人教版七年级数学下册课件:第九章 不等式与不等式组专题强化(九) 不等式(组)中的参数确定(共13张PPT)
- 格式:ppt
- 大小:1.00 MB
- 文档页数:13
第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
第九章 不等式与不等式组压轴题考点训练1.若关于x 的不等式组0721x m x -£ìí-£î的整数解共有4个,则m 的取值范围是( )A .67m <<B .67£<m C .67m ££D .67m <£【答案】B【分析】先求出不等式组的解集,再根据不等式组的整数解有4个,确定m 的取值范围即可.【详解】解:解不等式组0721x m x -£ìí-£î,得:3x m ££,∵关于x 的不等式组0721x m x -£ìí-£î的整数解共有4个,即:3,4,5,6,∴67£<m ;故选B .【点睛】本题考查根据不等式组的解集,求参数的取值范围.解题的关键是正确的求出不等式组的解集.2.不等式组()63331722x x a x x ì+>+ïí-£-ïî的所有整数解的和为9,则整数a 的值有( )A .1个B .2个C .3个D .4个∴1a =-,∴整数a 的值有2个,故选:B .【点睛】本题考查解不等式组,不等式组的整数解情况求参问题,熟练掌握解不等式组,确定不等式组解集的方法是解题的关键.根据不等式组的整数解得出关于a 的不等式组是解题的难点.3.一元一次不等式组9551x x x m +<+ìí>+î的解集是1x >,则m 的取值范围是( )A .0m >B .0m =C .0m <D .0m £【答案】D【分析】根据不等式的解集的确定方法,同大取大,确定m 的取值范围即可.【详解】解:由不等式955x x +<+,得:1x >,∵不等式组的解集为:1x >,∴11m +£,∴0m £;故选D .【点睛】本题考查根据不等式组的解集求参数.熟练掌握同大取大,确定m 的不等式,是解题的关键.4.为解决部分家长在放学时间不能按时接孩子的问题,我市许多学校都启动了“课后服务”工作.某学校为了开展好课后服务,计划用不超过10000元的资金购买足球、篮球和排球用于球类兴趣班,已知足球、篮球、排球的单价分别为100元、80元、60元,且根据参加球类兴趣班的学生数了解到以下信息:①篮球的数量必须比足球多10个,②排球的数量必须是足球的3倍.则学校最多能购买足球的个数是( )A .10B .25C .26D .30【点睛】本题考查了一元一次不等式的应用,找出正确的不等关系是解题的关键.5.若实数m 满足12m -<£,则关于x 的不等式组50x x m <ìí-³î的所有整数解的和是( )A .9B .9或10C .8或10D .8或9【答案】B【分析】求出不等式组的解集,结合12m -<£求出整数解,然后求和即可.【详解】∵50x x m <ìí-³î,∴5x x m <ìí³î,∴5m x £<,∵12m -<£,∴不等式组的整数解有:0,1,2,3,4或1,2,3,4或2,3,4,∴.0123410++++=或123410+++=或2349++=,故选B .【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.6.正整数n 小于100,并且满足等式236n n n n éùéùéù++=êúêúêúëûëûëû,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为( )A .2B .3C .12D .16î只有4个整数解,则符合条件的所有整数m的和为()A.8B.9C.10D.11行.各班同学积极参与,热情高涨;运动员挥洒汗水,激昂赛场;场下观众文明观赛,有序加油.后勤团队也不甘示弱,积极为同学们做好各种后勤保障,其中,采购小组的同学们就为全班同学准备了百事可乐,红牛和脉动三种饮料.已知百事可乐、红牛和脉动的单价之和为14元,计划购买百事可乐,红牛和脉动的数量总共不超过160瓶,其中脉动的单价为每瓶5元,计划购买20瓶,百事可乐的数量不多于红牛数量的一半,但至少购买40瓶,结果,在做预算时,将百事可乐和红牛的单价弄反了,结果在实际购买时,总费用比预算多了150元.若百事可乐、红牛和脉动的单价均为整数,则实际购买百事可乐、红牛和脉动的总费用最多需要花费_____.∴当x 取最大值55时,总费用最大为9×55+310=805(元)(不合题意舍去);当m =3时,9﹣m =6,y ﹣x =50,4050140x x x ³ìí++£î,解得40≤y ≤45,∴此时实际购买这三种物品的总费用为:5×20+3x +6(x +50)=9x +400,∴当x 取最大值45时,总费用最大为9×55+40=805(元);当m =4时,9﹣m =5,y ﹣x =150,∴40150140x x x ³ìí++£î,此时不等式组无解.综上所述,实际购买百事可乐、红牛和脉动的总费用最多需要花费805元.故答案为:895元.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.9.把一筐苹果分给几个学生,如果每人分3个,那么余8个;如果每人分5个,那么最后一人分到,但不足3个.设学生有x 人,列不等式组为________.【答案】()()(38)510(38)513x x x x ì+--ïí+--ïî><【分析】若干个苹果分给x 个小孩,根据如果每人分3个,那么余8个,共(3x +8)个苹果;如果每人分5个,那么最后一人分到的苹果是(3x +8)−5(x −1),可列出不等式组.【详解】解:设学生有x 人,列不等式组为:()()(38)510(38)513x x x x ì+--ïí+--ïî>< .故答案为:()()(38)510(38)513x x x x ì+--ïí+--ïî><.【点睛】本题考查了由实际问题抽象出一元一次不等式组,设出人数就能表示出苹果数,然后根据最后一人分到的苹果不足3个,可列出不等式组.10.已知不等式组32,152,33x a x x x +<ìïí-<+ïî有解但没有整数解,则a 的取值范围为________.【答案】01a £<【分析】先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可11.已知2153+132x xx--³-,则代数式23x x--+最大值与最小值的差是________.进甲、乙、丙、丁四种饰品,甲与乙的销量之和等于丁的销量,丙的销量占丁销量的16,四种饰品的销量之和不少于600件,不多于650件,甲、乙饰品的进价相同,均为丙与丁的进价之和,四种饰品的进价均为正整数,店家购进这四种饰品的总成本一共5200元,则店家购进这四种饰品各一件的进价之和为______元∴()()()2338436s t s t s t +++=+=´+=(元),∴这四种饰品各一件的进价之和为36元,故答案为:36.【点睛】本题主要考查一元一次不等式组的应用,正确理解题目意思并列出不等式组是解答本题的关键.13.第24届冬季奥林匹克运动会于2022年2月20日在北京圆满闭幕.冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”深受广大人民的喜爱,某商店购进“冰墩墩”、“雪容融”两款毛绒玩具进行销售,“冰墩墩”“雪容融”两种商品的进价、售价如表:“冰墩墩”“雪容融”进价(元/个)9060售价(元/个)12080请列方程(组)、不等式解答下列各题;(1)2022年2月份,商店用23400元购进这两款毛绒玩具共300个,并且全部售完,问该商店2月份销售这两款毛绒玩具赚了多少钱?