2005年高考.重庆卷.理科数学试题精析详解
- 格式:doc
- 大小:978.31 KB
- 文档页数:13
2005年全国高考数学试题全集(3)(10套)目录2005年普通高等学校招生全国统一考试(辽宁卷) (2)2005年普通高等学校招生全国统一考试理科数学(山东卷) (15)2005年普通高等学校招生全国统一考试文科数学(山东卷) (25)2005年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷) (34)2005年普通高等学校招生全国统一考试数学试题(文史类)(重庆卷) (46)2005年普通高等学校招生全国统一考试数学(理工农医类)(浙江卷) (57)2005年普通高等学校招生全国统一考试数学(文史类)(浙江卷) (68)2005年普通高等学校春季招生考试数学(理工农医类)(北京卷) (77)2005年普通高等学校春季招生考试数学(文史类)(北京卷) (86)2005年上海市普通高等学校春季招生考试 (94)2005年普通高等学校招生全国统一考试(辽宁卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()(其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数.111-++-=iiz 在复平面内,z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命 题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④ 5.函数1ln(2++=x x y 的反函数是( )A .2x x e e y -+=B .2x x e e y -+-=C .2x x e e y --= D .2xx e e y ---=6.若011log 22<++aa a,则a 的取值范围是( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(7.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立, 则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范 围是( )A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)9.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-810.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x aλλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A .0<λB .0=λC .10<<λD .1≥λ11.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .2112.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.nxx )2(2121--的展开式中常数项是 .14.如图,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻, 5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答) 16.ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的球面上,求△ABC 的边长. 18.(本小题满分12分)如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?19.(本小题满分12分)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ;(Ⅱ)证明.332<n S20.(本小题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在 (I )的条件下,求ξ、η的分布列及E ξ、E η;(Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资. 金60万元.设x 、y 分别表示生产甲、乙产 品的数量,在(II )的条件下,x 、y 为何 值时,ηξyE xE z +=最大?最大值是多少? (解答时须给出图示) 21.(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.2005年普通高等学校招生全国统一考试(辽宁卷)数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。
2005年高考理科数学全国卷Ⅰ试题及答案(河南安徽山西海南)布谷鸟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i (B )i - (C )i -22 (D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22-(C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34 (D )23 (6)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A②2sin sin 0≤+<B A③1cossin22=+B A ④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④(D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对(B )24对(C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n(Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分) (Ⅰ)设函数)10( )1(log )1(log)(22<<--+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数np p p p 2321,,,, 满足12321=++++np p p p ,证明n p p p p p p p p n n -≥++++222323222121loglogloglog2005年高考理科数学全国卷Ⅰ试题及答案(河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>,所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PBBE PBE.510arccos所成的角为与PB AC ∴(Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(,5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BNAN ABBNANANB故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.4||,||,.555AN BN AN BN ==⋅=-2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即 1,2,0,.2n n n n q q T S T S =-=-==当或时即20.(Ⅰ)ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by ax >>=+则直线AB 的方程为c x y -=,代入12222=+by ax ,化简得02)(22222222=-+-+ba c a cx a xb a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x b a c a x x +-=+=+由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得 ,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222a ba cb a =-=∴=,故离心率.36==ac e(II )证明:(1)知223b a =,所以椭圆12222=+by ax 可化为.33222b yx =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c bc ac x x ===+22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+-22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数,当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立(ⅱ)假设当n=k 时命题成立即若正数1232,,,,kp p p p 满足12321kp p p p ++++= ,则121222323222log log log log kkp p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p + 满足112321k p p p p +++++= ,令1232kx p p p p =++++11p q x=,22p q x=, (22)k p q =则1232,,,,kq q q q 为正数,且12321kq q q q ++++= ,由归纳假定知121222323222log log log log kkq q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221kk k p p p x ++++++=- ,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++-- 1(1k k ≥--=-+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。
2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x 有两个交点时,其斜率k的取值范围是()A.B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,其面积S△ABC=×(2×1+2×)=,故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m= 155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指【分析】利用二项式定理的通项公式T r+1数幂运算后令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9【解答】解:由通项公式得T r+1﹣r=(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知x 0 πy ﹣﹣1 0 1 0 ﹣故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M 是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB 为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n >0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是ξ0 10 20 30P0.670 0.287 0.041 0.002∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。
2005年高考全国试题分类解析(圆锥曲线)一、选择题:1重庆卷) 若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2+2y 的最大值为(A ) (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b b ;(B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b ; (D) 2b 。
2. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 3. (天津卷)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )A .2±B .34±C .21±D .43±4.(天津卷)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B={(x ,y)| |x |<11且|y|<9}内的椭圆个数为(B )A .43B . 72C . 86D . 905. (上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在6. (山东卷)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( B ) (A )1 (B )2 (C )3 (D )47 (全国卷Ⅰ)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为(A )(A )23 (B )23 (C )26 (D )332A .)22,22(-B .)2,2(-C .)42,42(D .)81,81(-8.(全国卷II) 双曲线22149x y -=的渐近线方程是( C) (A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±9. (全国卷II)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(C )(A)(B) (C) 65 (D) 5610. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(D )(A) 2 (B) 3 (C) 4 (D) 5 11. (全国卷III)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(D )(A )2 (B )12(C )2 (D 1- 12. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线xy 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( B )A .23+6B .21C .21218+D .2113 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A )1617( B ) 1615 ( C ) 87 ( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A )33 ( B ) 31 ( C ) 22 ( D ) 2115.(湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为(D ) A .30ºB .45ºC .60ºD .90º16. (湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( D ) A .30ºB .45ºC .60ºD .90º17. (湖北卷)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A .163B .83 C .316 D .38 18. (福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是( C )A .21B .23 C .27 D .5 19. (福建卷)设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-20. (广东卷)若焦点在轴上的椭圆2212x y m +=的离心率为12,则m=(B)(B)32(C)83(D)2321. (全国卷III)已知双曲线2212yx-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为(C )(A )43 (B )53(C)3 (D22.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( D )A .324+B .13-C .213+ D .13+二、填空题:1.(江西卷)以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 ③④ (写出所有真命题的序号)2. (重庆卷)已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为22413x y +=。
