵M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,∴M ⎝ ⎛⎭⎪⎫2k 21+m ,2k 1, 同理,点N ⎝ ⎛⎭⎪⎫2k 22+m ,2k 2,∴k MN =k 1k 2k 1+k 2=k 1k 2.∴直线MN 的方程为y -2k 1=k 1k 2⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫2k 21+m ,即y =k 1k 2(x -m )+2,∴直线MN 恒过定点(m,2).6.(2014·浙江宁波高考模拟)如图,设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过准线l 上一点M (-1,0)且斜率为k 的直线l 1交抛物线C 于A ,B 两点,线段AB 的中点为P ,直线PF 交抛物线C 于D ,E 两点.(1)求抛物线C 的方程;(2)若|MA |·|MB |=λ|FD |·|FE |,试写出λ关于k 的函数解析式,并求实数λ的取值范围. 解 (1)-p2=-1,p =2,抛物线方程为y 2=4x .(2)设l 1方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2),D (x 3,y 3),E (x 4,y 4),由⎩⎨⎧y =k (x +1),y 2=4x 得ky 2-4y +4k =0,Δ=16-16k 2>0,所以k ∈(-1,0)∪(0,1), y 1+y 2=4k,y 1y 2=4,得x 1+x 2=4k 2-2,x 1x 2=1,P ⎝ ⎛⎭⎪⎫2k 2-1,2k ,所以|MA |·|MB |=MA →·MB →=x 1x 2+x 1+x 2+1+y 1y 2=4⎝ ⎛⎭⎪⎫1+1k 2,且直线PF 方程为y =k1-k 2(x -1), 由⎩⎪⎨⎪⎧y =k 1-k 2(x -1),y 2=4x得ky 2-4(1-k 2)y -4k =0,则得y 3+y 4=4(1-k 2)k ,y 3y 4=-4, 得x 3+x 4=4(1-k 2)2k 2+2,x 3x 4=1,所以|FD |·|FE |=(x 3+1)(x 4+1)=4(1-k 2)2k 2+4, 则λ=k 2+1k 4-k 2+1,令t =k 2+1,则t ∈(1,2),λ=t (t -1)2-t +2=tt 2-3t +3, 而λ=f (t )=tt 2-3t +3=1t +3t -3在(1,3)上单调递增,在(3,2)上单调递减,所以λ∈⎝⎛⎦⎥⎤1,23+33.。
浙江专用高考数学一轮复习第八章平面解析几何第八节抛物线教案含解析第八节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向向右向左向上向下焦半径(其中P(x0,y0))|PF|=x0+p2|PF|=-x0+p2|PF|=y0+p2|PF|=-y0+p2 1.(2018·杭州七校联考)抛物线C:y=ax2的准线方程为y=-14,则其焦点坐标为________,实数a的值为________.解析:由题意得焦点坐标为⎝ ⎛⎭⎪⎫0,14,抛物线C 的方程可化为x 2=1a y ,由题意得-14a =-14,解得a =1. 答案:⎝ ⎛⎭⎪⎫0,14 1 2.焦点在直线2x +y +2=0上的抛物线的标准方程为________. 答案:y 2=-4x 或x 2=-8y3.(教材习题改编)抛物线y =4x 2的焦点坐标为__________;准线方程为____________. 解析:抛物线的标准方程为x 2=14y ,所以焦点坐标为⎝ ⎛⎭⎪⎫0,116,准线方程为y =-116.答案:⎝ ⎛⎭⎪⎫0,116 y =-1161.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.3.抛物线的标准方程的形式要注意,根据方程求焦点坐标或准线方程时,要注意标准形式的确定.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .一条直线答案:D2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .∴2p =18,p =116,∴焦点为⎝ ⎛⎭⎪⎫0,-132. 答案:⎝⎛⎭⎪⎫0,-132考点一 抛物线定义及应用重点保分型考点——师生共研[典例引领]1.(2019·温州十校联考)设抛物线C :y =14x 2的焦点为F ,直线l 交抛物线C 于A ,B两点,|AF |=3,线段AB 的中点到抛物线C 的准线的距离为4,则|BF |=( )A.72 B .5 C .4D .3解析:选B 抛物线C 的方程可化为x 2=4y ,由线段AB 的中点到抛物线C 的准线的距离为4,可得|AF |+|BF |=8,又|AF |=3,所以|BF |=5.2.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是( )A .4B .5C .6D .7解析:选B 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5,故选B.[由题悟法]应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.[即时应用]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知其焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1.2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355 B .2 C.115D .3解析:选B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2. 考点二 抛物线的标准方程与几何性质题点多变型考点——多角探明 [锁定考向]抛物线的标准方程及性质是高考的热点,多以选择题、填空题形式出现. 