归纳推理之合情推理
- 格式:ppt
- 大小:3.17 MB
- 文档页数:31
2.1。
1 合情推理1.归纳推理(1)概念:由某类事物的□01部分对象具有某些特征,推出该类错误!全部对象都具有这些特征的推理,或由错误!个别事实概括出错误!一般结论的推理,称为归纳推理(简称归纳).(2)特征:归纳推理是由错误!部分到错误!整体、由错误!个别到错误!一般的推理.(3)一般步骤:第一步,通过观察个别情况发现某些错误!相同性质;第二步,从已知的错误!相同性质中推出一个明确表述的一般性命题(猜想).2.类比推理(1)概念:由两类对象具有某些□,11类似特征和其中一类对象的某些错误!已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特征:类比推理是由错误!特殊到错误!特殊的推理.(3)一般步骤:第一步,找出两类事物之间的错误!相似性或错误!一致性;第二步,用一类事物的错误!性质去推测另一类事物的错误!性质,得出一个明确的命题(猜想).3.合情推理(1)含义归纳推理和类比推理都是根据已有事实,经过错误!观察、错误!分析、错误!比较、错误!联想,再进行错误!归纳、错误!类比,然后提出错误!猜想的推理,我们把它们统称为合情推理.(2)合情推理的过程错误!→错误!→错误!→错误!归纳推理与类比推理的区别与联系区别:归纳推理是由特殊到一般的推理;类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真或可假.1.判一判(正确的打“√",错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于类比推理.( )(2)类比推理得到的结论可以作为定理应用. ()(3)归纳推理是由个别到一般的推理.( )答案(1)×(2)×(3)√2.做一做(1)已知数列{a n}中,a1=1,a n+1=错误!(n∈N*),则可归纳猜想{a n}的通项公式为__________________.(2)数列5,9,17,33,x,…中的x等于________.(3)等差数列{a n}中有2a n=a n-1+a n+1(n≥2且n∈N*),类比以上结论,在等比数列{b n}中类似的结论是__________.答案(1)a n=错误!(n∈N*) (2)65 (3)b错误!=b n-1·b n+1(n≥2且n∈N*)探究1 数列中的归纳推理例1 已知数列{a n}的首项a1=1,且a n+1=错误!(n=1,2,3,…),试归纳出这个数列的通项公式.[解]当n=1时,a1=1,当n=2时,a2=错误!=错误!,当n=3时,a3=错误!=错误!,当n=4时,a4=错误!=错误!,…通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出数列{a n}的通项公式是a n=错误!。
2020年领军高考数学一轮复习(文理通用)专题69合情推理与演绎推理最新考纲1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.基础知识融会贯通1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.重点难点突破【题型一】归纳推理命题点1与数字有关的等式的推理【典型例题】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:2,3,4,5,则按照以上规律,若10具有“穿墙术”,则n=()A.48 B.63 C.99 D.120【解答】解:根据题意,2,则有2,3,则有3,4,则有4,5,则有5,若10,则有n=102﹣1=99;故选:C.【再练一题】观察下列各式:72=49,73=343,74=2401,…,则72020的末两位数字为()A.01 B.43 C.07 D.49【解答】解:72=49,73=343,74=2401,75=16807,76=117649,77=823543,即7n的末两位数分别为49,43,01,07,具备周期性,周期为4,2020=504×4+4,则72020的末两位数为与74的末两位数相同,即01,故选:A.命题点2与不等式有关的推理【典型例题】已知,经计算f(4)>2,,f(16)>3,,则根据以上式子得到第n个式子为.【解答】解:观察已知中等式:f(4)=f(22)>2,f(8)=f(23),f(16)=f(24)>3,f(32)=f(25),…,则f(2n+1)(n∈N*)故答案为:f(2n+1)(n∈N*)【再练一题】已知x>1,观察下列不等式:x2;x23;x34;…按此规律,第n个不等式为.【解答】解:由x2;x23;x34;…按此规律,第n个不等式为:x n n+1,故答案为:x n n+1命题点3与数列有关的推理【典型例题】把数列{a n}的各项按照如图规律排成三角形数阵;若a n=2n﹣1,n∈N*,则该数阵的第20行所有项的和为.【解答】解:由该数阵的规律可得:第1行的最后一项的项数为1=12,第2行的最后一项的项数为4=22,第3行的最后一项的项数为9=32则第n行的最后一项的项数为n2,则该数阵的第20行最后一项的项为﹣a,第一项为:﹣a由已知有:第20行共20×2﹣1=39项,则从左到右按相邻两项分组,每一组的和为2,则该数阵的第20行所有项的和S=2×19﹣a38﹣(2×202﹣1)=﹣761,故答案为:﹣761.【再练一题】如图所示,直角坐标平面被两坐标轴和两条直线y=±x等分成八个区域(不含边界),已知数列{a n},S n 表示数列{a n}的前n项和,对任意的正整数n,均有a n(2S n﹣a n)=1,当a n>0时,点P n(a n,a n+1)()A.只能在区域②B.