2005年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1. 圆(x +2)2+y 2=5关于原点(0, 0)对称的圆的方程为( ) A.(x −2)2+y 2=5 B.x 2+(y −2)2=5 C.(x +2)2+(y +2)2=5 D.x 2+(y +2)2=52. (1+i1−i )2005=( ) A.iB.−iC.22005D.−220053. 若函数f(x)是定义在R 上的偶函数,在(−∞, 0]上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范围是( ) A.(−∞, 2)B.(2, +∞)C.(−∞, −2)∪(2, +∞)D.(−2, 2)4. 已知A(3, 1),B(6, 1),C(4, 3),D 为线段BC 的中点,则向量AC →与DA →的夹角为( )A.π2−arccos 45 B.arccos 45C.arccos (−45)D.−arccos (−45)5. 若x ,y 是正数,则(x +12y )2+(y +12x )2的最小值是( ) A.3B.72C.4D.926. 已知α,β均为锐角,若p:sin α<sin (α+β),q:α+β<π2,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件7. 对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α,β都平行于γ ②存在平面γ,使得α,β都垂直于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l // α,l // β,m // α,m // β.其中,可以判定α与β平行的条件有( ) A.1个B.2个C.3个D.4个8. 若(2x −1x )n 展开式中含1x 2项的系数与含1x 4项的系数之比为−5,则n 等于( ) A.4B.6C.8D.109. 若动点(x, y)在曲线x 24+y 2b 2=1(b >0)上变化,则x 2+2y 的最大值为( )A.{b 24+4(0<b <4)2b(b ≥4)B.{b 24+4(0<b <2)2b(b ≥4)C.b 24+4D.2b10. 如图,在体积为1的三棱锥A −BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G ,使AE:EB =AF:FC =AG:GD =2:1,记O 为三平面BCG 、CDE 、DBF 的交点,则三棱锥O −BCD 的体积等于( )A.19B.18C.17D.14二、填空题(共6小题,每小题4分,满分24分)11. 集合A ={x ∈R|x 2−x −6<0},B ={x ∈R||x −2|<2},则A ∩B =________. 12. 曲线y =x 3在点(1, 1)处的切线与x 轴、直线x =2所围成的三角形的面积为________.13. 已知α、β均为锐角,且cos (α+β)=sin (α−β),则tan α=________. 14.lim n →∞23n −32n+123n +32n=________.15. 某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为________. 16. 连接抛物线上任意四点组成的四边形可能是________(填写所有正确选项的序号).①菱形②有3条边相等的四边形③梯形 ④平行四边形⑤有一组对角相等的四边形.三、解答题(共6小题,17~20题每题13分,21、22题每题12分,满分76分) 17. 若函数f(x)=1+cos 2x4sin (π2+x)−a sin x 2cos (π−x2)的最大值为2,试确定常数a 的值.18. 在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.19. 已知a ∈R ,讨论函数f(x)=e x (x 2+ax +a +1)的极值点的个数.20. 如图,在三棱柱ABC −A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB =√2,BB 1=2,BC =1,∠BCC 1=π3,求:(1)异面直线AB 与EB 1的距离;(2)二面角A −EB 1−A 1的平面角的正切值.。
2005年全国高考数学试题全集(3)(10套)目录2005年普通高等学校招生全国统一考试(辽宁卷) (2)2005年普通高等学校招生全国统一考试理科数学(山东卷) (15)2005年普通高等学校招生全国统一考试文科数学(山东卷) (25)2005年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷) (34)2005年普通高等学校招生全国统一考试数学试题(文史类)(重庆卷) (46)2005年普通高等学校招生全国统一考试数学(理工农医类)(浙江卷) (57)2005年普通高等学校招生全国统一考试数学(文史类)(浙江卷) (68)2005年普通高等学校春季招生考试数学(理工农医类)(北京卷) (77)2005年普通高等学校春季招生考试数学(文史类)(北京卷) (86)2005年上海市普通高等学校春季招生考试 (94)2005年普通高等学校招生全国统一考试(辽宁卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()(其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数.111-++-=iiz 在复平面内,z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命 题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④ 5.函数1ln(2++=x x y 的反函数是( )A .2x x e e y -+=B .2x x e e y -+-=C .2x x e e y --= D .2xx e e y ---=6.若011log 22<++aa a,则a 的取值范围是( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(7.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立, 则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范 围是( )A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)9.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-810.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x aλλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A .0<λB .0=λC .10<<λD .1≥λ11.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .2112.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.nxx )2(2121--的展开式中常数项是 .14.如图,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻, 5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答) 16.ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的球面上,求△ABC 的边长. 18.(本小题满分12分)如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?19.(本小题满分12分)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ;(Ⅱ)证明.332<n S20.(本小题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在 (I )的条件下,求ξ、η的分布列及E ξ、E η;(Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资. 金60万元.设x 、y 分别表示生产甲、乙产 品的数量,在(II )的条件下,x 、y 为何 值时,ηξyE xE z +=最大?最大值是多少? (解答时须给出图示) 21.(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.2005年普通高等学校招生全国统一考试(辽宁卷)数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。
x2005届重庆市高三(理科数学)联合诊断性考试(第一次)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
一、选择题:(本大题12个小题,每小题5分,共60分)各题答案必需答在答题卡上。
1.若集合{}{}2|11,|0M x x N x x =->=< ,那么A .M N M =B .M N ÜC .M N ÝD .M N N = 2.已知公比为q 的等比数列{}n a ,若()*22n n n b a a n N +=+∈,则数列{}n b 是 A .公比为q 的等比数列 B .公比为2q 的等比数列 C .公差为q 的等差数列 D .公差为2q 的等差数列3.设集合{}{}|2,|3M x x P x x =>=< ,那么“x M ∈或x P ∈”是“x M P ∈ ”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件4.若()12:12,:24160l x m y m l m x y ++=-++= 的图象是两条平行直线,则m 的值是 A .1m =或2m =- B .1m = C .2m =- D .m 的值不存在 5.在()0,2π内使sin cos x x >成立的x 的取值范围是 A .5,,424ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ B .,4ππ⎛⎫ ⎪⎝⎭ C .53,,442πππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ D .5,44ππ⎛⎫⎪⎝⎭6.已知函数()f x 的定义域为[],a b ,函数()f x 的图象如右图所示,则函数()fx 的图象是DCBA7.已知函数21x y x-=+,按向量a平移此函数图象,使其化简为反比例函数的解析式,则向量a为A .()1,1-B .()1,1-C .()1,1--D .()1,18.若函数()()()()tan 02lg 0x x f x x x ⎧≥⎪+=⎨-<⎪⎩ ,则()2984f f π⎛⎫+⋅-= ⎪⎝⎭A .12B .12-C .2D .2-9.已知直线12:,:0l y x l ax y =-= ,其中a 为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动时,a 的取值范围是A .(3⎫⎪⎪⎝⎭ B.3⎝⎭ C .3⎫⎪⎪⎝⎭ D .( 10.已知()f x 是R 上的增函数,点()()1,1,1,3A B -在它的图象上,()1f x -是它的反函数,那么不等式()12log1fx -<的解集为A .{}|11x x -<<B .{}|28x x <<C .{}|13x x <<D .{}|03x x << 11.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金A .大于10gB .小于10gC .大于等于10gD .小于等于10g12.在数列{}n a 中,如果存在非零常数T ,使得m T m a a +=对于任意的非零自然数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫数列{}n a 的周期。
2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题(文史类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-y x B .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x解:∵圆5)2(22=++y x 的圆心(-2,0)关于原点对称的点为(2,0),∴圆5)2(22=++y x 关于原点对称的圆为(x-2)2+y 2=5,选(A). 2.=+-)12sin12)(cos12sin12(cosππππ( )A .23-B .21-C .21 D .23解:(cossin)(cossin)cos1212121262πππππ-+==,选(D) 3.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)(=x f ,则使得 x x f 的0)(<的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)解:∵函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,∴f(-2)=0, 在]0,(-∞上0)(<x f 的x 的取值范围是(2,0]-,又由对称性[0,)+∞,∴在R 上fx)<0仰x的取值范围为(-2,2),选(D)4.设向量a =(-1,2),b =(2,-1),则(a ·b )(a +b )等于 ( ) A .(1,1) B .(-4,-4) C .-4 D .(-2,-2) 解:(a ·b )(a +b )=[-2+(-2)](1,1)=(-4,-4),选(B)5.不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集为 ( )A .)3,0(B .)2,3(C .)4,3(D .)4,2(解∵|x-2|<2的解集为(0,4),log 2(x 2-1)>1的解集为)(,+∞⋃-∞,∴不等式组⎩⎨⎧>-<-1)1(log ,2|2|22x x 的解集)4,3(,选(C) 6.已知βα,均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:∵由α、β均为锐角,:,2q παβ+<得0<α<α+β<2π∴sin(α+β)>sin α,但α、β均为锐角,sin α<sin(α+β),不一定能推出α+β<2π,如α=6π,β=3π就是一个反例,选(C)7.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个解:命题①③是真命题,选(B)8.若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于 ( )A .5B .7C .9D .11解:3x 的项的系数为332n C ,x 的项的系数为12n C ,由题意得332n C =812n C 解之得n=5,选(A)一了9.若动点),(y x 在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为( )A .⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2)20(442b b b bC .442+bD .b 2解:由题意可设x=2cos α,y=bsin α,则x 2+2y=4cos 2α+2bsin α=-4sin 2α+2bsin α+4=-2(sin 2α-bsin α-2)=-2(sin α-2b )2+4+22b ,∴22x y +的最大值为2404424b b b b ⎧+<<⎪⎨⎪≥⎩,选(A)10.