常见的命题角度有: (1)求抛物线方程;(2)抛物线的对称性.[题点全练]角度一:求抛物线方程1.(2019·台州重点校联考)已知直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12x B .y 2=-8x C .y 2=-6xD .y 2=-4x解析:选B 过A ,B 分别作抛物线的准线的垂线,垂足分别为A 1,B 1,由抛物线定义知|AF |=|AA 1|,|BF |=|BB 1|,则|AA 1|+|BB 1|=2⎝ ⎛⎭⎪⎫2+p 2=8,解得p =4,所以此抛物线的方程是y 2=-8x .角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选B 双曲线的渐近线方程为y =±b ax , 因为双曲线的离心率为2, 所以1+b 2a 2=2,ba = 3.由⎩⎨⎧y =3x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2p3,y =23p 3.由曲线的对称性及△AOB 的面积得, 2×12×23p 3×2p3=3, 解得p 2=94,即p =32⎝ ⎛⎭⎪⎫p =-32舍去.[通法在握]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.[演练冲关]1.(2019·宁波质检)已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4解析:选D 抛物线C :y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,设M ⎝ ⎛⎭⎪⎫y 212p ,y 1,由中点坐标公式可知p2+y 212p=2×2,y 1+0=2×2,解得p =4.2.(2019·丽水高三质检)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线准线交于M ,且FM =3FP ,则|FP |=( )A.32B.23C.43D.34解析:选C 设直线l 的倾斜角为θ,如图所示,过点P 作PN 垂直准线于点N ,由抛物线定义知|PN |=|PF |.∵FM =3FP ,∴|FM |=3|FP |,即|PM |=2|PN |.在Rt △MNP 中,cos ∠MPN =12,∵PN ∥x 轴,∴cos θ=12,由抛物线焦半径的性质可得|PF |=p 1+cos θ=21+12=43,即|FP |=43. 考点三 直线与抛物线的位置关系重点保分型考点——师生共研[典例引领](2018·长兴中学模拟)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,P 为C 1上一点,|PF |=4,点P 到y 轴的距离等于3.(1)求抛物线C 1的标准方程;(2)设A ,B 为抛物线C 1上的两个动点,且使得线段AB 的中点D 在直线y =x 上,P (0,2)为定点,求△PAB 面积的最大值.解:(1)由题意,p2+3=4,∴p =2,所以抛物线C 1的标准方程为y 2=4x .(2)设直线AB :x =ty +b ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =ty +b ,y 2=4x消元化简得y 2-4ty -4b =0,Δ=16t 2+16b >0.且y 1+y 2=4t ,x 1+x 2=t (y 1+y 2)+2b =4t 2+2b , 所以D (2t 2+b,2t ),2t 2+b =2t . 由Δ>0得0<t <2.所以点P 到直线AB 的距离d =|-2t -b |1+t 2=|2t 2-4t |1+t 2, 所以|AB |=1+t216t 2+16b =41+t22t -t 2,所以S △ABP =12|AB |d =12×41+t 22t -t 2|2t 2-4t |1+t 2=22t -t 2·|2t 2-4t |. 令m =2t -t 2,则m ∈(0,1],且S △ABP =4m 3. 由函数单调性可知,(S △ABP )max =4.[由题悟法]解决直线与抛物线位置关系问题的2种常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用弦长公式.[即时应用]如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程. 解:(1)由已知,得抛物线的焦点为F (1,0). 因为线段AB 的中点在直线y =2上, 所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4.又y 0=2,所以k =1,故直线l 的方程是y =x -1. (2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x ,得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2| =m 2+1·y 1+y 22-4y 1y 2=m 2+1·4m2-4×-4=4(m 2+1).所以4(m 2+1)=20,解得m =±2,所以直线l 的方程是x =±2y +1,即x ±2y -1=0.一抓基础,多练小题做到眼疾手快1.(2019·湖州质检)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4x B .y 2=-4x C .y 2=8xD .y 2=-8x解析:选 D ∵AB ⊥x 轴,且AB 过点F ,∴AB 是焦点弦,∴|AB |=2p ,∴S △CAB =12×2p ×⎝ ⎛⎭⎪⎫p2+4=24,解得p =4或p =-12(舍去),∴直线AB 的方程为x =2,∴以直线AB 为准线的抛物线的标准方程是y 2=-8x ,故选D.2.(2018·江山质检)在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则p 的值为( )A.12 B .1 C .2D .3解析:选C 由抛物线的定义可知,4+p2=5,解得p =2.3.