山东建筑大学本科毕业设计
- 格式:doc
- 大小:802.00 KB
- 文档页数:11
毕业设计(论文)管理系统设计与实现作者:佀同光,刘加云,王智,相福生,张鹏来源:《软件导刊》2013年第12期摘要:为了解决高校毕业设计(论文)管理系统的功能不足和扩展性低等问题,采用基于角色的访问控制模型实现了资源管理和多角色一次性登录;使用泛化和组合技术,降低了“用户”对象与不同类型“参与者”对象之间的耦合;提供了毕业设计题目在不同专业中共享及督导员业务的解决方案;系统具有良好的可扩展性,为毕业设计管理系统的开发提供了有益的参考。
测试表明,系统界面友好,功能完全满足预期要求,各用户的工作效率均得到了不同程度的提高。
关键词:管理信息系统;毕业设计;Java;角色;访问控制中图分类号:TP319文献标识码:A文章编号文章编号:1672-7800(2013)012-0106-03基金项目:山东省高等学校优秀青年教师国内访问学者项目(2011)作者简介:佀同光(1972-),男,硕士,山东建筑大学管理工程学院副教授,研究方向为信息分析技术、系统分析与设计。
0引言毕业设计(论文)(以下简称毕业设计)是高等学校教学综合实践体系的重要环节[1]。
近年来一些单位开发了毕业设计管理系统,多数文献中涉及的系统向管理员、教师、学生3种类型的用户提供服务[3-5]。
王娜等[6]开发的系统设置了学生、教师、设计管理小组和教务管理人员4种用户,解决了学生、导师信息的采集,导师出题、学生选题,有关毕业设计的各种文档的上交与审核,答辩成绩的录入与公布,导师、学生、管理员之间信息的交流等问题。
梁金明[7]的设计为学生、指导教师、专业系或教研室主任、教学院长、二级学院教务管理员和教务处教务管理员等6种用户(角色)提供服务,实现了课题申报、论文提交、论文在线评审以及毕业设计资料的归档等功能。
上述系统实现了在线选题、在线指导和部分管理统计等基本功能,但是随着实践教学环节规范化的加强,校企合作的加深和专业融合的深入,企业导师逐渐成为毕业设计指导中的重要补充力量,一些学生还需要跨专业、甚至跨学院接受毕业设计指导;另外,毕业设计系统中一个用户往往会拥有多个角色,用户希望一次登录即获得所有的服务,而不是以每个角色分别登录系统。
毕业设计(论文)管理系统设计与实现摘要:为了解决高校毕业设计(论文)管理系统的功能不足和扩展性低等问题,采用基于角色的访问控制模型实现了资源管理和多角色一次性登录;使用泛化和组合技术,降低了“用户”对象与不同类型“参与者”对象之间的耦合;提供了毕业设计题目在不同专业中共享及督导员业务的解决方案;系统具有良好的可扩展性,为毕业设计管理系统的开发提供了有益的参考。
测试表明,系统界面友好,功能完全满足预期要求,各用户的工作效率均得到了不同程度的提高。
关键词:管理信息系统;毕业设计;Java;角色;访问控制0引言毕业设计(论文)(以下简称毕业设计)是高等学校教学综合实践体系的重要环节[1]。
近年来一些单位开发了毕业设计管理系统,多数文献中涉及的系统向管理员、教师、学生3种类型的用户提供服务[3-5]。
王娜等[6]开发的系统设置了学生、教师、设计管理小组和教务管理人员4种用户,解决了学生、导师信息的采集,导师出题、学生选题,有关毕业设计的各种文档的上交与审核,答辩成绩的录入与公布,导师、学生、管理员之间信息的交流等问题。
梁金明[7]的设计为学生、指导教师、专业系或教研室主任、教学院长、二级学院教务管理员和教务处教务管理员等6种用户(角色)提供服务,实现了课题申报、论文提交、论文在线评审以及毕业设计资料的归档等功能。
上述系统实现了在线选题、在线指导和部分管理统计等基本功能,但是随着实践教学环节规范化的加强,校企合作的加深和专业融合的深入,企业导师逐渐成为毕业设计指导中的重要补充力量,一些学生还需要跨专业、甚至跨学院接受毕业设计指导;另外,毕业设计系统中一个用户往往会拥有多个角色,用户希望一次登录即获得所有的服务,而不是以每个角色分别登录系统。
这些功能在已有文献中均未体现,本研究试图为上述功能提供一种可行的解决方案,为毕业设计管理系统开发提供有益的参考。
1需求分析1.1组织机构及用户角色山东建筑大学是一所教学研究型的地方院校,近年来致力于教学管理规范化建设。
浅析双导师制学生毕业设计培养模式摘要:双导师制是一种新型人才培养模式,目的是提高学生培养质量,加强内涵建设。
山东建筑大学材料科学与工程学院于2006年开始实施双导师制。
本文主要讨论了双导师制下毕业生毕业设计培养模式,并从传统毕业设计创新、校企合作毕业设计模式、毕业设计效果分析三方面着重探讨了毕业设计的改革及意义。
关键词:双导师制毕业设计校企合作大学生导师制起源于牛津大学,是一种新的人才培养模式,随后产生了各种不同的“类导师制”。
例如:硕士生导师制、博士生导师制、班主任制等。
毕业设计是大学实现培养目标的最后一门课程,也是学生对四年所学知识的一个检验。
目前各种导师制下毕业设计的管理不尽相同,不同程度上存在不足:学生对选题盲目、设计结构不清晰、理论知识不足、论文书写不规范等。
鉴于传统毕业设计的现状,本文以山东建筑大学材料科学与工程学院为例,探讨双导师制下毕业设计的培养模式,并着重进行分析讨论。
一、双导师制的培养体系1.双导师制实施过程双导师制实施过程:大一、大二期间学生的导师主要以辅导员为主,主要负责学生的生活、学习、党建、校园文化等工作。
大一期间辅导员根据学生专业类别和专业方向将学生分成不同的科研兴趣小组,依据不同的科研兴趣小组邀请不同的具有较高科研水平的专家教授讲座。
大二期间依据不同的科研兴趣小组开展学生职业生涯规划设计大赛和学业生涯规划设计大赛活动,帮助学生确定良好的科研兴趣和自信心。
大三、大四期间学生的导师主要以青年教师为主,主要负责学生的专业指导、兴趣培养、科研水平的提高、毕业设计指导等。
大三第一学期采用“双向选择”的原则,进行学生和导师互选,学生根据自己的专业爱好和教师的研究方向选择导师,教师则根据自己的课题需求和学生的学习成绩选择学生。
大三期间积极鼓励学生参加全国大学生“挑战杯”大赛等各种全国竞赛,为毕业设计的开展打下坚实的基础。
2.双导师制评价体系为保证双导师制的顺利实施,同时做到可持续健康发展,学院建立了一整套科学的评价体系。
山东建筑大学毕业设计任务书
续附表1
指导教师(签字):教研室主任(签字):
院系主任(签字):
注:1、不够可加附页2、左列名称可根据各专业具体情况修改
教务处制
山东建筑大学毕业设计任务书
续附表1
指导教师(签字):段辉教研室主任(签字):
院系主任(签字):
注:1、不够可加附页2、左列名称可根据各专业具体情况修改
教务处制山东建筑大学毕业设计(论文)任务书
续附表1
指导教师(签字):教研室主任(签字):
院系主任(签字):
注:1、不够可加附页2、左列名称可根据各专业具体情况修改
教务处
山东建筑大学毕业设计任务书
续附表1
指导教师(签字):教研室主任(签字):
院系主任(签字):
注:1、不够可加附页2、左列名称可根据各专业具体情况修改
教务处制
山东建筑大学毕业设计任务书
续附表1
指导教师(签字):教研室主任(签字):
院系主任(签字):
注:1、不够可加附页2、左列名称可根据各专业具体情况修改
教务处制
山东建筑大学毕业设计(论文)任务书
续附表1
指导教师(签字):教研室主任(签字):
院系主任(签字):
注:1、不够可加附页2、左列名称可根据各专业具体情况修改
教务处。
本科毕业论文题目:年产10万吨结晶葡萄糖厂(糖化工段)的设计院(部):市政与环境工程学院专业:生物工程班级:生物102姓名:刘海艳学号:2010041148指导教师:张金凤完成日期:2014年5月30日目录摘要............................................................................................................................................ I V ABSTRACT . (V)1 前言 .................................................................................................................................... - 1 -1.1 葡萄糖简介...................................................................................................................... - 1 -1.2 结晶葡萄糖的性能 (1)1.2.1 结晶葡萄糖的物理性质 (1)1.2.2 结晶葡萄糖的化学性质 (2)1.3 葡萄糖的应用 (3)1.4葡萄糖的工业发展历程及前景 (4)1.5生产葡萄糖所用原料和一些辅料 (4)1.5.1 玉米淀粉 (4)1.5.2 液化酶 (5)1.5.3 糖化酶 (5)1.5.4 助滤剂 (5)2 生产规模及产品方案 (7)2.1 设计规模 (7)2.2 产品质量标准 (7)3 工艺流程及生产方法 (8)3.1 主要设备 (8)3.2工艺流程 (8)3.3工艺流程简介 (8)3.4生产工艺步骤 (9)3.4.1 调乳 (9)3.4.2 淀粉水解 (9)3.4.3 液化 (9)3.4.4 糖化 (9)3.4.5 配料 (10)3.4.6 过滤 (10)3.4.7 灭酶 (10)3.4.8 脱色 (10)3.4.9 离交 (10)3.4.10 蒸发 (11)3.4.11 灭菌 (11)3.4.12 精制 (11)3.4.13结晶 (11)3.5 生产工艺影响因素 (12)3.5.1 液化影响因素 (12)3.5.2 糖化影响因素 (14)4 工艺计算 (17)4.1 年产10万吨结晶葡萄糖的物料衡算 (17)4.2 酶改性葡萄糖的物料衡算 (17)4.3 年产10万吨结晶葡萄糖厂的耗热量衡算 (18)5 主要设备计算 (21)5.1 主要设备 (21)5.2 层流罐 (21)5.3 高压喷射器 (21)5.4 糖化罐 (21)5.5 酸解罐 (22)5.6 过滤机 (23)5.7 脱色罐²中转罐²糖膏储存罐 (23)5.8 结晶罐 (23)5.9 离心机 (23)6 车间平面设置设计 (24)6.1 总平面布置基本原则 (24)6.2 车间布置设计原则 (25)谢辞 (25)参考文献 (26)摘要葡萄糖(Glucose)(化学式C6H12O6)是自然界分布最广且最为重要的一种单糖,纯净的葡萄糖为无色晶体,有甜味,易溶于水。
风景园林(园林规划设计方向)本科专业人才培养方案(专业代码:082803)(专业英文名称:Landscape Architecture)一、业务培养目标本专业培养适应社会主义现代化建设需要,德、智、体等方面全面发展,掌握风景园林学科的基本理论、基本知识和基本技能,能胜任风景名胜、城乡绿化、城乡规划、环境和生态保护、旅游发展、建筑设计等各类风景园林工程的技术与管理工作,具有扎实的基础理论、宽广的专业知识、较强的工程实践能力和创新能力以及一定懂得国际视野,能面向未来的高级专门人才。
二、业务培养要求本专业学生主要学习风景园林规划、设计、保护、建设和管理的基本理论和基本知识,接受风景园林的现场调查分析、空间规划设计、植物等材料应用、工程技术与建设干礼、文字图纸表达等方面的基本训练,具备能在风景园林规划、设计、施工、保护、管理、教育、科研、投资和开发等相关部门从事技术和管理工作的基本能力。
毕业生应获得以下几方面的知识和能力:1.具备较高的职业道德与人问问素质、具备良好的专业素质和身心素质、具有自然科学、人文科学和文化艺术基本素养,并掌握一门外国语;2.了解本专业的历史、现状和发展趋势;了解与本专业相关的生态、建筑、城乡规划、艺术、园艺、气候、地质、土壤、水文、地理、计算机应用、社会、文学、管理等学科专业知识,具备融会贯通多学科专业知识的能力;3.掌握风景园林现场调研、数据分析与图文表达的方法技术,具备识别分析风景园林现状问题的能力;4.掌握风景园林规划设计的基本原理和分析方法,具有风景园林规划、园林与景观设计的基本实践能力;5.了解风景园林工程材料的基本性能和选用原则,掌握工程测绘和工程制图的基本原理和方法;6.掌握风景园林植物的基本知识,具有植物应用的基本能力;7.了解自然和文化遗产保护的基本知识,具有从事风景园林遗产及各类自然与人文风景园林资源保护的基本能力;8.了解与风景园林相关的法律法规、公共政策和技术标准;9.具有较强的沟通协调、环境适应和团队合作能力。
本科课程设计说明书题目:中南世纪城C-3#楼施工投标文件院(部)管理工程学院专业:工程造价班级:造价0姓名:王学号:指导教师:张友全完成日期:2011年6月8日目录1 工程量清单1.1 工程量清单封面1.21.32 施工投标文件(商务标) (7)2.11 投标总价 (4)2.12 投标报价表 (20)2.13 总说明 (21)2.14 单位工程投标报价汇总表(土建) (22)2.15 分部分项工程清单表 (23)2.16 措施项目清单表 (28)2.17 措施项目清单与计价表(二) (29)2.18 其他项目清单表 (30)2.19 暂列金额明细表 (30)2.20 材料暂估单价表(土建) (30)2.21 专业工程暂估价表 (31)2.22 计日工表(土建) (31)2.23 总承包服务费计价表 (32)2.24 规费、税金项目清单与计价表 (32)2.25 分部分项工程量综合单价分析表 (33)2.26 单位工程投标报价汇总表(装饰) (37)2.27 分部分项工程量清单与计价表(装饰) (38)2.28 措施项目清单与计价表(一)(装饰) (40)2.29 措施项目清单与计价表(二)(装饰) (40)2.30 其他项目清单与计价汇总表(装饰) (41)2.31 暂列金额明细表(装饰) (41)2.32 材料暂估单价表(装饰) (41)2.33 计日工表(装饰) (42)2.34 规费税金项目清单与计价表(装饰) (42)2.35 分部分项工程量综合单价分析表(装饰) (43)2.11投标总价投标总价招标人:山东品胜房地产开发有限公司工程名称:山东济南市中南世纪城C-3#住宅楼项目投标总价1(小写):11006483.31(大写):壹仟壹佰万陆仟肆佰捌拾叁元叁角壹分投标总价2=投标总价1—暂列金额—专业工程暂估价中甲方分包部分(小写):10129646.17(大写):壹仟零壹拾贰万玖仟陆佰肆拾陆元壹角柒分投标人:中国建筑第八工程局第二有限公司(单位盖章)授权人:熊其中(签字或盖章)编制人:(造价人员签字盖专用章)编制时间:2011年 5 月 1 日2.12投标报价表单项工程投标报价汇总表2.13总说明总说明工程名称:中南世纪城C3(土建)2.14单位工程投标报价汇总表(土建)单位工程投标报价汇总表(土建)2.15分部分项工程量清单表分部分项工程量清单与计价表(土建)2.16 措施项目清单表措施项目清单与计价表(一)(土建)2.17措施项目清单与计价表(二)(土建)措施项目清单与计价表(二)(土建)2.18其他项目清单表其他项目清单与计价汇总表(土建)2.19暂列金额明细表暂列金额明细表2.20材料暂估单价表(土建)材料暂估单价表(土建)2.21专业工程暂估价表专业工程暂估价表3.13计日工表(土建)计日工表(土建)2.23总承包服务费计价表总承包服务费计价2.24规费、税金项目清单与计价表规费、税金项目清单与计价表(土建)2.25分部分项工程量综合单价分析表(土建)分部分项工程量清单综合单价分析表(土建)2.26单位工程投标报价汇总表(装饰)单位工程投标报价汇总表(装饰)2.27分部分项工程量清单与计价表(装饰)分部分项工程量清单与计价表2.28措施项目清单与计价表(一)(装饰)措施项目清单与计价表(一)2.29措施项目清单与计价表(二)(装饰)措施项目清单与计价表(二)2.30其他项目清单与计价汇总表(装饰)其他项目清单与计价表(装饰)2.31暂列金额明细表(装饰)暂列金额明细表(装饰)2.32材料暂估单价表(装饰)材料暂估价表(装饰)2.33计日工表(装饰)计日工表(装饰)3.24规费税金项目清单与计价表(装饰)规费、税金项目清单与计价表(装饰)2.35分部分项工程量综合单价分析表(装饰)分部分项工程量清单综合单价分析表(装饰)工程名称:中南世纪城C3(装饰)表3.23分部分项工程量清单综合单价分析表(装饰)。
本科毕业论文题目:FIDIC合同条件在我国的应用研究院(部):管理学院专业:工程管理班级:姓名:学号:指导教师:完成日期: 2013年5月23日目录摘要 .................................................................................................... I II ABSTRACT.............................................................................................. I V 1 前言 . (1)1.1FIDIC在我国的应用背景和意义 (1)1.2FIDIC在我国建设市场工程的应用及现状 (2)1。
3本文主要内容 (3)2 FIDIC合同条件于我国应用之异同 (4)2.1FIDIC合同文本是我国的主要应用文本 (4)2。
2FIDIC合同条件和我国的施工合同文本在我国工程监理工作中的对比 (5)2。
2.1作用的范围与效力 (5)2.2.2合同中的时间规定 (6)2。
2.3关于工程规范 (6)2.2。
4监理工程师及其与业主和承包商的关系 (6)2。
2.5索赔 (7)2.2。