(2)2022年3月份,商店又购进了200个“冰墩墩”和100个“雪容融”,3月中旬受疫情影响,在“冰墩墩”售出34,“雪容融”售出12后,店主决定对剩余的“冰墩墩”每个打a 折销售,对剩余的“雪容融”每个降价2a 元销售,又全部售完.如果要保证本月销售总额为30000元,求a 的值.(3)2022年4月份,由于受疫情影响,生产厂家减产,限制该商店本月只能采购两款毛绒玩具共200个,商店在不打折、不降价且全部售完的情况下,“冰墩墩”的利润不少于“雪容融”的利润的45,问商店至少要采购多少个“冰墩墩”毛绒玩具?机的出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,商场销售一台甲种电视机可获利150元,销售乙种电视机每台可获利200元,销售丙种电视机每台可获利250元.(1)若同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)经市场调查这三种型号的电视机是最受欢迎的,且销售量乙种是丙种的3倍.商场要求成本不能超过计划拨款数额,利润不能少于8500元的前提,购进这三种型号的电视机共50台,请你设计这三种不同型号的电视机各进多少台?s=5时:购进乙型号电视机15台,购进甲型号电视机30台,答:购进方案有两种:①购进丙型号电视机4台,则购进乙型号电视机12台,购进甲型号电视机34台,②购进丙型号电视机5台,则购进乙型号电视机15台,购进甲型号电视机30台.【点睛】本题考查二元一次方程的实际应用,不等式组的实际应用,解题的关键是理解题意,找出等量关系列出方程组,以及根据题意列出不等式组.15.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买3瓶甲和2瓶乙免洗手消毒液需要104元,购买2瓶甲和3瓶乙免洗手消毒液需要111元.(1)求甲、乙两种免洗手消毒液的单价.(2)该校购买散装免洗手消毒液进行分装,现需将6000ml的散装免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中,两种空瓶均需装,且每瓶均装满,通过计算列出所需两种空瓶数量的购买方案.(3)已知该校在校师生共1970人,平均每人每天需使用10ml的免洗手消毒液.若校方采购甲、乙两种免洗手消毒液共花费5000元,且两种都必须购买,则这批消毒液最多可使用多少天?【答案】(1)甲种免洗手消毒液的单价为18元,乙种免洗手消毒液的单价25元(2)方案1:购买15个最大容量300ml的空瓶,3个最大容量500ml的两种空瓶;方案2:购买10个最大容量300ml的空瓶,6个最大容量500ml的两种空瓶;方案3:购买:5个最大容量300ml的空瓶,9个最大容量500ml的两种空瓶.(3)这批消毒液最多可使用5天【分析】(1)设甲种免洗手消毒液的单价为x元,乙种免洗手消毒液的单价为y元,根据“购买3瓶甲和2瓶乙免洗手消毒液需要104元,购买2瓶甲和3瓶乙免洗手消毒液需要111元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.(2)设购买a个最大容量300ml的空瓶,b个最大容量500ml的两种空瓶,根据要分装的免洗手消毒液共6000ml,即可得出关于a、b的二元一次方程,结合a、b均为正整数,即可得到各购买方案.等量关系,正确列出二元一次方程组.16.我市某中学计划购进若干个甲种规格的排球和乙种规格的足球.如果购买20个甲种规格的排球和15个乙种规格的足球,一共需要花费2050元;如果购买10个甲种规格的排球和20个乙种规格的足球,一共需要花费1900元.(1)求每个甲种规格的排球和每个乙种规格的足球的价格分别是多少元?(2)如果学校要购买甲种规格的排球和乙种规格的足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个乙种规格的足球?。
第9章不等式与不等式组整章复习知识点1不等式及其解集1.下列各式:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式的个数有()A.5个B.4个C.3个D.1个2.下列是不等式5x-3>6的一个解的是()A.1B.2C.-1D.-23.下列说法中,正确的是()A.x=2是不等式x+3<4的解B.x=3是不等式3x<7的解C.不等式3x<7的解集是x=2D.x=3是不等式3x>8的解4.下列根据语句列出的不等式错误的是()A.“x的3倍与1的和是正数”,表示为3x+1>0B.“m的与n的的差是非负数”,表示为m-n≥0C.“x与y的和不大于a的”,表示x+y≤aD.“a,b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab5.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为()A.10+8x≥72B.2+10x≥72C.10+8x≤72D.2+10x≤726.根据下列数量关系,列出不等式:(1)x与2的和是负数;(2)m与1的相反数的和是非负数;(3)a与-2的差不大于它的3倍;(4)a,b两数的平方和不小于它们的积的两倍.知识点2不等式的性质1.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由-a>2得a<2D.由2x+1>x得x<-12.已知-x<-y,用“<”或“>”填空:(1)-2x-2y;(2)2x2y;(3)x y.3.如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足.4.利用不等式的性质解下列不等式:(1)2x-2<0;(2)3x-9<6x;(3)x-2>x-5.5.根据不等式的性质,解下列不等式,并在数轴上表示解集: (1)2x+5≥5x-4;(2)4-3x≤4x-3;(3)-+1≥.知识点3一元一次不等式的解法1.下列不等式中,是一元一次不等式的是()A.5x-2>0B.-3<2+C.6x-3y≤-2D.y2+1>22.已知-x2a-1+5>0是关于x的一元一次不等式,则a的值是.3.解下列不等式,并把解集在数轴上表示出来:(1)2x-3<;(2)≤1.4.已知不等式x+8>4x+m(m是常数)的解集是x<3,求m的值.5.当y为何值时,代数式5y+46的值不大于代数式78-1-y3的值?并求出满足条件的最大整数.6.已知关于x,y的方程组的解满足不等式x+y<3,求实数a的取值范围.知识点4一元一次不等式的应用1.某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?2.某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?3.在一次爆破中,用一条1 m长的导火索来引爆炸药,导火索的燃烧速度为0.5 cm/s,引爆员点着导火索后,至少以每秒多少米的速度才能跑到600 m以外(包括600 m)的安全区域?4.小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元.小明家每月用水量至少是多少?5.