(2018·珠海模拟)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,PA ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( )A.7π12B.2π3C.3π4D.5π6解析:选B 由抛物线y 2=4x 知焦点F (1,0),准线l 的方程为x =-1,由抛物线定义知|PA |=|PF |=4,所以点P 的坐标为(3,23),因此点A 的坐标为(-1,23),所以k AF =23-0-1-1=-3,所以直线AF 的倾斜角为2π3.4.(2019·宁波六校联考)已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =( )A .8B .2 3C .4 3D .8 3解析:选B 法一:由题意可得p =3,F ⎝⎛⎭⎪⎫32,0.不妨设点P 在x 轴上方,由抛物线定义可知|PF |=|PM |,|Q F |=|Q N |,设直线P Q 的倾斜角为θ,则tan θ=3,∴θ=π3,由抛物线焦半径的性质可知,|PF |=p1-cos θ=31-cosπ3=23,|Q F |=p1+cos θ=31+cosπ3=233,∴|MN |=|P Q|sin θ=(|PF |+|Q F |)·sin π3=833×32=4,∴S △MFN =12|MN |·p =12×4×3=2 3.法二:由题意可得F ⎝⎛⎭⎪⎫32,0,直线P Q 的方程为y =3⎝⎛⎭⎪⎫x -32=3x -32,与抛物线方程y 2=23x 联立,得⎝ ⎛⎭⎪⎫3x -322=23x ,即3x 2-53x +94=0,设P (x 1,y 1),Q(x 2,y 2),则x 1+x 2=533,∴|P Q|=x 1+x 2+p =533+3=833,∵直线P Q 的斜率为3,∴直线P Q 的倾斜角为π3.∴|MN |=|P Q|sin π3=833×32=4,∴S △MFN =12×4×3=2 3.5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x Px P --1=12,解得x P =1,所以y 2P =4,所以|y P |=2. 答案:2二保高考,全练题型做到高考达标1.(2018·临海期初)动圆过点(0,1),且与直线y =-1相切,则动圆圆心的轨迹方程为( )A .y =0B .x 2+y 2=1 C .x 2=4yD .y 2=4x解析:选C 设动圆圆心M (x ,y ),则x 2+y -12=|y +1|,解得x 2=4y .2.(2018·绍兴二模)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与抛物线C 交于A ,B 两点(A 在x 轴上方).若AF =mFB ,则m 的值为( )A. 3B.32C .2D .3解析:选D 直线方程为x =33y +1,代入y 2=4x 可得y 2-433y -4=0,则y A =23,y B =-233,所以|y A |=3|y B |,因为AF =mFB ,所以m =3. 3.(2018·宁波十校联考)已知抛物线x 2=4y ,过焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),若直线l 的倾斜角为30°,则|AF ||BF |的值等于( )A .3 B.52C .2D.32解析:选A 由题可得,F (0,1),设l :y =33x +1,A (x 1,y 1),B (x 2,y 2).将直线方程与抛物线方程联立,消去x ,化简得3y 2-10y +3=0,解得y 1=3,y 2=13.由抛物线的定义可知|AF ||BF |=y 1+1y 2+1=3+113+1=3.4.已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为点M ,点A 的坐标是⎝ ⎛⎭⎪⎫6,172,则|PA |+|PM |的最小值是( )A .8 B.192C .10D.212解析:选B 依题意可知焦点F ⎝ ⎛⎭⎪⎫0,12,准线方程为y =-12,延长PM 交准线于点H (图略).则|PF |=|PH |,|PM |=|PF |-12,|PM |+|PA |=|PF |+|PA |-12,即求|PF |+|PA |的最小值. 因为|PF |+|PA |≥|FA |, 又|FA |=62+⎝ ⎛⎭⎪⎫172-122=10.所以|PM |+|PA |≥10-12=192,故选B.5.(2019·嘉兴六校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,且|MO |=|MF |=32(O 为坐标原点),则OM ·MF =( )A .-74B.74C.94D .-94解析:选A 设M (m ,2pm ),抛物线C 的焦点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,因为|MO |=|MF |=32,所以m 2+2pm =94 ①,m +p 2=32 ②,由①②解得m =12,p =2,所以M ⎝ ⎛⎭⎪⎫12,2,F (1,0),所以OM =⎝ ⎛⎭⎪⎫12,2,MF =⎝ ⎛⎭⎪⎫12,-2,故OM ·MF =14-2=-74.6.(2018·宁波期初)已知抛物线x 2=4y 的焦点为F ,若点M 在抛物线上,|MF |=4,O 为坐标原点,则∠MFO =________.解析:由题可得,p =2,焦点在y 轴正半轴,所以F (0,1). 因为|MF |=4,所以M (±23,3).所以tan ∠MFO =-tan(π-∠MFO )=-233-1=-3,所以∠MFO =2π3.答案:2π37.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为________.