6关于合同纠纷的处理综观 (8)3 FIDIC合同条件于我国应用之问题 (9)3。
1FIDIC在我国应用中的限制性问题 (9)3.1.1合同的社会环境 (9)3。
1.2承包商的选择 (9)3。
1.3投标报价的方法 (10)3。
1。
4监理工程师的权力和地位 (10)3.1。
5监理工程师的素质 (11)3。
1。
6业主行为不规范 (11)3。
1。
7法制环境 (12)3。
2FIDIC解决争端和仲裁与我国示范文本之间的问题 (12)3.3FIDIC在我国应用中应当注意的问题 (13)3.3。
1认真理解FIDIC合同条款的含义 (13)3。
3.2不能用行政手段替代按市场经济规则进行的招投标 (13)3。
山东建筑大学毕业设计任务书班级机械工程及自动化学生姓名张晨铭指导教师赵文波设计题目空压机减荷阀体加工工艺及工装设计设计原始参数技术参数:阀体材料:HT200硬度:190~210HB年产量为4000件,设其备品率为4%,机械加工废品率为1%。
设计工作内容1、零件的工艺分析及工艺规程制订2. 专用夹具设计3.翻译外文资料一篇4.撰写约2万字的毕业设计说明书。
设计工作基本要求1.查阅文献,写出不少于3000字的文献综述;2.提出可行性方案,并写出开题报告;3.设计出合理的部件方案;4.零件工艺规程设计、专用夹具设计5.设计图纸应包括零件三维造型、专用夹具图等。
6. 进度安排6周零件的工艺分析7-8周确定切削用量及基本工时10-12周零件工艺规程设计13-14周专用夹具设计15-16周专用夹具设计17周编写设计说明书、毕业答辩主要参考资料及文献[1].杨长睽.起重机械.北京:机械工业出版社,1981[2].陈道南.起重运输机械.北京:机械工业出版式社,1982[3].张建中.机械设计基础.江苏:中国矿业大学出版社,2001[4].张建中.机械设计基础调和设计.江苏:中国矿业大学出版社,2001[5].成大宪.机械设计手册.北京:化学工业出版社第三版第3卷,1987[6].《机械设计手册》联合组组编.机械设计手册化学工业出版社第二版,1989[7].《机械零件设计手册》编写组.机械零件设计手册.上海金工业出版社,1994[8]温松明.互换性与测量技术基础.长沙:湖南大学出版社,1998[9]朱正心.机械制造技术.北京:机械工业出版社,2004[10]孟少农.机械加工工艺手册.北京:机械工业出版社,1991[11]徐灏.机械设计手册.北京:机械工业出版社,1992[12]徐嘉元.机械制造工艺学.北京:机械工业出版社,1997[13]刘浔江.应用力学.长少:中国工业大学出版社,1998[14]曾晔昌.工程材料及机械制造基础.北京:机械工业出版社,1990指导教师(签字):教研室主任(签字):院系主任(签字):注:1、不够可加附页2、左列名称可根据各专业具体情况修改教务处制。
本科毕业设计外文文献及译文文献、资料题目:Transit Route Network Design Problem:Review文献、资料来源:网络文献、资料发表(出版)日期:2007.1院(部):xxx专业:xxx班级:xxx姓名:xxx学号:xxx指导教师:xxx翻译日期:xxx外文文献:Transit Route Network Design Problem:Review Abstract:Efficient design of public transportation networks has attracted much interest in the transport literature and practice,with manymodels and approaches for formulating the associated transit route network design problem _TRNDP_having been developed.The presentpaper systematically presents and reviews research on the TRNDP based on the three distinctive parts of the TRNDP setup:designobjectives,operating environment parameters and solution approach.IntroductionPublic transportation is largely considered as a viable option for sustainable transportation in urban areas,offering advantages such as mobility enhancement,traffic congestion and air pollution reduction,and energy conservation while still preserving social equity considerations. Nevertheless,in the past decades,factors such as socioeconomic growth,the need for personalized mobility,the increase in private vehicle ownership and urban sprawl have led to a shift towards private vehicles and a decrease in public transportation’s share in daily commuting (Sinha2003;TRB2001;EMTA2004;ECMT2002;Pucher et al.2007).Efforts for encouraging public transportation use focuses on improving provided services such as line capacity,service frequency,coverage,reliability,comfort and service quality which are among the most important parameters for an efficient public transportation system(Sinha2003;Vuchic2004.) In this context,planning and designing a cost and service efficientpublic transportation network is necessary for improving its competitiveness and market share. The problem that formally describes the design of such a public transportation network is referred to as the transit route network design problem(TRNDP);it focuses on the optimization of a number of objectives representing the efficiency of public transportation networks under operational and resource constraints such as the number and length of public transportation routes, allowable service frequencies,and number of available buses(Chakroborty2003;Fan and Machemehl2006a,b).The practical importance of designing public transportation networks has attractedconsiderable interest in the research community which has developed a variety of approaches and modelsfor the TRNDP including different levels of design detail and complexity as well as interesting algorithmic innovations.In thispaper we offer a structured review of approaches for the