只能在区域②和④C.在区域①②③④均会出现D.当n为奇数时,点P n在区域②或④,当n为偶数时,点P n在区域①或③【解答】解:任意的正整数n,均有a n(2S n﹣a n)=1,则S n(a n),∴S n+1(a n+1),∴a n+1(a n+1﹣a n),即a n+1﹣a n,∵a n>0,∴a n+10,解得a n+1<﹣1或0<a n+1<1,故点P n(a n,a n+1)只能在区域②和④故选:B.命题点4与图形变化有关的推理【典型例题】如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有255个正方形,且其最大的正方形的边长为,则其最小正方形的边长为()A.B.C.D.【解答】解:由题意,正方形的边长构成以为首项,以为公比的等比数列,现已知共得到255个正方形,则有1+2+…+2n﹣1=255,∴n=8,∴最小正方形的边长为()7.故选:A.【再练一题】按如图的规律所拼成的一图案共有1024个大小相同的小正三角形“△”或“∇”,则该图案共有()A.16层B.32层C.64层D.128层【解答】解:设该图案共有n层,则1+3+5+…+(2n﹣1)=1024,即n2=210,所以n=25=32,故选:B.思维升华归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【题型二】类比推理【典型例题】已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推那么该数列的前50项和为()A.1044 B.1024 C.1045 D.1025【解答】解:将已知数列分组,使每组第一项均为1,即:第一组:20,第二组:20,21,第三组:20,21,22,…第k组:20,21,22,…,2k﹣1,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2k﹣1,每项含有的项数为:1,2,3,…,k,总共的项数为N=1+2+3+…+k,当k=9时,45,故该数列的前50项和为S50=21﹣1+22﹣1+23﹣1+…+29﹣1+1+2+4+8+169+31=1044.故选:A.【再练一题】设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r.将此结论类比到空间四面体:设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=()A.B.C.D.【解答】解:设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r.设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为:V(S1+S2+S3+S4)r,∴r.故选:C.思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【题型三】演绎推理【典型例题】某演绎推理的“三段”分解如下:①函数f(x)=1gx是对数函数;②对数函数y=log a x(a>1)是增函数;③函数f(x)=lgx是增函数,则按照演绎推理的三段论模式,排序正确的是()A.①→②→③B.③→②→①C.②→①→③D.②→③→①【解答】解:①函数f(x)=1gx是对数函数;②对数函数y=log a x(a>1)是增函数;③函数f(x)=lgx是增函数,大前提是②,小前提是①,结论是③.故排列的次序应为:②→①→③,故选:C.【再练一题】矩形的对角线互相垂直,正方形是矩形,所以正方形的对角线互相垂直.在以上三段论的推理中()A.大前提错误B.小前提错误C.推理形式错误D.结论错误【解答】解:大前提,“矩形的对角线互相垂直”,小前提,正方形是矩形,结论,所以正方形的对角线互相垂直,大前提是错误的,因为矩形的对角线相等.以上三段论推理中错误的是:大前提,故选:A.思维升华演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提.基础知识训练1.===…,依此规律,=则2+a b 的值分别是() A .79 B .81C .100D .98【答案】D 【解析】====2n ≥=9b =,29180a =−=, 故2801898a b +=+=, 故选:D .2.下面几种推理过程是演绎推理的是( )A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{}n a 中,111111,2n n n a a a a −−⎛⎫==+ ⎪⎝⎭,可得231,1a a ==,由此归纳出{}n a 的通项公式1n a = 【答案】C 【解析】解:∵A 中是从特殊→一般的推理,均属于归纳推理,是合情推理;B 中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C 为三段论,是从一般→特殊的推理,是演绎推理;D 为不完全归纳推理,属于合情推理. 故选:C .3.下列三句话按三段论的模式排列顺序正确的是( )①2019不能被2整除;②一切奇数都不能被2整除;③2019是奇数.A.①②③B.②①③C.②③①D.③②①【答案】C【解析】解:根据题意,按照演绎推理的三段论,应为:大前提:一切奇数都不能被2整除,小前提:2019是奇数,结论:2019不能被2整除;∴正确的排列顺序是②③①.故选:C.4.将正整数排列如图:则图中数2019出现在()A.第44行第84列B.第45行第84列C.第44行第83列D.第45行第83列【答案】D【解析】依题意,经过观察,第n行的最后一个数为n2,而令n2≤2019得,n≤44,所以2019在第45行,2019﹣442=83,所以2019 在第45行,第83列.