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面 各连接中点,已知最底层正方体的棱长为2,且该塔形 的表面积(含最底层正方体的底面面积)超过39,则 该塔形中正方体的个数至少是 ( ) A .4 B .5 C .6 D .7解:k 层塔形的各层立方体的边长,增加的表面积以及k 层塔形的 表面积一览表如下:由上表可以看出要使塔形的表面积(含最底层正方体的底面面积)超过39,则 该塔形中正方体的个数至少是6层,选(C)第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上. 11.若集合}0)5)(2(|{},034|{2<--∈=<+-∈=x x R x B x x R x A ,则=B A .解:∵A=(-4,3),B=(2,5),∴A ∩B={x|2<x<3}12.曲线3x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 . 解:∵y '=3x 2,∵在(1,1)处切线为y-1=3(x-1),令y=0,得切线与x 轴交点(2,03),切线与直线x=2交于(2,4),∴曲线3(1,1)y x =在点处的切线与x 轴、直线2x =所围成的三角形的面积为S=1416842363⋅⋅==.. 13.已知βα,均为锐角,且=-=+αβαβαtan ),sin()cos(则 . 解:由已知得1-tan αtan β=tan α-tan β,∴tan α=1tan 11tan ββ+=+.14.若y x y x -=+则,422的最大值是 . 解:令x=2cos α,y=2sin α,则x-y=2cos α-2sin α=2sin(4πα-)≤2,∴若y x y x -=+则,422的最大值是15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为 .解;P=1128222101745C C C C ⋅+= 16.已知B A ),0,21(-是圆F y x F (4)21(:22=+-为圆心)上一动点,线段AB 的垂直平 分线交BF 于P ,则动点P 的轨迹方程为 . 解:由题意可知,动点P 的轨迹是椭圆,这个椭圆的焦点是A(-12,0)和F(12,0),定长2a=圆F 的半径2,因而动点P 的轨迹方程为13422=+y x 三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)4sin(sin )2sin(22cos 1)(2π+++-+=x a x x x x f 的最大值为32+,试确定常数a 的值.解:)4sin(sin )2sin(21cos 21)(22ππ+++--+=x a x x x x f)4sin(cos sin )4sin(sin cos 2cos 2222ππ+++=+++=x a x x x a x x x )4sin()2()4sin()4sin(222πππ++=+++=x a x a x因为)(x f 的最大值为)4sin(,32π++x 的最大值为1,则,3222+=+a所以,3±=a 18.(本小题满分13分)加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为109、98、87,且各道工序互不影响. (Ⅰ)求该种零件的合格率;(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率.(Ⅰ)解:1078798109=⨯⨯=P ; (Ⅱ)解法一: 该种零件的合格品率为107,由独立重复试验的概率公式得: 恰好取到一件合格品的概率为 189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)103(13=-解法二:恰好取到一件合格品的概率为189.0)103(107213=⋅⋅C , 至少取到一件合格品的概率为 .973.0)107(103)107()103(107333223213=+⋅+⋅⋅C C C19.(本小题满分13分)设函数∈+++-=a ax x a x x f 其中,86)1(32)(23R . (1)若3)(=x x f 在处取得极值,求常数a 的值; (2)若)0,()(-∞在x f 上为增函数,求a 的取值范围.解:(Ⅰ)).1)((66)1(66)(2--=++-='x a x a x a x x f因3)(=x x f 在取得极值, 所以.0)13)(3(6)3(=--='a f 解得.3=a 经检验知当)(3,3x f x a 为时==为极值点.(Ⅱ)令.1,0)1)((6)(21===--='x a x x a x x f 得当),()(,0)(),,1(),(,1a x f x f a x a -∞>'+∞-∞∈<在所以则若时 和),1(+∞上为增 函数,故当)0,()(,10-∞<≤在时x f a 上为增函数.当),()1,()(,0)(),,()1,(,1+∞-∞>'+∞-∞∈≥a x f x f a x a 和在所以则若时 上为增函 数,从而]0,()(-∞在x f 上也为增函数.综上所述,当)0,()(,),0[-∞+∞∈在时x f a 上为增函数.20.(本小题满分13分)如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC. 已知,21,2,2===AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离;(Ⅱ)二面角E —PC —D 的大小.解法一:(Ⅰ)因PD ⊥底面,故PD ⊥DE ,又因EC ⊥PE ,且DE 是PE 在面ABCD 内的射影,由三垂直线定理的逆定理知 EC ⊥DE ,因此DE 是异面直线PD 与EC 的公垂线.设DE=x ,因△DAE ∽△CED ,故1,1,2±===x x xCD AE x 即(负根舍去). 从而DE=1,即异面直线PD 与EC 的距离为1.(Ⅱ)过E 作EG ⊥CD 交CD 于G ,作GH ⊥PC 交PC 于H ,连接EH. 因PD ⊥底面, 故PD ⊥EG ,从而EG ⊥面PCD.因GH ⊥PC ,且GH 是EH 在面PDC 内的射影,由三垂线定理知EH ⊥PC. 因此∠EHG 为二面角的平面角.在面PDC 中,PD=2,CD=2,GC=,23212=-因△PDC ∽△GHC ,故23=⋅=PC CG PD GH ,又,23)21(12222=-=-=DG DE EG故在,4,,π=∠=∆EHG EG GH EHG Rt 因此中即二面角E —PC —D 的大小为.4π 解法二:(Ⅰ)以D 为原点,DA 、、DP 分别为x 、y 、 z 轴建立空间直角坐标系.由已知可得D (0,0,0),P (0,0,)2, C (0,2,0)设),0,2,(),0)(0,0,(x B x x A 则>).0,23,(),2,21,(),0,21,(-=-=x CE x PE x E 由0=⋅⊥CE PE 得,即.23,0432==-x x 故 由CE DE CE DE ⊥=-⋅=⋅得0)0,23,23()0,21,23(,又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=,故异面直线PD 、 CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,y ,z ).由0=⋅得0)2,2,0(),,0(=-⋅z y 即),2,1,0(,2==y z 故可取作EF ⊥PC 于F ,设F (0,m ,n ), 则).,21,23(n m EF --= 由0212,0)2,2,0(),21,23(0=--=-⋅--=⋅n m n m PC EF 即得, 又由F 在PC 上得).22,21,23(,22,1,222-===+-=n m m n 故 因,,⊥⊥故平面E —PC —D 的平面角θ的大小为向量与的夹角.故,4,22cos πθθ===即二面角E —PC —D 的大小为.4π21.(本小题满分12分)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程;(2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅(其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b a c a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则,22,319,312622>+>⋅--=-=+B A B A BA B A y y x x OB OA k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 22.(本小题满分12分)数列).1(0521681}{111≥=++-=++n a a a a a a n n n n n 且满足记).1(211≥-=n a b n n(Ⅰ)求b 1、b 2、b 3、b 4的值;(Ⅱ)求数列}{n b 的通项公式及数列}{n n b a 的前n 项和.n S 解法一:(I );22111,111=-==b a 故.320,2013;421431,43;3821871,87443322===-===-==b a b a b a 故故故(II )因231)34(3832)34)(34(=⨯=--b b ,2231222)34()34)(34(,)34()34(-=--=-b b b b故猜想.2,32}34{的等比数列公比是首项为=-q b n因2≠n a ,(否则将2=n a 代入递推公式会导致矛盾),034,3436162038212)34(2,36162034368163421134).1(8162511111≠--=--=--=---=---=--=-≥-+=++++b b a a a b a a a a a b n a aa n n n n n n n n n n n n n 因故故2|34|=-q b n 确是公比为的等比数列. n n b b 23134,32341⋅=-=-故因, )1(34231≥+⋅=n b n n ,12121+=-=n n n n n b b a a b 得由 n n n b a b a b a S +++= 2211故)152(313521)21(31)(2121-+=+--=++++=n nn b b b n n n 解法二: (Ⅰ)由,052168,21121111=++-+=-=++n n n n n n n n a a a a b a a b 代入递推关系得 整理得,342,0364111-==+-+++n n n n n n b b b b b b 即 .320,4,38,2,143211=====b b b b a 所以有由(Ⅱ)由,03234),34(234,342111≠=--=--=++b b b b b n n n n所以故的等比数列公比是首项为,2,32}34{=-q b n).152(313521)21(31)(21,121211).1(34231,23134212211-+=+--=++++=+++=+=-=≥+⋅=⋅=-n nn b b b b a b a b a S b b a a b n b b n n n nn n n n n n n n n n n 故得由即解法三:(Ⅰ)同解法一 (Ⅱ)2342312)34(3832,38,34,32=⨯=-=-=-b b b b b b 因此故又因的等比数列公比是首项为猜想).1(81625,2231,2,32}{111≥-+=≠⋅=-=-+++n a a a a b b q b b nnn n nn n n n1222181625121121111----+=---=-++n n n n n n n a a a a a b b ;3681036636816--=----=n n n n n a a a a a 3681636816211211111212-----=---=-++++++n n n n n n n n a a a a a a b b ).(2361620368163624361n n n n n n n n b b a a a a a a -=--=-----=+ ,231,2}{,0321112n n n n n b b q b b b b ⋅=-=-≠=-++的等比数列是公比因 从而112211)()()(b b b b b b b b n n n n n +-++-+-=---nn n n n n n n n n n n b a b a b a S b b a a b n +++=+=-=≥+⋅=+-=++++=-- 2211121,121211).1(342312)22(312)222(31故得由。
从2005年高考试题看“球面两点间的距离”一、高考试题的典例精析例1:(2005年北京春季高考卷)2004年12月26日8时58分(北京时间),印度尼西亚芬门答腊岛西北近海(3.9°N,95.9°E)发生地震并引发海啸。
海啸以800千米/小时的速度传播到马尔代夫的首都马累(4.2°N,73.5°E)时,当地区时约为A. 6时B. 9时C. 12时D. 15时解析:解题思路是:首先计算海啸发生地到马累的经度差,由于两地纬度相差很小,可以忽略不计,这样可认为两地在同一纬线赤道上,按照经度相差1°约相距111千米计算出两地距离,再根据速度计算出所需要的时间。
最后根据海啸传播到马累的北京时间推导出所求区时。
答案选择B项。
例2:(2005年全国高考卷I)下图为亚洲两个国家略图,据地理坐标判断甲、乙两地距离约为A. 1300千米B. 550千米C. 300千米D. 1550千米解析:解题思路是:首先空间定位,由于是亚洲图,所以甲为(34°N,36°E),乙为(29°N,48°E),两地经度差为12°。
由于甲、乙两地纬度相差不大,且接近30°N,可认为两地位于30°N。
这样,甲、乙两地距离即为12×cos30°×111千米≈1300千米。
答案选择C项。
例3:(2005年重庆高考卷)2004年7月28日,我国第一个北极科学考察站--黄河站(78°55'N,11°56'E)建成。
黄河站至北极点的距离约为A. 600千米B. 900千米C. 1200千米D. 1500千米解析:解题思路是:首先回忆经线指连接南北两极的线,所以黄河站至北极点的距离实质为同一经线上两点的距离。
又因同一经线上,全球各地纬度相差1°的间隔长度都相等,大约是111千米,所以两地距离为11×111≈1200千米。
重庆市历年高考理科数学真题及答案详解(2004-2012)2004年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟. 第Ⅰ部分(选择题 共60分)参考公式: 如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k knnP P Ck P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =的定义域是:( )A .[1,)+∞B .23(,)+∞C .23[,1] D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -= ( )A .–3B .3C .-3iD .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞U B .(,1)(0,1)-∞-UC .(1,0)(0,1)-UD .(,1)(1,)-∞-+∞U5.sin163sin 223sin 253sin313+=oooo( ) A .12- B.12C .D 6.若向量r r a 与b的夹角为60o,||4,(2).(3)72b a b a b =+-=-r r r r r,则向量ar的模为 ( )A .2B . 4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: ( ) A .0a < B .0a > C .1a <- D .1a >8.设P 是60o的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为 ( ) A .B . C .D . 9. {}na 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0nS >成立的最大自然数n 是: ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为: ( )A .43B .53C .2D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( )A .110B .120C .140D .1120 12.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是 ( )(A )(B )(C )(D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x=-=-与在交点处切线的夹角是______,(用幅度数作答)15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为nS ,则lim ______nx S →∞=.16.对数K ,直线:y kx b =+椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44=+-的最小正周期和最小y x x x xsin cos cos值;并写出该函数在[0,]π上的单调递增区间。