有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?6.为了保护环境,某企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.(1)该企业有几种购买方案?(2)若企业每月产生的污水量为2 040吨,为了节约资金,应选择哪种购买方案?知识点5一元一次不等式组的解法1.不等式组的解集在数轴上表示为()A BC D2.解下列不等式组,并把它们的解集在数轴上表示出来:(1)(2)3.求不等式组的整数解.4.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-15.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果每位老人分5盒,则剩下38盒;如果前面每位老人分6盒,则最后一位老人分不到5盒,但至少能分到1盒.(1)设敬老院有x位老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少位老人?最多有多少位老人?第九章不等式与不等式组知识点1不等式及其解集1.B2.B3.D4.D5.A6.解:(1)x+2<0;(2)m-1≥0;(3)a+2≤3a;(4)a2+b2≥2ab.知识点2不等式的性质1.B2.(1)<(2)>(3)>3.a<-14.(1)x<1(2)x>-3(3)x<35.解:(1)不等式两边同时减5x,得-3x+5≥-4.不等式两边同时减5,得-3x≥-9.不等式两边同时除以-3,得x≤3.在数轴上表示解集如下:(2)不等式两边同时加-4x-4,得-7x≤-7.不等式两边同时除以-7,得x≥1.在数轴上表示解集如下:(3)不等式两边同时乘6,得-4x+6≥3x-3.不等式两边同时加-3x-6,得-7x≥-9.不等式两边同时除以-7,得x≤.在数轴上表示解集如下:知识点3一元一次不等式的解法1.A2.13.解:(1)去分母,得3(2x-3)<x+1,去括号,得6x-9<x+1,移项,合并同类项,得5x<10,系数化为1,得x<2.不等式的解集在数轴上表示如下:(2)去分母,得2(2x-1)-(9x+2)≤6,去括号,得4x-2-9x-2≤6,移项,得4x-9x≤6+2+2,合并同类项,得-5x≤10,系数化为1,得x≥-2.不等式的解集在数轴上表示如下:4.解:因为x+8>4x+m,所以x-4x>m-8,所以-3x>m-8,所以x<-(m-8).因为其解集为x<3,所以-(m-8)=3,解得m=-1.5.解:依题意,得,去分母,得4(5y+4)≤21-8(1-y),去括号,得20y+16≤21-8+8y,移项,得20y-8y≤21-8-16,合并同类项,得12y≤-3,把y的系数化为1,得y≤-.解集在数轴上表示如下:由图可知,满足条件的最大整数是-1.6.解:解方程组得∵x+y<3,∴2a+1+2a-2<3,∴4a<4,∴a<1.知识点4一元一次不等式的应用1.解:设可以打x折出售此商品,由题意得180×-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.2.解:设小明答对x道题,则他答错或不答的题数为(25-x)道.根据他的得分要超过80分,得4x-2(25-x)>80,解得x>21.因为x应是整数而且不能超过25,所以小明至少要答对22道题.答:小明至少要答对22道题.3.解:设以每秒x m的速度能跑到600 m以外(包括600 m)的安全区域.0.5 cm/s=0.005 m/s,依题意可得x≥600,解得x≥3.答:引爆员点着导火索后,至少以每秒3 m的速度才能跑到600 m以外(包括600 m)的安全区域.4.解:设小明家每月用水x立方米.∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x-5)立方米,按每立方米2元收费,列出不等式为5×1.8+(x-5)×2≥15,解得x≥8.答:小明家每月用水量至少是8立方米.5.解:设安排x人种甲种蔬菜,则种乙种蔬菜的为(10-x)人.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4人种甲种蔬菜.6.解:(1)设购买污水处理设备A型x台,则B型为(10-x)台.由题意得12x+10(10-x)≤105,解得x≤2.5.∵x取非负整数,∴x可取0,1,2.有三种购买方案:A型0台,B型10台;A型1台,B型9台;A型2台,B型8台.(2)由题意得240x+200(10-x)≥2 040,解得x≥1,所以x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).为了节约资金,应选购A型1台,B型9台.知识点5一元一次不等式组的解法1.C2.解:(1)解不等式①,得x≥2,解不等式②,得x>2.所以这个不等式组的解集为x>2.将不等式组的解集在数轴上表示如下:(2)解不等式①,得x>1,解不等式②,得x≤4.所以这个不等式组的解集是1<x≤4.将不等式组的解集在数轴上表示如下:3.解:解不等式①,得x≤2,解不等式②,得x>-3.故此不等式组的解集为-3<x≤2,则x的整数解为-2,-1,0,1,2.4.D5.解:(1)牛奶数量为(5x+38)盒.(2)根据题意,得1≤(5x+38)-6(x-1)<5.解得39<x≤43.由x应为整数,得40≤x≤43.所以该敬老院至少有40位老人,最多有43位老人.。
第9章不等式与不等式组真题模拟练(时间:90分钟,分值:100分)一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2021•常德)若a b >,下列不等式不一定成立的是()A .55a b ->-B .55a b -<-C .a bc c>D .a c b c+>+【答案】C .【解析】解:A .∵a b >,∴55a b ->-,故本选项不符合题意;B .∵a b >,∴55a b -<-,故本选项不符合题意;C .∵a b >,∴当0c >时,a b c c >;当0c <时,a bc c<,故本选项符合题意;D .∵a b >,∴a c b c +>+,故本选项不符合题意;故选:C .2.(3分)(2021•河北)已知a b >,则一定有4a -□4b -,“□”中应填的符号是()A .>B .<C .D .=【答案】B .【解析】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.∴a b >,∴44a b -<-.故选:B .3.(3分)(2021•丽水)若31a ->,两边都除以3-,得()A .13a <-B .13a >-C .3a <-D .3a >-【答案】A .【解析】解:∵31a ->,∴不等式的两边都除以3-,得13a <-,故选:A .4.(3分)(2021•临沂)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b<,其中正确的个数是()A .1B .2C .3D .4【答案】A .【解析】解:a b >,∴当0a >时,2a ab >,当0a =时,2a ab =,当0a <时,2a ab <,故①结论错误∴a b >,∴当||||a b >时,22a b >,当||||a b =时,22a b =,当||||a b <时,22a b <,故②结论错误;∵a b >,0b <,∴2a b b +>,故③结论错误;∵a b >,0b >,∴0a b >>,∴11a b<,故④结论正确;∴正确的个数是1个.