故选:D.5.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.A.①B.②C.①②③D.③【答案】C【解析】正四面体中,各棱长相等,各侧面是全等的等边三角形,因此,同一顶点上的任两条棱的夹角都相等;①正确; 对于②,正四面体中,各个面都是全等的正三角形,相邻两个面所成的二面角中,它们有共同的高,底面三角形的中心到对棱的距离相等,∴相邻两个面所成的二面角都相等,②正确;对于③,各个面都是全等的正三角形,∴各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等,③正确.∴①②③都是合理、恰当的.故选:C .6.正切函数是奇函数,()()2tan 2f x x =+是正切函数,因此()()2tan 2f x x =+是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .以上均不正确【答案】C 【解析】大前提:正切函数是奇函数,正确;小前提:()()2tan 2f x x =+是正切函数,因为该函数为复合函数,故错误;结论:()()2tan 2f x x =+是奇函数,该函数为偶函数,故错误;结合三段论可得小前提不正确. 故答案选C7.观察下列各式:1234577749734372401,716807,=====,,,,则20197的末尾两位数字为( )A .49B .43C .07D .01【答案】B 【解析】 根据题意,得2345749734372401,716807,====,,677117649,7823543==,8975764801,740353607...== 发现427k −的末尾两位数为49,4-17k 的末尾两位数为43,47k 的末尾两位数为01,417k +的末尾两位数为07,(1,2,3...k = ); 由于201945051=⨯−,所以20197的末两位数字为43; 故答案选B8.下面给出了四种类比推理:①由实数运算中的=⋅⋅a b b a 类比得到向量运算中的=⋅⋅a b b a ;②由实数运算中的 (⋅⋅⋅⋅(a b)c =a b c)类比得到向量运算中的(⋅⋅⋅⋅(a b)c =a b c); ③由向量a 的性质22||a a =类比得到复数z 的性质22||z z =;④由向量加法的几何意义类比得到复数加法的几何意义; 其中结论正确的是 A .①② B .③④C .②③D .①④【答案】D 【解析】①设a 与b 的夹角为θ,则cos a b a b θ⋅=⋅r r r r ,cos b a b a θ⋅=⋅r r r r ,则a b b a ⋅=⋅r r r r成立;②由于向量的数量积是一个实数,设a b m ⋅=r r ,b c n ⋅=r r,所以,()a b c mc ⋅⋅=r r r r 表示与c 共线的向量,()a b c na ⋅⋅=r r r r表示与a 共线的向量,但a 与b 不一定共线,()()a b c a b c ⋅⋅=⋅⋅r r r r r r不一定成立;③设复数(),z x yi x y R =+∈,则222z x y =+,()()22222z x yi x y xyi =+=−+是一个复数,所以22z z =不一定成立;④由于复数在复平面内可表示的为向量,所以,由向量加法的几何意义类比可得到复数加法的几何意义,这个类比是正确的。
合情推理与归纳推理的关系合情推理和归纳推理,这俩词听上去可能有点高深,其实说白了就是咱们日常生活中常用的推理方式。
合情推理,顾名思义,就是要结合情理来分析问题。
想想看,咱们遇到麻烦事儿的时候,常常会根据以往的经验来判断,哦,可能是这样的,这种情况一般会这样发展。
这就是合情推理,特别像咱们平常聊天时,感觉到某个人情绪低落,没必要非得问个究竟,心里就知道大概发生了什么。
这种直觉就源自生活中的观察,真的是“见人说人话,见鬼说鬼话”的道理。
再说归纳推理,这个词听起来就像是个文艺范儿的家伙,给人一种复杂的感觉。
其实归纳推理就是把多个个例归结为一个一般性的结论。
比如,假设你在公园里见到五只小狗,每只都热情得不得了,你心里就琢磨着“哦,这个品种的小狗都特别友好!”这就是归纳推理,简单明了。
你从具体的实例出发,慢慢推到一个普遍的结论,像是从点到面,像极了咱们小时候看书,图文并茂的那种,明白了一个就能推导出更多的道理。
合情推理和归纳推理是如影随形的。
就像两位好朋友,一起玩耍,一个负责找乐子,一个负责分析情况。
合情推理在乎的是情感、语境,归纳推理则偏重于逻辑、事实。
咱们生活中每当遇到新情况,都少不了这两种推理的结合。
比如,你去朋友家做客,看到他们家有只猫特别粘人。
你心里不禁琢磨,难道这只猫对我有特别的好感?这就是合情推理。
不过,回头一想,可能是因为他们家平时就养猫,猫对来的人都这样热情,这就是归纳推理了。
而且啊,生活中这两者的关系往往不是那么清晰。
很多时候,你可能是先用合情推理判断,然后再用归纳推理来确认。
比如,看到一位同事在午餐时总是点沙拉,你心想“她一定很注重健康。
”这就合情推理。
但随着时间推移,发现她每天都是这样,你才开始觉得“哦,看来她的饮食习惯就是这样。
”这时你用到了归纳推理,合情和归纳在这里就像是热锅上的蚂蚁,互相作用,密不可分。
咱们说到这里,可能有人会问,这合情推理和归纳推理能在生活中带来什么好处呢?答案当然是非常实用啊!比如在职场上,合情推理可以帮助你了解同事的情绪,促进沟通。
