第五节 函数极限的四则运算
定理 设 lim f ( x) A, lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g(x) B
注 此定理证明的基本原则:
小结:当a0 0, b0 0, m和n为非负整数时有
lim
x
a0 xm b0 x n
a1 x m1 b1 x n1
am bn
0ab,00当,当n n
m m,
,
,当n m,
无穷小分出法:以分母中自变量的最高次幂除分
子,分母,以分出无穷小,然后再求极限.
x 1 1
例5
求 lim x0
lim f ( x) A f ( x) A ( x)
定理(1),(2)可推广到任意有限个具有极限的函数
推论1
如果lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
常数因子可以提到极限记号外面.
推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
12
n
12 n
lim(
n
n
2
n2
n2
)
lim
n
n2
1
n(n 1)
lim 2
n
n2
1 lim (1 n 2
1) n
1. 2
由以上几例可见,在应用极限的四则运算法则求
极限时,必须注意定理的条件,当条件不具备时, 有时可作适当的变形,以创造应用定理的条件,有 时可以利用无穷小的运算性质或无穷小与无穷大的 关系求极限。