故选:A .5.(3分)(2021•包头)定义新运算“?”,规定:?2a b a b =-.若关于x 的不等式?3x m >的解集为1x >-,则m 的值是()A .1-B .2-C .1D .2【答案】B .【解析】解∵?2a b a b =-,∴?2x m x m =-.∵?3x m >,∴23x m ->,∴23x m >+.∵关于x 的不等式?3x m >的解集为1x >-,∴231m +=-,∴2m =-.故选:B .6.(3分)(2021•临沂)不等式113x x -<+的解集在数轴上表示正确的是()A .B .C .D .【答案】B .【解析】解:去分母,得:133x x -<+,移项,得:331x x -<+,合并同类项,得:24x -<,系数化为1,得:2x >-,将不等式的解集表示在数轴上如下:故选:B .7.(3分)(2021•贵港)不等式组1231x x <-<+的解集是()A .12x <<B .23x <<C .24x <<D .45x <<【答案】C .【解析】解:不等式组化为123231x x x <-⎧⎨-<+⎩①②,由不等式①,得2x >,由不等式②,得4x <,故原不等式组的解集是24x <<,故选:C .8.(3分)(2021•南通)若关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解,则实数a 的取值范围是()A .78a <<B .78a <C .78a <D .78a 【答案】C .【解析】解:23120x x a +>⎧⎨-⎩①②,解不等式①,得 4.5x >,解不等式②,得x a ,所以不等式组的解集是4.5x a <,∵关于x 的不等式组23120x x a +>⎧⎨-⎩恰有3个整数解(整数解是5,6,7),∴78a <,故选:C .9.(3分)(2021•湘潭)不等式组12480x x +⎧⎨-<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D .【解析】解:解不等式12x +,得:1x ,解不等式480x -<,得:2x <,则不等式组的解集为12x <,将不等式组的解集表示在数轴上如下:故选:D .10.(3分)(2021•永州)在一元一次不等式组21050x x +>⎧⎨-⎩的解集中,整数解的个数是()A .4B .5C .6D .7【答案】C .【解析】解:21050x x +>⎧⎨-⎩①②∵解不等式①得:0.5x >-,解不等式②得:5x ,∴不等式组的解集为0.55x -<,∴不等式组的整数解为0,1,2,3,4,5,共6个,故选:C .11.(3分)(2020•宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有()A .2种B .3种C .4种D .5种【答案】B .【解析】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶(6)x -个,依题意,得:500550(6)3100x x +-,解得:4x .∵x ,(6)x -均为非负整数,∴x 可以为4,5,6,∴共有3种购买方案.故选:B .12.(3分)(2020•重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A .5B .4C .3D .2【答案】B .【解析】解:设还可以买x 个作业本,依题意,得:2.27640x ⨯+,解得:1410x .又∵x 为正整数,∴x 的最大值为4.故选:B .二、填空题(共10小题,满分30分,每小题3分)13.(3分)(2021•苏州)若21x +,且01y <<,则x 的取值范围为.【答案】102x <<.【解析】解:由21x y +=得21y x =-+,根据01y <<可知0211x <-+<,∴120x -<-<,∴102x <<.故答案为:102x <<.14.(3分)(2021•内江)已知非负实数a ,b ,c 满足123234a b c---==,设23S a b c =++的最大值为m ,最小值为n ,则nm的值为.【答案】1116.【解析】解:设123234a b ck ---===,则21a k =+,32b k =+,34c k =-,∴23212(32)3(34)414S a b c k k k k =++=++++-=-+.∵a ,b ,c 为非负实数,∴210320340k k k +⎧⎪+⎨⎪-⎩,解得:1324k-.∴当12k =-时,S 取最大值,当34k =时,S 取最小值.∴14()14162m =-⨯-+=,3414114n =-⨯+=.∴1116n m =.故答案为:1116.15.(3分)(2021•柳州)如图,在数轴上表示x 的取值范围是.【答案】2x >.【解析】解:在数轴上表示x 的取值范围是2x >.故答案为:2x >.16.(3分)(2021•眉山)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是.【答案】32m -<-.【解析】解:解不等式1x m +<得:1x m <-,根据题意得:314m <-,即32m -<-,故答案是:32m -<-.17.(3分)(2021•上海)不等式2120x -<的解集是.【答案】6x <.【解析】解:移项,得:212x <,系数化为1,得:6x <,18.(3分)(2021•丹东)不等式组213xx m-<⎧⎨>⎩无解,则m的取值范围.【答案】2m.【解析】解:213xx m-<⎧⎨>⎩①②,解不等式①得:2x<,解不等式②x m>,∵不等式组无解∴2m,故答案为:2m.19.(3分)(2021•荆门)关于x的不等式组()31213x ax x--<⎧⎪+⎨-⎪⎩恰有2个整数解,则a的取值范围是.【答案】56a<.【解析】解:解不等式()3x a--<,得:3x a>-,解不等式1213x x+-,得:4x,∵不等式组有2个整数解,∴233a-<,解得56a<.故答案为:56a<.20.(3分)(2020•攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.【答案】33.【解析】解:设x人进公园,若购满40张票则需要:40(51)404160⨯-=⨯=(元),故5160x>时,解得:32x>,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32133+=(人).则至少要有33人去世纪公园,买40张票反而合算.21.(3分)(2013•乌鲁木齐)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n 道题,则根据题意可列不等式.【答案】105(20)90n n -->.【解析】解:根据题意,得105(20)90n n -->.故答案为:105(20)90n n -->.22.(3分)(2020•宁夏)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.【答案】6.