归纳与技巧:合情推理与演绎推理基础知识归纳一、合情推理二、演绎推理1.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.2.特点:演绎推理是由一般到特殊的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包括:基础题必做1.(教材习题改编)命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B .使用了类比推理C .使用了“三段论”,但推理形式错误D .使用了“三段论”,但小前提错误解析:选C 由条件知使用了三段论,但推理形式是错误的. 2.数列2,5,11,20,x,47,…中的x 等于( ) A .28 B .32 C .33D .27解析:选B 由5-2=3,11-5=6,20-11=9. 则x -20=12,因此x =32.3.(教材习题改编)给出下列三个类比结论. ①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是( ) A .0 B .1 C .2D .3解析:选B 只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8 5. 观察下列不等式 1+122<32, 1+122+132<53, 1+122+132+142<74 ……照此规律,第五个不等式为___________________________________________________. 解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+1n 2<2n -1n(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116.答案:1+122+132+142+152+162<116解题方法归纳1.合情推理主要包括归纳推理和类比推理,合情推理具有猜测和发现结论,探索和提供思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提、小前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1]已知函数f(x)=xx+2(x>0).如下定义一列函数:f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,f n(x)=f(f n-1(x)),…,n∈N*,那么由归纳推理可得函数f n(x)的解析式是f n(x)=________.[自主解答]依题意得,f1(x)=xx+2,f2(x)=xx+2xx+2+2=x3x+4=x(22-1)x+22,f3(x)=x3x+4x3x+4+2=x7x+8=x(23-1)x+23,…,由此归纳可得f n(x)=x(2n-1)x+2n(x>0).[答案]x(2n-1)x+2n(x>0)解题方法归纳1.归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的.[注意] 归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1. 将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893解析:选A 前20行共有正奇数1+3+5+…+39=202=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.类 比 推 理典题导入[例2] 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c 内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体 ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.[自主解答] 三角形的面积类比为四面体的体积,三角形的边长类比为四面体四个面的面积,内切圆半径类比为内切球的半径.二维图形中12类比为三维图形中的13,得V 四面体ABCD=13(S 1+S 2+S 3+S 4)r . [答案] V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解题方法归纳1.类比推理是由特殊到特殊的推理,命题有其特点和求解规律,可以从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比结构.2.类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).以题试法2.若{a n }是等差数列,m 、n 、p 是互不相等的正整数,则有:(m -n )a p +(n -p )a m +(p -m )a n =0,类比上述性质,相应地,对等比数列{b n },有__________________.解析:设{b n }的首项为b 1,公比为q ,则b m -n p·b n -p m ·b p -mn =(b 1q p -1)m -n ·(b 1q m -1)n -p ·(b 1q n -1)p-m=b 01·q 0=1. 答案:b m -n p·b n -p m ·b p -mn =1演 绎 推 理典题导入[例3] 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .[自主解答] (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . 故S n +1n +1=2·S nn ,(小前提)故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提)又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)解题方法归纳演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.