解析:如图,由题可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0(y 0>0),则OM ―→=OF ―→+FM ―→=OF ―→+13FP ―→=OF ―→+13(OP ―→-OF ―→)=13OP ―→+23OF ―→=⎝ ⎛⎭⎪⎫y 26p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立,所以直线OM 的斜率的最大值为22. 答案:228.(2018·嵊州一模)设抛物线y 2=4x 的焦点为F ,过点M (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C 点,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF=________.解析:设点A 在第一象限,B 在第四象限,A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my + 5.由y 2=4x ,得p =2,因为|BF |=3=x 2+p2=x 2+1,所以x 2=2,则y 22=4x 2=4×2=8,所以y 2=-22,由⎩⎨⎧y 2=4x ,x =my +5,得y 2-4my -45=0,则y 1y 2=-45,所以y 1=10,由y 21=4x 1,得x 1=52.过点A 作AA ′垂直于准线x =-1,垂足为A ′,过点B 作BB ′垂直于准线x =-1,垂足为B ′,易知△CBB ′∽△CAA ′,所以S △BCF S △ACF =|BC ||AC |=|BB ′||AA ′|.又|BB ′|=|BF |=3,|AA ′|=x 1+p 2=52+1=72,所以S △BCF S △ACF =372=67.答案:679.(2018·杭州高三检测)如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .(1)设A (x 0,x 20)(x 0≠0),求直线AB 的方程; (2)求|OB ||OD |的值.解:(1)因为y ′=2x ,所以直线AB 的斜率k =y ′|x =x 0=2x 0, 所以直线AB 的方程为y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20.(2)由(1)得,点B 的纵坐标y B =-x 20,所以AB 的中点坐标为⎝ ⎛⎭⎪⎫x 02,0. 设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +x 02.由⎩⎪⎨⎪⎧x =my +x 02,y =x 2,得m 2y 2+(mx 0-1)y +x 204=0.因为G 为△ABC 的重心,所以y 1=3y 2. 由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2,y 1y 2=3y 22=x 204m 2.所以y 22=1-mx 0216m4=x 2012m2,解得mx 0=-3±2 3.所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=⎪⎪⎪⎪⎪⎪y B y D =43±6. 10.(2018·台州模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点).(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解:(1)由题意知F 1(1,0),F 2⎝ ⎛⎭⎪⎫0,p 2,则F 1F 2―→=⎝⎛⎭⎪⎫-1,p 2,∵F 1F 2⊥OP ,∴F 1F 2―→·OP ―→=⎝⎛⎭⎪⎫-1,p 2·(-1,-1)=1-p 2=0,∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0),联立⎩⎪⎨⎪⎧ y =kx ,y 2=4x 得M ⎝ ⎛⎭⎪⎫4k2,4k ,联立⎩⎪⎨⎪⎧y =kx ,x 2=4y 得N (4k,4k 2),从而|MN |=1+k 2·⎪⎪⎪⎪⎪⎪4k 2-4k =1+k 2·⎝⎛⎭⎪⎫4k2-4k ,又点P 到直线MN 的距离d =|k -1|1+k2,故S △PMN =12·|k -1|1+k 2·1+k 2·⎝ ⎛⎭⎪⎫4k 2-4k =21-k1-k3k 2=21-k21+k +k2k 2=2⎝⎛⎭⎪⎫k +1k-2⎝⎛⎭⎪⎫k +1k+1, 令t =k +1k(t ≤-2),则S △PMN =2(t -2)(t +1)≥8,当t =-2,即k =-1时,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8.三上台阶,自主选做志在冲刺名校1.(2018·台州高三模拟)已知抛物线x 2=2py (p >0),点M 是抛物线的准线与y 轴的交点,过点A (0,λp )(λ∈R)的动直线l 交抛物线于B ,C 两点.(1)求证:MB ·MC ≥0,并求等号成立时实数λ的值;(2)当λ=2时,设分别以OB ,OC (O 为坐标原点)为直径的两圆相交于另一点D ,求|DO |+|DA |的最大值.解:(1)由题意知动直线l 的斜率存在,且过点A (0,λp ), 则可设动直线l 的方程为y =kx +λp ,代入x 2=2py (p >0),消去y 并整理得x 2-2pkx -2λp 2=0,Δ=4p 2(k 2+2λ)>0,设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=2pk ,x 1x 2=-2λp 2,y 1y 2=(kx 1+λp )(kx 2+λp )=k 2x 1x 2+λpk (x 1+x 2)+λ2p 2=λ2p 2, y 1+y 2=k (x 1+x 2)+2λp =2pk 2+2λp =2p (k 2+λ).