TRNDP;researchers will obtain a basis for evaluating existing research and identifying future research paths for further improving TRNDP models.Moreover,practitioners will acquire a detailed presentation of both the process and potential tools for automating the design of public transportation networks,their characteristics,capabilities,and strengths.Design of Public Transportation NetworksNetwork design is an important part of the public transportation operational planning process_Ceder2001_.It includes the design of route layouts and the determination of associated operational characteristics such as frequencies,rolling stock types,and so on As noted by Ceder and Wilson_1986_,network design elements are part of the overall operational planning process for public transportation networks;the process includes five steps:_1_design of routes;_2_ setting frequencies;_3_developing timetables;_4_scheduling buses;and_5_scheduling drivers. Route layout design is guided by passenger flows:routes are established to provide direct or indirect connection between locations and areas that generate and attract demand for transit travel, such as residential and activity related centers_Levinson1992_.For example,passenger flows between a central business district_CBD_and suburbs dictate the design of radial routes while demand for trips between different neighborhoods may lead to the selection of a circular route connecting them.Anticipated service coverage,transfers,desirable route shapes,and available resources usually determine the structure of the route network.Route shapes areusually constrained by their length and directness_route directness implies that route shapes are as straight as possible between connected points_,the usage of given roads,and the overlapping with other transit routes.The desirable outcome is a set of routesconnecting locations within a service area,conforming to given design criteria.For each route, frequencies and bus types are the operational characteristics typically determined through design. Calculations are based on expected passenger volumes along routes that are estimated empirically or by applying transit assignmenttechniques,under frequency requirement constraints_minimum and maximum allowedfrequencies guaranteeing safety and tolerable waiting times,respectively_,desired load factors, fleet size,and availability.These steps as well as the overall design.process have been largely based upon practical guidelines,the expert judgment of transit planners,and operators experience_Baaj and Mahmassani1991_.Two handbooks by Black _1995_and Vuchic_2004_outline frameworks to be followed by planners when designing a public transportation network that include:_1_establishing the objectives for the network;_2_ defining the operational environment of the network_road structure,demand patterns,and characteristics_;_3_developing;and_4_evaluating alternative public transportation networks.Despite the extensive use of practical guidelines and experience for designing transit networks,researchers have argued that empirical rules may not be sufficient for designing an efficient transit network and improvements may lead to better quality and more efficient services. For example,Fan and Machemehl_2004_noted that researchers and practitioners have been realizing that systematic and integrated approaches are essential for designing economically and operationally efficient transit networks.A systematic design process implies clear and consistent steps and associated techniques for designing a public transportation network,which is the scope of the TRNDP.TRNDP:OverviewResearch has extensively examined the TRNDP since the late1960s.In1979,Newell discussed previous research on the optimal design of bus routes and Hasselström_1981_ analyzed relevant studies and identified the major features of the TRNDP as demand characteristics,objective functions,constraints,passengerbehavior,solution techniques,and computational time for solving the problem.An extensive review of existing work on transit network design was provided by Chua_1984_who reported five types of transit system planning:_1_manual;_2_marketanalysis;_3_systems analysis;_4_systems analysis with interactive graphics;and_5_ mathematical optimization approach.Axhausemm and Smith_1984_analyzed existing heuristic algorithms for formulating the TRNDP in Europe,tested them,anddiscussed their potential implementation in the United States.Ceder and Wilson_1986_reportedprior work on the TRNDP and distinguished studies into those that deal with idealized networks and to those that focus on actual routes,suggesting that the main features of the TRNDP include demand characteristics,objectivesand constraints,and solution methods.At the same period,Van Nes et al._1988_grouped TRNDP models into six categories:_1_ analytical models for relating parameters of the public transportation system;_2_models determining the links to be used for public transportation route construction;_3_models determining routes only;_4_models assigning frequencies to a set of routes;_5_two-stage models for constructing routes and then assigning frequencies;and_6_models for simultaneously determining routes and frequencies.Spacovic et al._1994_and Spacovic and Schonfeld_1994_proposed a matrix organization and classified each study according to design parameters examined,objectives anticipated,network geometry,and demand characteristics. Ceder and Israeli_1997_suggested broad categorizations for TRNDP models into passenger flow simulation and mathematical programming models.Russo_1998_adopted the same categorization and noted that mathematical programming models guarantee optimal transit network design but sacrifice the level of detail in passenger representation and design parameters, while simulation models address passenger behavior but use heuristic procedures obtaining a TRNDP solution.Ceder_2001_enhanced his earlier categorization by classifying TRNDP models into simulation,ideal network,and mathematical programming models.Finally,in a recent series of studies,Fan and Machemehl_2004,2006a,b_divided TRNDP approaches into practical approaches,analytical optimization models for idealized conditions,and metaheuristic procedures for practical problems.The TRNDP is an optimization problem where objectives are defined,its constraints are determined,and a methodology is selected and validated for obtaining an optimal solution.The TRNDP is described by the objectives of the public transportation network service to be achieved, the operational characteristics and environment under which the network will operate,and the methodological approach for obtaining the optimal network design.Based on this description of the TRNDP,we propose a three-layer structure for organizing TRNDP approaches_Objectives, Parameters,and Methodology_.Each layer includes one or more items that characterize each study.The“Objectives”layer incorporates the goals set when designing a public transportation system such as the minimization of the costs of the system or the maximization of the quality of services provided.The“Parameters”layer describes the operating environment and includes both the design variables expected to be derived for the transit network_route layouts,frequencies_as well as environmental and operational parameters affecting and constraining that network_for example,allowable frequencies,desired load factors,fleet availability,demand characteristics and patterns,and so on_.Finally,the“Methodology”layer covers the logical–mathematical framework