2005年普通高等学校招生全国统一考试理科数学(全国卷III )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷一、选择题:每小题5分,共60分.1.已知α为第三象限角,则2α所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为 ( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数是 ( )A .-14B .14C .-28D .284.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为( )A .16V B .14VC .13VD .12V5.=+--+-→)342231(lim 221x x x x n ( )A .21-B .21C .61-D .616.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c 7.设02x π≤≤,sin cos x x -,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43B .53CD10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )ABC.2D1 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )A .3个B .4个C .6个D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B= ( )A .6EB .72C .5FD .B0第Ⅱ卷二、填空题:每小题4分,共16分,把答案填在题中横线上.13.已知复数=+=++=z z z z z z i z 则复数满足复数,3,23000 .14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= . 15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取,22,3,25,0,25,3,22---用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ= . 16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是 三.解答题:共74分. 17.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、 乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概 率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率.18.(本小题满分12分)如图,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(Ⅰ)证明AB ⊥平面VAD ;(Ⅱ)求面VAD 与面VDB 所成的二面角的大小.19.(本小题满分12分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B(Ⅰ)求cotA+cotC 的值; (Ⅱ)设c a BC BA +=⋅求,23的值.20.(本小题满分12分)在等差数列}{n a 中,公差412,0a a a d 与是≠的等差中项.已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k21.(本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线.(Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.22.(本小题满分12分)已知函数].1,0[,274)(2∈--=x xx x f (Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意 使得)()(10x f x g =成立,求a 的取值范围.参考答案一、1.B 2.C 3.B 4.C 5.C 6.A 7.C 8.B 9.C 10.C 11.D 12.B二、13、i 231-,14、23-,15、7416、3三、解答题:17.解:记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C ,由题意.各台机器是否需要照顾相互之间没有影响,因此,A ,B ,C 是相互独立事件(Ⅰ)由题意得: P (A ·B )=P(A)·P(B)=0.05P (A ·C )=P(A)·P(C)=0.1 P (B ·C )=P(B)·P(C)=0.125解得:P(A)=0.2;P(B)=0.25;P(C)=0.5所以, 甲、乙、丙每台机器需要照顾的概率分别是0.2、0.25、0.5 (Ⅱ)记A 的对立事件为,A B 的对立事件为B ,C 的对立事件为C ,则5.0)(,75.0)(,8.0)(===C P B P A P ,于是7.0)()()(1)(1)(=⋅⋅-=⋅⋅-=++C P B P A P C B A P C B A P 所以这个小时内至少有一台机器需要照顾的概率为0.7. 18.证明:方法一:(Ⅰ)证明:VAD AB ABCD VAD AD ABCDAB ADAB ABCDVAD 平面平面平面平面平面平面⊥⇒⎪⎪⎭⎪⎪⎬⎫⋂=⊂⊥⊥(Ⅱ)解:取VD 的中点E ,连结AF ,BE ,∵△VAD 是正三形, ∴AE ⊥VD ,AE=AD 23∵AB ⊥平面VAD , ∴AB ⊥AE.又由三垂线定理知BE ⊥VD. 因此,tan ∠AEB=.332=AE AB 即得所求二面角的大小为.332arctan方法二:以D 为坐标原点,建立如图所示的坐标图系. (Ⅰ)证明:不防设作A (1,0,0),则B (1,1,0), )23,0,21(V , )23,0,21(),0,1,0(-==VA AB由,0=⋅VA AB 得AB ⊥VA. 又AB ⊥AD ,因而AB 与平面VAD 内两条相交直线VA ,AD 都垂直. ∴AB ⊥平面VAD.(Ⅱ)解:设E 为DV 中点,则)43,0,41(E , ).23,0,21(),43,1,43(),43,0,43(=-=-=DV EB EA由.,,0DV EA DV EB DV EB ⊥⊥=⋅又得 因此,∠AEB 是所求二面角的平面角,,721||||),cos(=⋅=EB EA EB EA解得所求二面角的大小为.721arccos19.解:(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由b 2=a c 及正弦定理得 .sin sin sin 2C A B = 于是BC A C A A C A C C C A A C A C A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1cot cot +=+=+=+=+.774sin 1sin sin 2===B B B (Ⅱ)由.2,2,43cos ,23cos 232====⋅=⋅b ca B B ca BC BA 即可得由得由余弦定理 b 2=a 2+c 2-2a c+cosB 得a 2+c 2=b 2+2a c ·cosB=5.3,9452)(222=+=+=++=+c a ac c a c a20.解:依题设得,)1(1d n a a n -+= 4122a a a = ∴)3()(1121d a a d a +=+,整理得d 2=a 1d , ∵0,d ≠ ,1a d =∴得,nd a n = 所以, 由已知得d ,3d ,k 1d ,k 2d ,…,k n d n …是等比数列. 由,0≠d 所以数列 1,3,k 1,k 2,…,k n ,… 也是等比数列,首项为1,公比为.9,3131===k q 由此得 等比数列),3,2,1(39,3,9}{111 ==⨯===+-n q k q k k n n n n 所以公比的首项, 即得到数列.3}{1+=n n n k k 的通项21.解:(Ⅰ)B A FB FA l F ,||||⇔=⇔∈两点到抛物线的准线的距离相等.∵抛物线的准线是x 轴的平行线,2121,,0,0y y y y 依题意≥≥不同时为0,∴上述条件等价于;0))((2121222121=-+⇔=⇔=x x x x x x y y∵21x x ≠, ∴上述条件等价于 .021=+x x 即当且仅当021=+x x 时,l 经过抛物线的焦点F.(II )设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以21,x x 满足方程,02122=-+m x x 得4121-=+x x ;A ,B 为抛物线上不同的两点等价于上述方程的判别式,0841>+=∆m 即.321->m设AB 的中点N 的坐标为),(00y x ,则.16121,81(2100210m m x y x x x +=+-=-=+=由.329321165165,41161,=->+=+-=+∈m b b m l N 于是得即得l 在y 轴上截距的取值范围为(+∞,329). 22.解:(I )对函数)(x f 求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-=' 令0)(='x f 解得.2721==x x 或当x 变化时,)(),(x f x f '的变化情况如下表:所以,当)21,0(∈x 时,)(x f 是减函数;当)1,21(∈x 时,)(x f 是增函数.当]1,0[∈x 时,)(x f 的值域为[-4,-3]. (II )对函数)(x g 求导,得).(3)(22a x x g -=' 因为1≥a ,当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈ 又,2)0(,321)1(2a g a a g -=--=即]1,0[∈x 时有].2,321[)(2a a a x g ---∈ 任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =,则].3,4[]2,321[2--⊃---a a 即⎩⎨⎧-≥--≤--.32,43212a a a 解①式得 351-≤≥a a 或;解②式得.23≤a又1≥a ,故a 的取值范围为.231≤≤a①。
2005年普通高等学校招生全国统一考试数学(全国Ⅱ卷理科)试题精析详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至9页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3. 本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k K n k n n P k C P P -=-一、选择题(5分⨯12=60分)(1)函数f(x)=|sinx+cosx|的最小正周期是(A )4π (B )2π (C )π (D )2π 【思路点拨】本题考查三角函数的化简和绝对值的概念和数形结合的思想.【正确解答】()|sin cos |)|f x x x x ϕ=+=+,f(x)的最小正周期为π.选C【解后反思】三角函数的周期可以从图象上进行判断,但是一个周期函数加绝对值后的周期不一定减半.如tan y x =的最小正周期为π,但是,|tan |y x =的最小正周期也是π,因此,对函数的性质的运用必须从定义出发,要学会用定义来研究问题.(2)正方体ABCD -A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点.那么,正方体的过P 、Q 、R 的截面图形是(A )三角形 (B )四边形(C )五边形 (D )六边形【思路点拨】本题考查平面的作法和空间想象能力,根据公理1可从P 、Q 在面内作直线,根据公理2,得到面与各棱的交点,与棱相交必与棱所在的两个面都有交线段.【正确解答】画图分析.作直线PQ 交CB的延长线于E ,交CD 的延长F ,作直线ER交1CC 的延长线于G ,交1BB 于S ,作直线GF 交1DD 于H ,交11C D H ,连结PS,RT,HQ ,则过P 、Q 、R 的截面图形为六边形PQHTRS ,故选D.【解后反思】要理解立体几何中的三个公理及3个推论是确定平面的含义,但不必深入研究..(3)函数y=32x -1(x ≤0)的反函数是(A )y=3)1(+x (x ≥-1) (B )y=-3)1(+x (x ≥-1)(C )y=3)1(+x (x ≥0) (D )y=-3)1(+x (x ≥0)【思路点拨】本题考查反函数的求法.要求反函数的三步曲(一是反解、二是x 、y 对调,三是求出反函数的定义域,即原函数的值域)进行,或用互为反函数的性质处理.【正确解答】解法1:由y=32x -1,且x ≤0,解得x =1y ≥-. 则所求反函数为y=-3)1(+x (x ≥-1).解法2:分析定义域和值域,用排除法.选B.【解后反思】选择题中考查反函数的解法时,一般只需验证定义域和值域即可,以达到快速高效之目的,因此,深刻理解互为反函数的概念和性质是关键,并要注意在求出反函数后注明定义域,这是求反函数必不可少的一步.C C 1(4)已知函数tan y x ω=在(-2π,2π)内是减函数,则 (A )0<ω≤1 (B )-1≤ω<0(C )ω≥0 (D )ω≤-1【思路点拨】本题考查参数ω对于函数tan y x ω=性质的影响.【正确解答】由正切函数的性质,正切函数tan y x =在(-2π,2π)上是增函数,而tan y x ω=在(-2π,2π)内是减函数,所以ππω-≥,即10ω-≤<.选B 【解法2】可用排除法,∵当ω>0时正切函数在其定义域内各长度为一个周期的连续区间内为增函数,∴排除(A),(C),又当|ω|>1时正切函数的最小正周期长度小于π,∴tan y x ω=在(,)22ππ-内不连续,在这个区间内不是减函数,这样排除(D),故选(B)。