因为抛物线x 2=2py 的准线方程为y =-p2,所以点M 的坐标为⎝⎛⎭⎪⎫0,-p 2,所以MB =⎝ ⎛⎭⎪⎫x 1,y 1+p 2,MC =⎝ ⎛⎭⎪⎫x 2,y 2+p 2, 所以MB ·MC =x 1x 2+⎝ ⎛⎭⎪⎫y 1+p 2⎝ ⎛⎭⎪⎫y 2+p 2=x 1x 2+y 1y 2+p2(y 1+y 2)+p 24=-2λp 2+λ2p 2+p2[2p (k 2+λ)]+p 24=p 2⎣⎢⎡⎦⎥⎤k 2+⎝⎛⎭⎪⎫λ-122≥0,当且仅当k =0,λ=12时等号成立.(2)由(1)知,当λ=2时,x 1x 2=-4p 2,y 1y 2=4p 2, 所以OB ·OC =x 1x 2+y 1y 2=0, 所以OB ⊥OC .设直线OB 的方程为y =mx (m ≠0),与抛物线的方程x 2=2py 联立可得B (2pm,2pm 2), 所以以OB 为直径的圆的方程为x 2+y 2-2pmx -2pm 2y =0.因为OB ⊥OC ,所以直线OC 的方程为y =-1mx .同理可得以OC 为直径的圆的方程为 x 2+y 2+2p m x -2pm 2y =0,即m 2x 2+m 2y 2+2pmx -2py =0,将两圆的方程相加消去m ,得x 2+y 2-2py =0, 即x 2+(y -p )2=p 2,所以点D 的轨迹是以OA 为直径的圆, 所以|DA |2+|DO |2=4p 2, 由|DA |2+|DO |22≥⎝ ⎛⎭⎪⎫|DA |+|DO |22,得|DA |+|DO |≤22p ,当且仅当|DA |=|DO |=2p 时,等号成立. 故(|DA |+|DO |)max =22p .2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), 因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2).所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2), 所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
第八节 曲线与方程1.曲线与方程一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标. (2)写出适合条件p 的点M 的集合P ={M |p (M )}. (3)用坐标表示条件p (M ),列出方程f (x ,y )=0. (4)化方程f (x ,y )=0为最简形式.(5)说明以化简后的方程的解为坐标的点都在曲线上. 3.两曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎪⎨⎪⎧F 1x ,y =0,F 2x ,y =0的实数解.若此方程组无解,则两曲线无交点.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( ) (4)方程y =x 与x =y 2表示同一曲线.( )[解析] 由曲线与方程的定义,知(2),(3),(4)不正确,只有(1)正确. [答案] (1)√ (2)× (3)× (4)×2.(教材改编)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线D [由已知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.(2016·某某模拟)已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →,则动点P 的轨迹C 的方程为( )A .x 2=4y B .y 2=3x C .x 2=2yD .y 2=4xA [设点P (x ,y ),则Q (x ,-1). ∵QP →·QF →=FP →·FQ →,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y , ∴动点P 的轨迹C 的方程为x 2=4y .故选A.]4.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________.(x -10)2+y 2=36(y ≠0) [设A (x ,y ),则D ⎝ ⎛⎭⎪⎫x 2,y2∴|CD |=⎝ ⎛⎭⎪⎫x 2-52+y 24=3, 化简得(x -10)2+y 2=36,由于A ,B ,C 三点构成三角形, ∴A 不能落在x 轴上,即y ≠0.]5.(2017·某某模拟)在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为__________. 【导学号:51062302】x 22-y 22=1(x >2) [以BC 的中点为原点,中垂线所在直线为y 轴建立如图所示的坐标系,E ,F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |,|AE |=|AF |. 所以|AB |-|AC |=22,所以点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2,所以b =2, 所以轨迹方程为x 22-y 22=1(x >2).]直接法求轨迹方程已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.求动圆圆心的轨迹C的方程.[解] 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |.2分当O 1不在y 轴上时, 过O 1作O 1H ⊥MN 交MN 于H , 则H 是MN 的中点, ∴|O 1M |=x 2+42.6分 又|O 1A |=x -42+y 2,∴x -42+y 2=x 2+42,化简得,y 2=8x (x ≠0).10分当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴ 动圆圆心的轨迹C 的方程为y 2=8x .15分[规律方法] 1.