以题试法3.如图所示,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,且DE ∥BA .求证:ED =AF (要求注明每一步推理的大前提、小前提和结论,并最终把推理过程用简略的形式表示出来).证明:(1)同位角相等,两条直线平行,(大前提) ∠BFD 与∠A 是同位角,且∠BFD =∠A ,(小前提) 所以DF ∥EA .(结论)(2)两组对边分别平行的四边形是平行四边形,(大前提) DE ∥BA 且DF ∥EA ,(小前提)所以四边形AFDE 为平行四边形.(结论) (3)平行四边形的对边相等,(大前提) ED 和AF 为平行四边形的对边,(小前提) 所以ED =AF .(结论) 上面的证明可简略地写成:⎭⎪⎬⎪⎫∠BFD =∠A ⇒DF ∥EA DE ∥BA ⇒四边形AFDE 是平行四边形⇒ED =AF .1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是( )A .①B .②C .③D .①和②解析:选B 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.故选B. 2. 正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确解析:选C 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.3. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4. 给出下面类比推理(其中Q 为有理数集,R 为实数集,C 为复数集):①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“a ,c ∈C ,则a -c =0⇒a =c ”; ②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”; ④“若x ∈R ,则|x |<1⇒-1<x <1”类比推出“若z ∈C ,则|z |<1⇒-1<z <1”. 其中类比结论正确的个数为( ) A .1 B .2 C .3D .4解析:选B 类比结论正确的有①②.5.观察如图所示的正方形图案,每条边(包括两个端点)有n (n ≥2,n ∈N *)个圆点,第n 个图案中圆点的总数是S n .按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D 由n =2,n =3,n =4的图案,推断第n 个图案是这样构成的:各个圆点排成正方形的四条边,每条边上有n 个圆点,则圆点的个数为S n =4n -4.6. 下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n .由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f (x )=x cos x 满足f (-x )=-f (x )对∀ x ∈R 都成立,推断:f (x )=x cos x 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n (1+2n -1)2=n 2,选项D 中的推理属于归纳推理,但结论不正确.因此选A.7. 设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:由前四个式子可得,第n 个不等式的左边应当为f (2n ),右边应当为n +22,即可得一般的结论为f (2n )≥n +22.答案:f (2n )≥n +228 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为________.解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ;每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)29. 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.答案:S 21+S 22+S 23=S 2410.平面中的三角形和空间中的四面体有很多相类似的性质,例如在三角形中:(1)三角形两边之和大于第三边;(2)三角形的面积S =12×底×高;(3)三角形的中位线平行于第三边且等于第三边的12;……请类比上述性质,写出空间中四面体的相关结论. 解:由三角形的性质,可类比得空间四面体的相关性质为: (1)四面体的任意三个面的面积之和大于第四个面的面积; (2)四面体的体积V =13×底面积×高;(3)四面体的中位面平行于第四个面且面积等于第四个面的面积的14.11.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.(1)求a 18的值;(2)求该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ;当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.12.