【解析】解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是(b a ,b 均为整数),依题意,得:48a bb a >⎧⎪>⎨⎪<⎩,∵a ,b 均为整数∴47b <<,∴b 最大可以取6.故答案为:6.三、解答题(共5小题,满分34分)23.(6分)(2021•陕西)求不等式3125x -+>-的正整数解.【答案】见解析.【解析】解:去分母得:3510x -+>-,移项合并得:315x ->-,解得:5x <,则不等式的正整数解为1,2,3,4.24.(6分)(2017•呼和浩特)已知关于x 的不等式21122m mx x ->-.(1)当1m =时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】见解析.【解析】解:(1)当1m =时,不等式为2122x x->-,去分母得:22x x ->-,解得:2x <;(2)不等式去分母得:22m mx x ->-,移项合并得:(1)2(1)m x m +<+,当1m ≠-时,不等式有解,当1m >-时,不等式解集为2x <;当1m <-时,不等式的解集为2x >.25.(6分)(2021•兴安盟)解不等式组:21612152263x x x x+<+⎧⎪--⎨-⎪⎩,在数轴上表示解集并列举出非正整数解.【答案】见解析.【解析】解:解不等式216x x +<+得:5x <,解不等式12152263x x---得:2x -,将解集表示在数轴上如下:∴不等式组的解集为25x -<,∴不等式组的非正整数解为2-、1-、0.26.(8分)(2021•本溪)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?【答案】见解析.【解析】解:(1)设每本手绘纪念册的价格为x 元,每本图片纪念册的价格为y 元,依题意得:4135 52225 x yx y+=⎧⎨+=⎩,解得:3525 xy=⎧⎨=⎩.答:每本手绘纪念册的价格为35元,每本图片纪念册的价格为25元.(2)设可以购买手绘纪念册m本,则购买图片纪念册(40)m-本,依题意得:3525(40)1100m m+-,解得:10m.答:最多能购买手绘纪念册10本.27.(8分)(2021•黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?【答案】见解析.【解析】解:(1)设购进1x万元,1件乙种农机具y万元.根据题意得:2 3.533x yx y+=⎧⎨+=⎩,解得:1.50.5 xy=⎧⎨=⎩,答:购进1件甲种农机具1.5万元,1件乙种农机具0.5万元.(2)设购进甲种农机具m件,购进乙种农机具(10)m-件,根据题意得:1.50.5(10)9.8 1.50.5(10)12m mm m+-⎧⎨+-⎩,解得:4.87m.∵m为整数.∴m可取5、6、7.∴有三种方案:方案一:购买甲种农机具5件,乙种农机具5件.11方案二:购买甲种农机具6件,乙种农机具4件.方案三:购买甲种农机具7件,乙种农机具3件.设总资金为w 万元.1.50.5(10)5w m m m =+-=+.∵10k =>,∴w 随着m 的减少而减少,∴5m =时,15510w =⨯+=最小(万元).∴方案一需要资金最少,最少资金是10万元.(3)设节省的资金用于再次购买甲种农机具a 件,乙种农机具b 件,由题意得:(1.50.7)(0.50.2)0.750.25a b -+-=⨯+⨯,其整数解:015a b =⎧⎨=⎩或37a b =⎧⎨=⎩,∴节省的资金全部用于再次购买农机具的方案有两种:方案一:购买甲种农机具0件,乙种农机具15件.方案二:购买甲种农机具3件,乙种农机具7件.。
9.1 不等式 9.1.1 不等式及其解集一课一练·基础闯关题组不等式的定义和列不等式1.数学表达式①-5<7;②3y-6>0;③a=6;④2x-3y;⑤a≠2;⑥7y-6>y+2,其中是不等式的有( )A.2个B.3个C.4个D.5个【解析】选C.数学表达式①-5<7、②3y-6>0、⑤a≠2、⑥7y-6>y+2是不等式;③a=6是等式;④2x-3y是代数式.综上不等式有4个.2.(2017·卧龙期中)数x不小于3是指( )A.x≤3B.x≥3C.x>3D.x<3【解析】选B.数x不小于3是指x≥3.3.(2017·利州模拟)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( )A.每100克内含钙150毫克B.每100克内含钙不低于150毫克C.每100克内含钙高于150毫克D.每100克内含钙不超过150毫克【解析】选B.根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”.4.下面列出的不等式中,正确的是( )A.a不是负数,可表示成a>0B.x不大于3,可表示成x<3C.m与4的差是负数,可表示成m-4<0D.x与2的和是非负数,可表示成x+2>0【解析】选C.a不是负数,可表示成a≥0;x不大于3,可表示成x≤3;m与4的差是负数,可表示成m-4<0;x与2的和是非负数,可表示成x+2≥0.【变式训练】下列各项中,蕴含不等关系的是( )A.老师的年龄是你的年龄的2倍B.小军和小红一样高C.小明岁数比爸爸小26岁D.x2是非负数【解析】选D.根据A的题意可列出等量关系;B是等量关系;小明的岁数加上26与他爸爸的岁数相同,是等量关系;由x2是非负数可知x2≥0,是不等关系.5.(2017·滕州模拟)用不等号连接下列各组数:(1)π________3.14.(2)(x-1)2________0.(3)-________-.【解析】(1)π>3.14.(2)(x-1)2≥0.(3)-<-.答案:(1)> (2)≥(3)<6.(教材变形题·P115练习T1)用不等式表示:(1)x与1的差是正数.(2)y的2倍与1的和小于3.(3)y的3倍与x的2倍的和是非正数.(4)b 的与c的和是负数.(5)x的绝对值与2的和不小于3.【解析】(1)x-1>0. (2)2y+1<3. (3)3y+2x≤0.(4)b+c<0. (5)|x|+2≥3.【知识归纳】不等关系的描述在描述同类量之间的关系时,常常会用“至少”“不足”“不大于”“不小于”等表示不等关系,常用的不等号有以下5种.种类符号实际意义读法举例小于号< 小于、不足小于3+1<7大于号> 大于、高出大于3+5>7小于或等于号≤不大于、不超过、至多小于或等于(不大于)x≤10大于或等于号≥不小于、不低于、至少大于或等于(不小于)y≥9不等号≠不相等不等于1≠-1题组不等式的解与解集1.(2017·高平期中)下列各数中,是不等式3x-2>1的解的是( )A.1B.2C.0D.-1【解析】选B.只有x=2使不等式成立.2.下面说法正确的是( )A.x=3是不等式2x>3的一个解B.x=3是不等式2x>3的解集C.x=3是不等式2x>3的唯一解D.x=3不是不等式2x>3的解【解析】选A.x=3是不等式2x>3的一个解,故A正确,D错误;由于4,5,6等都适合不等式2x>3,所以x=3不是不等式2x>3的唯一解,更不是不等式的解集,故B,C错误.3.不等式x<2在数轴上表示正确的是( )【解析】选A.x<2是指在数轴上,从表示2的点往左的部分的点表示的数(不含2这个点).【知识归纳】在数轴上表示不等式的解集1.空心点表示不包含该数,实心点表示包含该数.2.大于往右画,小于往左画.【变式训练】把不等式x≥-1的解集在数轴上表示出来,正确的是( )【解析】选B.大于方向是向右的,含等于是实心点.4.