and algorithmic tools necessary to formulate and solve the TRNDP.The proposed structure follows the basic concepts toward setting up a TRNDP:deciding upon the objectives, selecting the transit network items and characteristics to be designed,setting the necessary constraints for the operating environment,and formulating and solving the problem. TRNDP:ObjectivesPublic transportation serves a very important social role while attempting to do this at the lowest possible operating cost.Objectives for designing daily operations of a public transportation system should encompass both angles.The literature suggests that most studies actually focus on both the service and economic efficiency when designing such a system. Practical goals for the TRNDP can be briefly summarized as follows_Fielding1987;van Oudheudsen et al.1987;Black1995_:_1_user benefit maximization;_2_operator cost minimization;_3_total welfare maximization;_4_capacity maximization;_5_energy conservation—protection of the environment;and_6_individual parameter optimization.Mandl_1980_indicated that public transportation systems have different objectives to meet. He commented,“even a single objective problem is difficult to attack”_p.401_.Often,these objectives are controversial since cutbacks in operating costs may require reductions in the quality of services.Van Nes and Bovy_2000_pointed out that selected objectives influence the attractiveness and performance of a public transportation network.According to Ceder and Wilson_1986_,minimization of generalized cost or time or maximization of consumer surplus were the most common objectives selected when developing transit network design models. Berechman_1993_agreed that maximization of total welfare is the most suitable objective for designing a public transportation system while Van Nes and Bovy_2000_argued that the minimization of total user and system costs seem the most suit able and less complicatedobjective_compared to total welfare_,while profit maximization leads to nonattractive public transportation networks.As can be seen in Table1,most studies seek to optimize total welfare,which incorporates benefits to the user and to the er benefits may include travel,access and waiting cost minimization,minimization of transfers,and maximization of coverage,while benefits for the system are maximum utilization and quality of service,minimization of operating costs, maximization of profits,and minimization of the fleet size used.Most commonly,total welfare is represented by the minimization of user and system costs.Some studies address specific objectives from the user,theoperator,or the environmental perspective.Passenger convenience,the number of transfers, profit and capacity maximization,travel time minimization,and fuel consumption minimization are such objectives.These studies either attempt to simplify the complex objective functions needed to setup the TRNDP_Newell1979;Baaj and Mahmassani1991;Chakroborty and Dwivedi2002_,or investigate specific aspects of the problem,such as objectives_Delle Site and Fillipi2001_,and the solution methodology_Zhao and Zeng2006;Yu and Yang2006_.Total welfare is,in a sense,a compromise between objectives.Moreover,as reported by some researchers such as Baaj and Mahmassani_1991_,Bielli et al._2002_,Chackroborty and Dwivedi_2002_,and Chakroborty_2003_,transit network design is inherently a multiobjective problem.Multiobjective models for solving the TRNDP have been based on the calculation of indicators representing different objectives for the problem at hand,both from the user and operator perspectives,such as travel and waiting times_user_,and capacity and operating costs _operator_.In their multiobjective model for the TRNDP,Baaj and Majmassani_1991_relied on the planner’s