最新六年级下册数学知识点总结
- 格式:doc
- 大小:38.00 KB
- 文档页数:6
完整版)六年级数学下册总复习知识点整理版六年级数学下册总复知识点归纳一、常用的数量关系式1.每份数 ×份数 = 总数,总数 ÷每份数 = 份数,总数 ÷份数 = 每份数。
2.速度 ×时间 = 路程,路程 ÷速度 = 时间,路程 ÷时间 = 速度。
3.单价 ×数量 = 总价,总价 ÷单价 = 数量,总价 ÷数量 = 单价。
4.工作效率 ×工作时间 = 工作总量,工作总量 ÷工作效率= 工作时间,工作总量 ÷工作时间 = 工作效率。
5.加数 + 加数 = 和,和 - 一个加数 = 另一个加数。
6.被减数 - 减数 = 差,被减数 - 差 = 减数,差 + 减数 = 被减数。
7.因数 ×因数 = 积,积 ÷一个因数 = 另一个因数。
8.被除数 ÷除数 = 商,被除数 ÷商 = 除数,商 ×除数 =被除数。
二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长):周长 = 边长× 4,C = 4a;面积 = 边长 ×边长,S = a × a。
2.正方体(V:体积,a:棱长):表面积 = 棱长 ×棱长 ×6,S表 = a × a × 6;体积 = 棱长 ×棱长 ×棱长,V = a × a × a。
3.长方形(C:周长,S:面积,a:长,b:宽):周长 = (长 + 宽) × 2,C = 2(a + b);面积 = 长 ×宽,S = ab。
4.长方体(V:体积,S:面积,a:长,b:宽,h:高):表面积 = (长 ×宽 + 长 ×高 + 宽 ×高) × 2,S = 2(ab + ah + bh);体积 = 长 ×宽 ×高,V = abh。
小学六年级下册数学重点知识点整理六年级上册知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数:普通算法:找一个小数的倒数,例如,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如,1/等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
六年级下册数学全部知识点总结
1.分数运算:
-分数加减法:同分母、异分母分数的加减法则及其混合运算。
-分数乘法:分数与整数、分数与分数的乘法法则,理解倒数概念,掌握分数乘法的简便算法。
-分数除法:分数除以整数、分数除以分数的运算规则,以及分数除法转化为乘法运算的方法。
2.比和比例:
-比的意义和性质,比的基本性质,求比值和化简比。
-比例的意义,比例的基本性质,解比例方程,正比例和反比例的概念及应用。
3.百分数:
-百分数的意义,百分数与小数、分数之间的互化。
-百分数的应用,如折扣、税率、利率等问题的解决。
4.圆:
-圆的基本概念,直径、半径、周长、面积的计算公式。
-圆心角、弧、扇形、圆锥和圆柱的相关计算。
-圆周率π的认识和应用。
5.统计与概率:
-复式统计表和复式条形统计图的理解和绘制。
-可能性的大小比较,简单事件发生的可能性计算。
6.平面图形与立体图形:
-平行四边形、梯形的性质和面积计算。
-三角形、平行四边形、梯形的高线定义和画法。
-长方体、正方体、圆柱、圆锥的体积和表面积计算。
7.代数初步:
-用字母表示数,列含未知数的等式(方程)解决问题。
-解简易方程,包括一步方程和两步方程。
8.解决问题策略:
-应用所学知识解决生活中实际问题,如行程问题、工程问题、浓度问题等。
苏教版六年级下册数学知识要点总结
本文档旨在总结苏教版六年级下册数学课程的主要知识要点,
帮助学生复和掌握相关知识。
1. 整数的运算
- 整数的加法和减法运算:正数与正数相加、负数与负数相加、正数与负数相加的规律
- 整数的乘法和除法运算:正数与正数相乘、负数与负数相乘、正数与负数相乘的规律
- 整数的运算定律:加法和乘法的结合律、交换律和分配律
2. 分数的运算
- 分数的加法和减法运算:通分、化简、按规定格式进行计算
- 分数的乘法和除法运算:乘法的规律、除法的规律、分子分
母的计算
3. 小数的认识与运算
- 小数的表示方法:有限小数和循环小数
- 小数的加法和减法运算:按规定格式进行计算