2005年普通高等学校招生全国统一考试数学(全国3理)试题精析详解一、选择题(每小题5分,共60分)1.已知α为第三象限角,则2α所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限 【思路点拨】本题考查任意角的表示方法及讨论整数的奇偶性. 【正确解答】解法(1)因为α为第三象限角,所以(2,2)()2k k k Z παπππ∈--∈,所以(,)()224k k k Z αππππ∈--∈,即2α所在的象限是 第二或第四象限.选D解法2:用图象法类似角分线,由图象可以轻易得到答案.选D解法3:用特值法令0135α=-和0225α=,也可以得到答案D解法4:α第三象限,即3222k k k Z πππαπ+<<+∈,∴3224k k k Z παπππ+<<+∈,可知2α在第二象限或第四象限,选(D) 【解后反思】熟悉角的终边在坐标系内的画法,可以求任意角简单分割后的终边所在象限.如何求任意角经复杂分割后的终边所在象限如nα(1)先写出α范围(2)再求出除以n 的范围(3)再分成n 类情况讨论可完成.2.已知过点A(-2,m)和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为( )A .0B .-8C .2D .10【思路点拨】本题考查直线方程中系数与直线几何性质的关系. 【正确解答】解法(1)两直线平行,则斜率相等,因此有422mm -=-+,得8m =-. 选B.解法2:直线2x+y-1=0的一个方向向量为a r =(1,-2),(2,4)AB m m =+-u u u r,由AB ∥a即(m+2)×(-2)-1×(4-m)=0,m=-8,选(B)解法3:可用特值法逐个代入,与条件相匹配.也能得到答案B.【解后反思】掌握直线方程五种形式的相互转化及其参数对几何性质的影响.即把相应条件变成等式,从平行等重要条件入手. 3.在8)1)(1(+-x x 的展开式中5x 的系数是( )A .-14B .14C .-28D .28【思路点拨】本题考查二项式定理通项公式的应用.【正确解答】888(1)(1)(1)(1)x x x x x -+=+-+,5x 的系数为458814C C -=.选B.解法2:(x+1)8展开式中x 4,x 5的系数分别为48C ,58C ,∴(x-1)(x+1)8展开式中x 5的系数为458814C C -=,选(B)【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.4.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为( )A .16VB .14VC .13VD .12V【思路点拨】本题考查几何体的分解后求体积的方法(化整为零)及考查棱锥,棱柱体积公式的运用.【正确解答】解法1:可以假设三棱柱为直三棱柱,则四棱锥B-APQC 的高h 等于底面三角形AC 边上的高.所以11111111111[()][]332321111 []32333APQC B APQC ABC ABC A B C V S h AC PA QC h AC AA hVAC h AA S AA V --=⋅=⋅⋅+⋅=⋅⋅⋅=⋅⋅⋅=⋅==V 四棱锥三棱柱解法2:设三棱柱ABC-A 1B 1C 1为正三棱柱,P 、Q 、R 分别为侧棱AA 1、CC 1、BB 1上的中点,则B-PQR ABC PRQ 11V V V 36-==三棱锥三棱柱, 进而有263B APQC V V VV -=-=四棱锥.选C.解法3:如图,1111111113A ABCB A BC B AC Q ABC A B C V V V V ----===111B PCQA B CQA B PCA V V V ---=+,∵AF=QC 1,∴APQC 1,APQC 都是平行四边形,∴111B PCQA B CQA B PCA V V V ---=+=12(11B CQA B PCA V V --+) =1111223ABC A B C V -⋅=11113ABC A B C V -,选(C) 【解后反思】掌握特殊化方法和分解几何体的基本原则.在求这一类的问题中,如果题目中没有对几何体作任何规定时,可将几何体进行特殊化,变成有规律的几何体,不但不影响我们求解,相反会给我们解题带来柳暗花明又一村的感觉. 5.22112lim()3243x x x x x →-=-+-+ ( )A .21-B .21C .61-D .61【思路点拨】本题考查函数在某一点极限的基本求法. 先通分整理,再约分化简,最后代入求值. 【正确解答】2211112(3)2(2)11lim()lim lim 3243(1)(2)(3)(2)(3)2x x x x x x x x x x x x x x →→→-----===--+-+-----选A.【解后反思】在求函数某一点极限的过程中,总是先化简,再代入的思路,不要先随便代入或不加思索的用极限计算的运算法则进行分离. 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c【思路点拨】本题考查对数函数单调性和分数比较法则.【正确解答】15106ln 2ln 3ln 5,,303030a b c ===,61510523<<Q ,∴c a b <<. 选C解法2:由题意得a=lnln ln ∵62353153525105(5)(2)2(2)(3)3=<==<=,∴c<a<b,选(C)【解后反思】在数的比较大小过程中,要遵循这样的规律,异中求同即先将这些数的部分因式化成相同的部分,再去比较它们剩余部分,就会很轻易啦.一般在数的比较大小中有如下几种方法:(1)作差比较法和作商比较法,前者和零比较,后者和1比较大小;(2)找中间量,往往是1,在这些数中,有的比1大,有的比1小;,(3)计算所有数的值;(4)选用数形结合的方法,画出相应的图形;(5)利用函数的单调性等等.7.设02x π≤≤,sin cos x x -,则( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤D .322x ππ≤≤【思路点拨】本题考查在确定范围内,利用三角函数公式.来求解三角函数方程. 【正确解答】解法1sin cos x x =-得|sinx-cosx|=sinx-cosx, 因此sin cos x x ≥, 又02x π≤<,由正弦、余弦函数的图象可知∴544x ππ≤≤,选(C) 解法2:用特值法,先取4x π=验证成立,则答案为A 、B 、C,再分别取0x =和74x π=,排除答案A 、B,最后我们可以轻易得到正确答案C.【解后反思】在求有关函数问题过程中,优先考虑函数的取值范围或函数存在条件是解决问题的重要手段之一,同时我们也注意到函数有很强的规律性,再加上选择题的答案必在四个选项中,所以做此类题目可从局部入手,利用特值方法,也可得到正确答案,且简单易行,所以对于函数选择题,利用特值法求解是做此类题目的一个亮点.8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .12【思路点拨】本题考查三角公式的记忆及三角公式的熟练运用【正确解答】解法(1)2222sin 2cos 2sin 2cos tan 21cos 2cos 22cos cos 2ααααααααα⋅=⋅=+.选B 解法(2) 可以用特殊值验证(令6πα=)得之.选B.【解后反思】方法不拘泥,要注意灵活运用,在求三角的问题中,要注意这样的口决“三看”即(1)看角,把角尽量向特殊角或可计算角转化,(2)看名称,把一道等式尽量化成同一名称或相近的名称,例如把所有的切都转化为相应的弦,或把所有的弦转化为相应的切,(3)看式子,看式子是否满足三角函数的公式.如果满足直接使用,如果不满足转化一下角或转换一下名称,就可以使用.9.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=u u u u r u u u u r 则点M 到 x 轴的距离为( )A .43B .53CD【思路点拨】本题主要考查向量垂直的等价条件,要求会根据双曲线方程求出其几何性质. 【正确解答】设(,)M x y ,0,0x y >>,12(F F ,则12(),()MF x y MF x y =+=u u u u r u u u u r由120,MF MF ⋅=u u u u r u u u u r,则2(0x x y +=,又因为点M 在双曲线上,2212y x-=,所以y =选C 解法2:由120MF MF ⋅=u u u u r u u u u r,得MF 1⊥MF 2,不妨设M(x,y)上在双曲线右支上,且在x 轴上方,则有(ex-a)2+(ex+a)2=4c 2,即(ex)2+a 2=2c 2,∵得x 2=53,y 2=23,由此可知M 点到x,选(C) 【解后反思】向量的坐标表示和数量积的性质在平面向量中的应用是学习的重点和难点.也是高考常常考查的重要内容之一.在平时请多多注意用坐标如何来表示向量平行和向量垂直,既要注意它们联系,也要注意它们的区别.圆锥曲线的性质也是高考重要知识点之一,不仅要注意它们的第一定义,同时对于第二定义(圆锥曲线上的点到一定点的距离比此点到一定直线的距离为一常数,此常数是圆锥曲线的离心率)也要作深入了解,第二定义对解决关于圆锥曲线的最值等问题有很强的运用.10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )AB12C.2 D1【思路点拨】重点知识,重点考查,本题考查椭圆各相关参数的几何意义及其求法. 【正确解答】设1(,0)F c -,2(,0)F c,由题意易知,21212,PF F F c PF ===,1212212F F c e a PF PF ∴====+,选D.解法2:由题意可得22b c a =,∵b 2=a 2-c 2e=ca,得e 2+2e-1=0,∵e>1,解得1,选(D) 【解后反思】本题有很强有隐蔽性,本题提到的重点是椭圆,那椭圆的性质也在可用范围之列.这一点往往是同学所忽略.巧用圆锥曲线的几何性质来解决有关解析几何有关问题是一个好的方法, 本题目是一道综合题,综合运用所学的知识,能简化数学问题. 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( )A .3个B .4个C .6个D .7个【思路点拨】本题考查分类思想的运用和立体几何的基本性质.【正确解答】由题意可知,四个点不可能都在平面α的同侧.只要考虑将四个平面分成两组,1234/2C C +.共有7种可能.选D解法2:共有7个,它们是由四个定点组成的四面体的三对异面直线间的公垂线的三个中垂面;四面体的四条高的四个中垂面,选(D)【解后反思】分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的.12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B= ( )A .6EB .72C .5FD .B0【思路点拨】本题考查计数法则和进位规则.【正确解答】141327116111E D B +=+==⨯+=,∵A=10,B=11,1011110616146A B E ⨯=⨯==⨯+=. ∴在16进制中A ×B=6E,选A 【解后反思】这是一道新型题目,让学生体会各种进制之间的异形同质.不管哪一种进制都是十进制的一种拓展,类比一下十进制,我们可以轻易解决这一系列问题,当然我们如果对计算机的进制有一个了解,解决这个问题会变得非常简单,高考每年都有一到二道新型题目,解决胜这些问题,不仅仅需要数学,其他知识也是一个重要的补充,所以在平时请同学们要多多进行知识积累.二、填空题(4分⨯4=16分)13.已知复数=+=⋅+=z z z z z z i z 则复数满足复数,3,23000 .【思路点拨】本题考查复数相等的定义. 设(,)z a bi a b R =+∈,再用复数相等的定义列方程组求解即可.【正确解答】z a bi =+,则0(32)(32)z z a b b a i ⋅=-++,03(33)(23)z z a b i +=+++,故32333223a b a b a b-=+⎧⎨+=+⎩,得31,2a b ==-,所求复数312z i =- 解法2:由得和,3,23000z z z z i z +=⋅+=00z z )3z (=- ,i 231223i )i (2i )i ()2i 3(2i 2i 33z z z 00-=+-=-⋅-⋅+=+=-=【解后反思】方程的思想在复数求值中的重要运用,自从我们学习了方程,方程就成为我们求值的重要手段,面对本题相似的问题时,应优先考虑到方程的思想,应大胆假设,细心求解,所有问题可以迎刃而解.14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r,且A 、B 、C 三点共线,则k= .【思路点拨】本题主要考查三点共线的等价条件. 【正确解答】解法(1)由三点共线的性质知:4421255103k k -+=⇒--k=-. 解法(2)利用向量本身的性质求解:由三点共线,得 //AB AC u u u r u u u r,AB OB OA =-u u u r u u u r u u u r ,AC OC OA =-u u u r u u u r u u u r ,解之得23k =-.解法(3)(4,7),(2,2)AB k AC k =--=--u u u r u u u r ,由题意得(4-k)(-2)-2k ×7=0,解得k=23-【解后反思】由于以原点为起点的向量坐标等于其终点坐标,所以本题也可用定比分点中三点共线的充要条件求解.向量的解法也可以轻易求解的,多种方法在同一题目的使用,既加深我们对题目的了解,又使得我们对数学方法能更好地掌握,所以解决数学问题时,要尽量一题多解,丰富自己的数学知识,加强数学解题能力,加深对学习数学的兴趣,达到解一题,取得是解多题的效果.15.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取,22,3,25,0,25,3,22---用ξ表示坐标原点到l 的距离,则随机变量ξ的数学期望E ξ= .【思路点拨】理解随机变量、数学期望等概念,会写离散型随机变量的分布列,并能在此基础之上求其数学特征.【正确解答】由题意及点(0,0)到直线1y kx =+距离d =有,随机变量ξ的分布列为故有E =(1++++++)=73322337ξ⨯. 解法2:随机变量可能的取值为x 1=13,x 2=12,x 3=23,x 4=1,它们的概率分别为p 1=27,p 2=27,p 3=27,p 4=17,∴随机变量ζ的数学期望E ζ=211122117372737⋅+⋅+⋅+⋅=47【解后反思】准确确定随机变量的所有可能取值及其概率是正确解题的关键.细心也是解决此类问题的决窍之一,平时应多进行数的复杂运算,少用计算器,以便在高考中争取时间,取得先机.16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是【思路点拨】学会将平面几何问题转化为线性规划问题求解.【正确解答】以C 为原点,CB u u u r 为x 轴,CA u u u r为y 轴建立直角坐标系,(0,4),(3,0)A B ,设(,)P x y 且03,04x y <<<<,则AB 直线方程为43120x y +-=.点P 到AC 、BC 的距离乘积2443(4)()33332xy x x x =-+=--+≤ 所以最大值为3.解法2:P 到BC 的距离为d 1,P 到AC 的距离为d 2,则三角形的面积得3d 1+4d 2=12,∴3d 1⋅4d 2≤2212()6362==,∴d 1d 2的最大值为3,这时3d 1+4d 2=12, 3d 1=4d 2得d 1=2,d 2=32【解后反思】近年来高考题不再只是直接考查线性规划问题,而是需要考生通过对问题的分析整理,将原有问题转化为线性规划问题,并用数形结合的方法加以解决.数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法. 随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题已成为高考数学考试的热点.要加强在这一方面的练习,此类问题还有一些,例如使用材料的最优化,部分概率应用题、数理统计题等等. 三.解答题(共74分) 17.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、 乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概 率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率. 【思路点拨】本题考查独立事件概率的求法.【正确解答】(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C , 则A 、B 、C 相互独立, 由题意得:P (AB )=P (A )P (B )=0.05 P (AC )=P (A )P (C )=0.1 P (BC )=P (B )P (C )=0.125解得:P (A )=0.2;P (B )=0.25;P (C )=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5(Ⅱ)∵A 、B 、C 相互独立,∴AB C 、、相互独立, ∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为()()()()0.80.750.50.3P A B C P A P B P C ⋅⋅==⨯⨯=∴这个小时内至少有一台需要照顾的概率为1()10.30.7p P A B C =-⋅⋅=-= 【解后反思】概率问题的难点在于分析某事件所有可能出现的结果及其表示方法,而运用概率部分的性质、公式求某事件概率只是解决问题的工具而已. 18.(本小题满分12分)如图,在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面V AD 是正三角形,平面V AD ⊥底面ABCD . (Ⅰ)证明AB ⊥平面V AD ;(Ⅱ)求面V AD 与面VDB 所成的二面角的大小.【思路点拨】熟练掌握线面垂直、线线垂直、面面垂直的判定及其相互推导.