judgment and experience for selecting the optimal public transportation network,based on a set of indicators.In contrast,Bielli et al._2002_and Chakroborty and Dwivedi_2002_,combined indicators into an overall,weighted sum value, which served as the criterion for determining the optimaltransit network.TRNDP:ParametersThere are multiple characteristics and design attributes to consider for a realistic representation of a public transportation network.These form the parameters for the TRNDP.Part of these parameters is the problem set of decision variables that define its layout and operational characteristics_frequencies,vehicle size,etc._.Another set of design parameters represent the operating environment_network structure,demand characters,and patterns_, operational strategies and rules,and available resources for the public transportation network. These form the constraints needed to formulate the TRNDP and are,a-priori fixed,decided upon or assumed.Decision VariablesMost common decision variables for the TRNDP are the routes and frequencies of the public transportation network_Table1_.Simplified early studies derived optimal route spacing between predetermined parallel or radial routes,along with optimal frequencies per route_Holroyd1967; Byrne and Vuchic1972;Byrne1975,1976;Kocur and Hendrickson1982;Vaughan1986_,while later models dealt with the development of optimal route layouts and frequency determination. Other studies,additionally,considered fares_Kocur and Hendrickson1982;Morlok and Viton 1984;Chang and Schonfeld1991;Chien and Spacovic2001_,zones_Tsao and Schonfeld1983; Chang and Schonfeld1993a_,stop locations_Black1979;Spacovic and Schonfeld1994; Spacovic et al.1994;Van Nes2003;Yu and Yang2006_and bus types_Delle Site and Filippi 2001_.Network StructureSome early studies focused on the design of systems in simplified radial_Byrne1975;Black 1979;Vaughan1986_,or rectangular grid road networks_Hurdle1973;Byrne and Vuchic1972; Tsao and Schonfeld1984_.However,most approaches since the1980s were either applied to realistic,irregular grid networks or the network structure was of no importance for the proposed model and therefore not specified at all.Demand PatternsDemand patterns describe the nature of the flows of passengers expected to be accommodated by the public transportation network and therefore dictate its structure.For example,transit trips from a number of origins_for example,stops in a neighborhood_to a single destination_such as a bus terminal in the CBD of a city_and vice-versa,are characterized as many-to-one_or one-tomany_transit demand patterns.These patterns are typically encountered in public transportation systems connecting CBDs with suburbs and imply a structure of radial orparallel routes ending at a single point;models for patterns of that type have been proposed by Byrne and Vuchic_1972_,Salzborn_1972_,Byrne_1975,1976_,Kocur and Hendrickson _1982_,Morlok and Viton_1984_,Chang and Schonfeld_1991,1993a_,Spacovic and Schonfeld_1994_,Spacovic et al._1994_,Van Nes_2003_,and Chien et al._2003_.On the other hand,many-to-many demand patterns correspond to flows between multiple origins and destinations within an urban area,suggesting that the public transportation network is expected to connect various points in an area.Demand CharacteristicsDemand can be characterized either as“fixed”_or“inelastic”_or“elastic”;the later meaning that demand is affected by the performance and services provided by the public transportation network.Lee and Vuchic_2005_distinguished between two types of elastic demand:_1_demand per mode affected by transportation services,with total demand for travel kept constant;and_2_total demand for travel varying as a result of the performance of the transportation system and