- 小数的乘法和除法运算:乘法的规律、除法的规律、小数位数的控制
4. 平面图形的认识与计算
- 点、线、面的基本概念与特征
- 三角形、四边形、圆的性质与判断
- 平面镶嵌图形的认识与构造
5. 条形统计图的制作与分析
- 数据收集与整理
- 条形统计图的制作步骤
- 数据的分析与解读
以上是苏教版六年级下册数学课程的主要知识要点总结。
希望这份文档能够对学生的学习和复习有所帮助。
北师大版六年级数学下册知识点归纳总结目录1. 第一单元 (3)1.1 分数的概念与表示方法 (3)1.2 分数的基本性质 (4)1.3 同分母分数的比较 (5)1.4 异分母分数的转换 (6)2. 第二单元 (7)2.1 小数的概念与表示方法 (7)2.2 小数的性质 (8)2.3 小数与分数之间的联系与区别 (8)2.4 小数的四则运算 (9)3. 第三单元 (10)3.1 百分数的含义和表示方法 (10)3.2 百分数与小数的关系 (11)3.3 百分数在实际生活中的应用 (12)3.4 百分数与其他比的转换 (14)4. 第四单元 (14)4.1 方程的意义及类型 (16)4.2 解一元一次方程的方法 (17)4.3 方程的应用实例 (17)4.4 实际问题中的方程求解策略 (18)5. 第五单元 (19)5.1 平面图形的面积计算 (19)5.2 平面图形的周长计算 (21)5.3 立体图形的体积计算 (21)5.4 立体图形的表面积计算 (23)6. 第六单元 (24)6.1 数据的收集方法 (24)6.2 数据整理的方法与步骤 (26)6.3 如何制作统计表和统计图 (27)6.4 数据分析与解读 (29)7. 第七单元 (29)7.1 概率的含义及表示方法 (30)7.2 事件发生的可能性大小 (31)7.3 简单随机抽样的原理和方法 (32)7.4 概率在现实生活中的应用 (33)8. 第八单元 (35)8.1 图形的平移与旋转 (35)8.2 轴对称图形的性质 (36)8.3 中心对称图形的性质 (37)8.4 几何图形变换与对称的应用 (37)9. 第九单元 (38)9.1 实际问题中的数据收集与分析 (39)9.2 综合运用概率知识解决实际问题 (40)9.3 统计与概率综合题的典型例题解析 (41)10. 第十单元 (42)10.1 数学综合应用题的类型与解题思路 (43)10.2 数学综合应用题的解题技巧 (44)10.3 数学综合应用题的实践案例分析 (45)1. 第一单元自然数的认识与整数的认识。
小学六年级下册全册知识点第一章:数与运算1.1 整数与小数- 整数的概念和表示法- 小数的概念和表示法- 整数和小数的相互转换1.2 加法与减法- 加法的定义和性质- 减法的定义和性质- 加减法的运算法则1.3 乘法与除法- 乘法的定义和性质- 除法的定义和性质- 乘除法的运算法则1.4 运算顺序- 括号的运用- 运算顺序的规定- 复杂运算式的计算第二章:分数与比例2.1 分数的概念与表示- 分数的基本概念- 真分数和假分数的区别- 分数的读法和表示法2.2 分数的加减运算- 分数的加法原则- 分数的减法原则- 分数的加减计算步骤2.3 分数的乘除运算- 分数的乘法原则- 分数的除法原则- 分数的乘除计算步骤2.4 比例的认识与运用- 比例的概念和表示法- 比例与图形的关系- 比例的计算方法第三章:图形与计算3.1 运用倍数和约数- 倍数的概念和计算- 整除与倍数的关系- 约数的概念和判断方法3.2 计算长度、面积和容量- 长度的换算方法- 面积的计算公式- 容量的换算和计算3.3 图形的边和顶点- 图形的基本概念- 点、线、面的定义- 图形的分类与特征3.4 计算图形的周长和面积- 不规则图形的周长计算- 正方形和长方形的面积计算- 三角形和梯形的面积计算第四章:数据与概率4.1 数据的收集与整理- 数据的来源和收集方法- 数据的整理和表达方式- 数据的图表表示4.2 数据的分析与运用- 数据的中位数和众数- 数据的极差和平均数- 数据的运用与预测4.3 概率的认识与计算- 概率的基本概念- 事件的可能性及计算- 基于概率的决策第五章:时间与空间5.1 时间的计算和换算- 时间的单位和换算- 时、分、秒的关系- 时间的加减运算5.2 日历和闰年- 日历的基本组成- 判断闰年的方法- 日期的推算和计算5.3 方位与坐标- 方位词的理解和运用- 坐标的概念和计算- 方位与坐标的关系5.4 空间图形的认识- 点、线、面的空间概念- 立体图形的特征和分类- 空间图形的展开和组合以上是小学六年级下册的全册知识点概述,通过掌握和理解这些知识,可以帮助同学们更好地应对学习中的数学、几何等问题,并提高解决问题的能力。