并了解每个定理所需要的条件和适用的范围.【正确解答】(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD . 建立如图空间直角坐标系,并设正方形边长为1, 则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,0,∴1(0,1,0),(1,0,0),(2AB AD AV ===-u u u r u u u r u u u r 由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥u u u r u u u r u u u r u u u r1(0,1,0)(02AB AV AB AV ⋅=⋅-=⇒⊥u u u r u u u r u u u r u u u r ,又AB ∩AV=A , ∴AB ⊥平面VAD.(Ⅱ)由(Ⅰ)得(0,1,0)AB =u u u r是面VAD 的法向量. 设(1,,)n y z =r是面VDB 的法向量,则110(1,,)(,1,)0(1,220(1,,)(1,1,0)0x n VB y z n z n BD y z =-⎧⎧⎧⋅=⋅--=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=⋅=⎪⎪⎪⎩⋅--=⎩⎩r u u r r r u u u r∴(0,1,0)(1,cos ,7AB n ⋅-<>==-u u u r r,又由题意知,面VAD 与面VDB所成的二面角,所以其大小为arccos7. 解法2:(Ⅰ)证明:AB AD AB AB ABCD AD VAD ABCD ⊥⎫⎪⊥⎪⇒⊥⎬⊂⎪⎪=⋂⎭平面VAD 平面ABCD平面VAD 平面平面平面(Ⅱ)解:取VD 的中点E ,连结AE ,BE ∵VAD 是正三角形 ∴AE ⊥VD ,∵AB ⊥平面VAD ∴AB ⊥AE 又由三垂线定理知BE ⊥VD因此,AEB ∠是所求二面角的平面角于是,tan AB AEB AE ∠==即得所求二面角的大小为arctan3【解后反思】在立体几何学习中,我们要多培养空间想象能力,并要注意直线和平面之间各种位置关系的相互推导,二面角的平面角的适当选取是立体几何的核心考点之一.是高考数学必考的知识点之一.作,证,解,是我们求二面角的三步骤.作:作出所要求的二面角,证:证明这是我们所求二面角,并将这个二面角进行平面化,置于一个三角形中,最好是直角三角形,解:利用我们解三角形的知识求二面角的平面角.向量的运用也为我们拓宽了解决立体几何问题的角度,不过在向量运用过程中,要首先要建系,建系要建得合理,最好依托题目的图形,坐标才会容易求得. 19.(本小题满分12分)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a ,b ,c 成等比数列,.43cos =B (Ⅰ)求cotA+cotC 的值; (Ⅱ)设c a BC BA +=⋅求,23的值. 【思路点拨】本题考查:1.三角式的化简、求值;2.向量法的应用.解决问题1.应该注意先整理所求三角式,再利用公式、性质等进行化简,最后将已知条件(可能要在整理之后)代入化简后的三角式求值.解决问题2.则应该注意使用数形结合的思想方法并注意随时与问题的具体情境相结合. 【正确解答】(Ⅰ)由,47)43(1sin ,43cos 2=-==B B 得由b 2=a c 及正弦定理得 .sin sin sin 2C A B = 于是BC A C A A C A C C C A A CAC A 2sin )sin(sin sin sin cos cos sin sin cos sin cos tan 1tan 1cot cot +=+=+=+=+.774sin 1sin sin 2===B B B (Ⅱ)由.2,2,43cos ,23cos 232====⋅=⋅b ca B B ca 即可得由得 由余弦定理 b 2=a 2+c 2-2a c+cosB 得a 2+c 2=b 2+2a c ·cosB=5.3,9452)(222=+=+=++=+c a ac c a c a【解后反思】当问题中出现三角形边、角之间的比例关系时,应首先考虑采用正弦定理,因为所有三角基本公式中只有它涉及边与角之间的比例关系.利用正弦定理求角时,注意有可能出现多解情况,要好好讨论,防止出现漏解或多解情况. 20.(本小题满分12分)在等差数列}{n a 中,公差412,0a a a d 与是≠的等比中项.已知数列ΛΛ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k【思路点拨】本题考查等差、等比数列的性质.要求考生熟练掌握等差等比数列的定义、通项公式及其由来. 【正确解答】由题意得:2214a a a=即211(3)1()d d a a a =++又0,d ≠∴1d a =又1213,,,,n k k k a a a aa K K 成等比数列,∴该数列的公比为3133dq da a===, 所以113n n k a a +=⋅又11(1)nk nn d a a kk a =+-=∴13n n k +=所以数列{}n k 的通项为13n n k +=【解后反思】理解公比q 和公差d 的涵义,能把文字叙述转化为符号关系式.利用基本量法是解决数列的重要方法,在等差数列中,把所有值转化成首项和公差,在等比数列中,把所有值转化成首项和公比,一定可以求解,不过在某些题目中,用;这种方法会比较难,所以在某些步骤中采用数列的性质,能简化计算过程,达到快速求解的目的. 21.(本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线. (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当直线l 的斜率为2时,求l 在y 轴上截距的取值范围.【思路点拨】根据题目所给条件绘制草图,寻找函数代数、几何性质的结合点是解决综合题的主要途径之一.适当选取等价条件将原问题转化为熟知的问题是解决综合应用问题的关键.【正确解答】(Ⅰ)B A FB FA l F ,||||⇔=⇔∈两点到抛物线的准线的距离相等.∵抛物线的准线是x 轴的平行线,2121,,0,0y y y y 依题意≥≥不同时为0,∴上述条件等价于;0))((2121222121=-+⇔=⇔=x x x x x x y y∵21x x ≠, ∴上述条件等价于 .021=+x x 即当且仅当021=+x x 时,l 经过抛物线的焦点F.(II )设l 在y 轴上的截距为b ,依题意得l 的方程为b x y +=2;过点A 、B 的直线方程可写为m x y +-=21,所以21,x x 满足方程,02122=-+m x x 得4121-=+x x ; A ,B 为抛物线上不同的两点等价于上述方程的判别式,0841>+=∆m即.321->m设AB 的中点N 的坐标为),(00y x ,则 .16121,81(2100210m m x y x x x +=+-=-=+=由.329321165165,41161,=->+=+-=+∈m b b m l N 于是得即得l 在y 轴上截距的取值范围为(+∞,329).【解后反思】这是一道常规的解析几何的问题,也是近年高考数学常考的重要内容之一,解析几何属于比较讲究步骤的这一类问题,我们可以遵循这样的步骤:先将直线或曲线设出,然后将直线方程代入曲线方程中,整理一下,变成一道方程,再使用韦达定理,写出两根之和与之积,最后再根据题目的要求求解,在求解的过程中,要注意韦达定理存在的条件,同时也要加强对计算能力的训练. 22.(本小题满分12分)已知函数].1,0[,274)(2∈--=x xx x f (Ⅰ)求)(x f 的单调区间和值域;(Ⅱ)设1≥a ,函数],1,0[],1,0[].1,0[,23)(0123∈∈∈--=x x x a x a x x g 总存在若对于任意 使得)()(10x f x g =成立,求a 的取值范围.【思路点拨】本题由分式函数的有关性质,考查运算能力和思维能力.涉及导数在解决分式函数、高次函数问题中的重要应用,熟练掌握导数的运算法则是解决这类问题的关键.而第(Ⅱ)问中对a 的讨论是解决这一问题的难点,也是作为压轴题的亮点.【正确解答】(I )对函数)(x f 求导,得222)2()72)(12()2(7164)(x x x x x x x f ----=--+-=' 令0)(='x f 解得.2721==x x 或当x 变化时,)(),(x f x f '的变化情况如下表:所以,当)21,0(∈x 时,)(x f 是减函数;当)1,21(∈x 时,)(x f 是增函数.当]1,0[∈x 时,)(x f 的值域为[-4,-3]. (II )对函数)(x g 求导,得).(3)(22a x x g -=' 因为1≥a ,当)1,0(∈x 时,.0)1(3)(2≤-<'a x g因此当)1,0(∈x 时,)(x g 为减函数,从而当]1,0[∈x 时有)].0(),1([)(g g x g ∈又,2)0(,321)1(2a g a a g -=--=即]1,0[∈x 时有].2,321[)(2a a a x g ---∈ 任给]1,0[1∈x ,]3,4[)(1--∈x f ,存在]1,0[0∈x 使得)()(10x f x g =,则].3,4[]2,321[2--⊃---a a 即⎩⎨⎧-≥--≤--.32,43212a a a解①式得 351-≤≥a a 或;解②式得.23≤a 又1≥a ,故a 的取值范围为.231≤≤a【解后反思】注意导数是新课改重要内容,是高考的又一热点,也是学生学习数学的难点,导数在高中数学中有如下几种应用:(1)求单调区间;(2)求函数的极值;(3)求切线;(4)求最值.必须认真学好.①②。
2005年高考全国试题分类解析(圆锥曲线)一、选择题:1重庆卷) 若动点(x ,y )在曲线14222=+b y x (b >0)上变化,则x 2+2y 的最大值为(A ) (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b bb b ;(B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b ; (D) 2b 。
2. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 3. (天津卷)设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( C )A.2±B.34±C.21±D.43±4.(天津卷)从集合{1,2,3…,11}中任选两个元素作为椭圆方程12222=+ny m x 中的m 和n,则能组成落在矩形区域B ={(x ,y)| |x |<11且|y|<9}内的椭圆个数为(B )A.43B. 72C. 86D. 905. (上海)过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( B )A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在6. (山东卷)设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( B ) (A)1 (B)2 (C)3 (D)47 (全国卷Ⅰ)已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为(A )(A)23 (B)23 (C)26 (D)332A.)22,22(-B.)2,2(-C.)42,42(D.)81,81(-8.(全国卷II) 双曲线22149x y -=的渐近线方程是( C)(A) 23y x =± (B) 49y x =± (C) 32y x =± (D) 94y x =±9. (全国卷II)已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为(C )(A)(B) (C) 65 (D) 5610. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(D )(A) 2 (B) 3 (C) 4 (D) 5 11. (全国卷Ⅲ)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是(D)(A)2 (B)12(C)2 1 12. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( B )A.23+6B.21C.21218+D.2113 .(江苏卷)抛物线y =42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( B) ( A )1617 ( B ) 1615 ( C ) 87( D ) 014. (江苏卷)(11)点P(-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y =-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A ) ( A )33 ( B ) 31 ( C ) 22( D ) 2115.(湖南卷)已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F,右准线与一条渐近线交于点A,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为(D )A.30ºB.45ºC.60ºD.90º16. (湖南卷)已知双曲线22a x -22by =1(a >0,b >0)的右焦点为F,右准线与一条渐近线交于点A,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角为( D )A.30ºB.45ºC.60ºD.90º17. (湖北卷)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( A )A.163B.83 C.316 D.38 18. (福建卷)已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是 ( C )A.21 B.23 C.27 D.5 19. (福建卷)设b a b a b a +=+∈则,62,,22R 的最小值是( )A.22-B.335-C.-3D.27-20. (广东卷)若焦点在轴上的椭圆2212x y m+=的离心率为12,则m =(B) (AB)32(C)83(D)2321. (全国卷Ⅲ)已知双曲线2212y x-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为(C)(A)43 (B)5322.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( D ) A.324+B.13-C.213+ D.13+二、填空题:1.(江西卷)以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 ③④ (写出所有真命题的序号)2. (重庆卷)已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为22413x y +=。