如果动点满足的条件是易于用x ,y 表达的与定点、定直线有关的几何量的等量关系时,等量关系又易于表达成含有x ,y 的等式,可利用直接法求轨迹方程.2.运用直接法应注意的问题:(1)在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.(2)若方程的化简过程是恒等变形,则最后的验证可以省略.[变式训练1] 已知两点M (-1,0),N (1,0),且点P 使MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列,求点P 的轨迹方程.[解] 设点P (x ,y ),则MP →=(x +1,y ),NP →=(x -1,y ),MN →=(2,0).4分故MP →·MN →=2(x +1),PM →·PN →=MP →·NP →=(x +1)×(x -1)+y 2=x 2+y 2-1,NM →·NP →=-2(x -1)=2(1-x ).8分因为MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列,所以2(x 2+y 2-1)=2(x +1)+2(1-x ).12分且NM →·NP →-MP →·MN →=2(1-x )-2(x +1)=-4x <0, 整理得,x 2+y 2=3(x >0),故点P 的轨迹方程为x 2+y 2=3(x >0).15分定义法求轨迹方程如图881所示,已知点C 为圆(x +2)2+y 2=4的圆心,点A (2,0).P 是圆上的动点,点Q 在圆的半径CP 所在的直线上,且MQ →·AP →=0,AP →=2 AM →.当点P 在圆上运动时,求点Q 的轨迹方程.图881[解] 由(x +2)2+y 2=4知圆心C (-2,0),半径r =2.2分 ∵MQ →·AP →=0,AP →=2AM →, ∴MQ ⊥AP ,点M 为AP 的中点, 因此QM 垂直平分线段AP .6分 如图,连接AQ ,则|AQ |=|QP |,∴||QC |-|QA ||= ||QC |-|QP ||=|CP |=2. 又|AC |=22>2.10分根据双曲线的定义,点Q 的轨迹是以C (-2,0),A (2,0)为焦点,实轴长为2的双曲线.13分由c =2,a =1,得b 2=1,因此点Q 的轨迹方程为x 2-y 2=1.15分[迁移探究] 若将本例中的条件“圆C 的方程(x +2)2+y 2=4”改为“圆C 的方程(x +2)2+y 2=16”,其他条件不变,求点Q 的轨迹方程.[解] 由(x +2)2+y 2=16知圆心C (-2,0),半径r =4.2分∵MQ →·AP →=0,AP →=2 AM →, ∴QM 垂直平分AP ,连接AQ , 则|AQ |=|QP |,8分∴|QC |+|QA |=|QC |+|QP |=r =4.10分根据椭圆定义,点Q 的轨迹是以C (-2,0),A (2,0)为焦点,长轴长为4的椭圆.13分由c =2,a =2,得b = 2.因此点Q 的轨迹方程为x 24+y 22=1.15分[规律方法] 1.定义法求轨迹方程,关键是理解解析几何中有关曲线的定义. 在求曲线的轨迹方程时,应尽量利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,优化解题过程.2.利用定义法求轨迹方程时,还要看所求轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.[变式训练2] 设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值;(2)求点E 的轨迹方程,并求它的离心率. 【导学号:51062303】 [解] (1)证明:因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.3分又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.6分(2)由圆A 方程(x +1)2+y 2=16,知A (-1,0).又B (1,0) 因此|AB |=2,则|EA |+|EB |=4>|AB |.9分由椭圆定义,知点E 的轨迹是以A ,B 为焦点,长轴长为4的椭圆(不含与x 轴的交点), 所以a =2,c =1,则b 2=a 2-c 2=3.12分 所以点E 的轨迹方程为x 24+y 23=1(y ≠0).故曲线方程的离心率e =c a =12.15分相关点(代入)法求轨迹方程如图882所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.图882(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.[解] (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),∵点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |,∴x P =x ,且y P =54y .2分∵P 在圆x 2+y 2=25上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,整理得x 225+y 216=1,故轨迹C 的方程是x 225+y 216=1.6分 (2)过点(3,0)且斜率为45的直线l 的方程是y =45(x -3),8分设此直线与C 的交点为A (x 1,y 1),B (x 2,y 2), 将直线方程y =45(x -3)代入C 的方程x 225+y216=1得:x 225+x -3225=1,化简得x 2-3x -8=0,∴x 1=3-412,x 2=3+412,12分则|AB |=⎝ ⎛⎭⎪⎫1+1625x 1-x 22=4125×41=415. ∴直线被曲线C 所截线段的长度为415.15分[规律方法] 1.相关点法求轨迹方程,形成轨迹的动点P (x ,y )随另一动点Q (x ′,y ′)的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的.2.