六年级下册数学复习资料六年级数学下册复习资料(精选8篇)又到考试了,要如何复习数学这个问题不仅学生们头疼,老师家长们也闲不下来。
本页是编辑午夜帮大家整编的8篇六年级下册数学复习资料的相关范文,欢迎借鉴,希望大家能够喜欢。
六年级下册数学复习重点归纳篇一1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。
7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。
8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。
进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
9、圆锥只有一个底面,底面是个圆。
圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。
圆锥只有一条高。
(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)11、把圆锥的侧面展开得到一个扇形。
12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。
13、常见的圆柱圆锥解决问题:①压路机压过路面面积(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
六年级下册数学全册知识点一、整数运算1. 整数的概念和表示方法2. 整数的加法和减法运算3. 整数的乘法和除法运算4. 整数的混合运算二、小数与分数1. 小数的基本概念和表示方法2. 小数的加法和减法运算3. 小数的乘法和除法运算4. 分数的基本概念和表示方法5. 分数的加法和减法运算6. 分数的乘法和除法运算7. 分数与小数的相互转化三、平方根和立方根1. 正数的平方根和立方根的概念2. 平方根和立方根的计算方法3. 估算平方根和立方根的大小四、图形的性质和计算1. 平行四边形、矩形、正方形、三角形的性质和区分方法2. 长方体、正方体的性质和计算公式3. 圆的概念和相关计算公式4. 直角坐标系的基本概念和图形的坐标表示五、比例与百分数1. 等比例和不等比例的关系2. 比例的概念和解题方法3. 百分数的概念和转化4. 百分数的应用:利息、折扣、增长率等六、统计与概率1. 数据的收集和整理2. 极差、中位数、众数和平均数的计算方法3. 直方图和折线图的绘制和解读4. 概率的基本概念和计算方法七、二次根式1. 平方数和完全平方根的概念2. 二次根式的计算方法和化简3. 二次根式的加法和减法运算4. 二次根式的乘法和除法运算八、初步代数1. 代数式的概念和建立2. 代数式的加法和减法运算3. 代数式的乘法和除法运算4. 代数式的应用:简单方程的解法以上是六年级下册数学全册的知识点概述,通过学习这些知识,可以帮助孩子们更好地理解和掌握数学的基本概念和运算方法。
在学习中要多做习题和实际问题的应用,提高自己的数学思维和解决问题的能力。
一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
人教版新课标六年级数学下册(1~3单元)重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
人教版六年级下册数学第五单元知识点总结嘿呀!同学们,今天咱们来好好总结一下人教版六年级下册数学第五单元的知识点呢!首先呀,咱们来聊聊鸽巢问题。
哇!这可是个有趣又有点小神秘的部分。
啥是鸽巢问题呢?简单说,就是把n+1 个物体放进n 个抽屉里,不管怎么放,总有一个抽屉里至少有两个物体!哎呀呀,是不是有点绕?比如说,把5 本书放进4 个抽屉,那肯定有一个抽屉至少放了2 本书呢!接下来,咱们说说用鸽巢原理解决问题。
这可需要咱们开动小脑筋啦!比如说,从扑克牌中取出两张王牌,在剩下的52 张牌中任意抽出5 张,至少有两张是同花色的。