2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题(理工农医类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟.注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-y xB .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x解:∵圆5)2(22=++y x 的圆心(-2,0)关于原点对称的点为(2,0),∴圆5)2(22=++y x 关于原点对称的圆为(x-2)2+y 2=5,选(A). 2.=-+2005)11(ii( ) A .iB .-iC .20052D .-20052解:∵11ii +-=-i,∴=-+2005)11(ii (-i)2005=i ,选(A) 3.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)解:∵函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,∴f(-2)=0, 在]0,(-∞上0)(<x f 的x 的取值范围是(2,0]-,又由对称性[0,)+∞,∴在R 上fx)<0仰x的取值范围为(-2,2),选(D)4.已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向量AC 与的夹角为( )A .54arccos2-πB .54arccos C .)54arccos(-D .-)54arccos(-解:∵(1,2),AC =D(5,2),(2,1)DA =,∴cos(180°-∠DAC)=45||||5AC DA AC DA ⋅==,∴∴∠DAC=4arccos()5-,即向量与的夹角为4arccos()5-,选(C)5.若x ,y 是正数,则22)21()21(x y y x +++的最小值是 ( )A .3B .27 C .4D .29解:22)21()21(x y y x +++≥2(x+12y)(y+12x )≥8=4当且仅当11221212x y y x x y y x ⎧+=+⎪⎪⎪=⎨⎪⎪=⎪⎩,得时等号成立,选(C) 6.已知α、β均为锐角,若:sin sin(),:,2p q p q πααβαβ<++<则是的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:∵由α、β均为锐角,:,2q παβ+<得0<α<α+β<2π∴sin(α+β)>sin α,但α、β均为锐角,sin α<sin(α+β),不一定能推出α+β<2π,如α=6π,β=3π就是一个反例,选(C)7.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个 解:命题①③是真命题,选(B)8.若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于 ( )A .4B .6C .8D .10解:211()(2)()2kk n kk k n k n k k n n T C x C x x---+=-=-令n-2k=-2,n=2k-2,21()2r r n r n r r n T C x --+=-,令n-2r= -4,n=2r-4由题意得(1)25(1)2k k n k n r r n rn C C ---=--,(1)25kk r r k nr nC C ---=-,∵r-k=1,∴化简得2(1)5,(2)k k +=-解得k=4,∴n=6.选(B)9.若动点(y x ,)在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为 ( )A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b bC .442+bD .2b解:由题意可设x=2cos α,y=bsin α,则x 2+2y=4cos 2α+2bsin α=-4sin 2α+2bsin α+4=-2(sin 2α-bsin α-2)=-2(sin α-2b )2+4+22b ,∴22x y +的最大值为2404424b b b b ⎧+<<⎪⎨⎪≥⎩,选(A)10.如图,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使 AE : EB=AF : FC=AG : GD=2 : 1,记O 为 三平面BCG 、CDE 、DBF 的交点,则三棱 锥O —BCD 的体积等于 ( )A .91B .81 C . 71D .41解:如图,BM 是平面BCG 与平面BDF 的交线,CL 是平面BCG 与平面CDE 的交线,则BM 子CL 的交点即为O.作EG ⊥平面BCD,LN ⊥平面BCD,OQ ⊥平面BCD,设A 到平面BCD 的高为h,由题意可知 EK=13h ,LN=33115535EK h h =⋅=,∵32CM BL MG LG ==,∴75CL CQ = ∴OQ=55117757LN h h =⋅=,∴1113773BCDO BCD A BCDBCD hS VV hS --⋅==,选(C)第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上. 11.集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则BA = . 解:由题意可知A=(-2,3),B=(0,4),∴B A =}30|{<<x x .12.曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= . 解:∵y '=3x 2,∵在(a,a 3)处切线为y-a 3=3a 2(x-a),令y=0,得切线与x 轴交点(2,03a ),切线与直线x=a 交于(a,a 3),∴曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为S=44111236a a a ⋅⋅=,令S=16,解得a=±1. 13.已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+= . 解:由已知得1-tan αtan β=tan α-tan β,∴tan α=1tan 11tan ββ+=+.14.n n n n n 231233232lim +-+∞→= . 解:nn n nn 231233232lim+-+∞→=8()38939lim lim 3889()19n nnn n n n n→∞→∞--⋅==-++ 15.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 . 解:4位乘客进入4节车厢共有256种不同的可能,6位乘客进入各节车厢的人数恰为0,1,2,3的方法共有12366390C C C ⋅⋅=,∴这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为9045256128=. 16.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号). ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形 解:①菱形不可能,如果这个四边形是菱形,这时菱形的一条对角线垂直抛物线的对称轴,这时四边形的必有一个顶点在抛物线的对称轴上(非抛物线的顶点); ④平行四边形,也不可能,因为抛物上四个点组成的四边形最多有一组对边平行.故连接抛物线上任意四点组成的四边形可能是②③⑤.三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)2cos(2sin )2sin(42cos 1)(xx a x x x f --++=ππ的最大值为2,试确定常数a 的值.18.(本小题满分13分) 在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).19.(本小题满分13分) 已知R a ∈,讨论函数)1()(2+++=a ax x e x f x 的极值点的个数..0)12()2(0)()],12()2([)2()1()(:222=++++='++++=+++++='a x a x x f a x a x e a x e a ax x e x f x x x 得令解(1)当.0)4(4)12(4)2(22>-=-=+-+=∆a a a a a a:),)(()(,,,0)12()2(,402121212从而有下表于是不妨设有两个不同的实根方程时或即x x x x e x f x x x x a x a x a a x --='<=++++><即此时)(x f 有两个极值点.(2)当0)12()2(,4002=++++===∆a x a x a a 方程时或即有两个相同的实根21x x =于是21)()(x x e x f x -=')(,0)(,;0)(,21x f x f x x x f x x 因此时当时故当>'>>'<无极值.(3),0)12()2(,40,02>++++<<<∆a x a x a 时即当)(,0)]12()2([)(2x f a x a x e x f x 故>++++='为增函数,此时)(x f 无极值. 因此当)(,40,2)(,04x f a x f a a 时当个极值点有时或≤≤<>无极值点.20.(本小题满分13分) 如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求: (Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.解法一:(Ⅰ)因AB ⊥面BB 1C 1C ,故AB ⊥BE.又EB 1⊥EA ,且EA 在面BCC 1B 1内的射影为EB.由三垂线定理的逆定理知EB 1⊥BE ,因此BE 是异面直线 AB 与EB 1的公垂线,在平行四边形BCC 1B 1中,设EB=x ,则EB 1=24x -,作BD ⊥CC 1,交CC 1于D ,则BD=BC ·.233sin =π在△BEB 1中,由面积关系得0)3)(1(,23221421222=--⋅⋅=-x x x x 即. 3,1±=±=x x 解之得(负根舍去) ,33cos21,,322=⋅-+∆=πCE CE BCE x 中在时当解之得CE=2,故此时E 与C 1重合,由题意舍去3=x .因此x =1,即异面直线AB 与EB 1的距离为1.(Ⅱ)过E 作EG//B 1A 1,则GE ⊥面BCC 1B ,故GE ⊥EB 1且GE 在圆A 1B 1E 内, 又已知AE ⊥EB 1故∠AEG 是二面角A —EB 1—A 1的平面角. 因EG//B 1A 1//BA ,∠AEG=∠BAE ,故.2221tan ===AB BE AEG 解法二:(Ⅰ)平面又由得由⊥=⋅⊥AB EB AE EB AE ,0,11 而BB 1C 1C 得AB ⊥EB 1从而1EB AB ⋅=0..,0)(111111的公垂线与是异面直线故线段即故EB AB BE EB EB EB AB EB EA EB AB EA EB EB ⊥=⋅+⋅=⋅+=⋅设O 是BB 1的中点,连接EO 及OC 1,则在Rt △BEB 1中,EO=21BB 1=OB 1=1, 因为在△OB 1C 1中,B 1C 1=1,∠OB 1C 1=3π,故△OB 1C 1是正三角形, 所以OC 1=OB 1=1,又因∠OC 1E=∠B 1C 1C -∠B 1C 1O=,3332πππ=-故△OC 1E 是正三角形,所以C 1E=1,故CE=1,易见△BCE 是正三角形,从面BE=1,即异面直线AB 与EB 1的距离是1.(Ⅱ)由(I )可得∠AEB 是二面角A —EB 1—B 的平面角,在Rt △ABE 中,由AB=2, BE=1,得tanAEB=2.又由已知得平面A 1B 1E ⊥平面BB 1C 1C , 故二面角A —EB 1—A 1的平面角AEB ∠-=2πθ,故.22cot )2tan(tan ==∠-=AEB AEB πθ解法三:(I )以B 为原点,1BB 、分别为y 、z 轴建立空间直角坐标系. 由于BC=1,BB 1=2,AB=2,∠BCC 1=3π, 在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0,2,0),)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a.,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥面BCC 1B 1,故AB ⊥BE. 因此BE 是异面直线AB 、EB 1的公垂线, 则14143||=+=,故异面直线AB 、EB 1的距离为1. (II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量EA A B 与11的夹角.21.(本小题满分12分)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即 )2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得.31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ---- 22.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….[解答](Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+k k k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a n n a n n a n nn nn 两边取对数并利用已知不等式得 n n n a n n a ln )2111ln(ln 21++++≤+.211ln 2n n n n a +++≤ 故nnn n n a a 21)1(1ln ln 1++≤-+ ).1(≥n 上式从1到1-n 求和可得121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n n n a a .22111121121121111)3121(211<-+-=--⋅+--++-+-=n n n n n 即).1(,2ln 2≥<<n e a a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a n n a nnn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b l n ))1(11l n (l n 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211l n l n 21-++⨯+⨯≤-+n n b b n .11113121211<--++-+-=nn 因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n ee b b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立.。
2005年重庆市高考数学预测题(五)预测人:重庆市万州实验中学 杨斌数 学(理科试题)本试题分第I 卷(选择题)和第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题,共50分)注意事项:1 . 答题前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答案卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂其它答案,不能答在试题上。
3. 考试结束,监考人将本试题和答案卡一并收回。
参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么它在n 次独立重复试验中巧好发生k 次的概率()(1)kkn kn n P k C P P -=-球的表面积公式 24S Rπ=其中R 表示球的半径 球的体积公式343V Rπ=球其中R 表示球的半径一、选择题:(本大题10个小题,每小题5分,共50分)各题答案必需答在答题卡上。
1.已知等差数列{}n a 的前n 项和为n S ,且22188a a +≤,则8S 的最大值为( )A . 16B 。
C 。
8D 。
2.已知随机变量ξ服从二项分布,即)31,6(~B ξ,则)2(=ξP 的值为( )A .163B .2434 C .24313 D .243803.函数13)(3+-=x x x f 的减区间为( ) A .(-1,1)B .(1,2)C .)1,(--∞D .)1,(--∞,),1(+∞4.ii i i 212)1()31(63++--++-= ( )A .1B .0C .-1D .i5.O 是ΔABC 所在的平面内的一点,且满足(OB -OC )·(OB +OC -2OA )=0, 则ΔABC 的形状一定为( )A .正三角形B 。