“相关点法”的基本步骤:(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1).(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f x ,y ,y 1=g x ,y .(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.[变式训练3] (2017·某某模拟)P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,有一动点Q 满足OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是__________.x 24a 2+y 24b2=1 [作P 关于O 的对称点M ,连接F 1M ,F 2M ,则四边形F 1PF 2M 为平行四边形,所以PF 1→+PF 2→=PM →=-2OP →. 又OQ →=PF 1→+PF 2→, 所以OP →=-12OQ →.设Q (x ,y ),P (x 0,y 0),则x 0=-x 2,且y 0=-y2,又点P (x 0,y 0)在椭圆x 2a 2+y 2b2=1上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.][思想与方法]1.求轨迹方程的常用方法(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0.(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(3)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程.(4)待定系数法:已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由条件确定其待定系数.2.曲线的方程与方程的曲线是从两个方面揭示方程与曲线的对应关系,体现数与形的辨证统一.[易错与防X]1.求轨迹方程时,要注意曲线上的点与方程的解是一一对应的.检验可从以下两个方面进行:一是方程的化简是不是同解变形;二是是否符合题目的实际意义.2.求点的轨迹与轨迹方程是不同的要求,求轨迹时,应先求轨迹方程,然后根据方程说明轨迹的形状、位置、大小等.课时分层训练(五十) 曲线与方程A 组 基础达标 (建议用时:30分钟)一、选择题1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线C .两条线段D .一条直线和一条射线D [原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.]2.(2017·某某模拟)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D .2x -y +5=0D [由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x,4-y ),代入2x -y +3=0,得2x -y +5=0.]3.设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2D [如图,设P (x ,y ),圆心为M (1,0).连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,则|PM |2=2, ∴点P 的轨迹方程为(x -1)2+y 2=2.]4.(2017·某某模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2PA →,且OQ →·AB →=1,则点P 的轨迹方程是( ) 【导学号:51062304】A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)A [设A (a,0),B (0,b ),a >0,b >0. 由BP →=2PA →,得(x ,y -b )=2(a -x ,-y ), 即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1, 即ax +by =1.将a ,b 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).]5.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线A [设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3).∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.] 二、填空题6.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是__________.y 2=8x [AB →=⎝ ⎛⎭⎪⎫0,y 2-(-2,y )=⎝ ⎛⎭⎪⎫2,-y 2,BC →=(x ,y )-⎝⎛⎭⎪⎫0,y 2=⎝⎛⎭⎪⎫x ,y 2.∵AB →⊥BC →,∴AB →·BC →=0,∴⎝⎛⎭⎪⎫2,-y 2·⎝ ⎛⎭⎪⎫x ,y 2=0,即y 2=8x .∴动点C 的轨迹方程为y 2=8x .]7.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是__________. 【导学号:51062305】x 2=12y [由题意可知点P 到直线y =-3的距离等于它到点(0,3)的距离,故点P 的轨迹是以点(0,3)为焦点,以y =-3为准线的抛物线,且p =6,所以其标准方程为x 2=12y .]8.