为啥呢?因为一共有4 种花色,5 张牌平均分到4 种花色里,还多1 张呀,所以肯定至少有两张是同花色的!是不是很神奇?然后呢,咱们再讲讲抽屉原理的应用。
哎呀呀,这在生活中可有用啦!像安排座位,分配任务,都可能用到呢。
比如说,学校组织夏令营,有30 个同学参加,要安排住宿,每个房间住4 人,至少要准备几个房间?这就得用抽屉原理来算啦,30÷4=7(个)……2(人),所以至少要8 个房间呀!还有哦,概率问题也在这个单元里呢!概率是啥?就是一件事情发生的可能性大小。
比如说抛硬币,正面朝上和反面朝上的概率都是1/2 。
那掷骰子呢?掷出每个点数的概率都是1/6 呀!再说说数学广角里的有趣内容。
这里面的题目常常让咱们眼前一亮!比如说,有红、黄、蓝三种颜色的球各5 个,要保证摸出的球有两种颜色,至少要摸出几个球?这就得好好想想啦,先把一种颜色的球都摸完,再摸一个,不就有两种颜色了嘛!哇塞!这一单元的知识点还真不少呢!同学们,咱们得好好掌握,这样在做题的时候才能游刃有余呀!多做练习,多思考,数学的世界可是充满惊喜的呢!总之呀,人教版六年级下册数学第五单元的知识点虽然有点小复杂,但只要咱们用心学,就一定能搞明白!加油呀同学们,相信你们都能学好这部分知识!。
六年级下册数学知识总结六年级下册数学主要包括数与式、图形与位置、数据与概率三个大的模块。
其中数与式包括了整数、分数、小数、百分数、正比例和反比例、代数式等内容;图形与位置包括了平面图形、三维图形、位置关系等内容;数据与概率包括了统计数据、概率等内容。
接下来我们将分模块进行总结。
一、数与式1.整数六年级下册的整数主要包括整数的加减法和乘除法、整数的大小比较、整数的乘方和除法、整数的倍数和因数、约数和公约数等内容。
学生需要掌握整数的运算规则,正确使用负数和正数的规则。
2.分数分数的认识和分数的加减法是六年级下册的主要内容。
学生需要通过综合应用的方式,掌握分数的加减法。
此外,分数的乘除法也是重要的知识点。
3.小数小数是从四年级开始学的数学概念,而六年级下册主要是关于小数的加减法、乘除法等应用题。
学生需要熟练掌握小数的运算。
4.百分数百分数是小数的一种表达方式。
学生需要了解百分数和小数之间的转换,并熟练掌握百分数的加减法、乘除法。
同时,应用题也是考察学生理解能力的重要手段。
5.正比例和反比例六年级下册学习了正比例和反比例的概念,并通过实际问题应用进行深入理解。
学生需要熟练掌握正比例和反比例的性质和运用。
6.代数式代数式是代数学中的基础,六年级下册主要是关于代数式的计算与应用。
学生需要熟练掌握单项式和多项式的加减法、乘除法,并能够根据实际问题建立代数式。
二、图形与位置1.平面图形六年级下册的平面图形主要包括了五芒星、五边形、六边形等图形的性质、面积和周长等知识。
学生需要了解各种图形的特征和性质,并能够计算图形的面积和周长。
2.三维图形三维图形主要包括了长方体、正方体、棱柱、棱锥等图形的性质、表面积和体积等知识。
学生需要掌握各种三维图形的性质,并能够计算三维图形的表面积和体积。
3.位置关系位置关系是关于平行线、垂直线、角的性质和测量、相交线、相似图形等知识。
学生需要能够判断和描述各种位置关系,并应用到实际问题中。
六年级下册数学知识点归纳数学知识点归纳一、分数1.分数的定义及表示分数是指用一个整数表示出一个数分的几份,分子表示分出来的几份,分母表示每份分成的份数。
通常表示为:$$\frac{a}{b}$$2.分数的大小比较(1)分母相同时,分数大小由分子大小决定。
(2)分母不同时,先通分,再比较分子大小。
3.分数的化简分数的化简就是把分子和分母同时除以一个相同的数,使它们的最大公约数为1。
如:$$\frac{6}{8}=\frac{3}{4}$$4.分数的加减乘除(1)相加减:通分后,把分子相加减,分母不变。
(2)相乘:把两个分数的分子和分母分别相乘即可。
(3)相除:把被除数乘以除数的倒数,即把除数化为分数的分子倒放,分母在写下去,再进行相乘运算。
二、小数1.小数的定义及表示小数是指数分的几份,每份分成的量相等。
通常用小数点表示,小数点左边的数表示整数部分,右边表示小数部分,数字前面加0不影响其原来的大小。
2.小数的大小比较(1)相同位数,大小由高位数决定。