(2017·启东期中)下列数中:76,73,79,80,74.9,75.1,90,60,是不等式x>50的解的有( )A.5个B.6个C.7个D.8个【解析】选A.76,79,80,75.1,90满足不等式x>50,所以所给数据中满足不等式解的有5个.5.写出两个使不等式x-4>5成立的数,如x=________,________;写出两个使不等式x-4<5成立的数如x=________,________.【解析】当x=10,23,10.1,11等时,不等式x-4>5成立;当x=8,7,0,-1等时,不等式x-4<5成立. 答案:不唯一.如10 11 0 -16.直接写出下列不等式的解集,并在数轴上表示出来.①x是非负数;②2x>-3;③x+1≤3.【解析】①x≥0,在数轴上表示为:②不等式的解集为x>-,在数轴上表示为:③不等式的解集为x≤2,在数轴上表示为:制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.A型钢板的面积比B型钢板的面积大,从省料的角度考虑,应选择哪种方案.【解析】设A型钢板和B型钢板的面积分别是x和y,则方案Ⅰ用料面积为4x+8y,方案Ⅱ用料面积为3x+9y,所以4x+8y-(3x+9y)=x-y.因为A型钢板的面积比B型钢板的面积大,所以x-y>0.所以从省料的角度考虑,应选择方案Ⅱ.【母题变式】[变式一]制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.若A型钢板的面积不大于B型钢板的面积,从省料的角度考虑,应选择哪种方案.【解析】设A型钢板和B型钢板的面积分别是x和y,则方案Ⅰ用料面积为4x+8y,方案Ⅱ用料面积为3x+9y,所以4x+8y-(3x+9y)=x-y.因为A型钢板的面积不大于B型钢板的面积,即x≤y所以x-y≤0.所以从省料的角度考虑,应选择方案Ⅰ.[变式二]制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.若A型钢板的价格高于B型钢板的价格,从省钱的角度考虑,应选择哪种方案. 【解析】设A型钢板和B型钢板的价格分别是a和b,则方案Ⅰ的费用为4a+8b,方案Ⅱ的费用为3a+9b,所以4a+8b-(3a+9b)=a-b.因为A型钢板的价格高于B型钢板的价格,即a>b,所以a-b>0.所以从省钱的角度考虑,应选择方案Ⅱ.[变式三]制作某种产品的两种用料方案,方案Ⅰ是用4张A型钢板,8张B型钢板;方案Ⅱ是用3张A型钢板,9张B型钢板.若A型、B型钢板每张需分别用工m,n个,从省工的角度考虑,应如何选择方案. 【解析】若A型钢板和B型钢板每张需用工分别为m和n,则方案Ⅰ需用工4m+8n个,方案Ⅱ需用工3m+9n 个,所以4m+8n-(3m+9n)=m-n.当A型比B型钢板每张用工多时,即m>n,由于m-n>0,所以从省工的角度考虑,应选择方案Ⅱ.当A型与B型钢板每张用工相同时,即m=n,由于m-n=0,所以从省工的角度考虑,选择方案Ⅰ,Ⅱ一样.当A型比B型钢板每张用工少时,即m<n,由于m-n<0,所以从省工的角度考虑,应选择方案Ⅰ.。
专题(一) 解一元一次不等式(组)类型1 解一元一次不等式1.解不等式:x 3>1-x -22.2.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.3.解不等式5x -13<x +1,并把它的解集在数轴上表示出来.4.解不等式2x -13-x -12≤1,把它的解集在数轴上表示出来,并求出这个不等式的正整数解.5.小英解不等式1+x 2-2x +13≤1的过程如下,请指出她解答过程中错误步骤的序号,并写出正确的解答过程.类型2 解一元一次不等式组6.解不等式组:⎩⎪⎨⎪⎧x +3≥1,①4x ≤1+3x.②7.解不等式组:⎩⎪⎨⎪⎧4(x -1)≥x +2,①2x +13>x -1.②8.解不等式组⎩⎪⎨⎪⎧2x -1<5,①3x +12-1≥x ,②并在数轴上表示出不等式组的解集.9.解不等式组⎩⎪⎨⎪⎧2-x>0,①5x +12+1≥2x -13,②并把它的解集在数轴上表示出来.10.求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解.11.x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?12.解不等式组⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②并把解集表示在数轴上,求出不等式组的整数解.专题(二) 求不等式(组)中参数的取值范围类型1 已知解集求参数的取值范围若不等式组⎩⎪⎨⎪⎧x >a ,x >b 的解集是x >a ,则a ≥b ;若不等式组⎩⎪⎨⎪⎧x <a ,x <b的解集是x <a ,则a ≤b. 1.若不等式x +a >ax +1的解集为x >1,则a 的取值范围为( )A .a <1B .a >1C .a >0D .a <02.若关于x 的不等式组⎩⎪⎨⎪⎧2(x -1)>2,a -x <0的解集是x >a ,则a 的取值范围是( )A .a <2B .a ≤2C .a >2D .a ≥23.如果不等式组⎩⎪⎨⎪⎧x <3a +2,x <a -4的解集是x <a -4,那么a 的取值范围是 .类型2 已知有解、无解的情况求参数的取值范围(1)若不等式组⎩⎪⎨⎪⎧x <a ,x >b 或⎩⎪⎨⎪⎧x <a ,x ≥b 有解,则a >b ;若不等式组⎩⎪⎨⎪⎧x ≤a ,x ≥b 有解,则a ≥b ;(2)若不等式组⎩⎪⎨⎪⎧x <a ,x >b 或⎩⎪⎨⎪⎧x <a ,x ≥b 无解,则a ≤b ;若不等式组⎩⎪⎨⎪⎧x ≤a ,x ≥b无解,则a <b. 4.若关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥0,x -m ≥0有实数解,则实数m 的取值范围是( )A .m ≤53B .m <53C .m >53D .m ≥535.若关于x 的不等式组⎩⎪⎨⎪⎧12x -a >0,4-2x ≥0无解,则a 的取值范围为 .6.若关于x 的不等式组⎩⎪⎨⎪⎧x +1<a ,3x +5>x -7有解,则实数a 的取值范围是 .类型3 已知特殊解的情况求参数的取值范围7.已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m<7B .4<m<7C .4≤m ≤7D .4<m ≤78.若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .-7<a <-4B .-7≤a ≤-4C .-7≤a <-4D .-7<a ≤-49.若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +2,7x +4>-a有且仅有四个整数解,则整数a 的值为 .类型4 已知方程(组)解的情况,求参数的取值范围10.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -3y =4m +3,x +5y =5的解满足x +y ≤0,则m 的取值范围是 . 11.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =2a +7,x -2y =4a -3的解为正数,则非负整数a 的值为 . 