2005年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题(理工农医类)分选择题和非选择题两部分. 满分150分. 考试时间120分钟.注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k k n n P P C k P --=)1()(第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为 ( )A .5)2(22=+-y xB .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x解:∵圆5)2(22=++y x 的圆心(-2,0)关于原点对称的点为(2,0),∴圆5)2(22=++y x 关于原点对称的圆为(x-2)2+y 2=5,选(A). 2.=-+2005)11(ii( )A .iB .-iC .20052D .-20052解:∵11ii +-=-i,∴=-+2005)11(ii (-i)2005=i ,选(A) 3.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞D .(-2,2)解:∵函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,∴f(-2)=0, 在]0,(-∞上0)(<x f 的x 的取值范围是(2,0]-,又由对称性[0,)+∞,∴在R 上fx)<0仰x的取值范围为(-2,2),选(D)4.已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向量AC 与DA 的夹角为( )A .54arccos 2-πB .54arccos C .)54arccos(-D .-)54arccos(-解:∵(1,2),AC =D(5,2),(2,1)DA =,∴cos(180°-∠DAC)=45||||5AC DA AC DA ⋅==,∴∴∠DAC=4arccos()5-,即向量与DA 的夹角为4arccos()5-,选(C)5.若x ,y 是正数,则22)21()21(x y y x +++的最小值是 ( )A .3B .27 C .4D .29解:22)21()21(x y y x +++≥2(x+12y )(y+12x)≥8=4当且仅当11221212x y y x x y y x ⎧+=+⎪⎪⎪=⎨⎪⎪=⎪⎩,得时等号成立,选(C) 6.已知α、β均为锐角,若:sin sin(),:,2p q p q πααβαβ<++<则是的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解:∵由α、β均为锐角,:,2q παβ+<得0<α<α+β<2π∴sin(α+β)>sin α,但α、β均为锐角,sin α<sin(α+β),不一定能推出α+β<2π,如α=6π,β=3π就是一个反例,选(C)7.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有 ( )A .1个B .2个C .3个D .4个 解:命题①③是真命题,选(B)8.若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于 ( )A .4B .6C .8D .10解:211()(2)()2kk n kkk n k n k k n n T C x C x x---+=-=-令n-2k=-2,n=2k-2,21()2r r n r n r r nT C x --+=-,令n-2r= -4,n=2r-4由题意得(1)25(1)2k k n k n r r n r n C C ---=--,(1)25kk r r kn rnC C ---=-,∵r-k=1,∴化简得2(1)5,(2)k k +=-解得k=4,∴n=6.选(B)9.若动点(y x ,)在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为 ( )A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b bC .442+bD .2b解:由题意可设x=2cos α,y=bsin α,则x 2+2y=4cos 2α+2bsin α=-4sin 2α+2bsin α+4=-2(sin 2α-bsin α-2)=-2(sin α-2b )2+4+22b ,∴22x y +的最大值为2404424b b b b ⎧+<<⎪⎨⎪≥⎩,选(A)10.如图,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使 AE : EB=AF : FC=AG : GD=2 : 1,记O 为 三平面BCG 、CDE 、DBF 的交点,则三棱 锥O —BCD 的体积等于 ( )A .91B .81 C . 71D .41解:如图,BM 是平面BCG 与平面BDF 的交线,CL 是平面BCG 与平面CDE 的交线,则BM 子CL 的交点即为O.作EG ⊥平面BCD,LN ⊥平面BCD,OQ ⊥平面BCD,设A 到平面BCD 的高为h,由题意可知 EK=13h ,LN=33115535EK h h =⋅=,∵32CM BL MG LG ==,∴75CL CQ = ∴OQ=55117757LN h h =⋅=,∴11137173BCDO BCD A BCDBCD hS V V hS --⋅==,选(C)第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上. 11.集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则B A = . 解:由题意可知A=(-2,3),B=(0,4),∴B A =}30|{<<x x .12.曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= . 解:∵y '=3x 2,∵在(a,a 3)处切线为y-a 3=3a 2(x-a),令y=0,得切线与x 轴交点(2,03a ),切线与直线x=a 交于(a,a 3),∴曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为S=44111236a a a ⋅⋅=,令S=16,解得a=±1. 13.已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+= . 解:由已知得1-tan αtan β=tan α-tan β,∴tan α=1tan 11tan ββ+=+.14.nn n n n 231233232lim +-+∞→= .解:nn n nn 231233232lim+-+∞→=8()38939lim lim 3889()19n nnn n n n n→∞→∞--⋅==-++ 15.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 . 解:4位乘客进入4节车厢共有256种不同的可能,6位乘客进入各节车厢的人数恰为0,1,2,3的方法共有12366390C C C ⋅⋅=,∴这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为9045256128=. 16.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号). ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形 解:①菱形不可能,如果这个四边形是菱形,这时菱形的一条对角线垂直抛物线的对称轴,这时四边形的必有一个顶点在抛物线的对称轴上(非抛物线的顶点); ④平行四边形,也不可能,因为抛物上四个点组成的四边形最多有一组对边平行.故连接抛物线上任意四点组成的四边形可能是②③⑤.三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ的最大值为2,试确定常数a 的值.18.(本小题满分13分) 在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE . 解法一:(Ⅰ)324515121026=-=-=C C I P ,即该顾客中奖的概率为32.(Ⅱ)ξ的所有可能值为:0,10,20,50,60(元)..151)60(,152)50(,151)20(,52)10(,31)0(2101311210161121023210161321026===============C C C P C C C P C C P C C C P C C P ξξξξξ且故ξ有分布列:从而期望.161516015250151205210310=⨯+⨯+⨯+⨯+⨯=ξE 解法二:(Ⅰ),324530)(210241614==+=C C C C P (Ⅱ)ξ的分布列求法同解法一由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值ξE =2×8=16(元).19.(本小题满分13分) 已知R a ∈,讨论函数)1()(2+++=a ax x e x f x的极值点的个数..0)12()2(0)()],12()2([)2()1()(:222=++++='++++=+++++='a x a x x f a x a x e a x e a ax x e x f x x x 得令解(1)当.0)4(4)12(4)2(22>-=-=+-+=∆a a a a a a:),)(()(,,,0)12()2(,402121212从而有下表于是不妨设有两个不同的实根方程时或即x x x x e x f x x x x a x a x a a x --='<=++++><即此时)(x f 有两个极值点.(2)当0)12()2(,4002=++++===∆a x a x a a 方程时或即有两个相同的实根21x x =于是21)()(x x e x f x-=')(,0)(,;0)(,21x f x f x x x f x x 因此时当时故当>'>>'<无极值.(3),0)12()2(,40,02>++++<<<∆a x a x a 时即当)(,0)]12()2([)(2x f a x a x e x f x 故>++++='为增函数,此时)(x f 无极值. 因此当)(,40,2)(,04x f a x f a a 时当个极值点有时或≤≤<>无极值点.20.(本小题满分13分) 如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求: (Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.解法一:(Ⅰ)因AB ⊥面BB 1C 1C ,故AB ⊥BE.又EB 1⊥EA ,且EA 在面BCC 1B 1内的射影为EB.由三垂线定理的逆定理知EB 1⊥BE ,因此BE 是异面直线 AB 与EB 1的公垂线,在平行四边形BCC 1B 1中,设EB=x ,则EB 1=24x -,作BD ⊥CC 1,交CC 1于D ,则BD=BC ·.233sin =π在△BEB 1中,由面积关系得0)3)(1(,23221421222=--⋅⋅=-x x x x 即. 3,1±=±=x x 解之得(负根舍去),33cos21,,322=⋅-+∆=πCE CE BCE x 中在时当解之得CE=2,故此时E 与C 1重合,由题意舍去3=x .因此x =1,即异面直线AB 与EB 1的距离为1.(Ⅱ)过E 作EG//B 1A 1,则GE ⊥面BCC 1B ,故GE ⊥EB 1且GE 在圆A 1B 1E 内, 又已知AE ⊥EB 1故∠AEG 是二面角A —EB 1—A 1的平面角. 因EG//B 1A 1//BA ,∠AEG=∠BAE ,故.2221tan ===AB BE AEG 解法二:(Ⅰ)平面又由得由⊥=⋅⊥AB EB AE EB AE ,0,11 而BB 1C 1C 得AB ⊥EB 1从而1EB AB ⋅=0.答(20)图1.,0)(111111的公垂线与是异面直线故线段即故EB AB BE EB EB EB EB EB ⊥=⋅+⋅=⋅+=⋅设O 是BB 1的中点,连接EO 及OC 1,则在Rt △BEB 1中,EO=21BB 1=OB 1=1, 因为在△OB 1C 1中,B 1C 1=1,∠OB 1C 1=3π,故△OB 1C 1是正三角形, 所以OC 1=OB 1=1,又因∠OC 1E=∠B 1C 1C -∠B 1C 1O=,3332πππ=-故△OC 1E 是正三角形,所以C 1E=1,故CE=1,易见△BCE 是正三角形,从面BE=1,即异面直线AB 与EB 1的距离是1.(Ⅱ)由(I )可得∠AEB 是二面角A —EB 1—B 的平面角,在Rt △ABE 中,由AB=2, BE=1,得tanAEB=2.又由已知得平面A 1B 1E ⊥平面BB 1C 1C , 故二面角A —EB 1—A 1的平面角AEB ∠-=2πθ,故.22cot )2tan(tan ==∠-=AEB AEB πθ解法三:(I )以B 为原点,1BB 、BA 分别为y 、z 轴建立空间直角坐标系. 由于BC=1,BB 1=2,AB=2,∠BCC 1=3π, 在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0,2,0),)0,23,23(),0,21,23(1C C -设即得由,0,),0,,23(11=⋅⊥EB EB EA a E)0,2,23()2,,23(0a a --⋅--= ,432)2(432+-=-+=a a a a.,04343)02323()0,21,23()0,21,23(),(2321,0)23)(21(11EB BE EB E a a a a ⊥=+-=⋅⋅-⋅=⋅===--即故舍去或即得又AB ⊥面BCC 1B 1,故AB ⊥BE. 因此BE 是异面直线AB 、EB 1的公垂线, 则14143||=+=,故异面直线AB 、EB 1的距离为1. (II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量EA A B 与11的夹角.21.(本小题满分12分)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.解:(Ⅰ)设双曲线C 2的方程为12222=-by a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-y x (II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入 由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k k k k k k x x k x x k B A B A.0131315,613732222>--<-+k k k k 即于是解此不等式得.31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或 故k 的取值范围为)1,1513()33,21()21,33()1513,1( ---- 22.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….[解答](Ⅰ)证明:(1)当n=2时,222≥=a ,不等式成立. (2)假设当)2(≥=k k n 时不等式成立,即),2(2≥≥k a k那么221))1(11(1≥+++=+k k k a k k a . 这就是说,当1+=k n 时不等式成立.根据(1)、(2)可知:22≥≥n a k 对所有成立. (Ⅱ)证法一:由递推公式及(Ⅰ)的结论有 )1.()2111(21)11(221≥+++≤+++=+n a n n a n n a n nn nn 两边取对数并利用已知不等式得 n n n a n n a ln )2111ln(ln 21++++≤+.211ln 2nn n n a +++≤ 故n n n n n a a 21)1(1ln ln 1++≤-+ ).1(≥n 上式从1到1-n 求和可得121212121)1(1321211ln ln -++++-++⨯+⨯≤-n n n n a a .22111121121121111)3121(211<-+-=--⋅+--++-+-=n n n n n 即).1(,2ln 2≥<<n ea a n n 故(Ⅱ)证法二:由数学归纳法易证2)1(2≥->n n n n对成立,故).2()1(1)1(11(21)11(21≥-+-+<+++=+n n n a n n a n n a nnn n令).2())1(11(),2(11≥-+≤≥+=+n b n n b n a b nn n n 则取对数并利用已知不等式得 n n b n n b ln ))1(11ln(ln 1+-+≤+).2()1(1ln ≥-+≤n n n b n上式从2到n 求和得 )1(1321211ln ln 21-++⨯+⨯≤-+n n b b n .11113121211<--++-+-=nn 因).2(3,3ln 1ln .313ln 11122≥=<+<=+=+++n e eb b a b n n 故故1,,,2,132222121≥<<<≥<-<+n e a e a e a n e e a n n 对一切故又显然成立.。