(2)位数不同时,以比较到的位数为准,不够0补齐。
3.小数的四则运算(1)相加减:保留相同位数,竖式相加减。
(2)相乘:先把小数变成整数,再按整数的乘法进行运算,最后把结果的小数点后移。
(3)相除:把被除数和除数都扩大10、100、1000……倍,使除数变成整数,然后按整数的除法进行运算,最后把结果的小数点前移。
三、倍数和约数1.倍数若a,b为正整数,其中a ≤ b,则b是a的倍数,a是b的因数。
一个数的倍数有无穷多个。
2.约数若a,b为正整数,其中a ≤ b,则a能整除b,称a是b的因数,b是a的倍数。
一个数的因数是有限多个。
四、整数1.正数、负数正整数和0,统称为正数,用“+”表示;负整数,用“-”表示。
2.整数的大小比较(1)一正一负,正数大。
(2)同号但绝对值不同时,绝对值大的数大。
(3)同号且绝对值相同时,大小相同。
3.绝对值表示一个数到原点的距离,用“|”表示。
六年级下册数学所有知识点一、负数。
1. 负数的定义。
- 为了表示两种相反意义的量,如零上温度和零下温度、收入与支出等,我们引入了负数。
像 - 3、- 5.6、- (1)/(2)等带有负号的数叫做负数;以前学过的像3、5.6、(1)/(2)等正数前面加上“+”号(也可省略不写)。
0既不是正数也不是负数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
在数轴上,从左到右的顺序就是数从小到大的顺序。
所有的负数都在0的左边,也就是负数都比0小;所有的正数都在0的右边,正数都比0大。
3. 比较大小。
- 正数>0>负数;两个负数比较大小,负号后面的数越大,这个负数越小。
例如 - 3>-5。
二、百分数(二)1. 折扣。
- 几折就表示十分之几,也就是百分之几十。
例如,七五折就是指现价是原价的75%。
原价×折扣 = 现价;现价÷折扣 = 原价;现价÷原价 = 折扣。
2. 成数。
- 成数表示一个数是另一个数的十分之几,通称“几成”。
例如,“一成”就是十分之一,改写成百分数就是10%;“三成五”就是十分之三点五,改写成百分数就是35%。
3. 税率。
- 应纳税额与各种收入(销售额、营业额……)的比率叫做税率。
应纳税额 = 各种收入×税率。
4. 利率。
- 单位时间内的利息与本金的比率叫做利率。
利息=本金×利率×存期;取回的钱= 本金+利息。
三、圆柱与圆锥。
1. 圆柱。
- 圆柱的认识。
- 圆柱有两个底面,是完全相同的两个圆;有一个侧面,是曲面,沿高展开后是一个长方形(或正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
圆柱有无数条高,高的长度都相等。
- 圆柱的表面积。
- 圆柱的表面积 = 侧面积+两个底面积。
圆柱的侧面积 = 底面周长×高,用字母表示为S_侧=Ch(C = 2π r或C=π d),S_底=π r^2,所以S_表=2π rh + 2π r^2。
六年级下核心考点清单
六年级下核心考点清单:
1. 小学数学知识的巩固和运用:加减乘除的运算技巧、分数、百分数、小数、单位换算等。
2. 图形的认识和性质:平行四边形、长方形、正方形、三角形、圆等图形的性质、面积和周长的计算。
3. 数据的处理和分析:图表的读取和分析、统计图的制作和解读、平均数的计算等。
4. 代数的初步学习:代数式的认识和运算、方程的解法、一元一次方程的解法等。
5. 几何图形的绘制和变换:几何图形的画法、图形的平移、旋转和翻折等基本变换。
6. 时、空和形的关系:时间的计算和换算、空间的方位和位置、立体图形的认识和展开等。
7. 逻辑思维和问题解决:逻辑思维的训练、问题解决的方法和策略、应用题的解题思路等。
8. 数学语言和表达:数学语言的运用、数学步骤和过程的书写、数学问题的表述等。
这些是六年级下学期数学的核心考点,学生需要掌握这些知识和技能,才能够顺利完成六年级的数学学习。
下面将对小学六年级数学的知识点进行归纳整理:一、数字和数量1.整数运算:包括正整数、负整数的运算,以及整数之间的加减运算。
2.分数和小数:包括分数的基本概念、分数的加减乘除运算和小数的读写与计算。
3.百分数:包括百分数的基本概念、百分数与分数、小数之间的转换,以及百分数的计算和应用。
4.正负数:包括正负数的概念、正负数之间的比较大小和计算,以及正负数在实际问题中的应用。