12.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧5x +3y =23,x +y =p 的解是正整数,则整数p 的值为 .专题(三) 方程、不等式的综合应用1.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?2.我国沪深股市交易中,买、卖一次股票均需付交易金额的0.5%作为交易费用.张先生以每股5元的价格买入“西昌电力”股票1 000股.若他期望获利不低于1 000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)3.某自行车经销商计划投入7.1万元购进100辆A 型和30辆B 型自行车,其中B 型车单价是A 型车单价的6倍少60元.(1)A,B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进B型车多少辆?4.某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能购买多少本A款毕业纪念册.5.“五一”期间,某校若干名教师带领学生组成旅行团到A地旅游,甲旅行社的收费标准是:教师无优惠,学生按原价七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,团体票按原价的八折优惠.这两家旅行社的全票价均为每人300元.(1)若这个旅行团选择甲旅行社,则花费3 300元;若选择乙旅行社,则花费比选择甲旅行社多60元,请问这个旅行团教师有多少人?学生有多少人?(2)如果教师人数不变,那么学生人数在什么范围内时,选择乙旅行社更省钱?6.蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(结果精确到0.1元)7.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 600元,20本文学名著比20本动漫书多400元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,而且文学名著不低于25本,总费用不超过2 000,请求出所有符合条件的购书方案.参考答案:专题(一) 解一元一次不等式(组)类型1 解一元一次不等式1.解不等式:x 3>1-x -22. 解:去分母,得2x >6-3(x -2).去括号,得2x >6-3x +6.移项、合并同类项,得5x >12.系数化为1,得x >125. 2.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.解:去括号,得2x +2<3x.移项、合并同类项,得-x <-2.系数化为1,得x >2.其解集在数轴上表示为:3.解不等式5x -13<x +1,并把它的解集在数轴上表示出来. 解:去分母,得5x -1<3(x +1).去括号,得5x -1<3x +3.移项、合并同类项,得2x<4.系数化为1,得x<2.将不等式的解集表示在数轴上如图:4.解不等式2x -13-x -12≤1,把它的解集在数轴上表示出来,并求出这个不等式的正整数解. 解:去分母,得2(2x -1)-3(x -1)≤6.去括号,得4x -2-3x +3≤6.移项,得4x -3x ≤6+2-3.合并同类项,得x ≤5.将不等式解集表示在数轴上如图:由数轴可知该不等式的正整数解为1,2,3,4,5.5.小英解不等式1+x 2-2x +13≤1的过程如下,请指出她解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得3(1+x)-2(2x +1)≤1.①去括号,得3+3x -4x +1≤1.②移项,得3x -4x ≤1-3-1.③合并同类项,得-x ≤-3.④两边都除以-1,得x ≤3.⑤解:错误的步骤有①②⑤.正确解答过程如下:去分母,得3(1+x)-2(2x +1)≤6.去括号,得3+3x -4x -2≤6.移项,得3x -4x ≤6-3+2.合并同类项,得-x ≤5.系数化为1,得x ≥-5.类型2 解一元一次不等式组6.解不等式组:⎩⎪⎨⎪⎧x +3≥1,①4x ≤1+3x.② 解:解不等式①,得x ≥-2,解不等式②,得x ≤1,∴不等式组的解集为-2≤x <1.7.解不等式组:⎩⎪⎨⎪⎧4(x -1)≥x +2,①2x +13>x -1.② 解:解不等式①,得x ≥2.解不等式②,得x <4.所以不等式组的解集为2≤x <4.8.解不等式组⎩⎪⎨⎪⎧2x -1<5,①3x +12-1≥x ,②并在数轴上表示出不等式组的解集. 解:解不等式①,得x <3.解不等式②,得x ≥1.∴不等式组的解集是1≤x <3.其解集在数轴上表示为:9.解不等式组⎩⎪⎨⎪⎧2-x>0,①5x +12+1≥2x -13,②并把它的解集在数轴上表示出来. 解:解不等式①,得x <2.解不等式②,得x ≥-1.∴不等式组的解集是-1≤x <2.其解集在数轴上表示:10.求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解. 解:解不等式①,得x ≤5.解不等式②,得x <23. ∴不等式组的解集为x <23. ∴这个不等式组不存在正整数解.11.x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立? 解:联立不等式⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x >-52. 解不等式②,得x ≤1.∴不等式组的解集为-52<x ≤1. 故满足条件的整数有-2,-1,0,1.12.解不等式组⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②并把解集表示在数轴上,求出不等式组的整数解. 解:解不等式①,得x ≥-54. 解不等式②,得x<3.∴不等式组的解集为-54≤x<3. 其解集在数轴上表示为:不等式组的整数解是-1,0,1,2.专题(二) 求不等式(组)中参数的取值范围类型1 已知解集求参数的取值范围1.若不等式x +a >ax +1的解集为x >1,则a 的取值范围为(A)A .a <1B .a >1C .a >0D .a <02.若关于x 的不等式组⎩⎪⎨⎪⎧2(x -1)>2,a -x <0的解集是x >a ,则a 的取值范围是(D) A .a <2 B .a ≤2 C .a >2 D .a ≥23.如果不等式组⎩⎪⎨⎪⎧x <3a +2,x <a -4的解集是x <a -4,那么a 的取值范围是a ≥-3. (1)若不等式组⎩⎪⎨⎪⎧x <a ,x >b 或⎩⎪⎨⎪⎧x <a ,x ≥b 有解,则a >b ;若不等式组⎩⎪⎨⎪⎧x ≤a ,x ≥b有解,则a ≥b ; (2)若不等式组⎩⎪⎨⎪⎧x <a ,x >b 或⎩⎪⎨⎪⎧x <a ,x ≥b 无解,则a ≤b ;若不等式组⎩⎪⎨⎪⎧x ≤a ,x ≥b 无解,则a <b. 4.若关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥0,x -m ≥0有实数解,则实数m 的取值范围是(A) A .m ≤53 B .m <53 C .m >53 D .m ≥535.