its modes.Fan and Machemehl_2006b_noted that the complexity of the TRNDP has led researchers intoassuming fixed demand,despite its inherent elastic nature.However,since the early1980s, studies included aspects of elastic demand in modeling the TRNDP_Hasselstrom1981;Kocur and Hendrickson1982_.Van Nes et al._1988_applied a simultaneous distribution-modal split model based on transit deterrence for estimatingdemand for public transportation.In a series of studies,Chang and Schonfeld_1991,1993a,b_ and Spacovic et al._1994_estimated demand as a direct function of travel times and fares with respect to their elasticities,while Chien and Spacovic2001_,followed the same approach assuming that demand is additionally affected by headways,route spacing and fares.Finally, studies by Leblanc_1988_,Imam_1998_,Cipriani et al._2005_,Lee and Vuchic_2005_;and Fan and Machemehl_2006a_based demand estimation on mode choice models for estimating transit demand as a function of total demand for travel.中文译文:公交路线网络设计问题:回顾摘要:公共交通网络的有效设计让交通理论与实践成为众人关注的焦点,随之发展出了很多规划相关公交路线网络设计问题(TRNDP)的模型与方法。
附件2:本科毕业设计说明书 (本科毕业论文)题 目:空腹桁架钢框架结构受力性能分析及试验研究院 (部)专 班 级: 土木013 姓 名: 张三 学 号: 2001888888 指导教师: 张九光完成日期: 2005年6月30日目·············································Ⅲ ABSTRACT ·······································Ⅳ 1 前 言1.1 空腹桁架钢框架的特点及研究意义....................1 1.2 空腹桁架钢框架的研究现状..............................................3 1.3 现有研究的不足及本文的研究内容. (5)2 空腹桁架钢框架有限元建模及验证2.1 引言..................................................................8 2.2 弹塑性分析方法简介...................................................12 2.3 ANSYS 在空腹桁架钢框架弹塑性分析中的应用............................18 2.4 ANSYS 分析模型正确性检验............................................20 2.4.1 ANSYS 分析模型概述.........21 2.4.1.1 ANSYS ........21 2.5 小结. (21)33.1 引言.................................................................23 3.2 空腹桁架钢框架与普通钢框架力学性能对比...............................26 3.3 影响空腹桁架钢框架力学性能的因素. (29)4 空腹桁架钢框架极限承载力试验研究4.1 试验目的·····························································30 4.2 模型设计依据·························································32 4.3 试验概况·····························································35 4.4 试验过程描述·························································38 4.5 试验结果·························4.6 小结 (55)5 结论 (56)谢辞 (57)参考文献 (58)附录 (59)摘空腹桁架钢框架是在钢框架的基础上,通过取消框架中间的柱子来增大结构的使用空间,同时为了不增大各个构件的截面尺寸,在框架的隔层增设腹板柱形成空腹桁架与钢框架组合的结构体系。
由于在钢框架中增设腹板柱形成空腹桁架结构,进一步增强了结构的水平刚度和竖向刚度,同时提高了结构的整体工作性能,进而实现了结构的大跨度。
本文通过大量的算例分析,探讨空腹桁架层的节间数、节间间距、腹板柱的刚度以及结构的跨度对整体结构的受力性能、极限承载力及破坏模式的影响,分析表明:通过合理的桁架层设计,可以有效的提高结构的竖向刚度和水平刚度,以及结构的极限承载力,并可以使结构的塑性变形首先出现在腹板柱上,这有利于结构内力的重分布,增加结构的延性性能,充分发挥构件的极限承载能力。
关键词:空腹桁架钢框架;受力性能;弹塑性分析;极限承载力;试验研究Frame and Experiment StudyABSTRACTVierendeel truss-steel frame has wide technical application that can be applied to the staggered truss structure and transfer structure. It has important theory significance and value of technical application to research the behavior,the ultimate load-carrying capacity and structural destroy mode.·········;elastoplasticanalysis ;ultimate load-carrying capacity ;experimental research11.1 空腹桁架钢框架的特点及研究意义用空间,同时为了不增大各个构件的截面尺寸,在框架的隔层增设腹板柱形成空腹桁架与钢框架组合的新型钢结构,结构形式如图1.1。
由于在钢框架中增设腹板柱形成空腹桁架结构,进一步增强了结构的侧向刚度和竖向刚度,同时提高了结构的整体工作性能,进而实现了结构的大跨度,而且桁架层的上下弦梁的截面高度不大,不影响建筑物的使用,并可以在一定的建筑高度范围内代替钢框架-剪力墙结构和钢框架-支撑结构。
与实腹式桁架和混合式桁架不同,空腹桁架钢框架的节间无斜杆,在水平荷载作用下,桁架层剪力主要由腹板柱承担。
如果桁架层的结构形式布置不合理,当空腹桁架钢框架的跨度很大时,结构在竖向荷载作用下往往会产生过大的挠度,影响建筑物的使用。
但是,桁架层节间没有斜杆,可以方便的在建筑物上布置门洞以及走廊,同时,在结构受力分析上,空腹桁架钢框架的内力计算比较简单,并且节点的处理比较 图1.1 空腹桁架钢框架 定的规律布置且腹板柱的高度等于层高时,就属于交错桁架结构体系(如图 1.2);空腹桁架也可以单独应用,例如作为结构的转换层(如图1.3)或者桁架式框架梁结构(如图1.4)等等。
在实际工程的应用中表明:空腹桁架结构的构成相对简单,受力性能良好,能够在重载情况下实现较大的跨度,具有其它结构体系所不具备的优势。
而钢结构具有强度高、延性好、自重轻、标准化程度高等优势,因此,将空腹桁架结构应用于钢结构中也将会具有较好的受力性能。
但是,目前人们对空腹桁架钢框架的研究还处于初始阶段,全面分析影响空腹桁架钢框架受力性能的因素以及结构的破坏形式对推广空腹桁架钢框架有重大的意义。