二、数的应用1.平均数:包括平均数的概念、计算平均数的方法和应用。
2.比例与比例尺:包括比例的概念、比例的计算和应用,以及比例尺的概念和使用。
3.换算:包括长度、容量、质量、时间等单位之间的换算,以及对不同单位的换算运用到实际问题。
三、几何与形状1.平面图形:包括平面图形的基本概念、边、角、面积和周长的计算,以及平面图形的分类与判断。
2.立体图形:包括立体图形的基本概念、表面积、体积的计算,以及立体图形的分类与判断。
3.坐标系:包括平面直角坐标系的建立、点的坐标表示和简单的图形绘制。
四、数据和统计1.折线图和柱状图:包括折线图和柱状图的绘制和解读。
2.平均数与中位数:包括平均数和中位数的基本概念、计算和应用。
3.排列组合:包括简单排列组合的计算和应用。
五、代数与方程式1.代数式与方程式:包括代数表达式的基本概念、方程式的解的概念和解方程的方法。
2.图形的坐标与方程:包括图形的坐标表示、线性方程与直线的关系。
3.一元一次方程:包括一元一次方程的定义、解的求法和应用。
以上是小学六年级数学的主要知识点,通过对这些知识点的学习和掌握,学生能够培养数学思维和解决实际问题的能力,为进入中学的数学学习打下坚实的基础。
六年级下册数学全册知识点一、数与代数数与代数的学习内容包括数的认识、数的运算、常见的量、式与方程、正比例和反比例、探索规律等。
1.数的认识主要包括进一步理解和掌握整数、小数、分数、百分数的意义以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数、因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意识和能力,发展数感。
⑴整数和小数都是采用十进制计数法,整理计数单位、相应的数位顺序、相邻计数单位之间的进率,再现整数、小数的数位顺序表。
结合数位顺序表,重点理解:数位、计数单位、进率以及位值原则。
⑵整数的读、写注意点包括:分级读、写,从高位到低位依次读、写,数中间“0”的读、写,数末尾“0”的读、写等。
小数的读、写要注意:先读整数部分、后读小数部分,而且整数部分的读法和小数部分的读法不同。
⑶数的改写与省略尾数求近似数,学生容易混淆,要注意其中的联系与区别:⑷奇数与偶数、质数与合数、公因数与公倍数等,都是“因数与倍数”范围里的概念。
这部分的知识较多,学生容易混淆。
建议要求孩子回顾相关知识点后,引导他们建构知识网络图,将知识结构化:⑸分母是10、100、1000……的分数可以用小数表示,小数是分母为10、100、1000……的特殊分数。
分数的基本性质是分子与分母乘或除以同一个不为零的数,大小不变;小数的基本性质简述为小数的末尾可以增减零,小数的大小不变,小数的这个性质也可以理解为分子与分母同时乘或除以相同的数,只是扩大与缩小的倍数是10倍、100倍……如0.3表示十分之三,0.30表示百分之三十。
去掉小数末尾的零即是分子与分母同时除以10。
所以说,分数的基本性质和小数的基本性质本质上是一致的,只是适用的范围不同。
⑹百分数是特殊的分数。
理解分数与百分数的意义,我们要弄清它们之间的联系和区别:小数、分数、百分数之间怎样进行互相改写呢?2.常见的量小学阶段我们学习过长度、面积、体积(容积)、时间、质量等单位。
以下是六年级下册数学知识点的归纳笔记:一、整数运算。
1.整数的加减法。
-同号相加减,异号相减加。
-加减法可以化为同号运算或异号运算。
-加法满足交换律和结合律,减法不满足交换律和结合律。
2.整数的乘除法。
-同号相乘为正,异号相乘为负。
-除法可以化为乘法运算。
3.整数的混合运算。
-先乘除后加减,先括号里的后括号外的。
-同级运算可以交换顺序。
二、小数运算。
1.小数的加减法。
-小数点对齐,按位相加减,注意进位借位。
2.小数的乘法。
-把小数转化为整数,计算完再将结果还原成小数。
3.小数的除法。
-把除数、被除数都变成整数,再进一步计算。
三、分数运算。
1.分数的加减法。
-通分后,按照整数的加减法进行运算。
2.分数的乘除法。
-分数的乘法,分子相乘,分母相乘。
-分数的除法,除数的倒数乘以被除数。
四、面积和周长。
1.长方形的面积和周长。
-面积为长乘以宽,周长为长加宽的两倍。
2.正方形的面积和周长。