(2017·某某名校联考)已知双曲线x 22-y 2=1的左、右顶点分别为A 1,A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同于A 1,A 2的两个不同的动点,则直线A 1P 与A 2Q 交点的轨迹方程为__________.x 22+y 2=1(x ≠0且x ≠±2) [由题设知|x 1|>2,A 1(-2,0),A 2(2,0),则有直线A 1P 的方程为y =y 1x 1+2(x +2),① 直线A 2Q 的方程为y =-y 1x 1-2(x -2),②联立①②,解得⎩⎪⎨⎪⎧x =2x1,y =2y 1x 1,∴⎩⎪⎨⎪⎧x 1=2x ,y 1=2y x ,③∴x ≠0,且|x |< 2.∵点P (x 1,y 1)在双曲线x 22-y 2=1上,∴x 212-y 21=1.将③代入上式,整理得所求轨迹的方程为x 22+y 2=1(x ≠0,且x ≠±2).] 三、解答题9.如图883所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.求直线AA 1与直线A 2B 交点M 的轨迹方程. 【导学号:51062306】图883[解] 由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),又曲线的对称性及A (x 0,y 0),得B (x 0,-y 0).5分 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),②由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).12分因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).15分10.(2017·某某模拟)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .(1)求曲线C 的方程;(2)已知点E (1,0),若A ,B 是曲线C 上的两个动点,且满足EA ⊥EB ,求EA →·BA →的取值X 围.[解] 设点M 的坐标是(x ,y ),点P 的坐标是(x 0,y 0),则点D 的坐标为(x 0,0). 由PD →=2MD →,得x 0=x ,y 0=2y .2分 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4.①把x 0=x ,y 0=2y 代入方程①, 得x 2+4y 2=4.所以曲线C 的方程为x 24+y 2=1.6分(2)因为EA ⊥EB ,所以EA →·EB →=0. 所以EA →·BA →=EA →·(EA →-EB →)=EA →2.9分 设点A (x 1,y 1),则x 214+y 21=1,即y 21=1-x 214.所以EA →·BA →=EA →2=(x 1-1)2+y 21=x 21-2x 1+1+1-x 214=34x 21-2x 1+2=34⎝⎛⎭⎪⎫x 1-432+23.12分因为点A (x 1,y 1)在曲线C 上,所以-2≤x 1≤2. 所以23≤34⎝⎛⎭⎪⎫x 1-432+23≤9,所以EA →·BA →的取值X 围为⎣⎢⎡⎦⎥⎤23,9.15分B 组 能力提升 (建议用时:15分钟)1.(2017·某某十校联考)已知两定点A (0,-2),B (0,2),点P 在椭圆x 212+y 216=1上,且满足|AP →|-|BP →|=2,则AP →·BP →为( )A .-12B .12C .-9D .9D [由|AP →|-|BP →|=2,可得点P (x ,y )的轨迹是以两定点A ,B 为焦点的双曲线的上支,且2a =2,c =2,∴b = 3.∴点P 的轨迹方程为y 2-x 23=1(y ≥1).由⎩⎪⎨⎪⎧x 212+y 216=1,y 2-x23=1,解得⎩⎪⎨⎪⎧x 2=9,y 2=4,∴AP →·BP →=(x ,y +2)·(x ,y -2)=x 2+y 2-4=9+4-4=9.]2.(2017·某某某某一模)设圆C :(x -k )2+(y -2k +1)2=1,则圆心C 的轨迹方程是________________,若直线l :3x +ty -1=0被圆C 所截得的弦长与k 无关,则t =________.y =2x -1-32[设C (x ,y ),则x =k ,y =2k -1,消去k 可得y =2x -1.故圆心C 的轨迹方程是y =2x -1.直线l :3x +ty -1=0被圆C 所截得的弦长与k 无关,则圆心C 到直线l 的距离为定值,∴直线l :3x +ty -1=0与直线y =2x -1平行,得t =-32.]3.在平面直角坐标系xOy 中,动点P (x ,y )到F (0,1)的距离比到直线y =-2的距离小1.(1)求动点P 的轨迹W 的方程;(2)过点E (0,-4)的直线与轨迹W 交于两点A ,B ,点D 是点E 关于x 轴的对称点,点A 关于y 轴的对称点为A 1,证明:A 1,D ,B 三点共线.【导学号:51062307】[解] (1)由题意可得动点P (x ,y )到定点F (0,1)的距离和到定直线y =-1的距离相等,所以动点P 的轨迹是以F (0,1)为焦点,以y =-1为准线的抛物线.5分所以动点P 的轨迹W 的方程为x 2=4y .6分(2)证明:设直线l 的方程为y =kx -4,A (x 1,y 1),B (x 2,y 2),则A 1(-x 1,y 1).由⎩⎪⎨⎪⎧y =kx -4,x 2=4y ,消去y ,整理得x 2-4kx +16=0,则Δ=16k 2-64>0,即|k |>2,x 1+x 2=4k ,x 1x 2=16,直线A 1B :y -y 2=y 2-y 1x 2+x 1(x -x 2), 所以y =y 2-y 1x 2+x 1(x -x 2)+y 2,10分 即y =x 22-x 214x 1+x 2(x -x 2)+14x 22,整理得y =x 2-x 14x -x 22-x 1x 24+14x 22,即y =x 2-x 14x +x 1x 24.13分直线A 1B 的方程为y =x 2-x 14x +4,显然直线A 1B 过点D (0,4).所以A 1,D ,B 三点共线.15分。