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由上式规律,所以得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n , 所以f (n +1)=f (n )+4n , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12(1n -1-1n ), ∴1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝⎛⎭⎫1-1n =32-12n.1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199解析:选C 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.2.对于命题:若O 是线段AB 上一点,则有|OB |·OA +|OA |·OB =0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC ·OA +S △OCA ·OB +S △OBA ·OC =0,将它类比到空间情形应该是:若O 是四面体ABCD 内一点,则有________.解析:将平面中的相关结论类比到空间,通常是将平面中的图形的面积类比为空间中的几何体的体积,因此依题意可知若O 为四面体ABCD 内一点,则有V O -BCD ·OA +V O -ACD ·OB+V O -ABD ·OC +V O -ABC ·OD =0.答案:V O -BCD ·OA +V O -ACD ·OB +V O -ABD ·OC +V O -ABC ·OD =03. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin 13°cos 17°;(2)sin 215°+cos 215°-sin 15°cos 15°;(3)sin 218°+cos 212°-sin 18°cos 12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°;(5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34. 证明如下:法一:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α =34. 法二:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.1. 观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92解析:选B 由特殊到一般,先分别计算|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数,再猜想|x |+|y |=n 时,对应的不同整数解的个数.通过观察可以发现|x |+|y |的值为1,2,3时,对应的(x ,y )的不同整数解的个数为4,8,12,可推出当|x |+|y |=n 时,对应的不同整数解(x ,y )的个数为4n ,所以|x |+|y |=20的不同整数解(x ,y )的个数为80.2. 已知如下等式:3-4=17(32-42), 32-3×4+42=17(33+43), 33-32×4+3×42-43=17(34-44), 34-33×4+32×42-3×43+44=17(35+45), 则由上述等式可归纳得到3n -3n -1×4+3n -2×42-…+(-1)n 4n =________(n ∈N *). 解析:依题意及不完全归纳法得,3n -3n -1×4+3n -2×42-…+(-1)n 4n =17[3n +1-(-4)n +1].答案:17[3n +1-(-4)n +1]。
摘要合情推理是普通高中新课程标准实验教科书《数学》(选修1—2)中第二章《推理与证明》第一节中的内容。
文章对该内容第一课时的教学内容,目标,过程设计等作了较详细的阐述,对初涉该内容的教学者有一定的指导意义。
关键词推理;归纳;类比一、教学内容与内容解析(1)内容合情推理的含义,能利用归纳和类比等方法进行简单的推理。
(2)内容解析本节课是普通高中新课程标准实验教科书《数学》(选修1—2)中第二章《推理与证明》第一节的第一课时。
因为归纳推理和类比推理统称为合情推理,所以本人认为应该把纳推理和类比推理都介绍给学生,整个课题才算完整。
推理是人们思维活动的过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程。
一般包括合情推理和演绎推理, 本节课所要学习的合情推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理。
可见归纳和类比是合情推理常用的思维方法。
了解合情推理的含义,能利用归纳和类比等方法进行简单的推理,这既是重点也是难点。
虽然由合情推理获得的结论,仅仅是一种猜想,并不一定正确,还有待证明,但是在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。
二、教学目标与目标解析目标(1)结合已学过的数学实例和生活中的实例,了解合情推理的含义;(2)能利用归纳和类比的方法进行简单的合情推理;(3)认识合情推理在数学发现中的作用,提高学习兴趣,感受数学的人文价值,体会到数学学习的美感。
目标解析我们要建立一种数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。
让学生通过欣赏“一叶知秋”产生的过程,借助学生已有生活常识,形成推理的直观认识;使学生对推理有初步认识,体验数学的一种基本思维过程,经历人们学习和生活中经常使用的思维活动。
教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,从浅显易懂的例子入手,大量运用数学家的故事激励学生,通过本节课要激发爱国主义热情,让学生体会到数学学习的美感。