-面积为边长的平方,周长为边长的四倍。
3.三角形的面积和周长。
-面积为底乘以高的一半,周长为三边之和。
4.平行四边形的面积和周长。
-面积为底乘以高,周长为底的两倍加上高的两倍。
五、几何变换。
1.平移。
-所有点同时沿着同一方向移动相同的距离。
2.旋转。
-将图形围绕一个点或轴心旋转。
3.翻折。
-将图形沿着一条直线对称。
4.对称和投影。
-对称:将图形对移到与原来位置对称的位置。
-投影:将图形沿着一条直线或面投影到相应的位置。
六、数据统计。
1.统计图。
-条形图、折线图、饼状图、扇形图,用于表示数据的数量、比例和变化趋势等。
2.中心倾向和散布度。
-中心倾向:平均数、中位数、众数,反映数据的集中程度。
-散布度:极差、方差、标准差,反映数据的离散程度。
以上就是六年级下册数学知识点的归纳笔记,希望可以对学生们的数学学习有帮助。
可编辑修改精选全文完整版苏教版数学六年级下册知识点总结与归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b 就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。
六年级下册数学知识点总结第一单元负数1.负数:在数轴线上,负数都在0的(左侧),所有的负数都比自然数小。
负数用负号“-”标记,如-2,-5.33,-45,-0.6等。
2.正数:大于0的数叫正数(不包括0),数轴上0(右边)的数叫做正数若一个数大于零(>0),则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有(无数个),其中有(正整数,正分数和正小数)。
3.关于0:(0)既不是正数,也不是负数,它是正、负数的界限。
所有的负数都在0的(左边),负数都小于0,正数都大于0,负数都比正数(小)。
第二单元百分数1、折扣商店有时降价出售商品,叫做打折。
几折就表示十分之几,也就是百分之几十。
折扣=现价÷原价2、成数成数表示一个数是另一个数的十分之几,统称“几成”。
例如,“一成”就是十分之一,也就是10℅。
“三成五”就是十分之三点五,,也就是35℅。
3、税率纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额……)的比率叫做税率。
应纳税额= 营业额×税率4、利率存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×存期利息税=本金×利率×存期×5%税后利息=本金×利率×存期×(1-5%)第三单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长),长方形的宽等于(圆柱的高)。
这个长方形的面积等于(圆柱的侧面积),因为长方形面积=长×宽,所以圆柱的侧面积=底面周长×高当底面周长和高相等时,沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。
4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:S侧=Ch。
h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×26、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成a份拼成一个近似的长方体,在这个过程中,形状发生了变化,体积没有发生变化。
表面积增加了2(a-1) X 2rh。
9、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
10、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。
11、圆锥的体积:圆柱的体积等于和它等底等高的圆锥体积的3倍,反之圆锥的体积等于和它等底等高的圆柱体积的三分之一。
V锥=13V柱=13ShV锥= 1∏r²h3V锥= 1∏(d÷2)²h3V锥= 1∏(C÷∏÷2)²h312、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。