若关于x 的不等式组⎩⎪⎨⎪⎧12x -a >0,4-2x ≥0无解,则a 的取值范围为a ≥1.6.若关于x 的不等式组⎩⎪⎨⎪⎧x +1<a ,3x +5>x -7有解,则实数a 的取值范围是a>-5. 类型3 已知特殊解的情况求参数的取值范围7.已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是(A)A .4≤m<7B .4<m<7C .4≤m ≤7D .4<m ≤78.若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为(D)A .-7<a <-4B .-7≤a ≤-4C .-7≤a <-4D .-7<a ≤-49.若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +2,7x +4>-a有且仅有四个整数解,则整数a 的值为-3,-2,-1,0,1,2,3.类型4 已知方程(组)解的情况,求参数的取值范围10.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -3y =4m +3,x +5y =5的解满足x +y ≤0,则m 的取值范围是m ≤-2.11.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +y =2a +7,x -2y =4a -3的解为正数,则非负整数a 的值为0,1,2,3,4. 12.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧5x +3y =23,x +y =p 的解是正整数,则整数p 的值为5或7.专题(三) 方程、不等式的综合应用1.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队初赛阶段胜了x 场,则负了(10-x)场.根据题意,得2x +10-x =18.解得x =8.则10-x =2.答:甲队初赛阶段胜了8场,负了2场.(2)设乙队在初赛阶段胜a 场.根据题意,得2a +(10-a)>15,解得a >5.答:乙队在初赛阶段至少要胜6场.2.我国沪深股市交易中,买、卖一次股票均需付交易金额的0.5%作为交易费用.张先生以每股5元的价格买入“西昌电力”股票1 000股.若他期望获利不低于1 000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)解:设涨到每股x 元时卖出.根据题意,得1 000x -(5 000+1 000x)×0.5%≥5 000+1 000.解这个不等式,得x ≥1 205199,即x ≥6.06. 答:至少涨到每股6.06元时才能卖出.3.某自行车经销商计划投入7.1万元购进100辆A 型和30辆B 型自行车,其中B 型车单价是A 型车单价的6倍少60元.(1)A ,B 两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进B 型车多少辆?解:(1)设A 型自行车的单价为x 元/辆,B 型自行车的单价为y 元/辆.根据题意,得⎩⎪⎨⎪⎧y =6x -60,100x +30y =71 000.解得⎩⎪⎨⎪⎧x =260,y =1 500.答:A 型自行车的单价为260元/辆,B 型自行车的单价为1 500元/辆.(2)设购进B 型自行车m 辆,则购进A 型自行车(130-m)辆.根据题意,得260(130-m)+1 500m ≤58 600.解得m ≤20.答:至多能购进B 型车20辆.4.某文具店最近有A ,B 两款毕业纪念册比较畅销,近两周的销售情况是:第一周A 款销售数量是15本,B 款销售数量是10本,销售总价是230元;第二周A 款销售数量是20本,B 款销售数量是10本,销售总价是280元.(1)求A ,B 两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能购买多少本A 款毕业纪念册. 解:(1)设A 款毕业纪念册的销售单价为x 元,B 款毕业纪念册的销售单价为y 元,根据题意,得⎩⎪⎨⎪⎧15x +10y =230,20x +10y =280,解得⎩⎪⎨⎪⎧x =10,y =8. 答:A 款毕业纪念册的销售单价为10元,B 款毕业纪念册的销售单价为8元.(2)设购买a 本A 款毕业纪念册,则购买(60-a)本B 款毕业纪念册,根据题意,得10a +8(60-a)≤529,解得a ≤24.5,则最多能购买24本A 款毕业纪念册.5.“五一”期间,某校若干名教师带领学生组成旅行团到A 地旅游,甲旅行社的收费标准是:教师无优惠,学生按原价七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,团体票按原价的八折优惠.这两家旅行社的全票价均为每人300元.(1)若这个旅行团选择甲旅行社,则花费3 300元;若选择乙旅行社,则花费比选择甲旅行社多60元,请问这个旅行团教师有多少人?学生有多少人?(2)如果教师人数不变,那么学生人数在什么范围内时,选择乙旅行社更省钱?解:(1)设教师有x 人,学生有y 人,依题意,得⎩⎪⎨⎪⎧300x +300×0.7y =3 300,(x +y )×300×0.8=3 360.解得⎩⎪⎨⎪⎧x =4,y =10. 答:教师有4人,学生有10人.(2)设学生人数是m 人时,选择乙旅行社更省钱.依题意,得:当m =0时,甲旅行社:4×300=1 200(元),乙旅行社:4×300=1 200(元),甲、乙旅行社一样;当m >0时,4×300+300×0.7m >300×0.8(4+m).解得m <8.答:当学生人数是0<m <8时,选择乙旅行社更省钱.6.蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(结果精确到0.1元)解:(1)设批发青菜x 市斤,西兰花y 市斤.根据题意,得⎩⎪⎨⎪⎧x +y =200,2.8x +3.2y =600.解得⎩⎪⎨⎪⎧x =100,y =100. 即批发青菜100市斤,西兰花100市斤.∴100×(4-2.8)+100×(4.5-3.2)=250(元).答:当天售完后老王一共能赚250元.(2)设给青菜定售价为a 元/市斤.根据题意,得100×(1-10%)a +100×4.5-600≥250.解得a ≥409≈4.44. 答:给青菜定售价不低于4.5元/市斤.7.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1 600元,20本文学名著比20本动漫书多400元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,而且文学名著不低于25本,总费用不超过2 000,请求出所有符合条件的购书方案.解:(1)设每本文学名著x 元,每本动漫书y 元.根据题意,得⎩⎪⎨⎪⎧20x +40y = 1 600,20x -20y =400.解得⎩⎪⎨⎪⎧x =40,y =20. 答:每本文学名著和动漫书各为40元和20元.(2)设学校要求购买文学名著m 本,动漫书为(m +20)本.根据题意,得 40m +20(m +20)≤2 000.解得m ≤2623. 又∵m ≥25,且m 取整数,∴m 取25,26.方案一:购买文学名著25本,动漫书45本;方案二:购买文学名著26本,动漫书46本.。