(3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。
13、生活中的圆锥:沙堆、漏斗、帽子。
第四单元比例的意义1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示xy=k (一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x×y=k (一定)10、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。
11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
12、比例尺的分类(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺 13、比例尺=图上距离:实际距离 图上距离=实际距离×比例尺实际距离=图上距离÷比例尺 (计算时图距和实距单位必须统一)14、应用比例尺画图的步骤:(1)写出图的名称、 (2)确定比例尺;(3)根据比例尺求出图上距离; (4)画图(画出单位长度)(5)标出实际距离,写清地点名称 (6)标出比例尺15、图形的放大与缩小:形状相同,大小不同。
16、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。
17、常见的数量关系式:单价×数量=总价 单产量×数量=总产量总价 总产量= 数量 =数量 单价 单产量总价 总产量=单价 =单产量 数量 数量速度×时间=路程 工效×工作时间=工作总量路程 工作总量=时间 =工作时间 速度 工效路程 工作总量= 速度 = 工效 时间 工作时间第五单元 鸽巢问题(抽屉原理)1、物体数÷抽屉数=商……余数至少数=商+12、物体数÷抽屉数=商至少数=商典型题1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的()倍。
2、圆柱的底面半径扩大n倍,高不变,侧面积扩大n倍,体积扩大()倍。
3、圆柱的底面半径扩大n倍,高也扩大n倍,侧面积扩大()倍,体积扩大()。
4、圆柱的底面半径扩大n倍,高缩小n倍,侧面积不变,体积扩大()倍。
5、一个圆柱和它等底等高的圆锥体积之和是48立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米6、一个圆柱和它等底等高的圆锥体积之差是24立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。
7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是2厘米,圆锥的高是()厘米。
8、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是4平方分米,圆锥的底面积是()平方分米。
9、一个圆锥和一个圆柱的底面积相等,体积的比是1:6。
如果圆锥的高是3.6厘米,圆柱的高是()厘米,如果圆柱的高是3.6厘米,圆锥的高是()厘米。
10、一个圆柱体,把它的高截短3厘米,它的表面积减少94.2平方厘米,这个圆柱的体积减少了()立方厘米。
11、把一个底面半径是5cm,高是10cm的圆柱体切削成若干等份,拼成一个近似的长方形,在这个切拼过程中,()没有发生变化,表面积增加了()平方厘米。
12、一个圆锥的体积是12立方米,底面积是9平方米,高是几米?13、思考题:一个圆柱体和一个圆锥体积相等,底面半径的比是3:2,圆锥与圆柱高的比是()14、一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?(用比例的知识解答)15、一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少千米?(用比例的知识解答)16、一块长方形试验田,长80米,宽60米,用1:2000的比例尺画出这块试验田的平面图。
17、用面积是15平方厘米的方砖给教室铺地,需要2000块,如果改用面积25平方厘米的方砖铺地,需要多少块砖?(用比例解)18、修一条公路,总长12千米,开工3天修了1.5千米。
照这样计算,修完这条公路还要多少天?(用比例解)。