电磁感应双杆切割问题
- 格式:pdf
- 大小:143.80 KB
- 文档页数:2
深圳高中物理电磁感应定律应用之杆切割类双杆问题及答案考点4.2杆切割之双杆问题【例题】如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4m ,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小为B =0.5T ,在区域Ⅰ中,将质量m 1=0.1kg ,电阻R 1=0.1Ω的金属条ab 放在导轨上,ab 刚好不下滑,然后,在区域Ⅱ中将质量m 2=0.4kg ,电阻R 2=0.1Ω的光滑导体棒cd 置于导轨上,由静止开始下滑,cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10m/s 2,求:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8m ,此过程中ab 上产生的热量Q 是多少.【解析】(1)由右手定则可知,电流由a 流向b ;开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,由平衡条件,得F max =m 1g sin θ,ab 刚好要上滑时,感应电动势E =BLv ,电路电流I =E R 1+R 2,ab 受到的安培力F 安=BIL ,此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件,得F 安=m 1g sin θ+F max ,代入数据,解得v =5m/s(3)m 2为光滑导体棒,没有摩擦力.cd 棒运动过程中电路产生的总热量为Q 总,这个总热量为安培力做的功.从cd 开始下滑到ab 刚要向上滑动的过程中,cd 受到重力、支持力、沿斜面向上的安培力,由动能定理,得m 2gx sin θ-W 安=12m 2v 2-0,ab 上产生的热量Q =R 1R 1+R 2Q 总,解得Q =1.3J.【答案】(1)电流由a 流向b(2)ab 刚要向上滑动时,cd 的速度为5m/s(3)热量Q 是1.3J1.如图所示,在倾角为θ的斜面上固定两根足够长的光滑平行金属导轨PQ、MN,相距为L,导轨处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下.有两根质量均为m的金属棒a、b,先将a 棒垂直导轨放置,用跨过光滑定滑轮的细线与物块c连接,连接a棒的细线平行于导轨,由静止释放c,此后某时刻,将b也垂直导轨放置,a、c此刻起做匀速运动,b棒刚好能静止在导轨上.a棒在运动过程中始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计.则()A.物块c的质量是2m sinθB.b棒放上导轨前,物块c减少的重力势能等于a、c增加的动能C.b棒放上导轨后,物块c减少的重力势能等于回路消耗的电能D.b棒放上导轨后,a棒中电流大小是mg sinθBL2.如图所示,两电阻不计的足够长光滑平行金属导轨竖直放置,导轨间距l,所在图中正方形区域内存在有界匀强磁场,磁感应强度为B,方向垂直平面向里。
电磁感应中的双杆运动问题江苏省特级教师 戴儒京 有关“电磁感应”问题,是物理的综合题,是⾼考的重点、热点和难点,往往为物理卷的压轴题。
电磁感应中的“轨道”问题,较多见诸杂志,⽽电磁感应中的“双杆运动”问题的专门研究⽂章,在物理教学研究类杂志还很咸见,兹举例说明如下。
例1(2006年⾼考重庆卷第21题)两根相距为L的⾜够长的⾦属直⾓导轨如图所⽰放置,它们各有⼀边在同⼀⽔平内,另⼀边垂直于⽔平⾯。
质量均为m的⾦属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为µ,导轨电阻不计,回路总电阻为2R。
整个装置处于磁感应强度⼤⼩为B,⽅向竖直向上的匀强磁场中。
当ab杆在平⾏于⽔平导轨的拉⼒F作⽤下以速度V1沿导轨匀速运动时,cd杆也正好以速度V2向下匀速运动。
重⼒加速度为g。
以下说法正确的是( ) A.ab杆所受拉⼒F的⼤⼩为µmg+ B.cd杆所受摩擦⼒为零 C.回路中的电流强度为 D.µ与V1⼤⼩的关系为µ= 【解析】因4个选项提出的问题皆不同,要逐⼀选项判断。
因为ab杆做匀速运动,所以受⼒平衡,有,其中, ,,, 所以,所以F=µmg+,A正确; 因为cd杆在竖直⽅向做匀速运动,受⼒平衡,所以cd杆受摩擦⼒⼤⼩为,或者,因为cd杆所受安培⼒作为对轨道的压⼒,所以cd杆受摩擦⼒⼤⼩为,总之,B错误; 因为只有ab杆产⽣动⽣电动势(cd杆运动不切割磁感线),所以回路中的电流强度为,C 错误; 根据B中和,得µ=,所以D正确。
本题答案为AD。
【点评】ab杆和cd杆两杆在同⼀个⾦属直⾓导轨上都做匀速运动,因为ab杆切割磁感线⽽cd杆不切割磁感线,所以感应电动势是其中⼀个杆产⽣的电动势,即,⽽不是,电流是,⽽不是。
例2(2006年⾼考⼴东卷第20题)如图所⽰,在磁感应强度⼤⼩为B,⽅向垂直向上的匀强磁场中,有⼀上、下两层均与⽔平⾯平⾏的“U”型光滑⾦属导轨,在导轨⾯上各放⼀根完全相同的质量为的匀质⾦属杆和,开始时两根⾦属杆位于同⼀竖起⾯内且杆与轨道垂直。
开始时,,杆加速,杆运动,产生反电动势,杆运动,电容器充电,杆受安培力,速度减小,电能转化为热能和动做功带来的能量转化为杆杆的动能一部分转化为电势能,一部分转化为内能,一部分耗散.外力和安培力冲17/04/04
F B L =|BLv −E |BLv −Q C 能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本
开始时,两杆做变加速运
两杆做变加速运动,稳定后两杆做对于直线运动,教科书中讲解了由图像求位移的方法.请你借鉴此方法,根据图示的图像,若电容器电容为,两极板间电压为,求电容器所储存的电场能.
1v −t Q −U
C U 如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为的电容器.框架上一
质量为、长为的金属棒平行于地面放置,离地面的高度为.磁感应强度为的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:
.金属棒落地时的速度大小;
.金属棒从静止释放到落到地面的时间.
2C m L h B a b 如图,与水平地面成.和是置于导轨上
,其余电阻可忽略不计.整个装置处在CD EF
金属棒所能达到的最大速度;
1EF v m 在整个过程中,金属棒产生的热量.
2EF Q 光滑的平行金属导轨如图所示,轨道的水平部分位于竖直向上的匀强磁场中,部分的宽度为部分
宽度的倍,、部分轨道足够长,将质量都为的金属棒和分别置于轨道上的段和段,棒位于距水平轨道高为的地方,放开棒,使其自由下滑,求棒和棒的最终速度及回路中所产生的电能.4bcd bc cd 2bc cd m P Q ab cd P h P P Q。
双杆切割的电磁感应问题如图(a)所示,间距均为1m的光滑平行倾斜导轨与光滑平行水平导轨平滑连接,水平导轨处在磁感应强度大小为2T、方向竖直向上的匀强磁场中。
质量为1kg、电阻为1. 5Ω的金属棒a固定在离水平导轨高h处的倾斜导轨上,材料和长度均与金属棒a相同的金属棒b沿导轨向左运动。
金属棒a由静止释放,下滑至水平导轨时开始计时,以a 的运动方向为正方向,金属棒a、b的运动图像如图(b)所示。
已知两金属棒与导轨始终垂直且接触良好,导轨电阻不计,金属棒a始终未与金属棒b发生碰撞,重力加速度g取10m/s2。
根据图像中数据,求:(1)金属棒b的质量和电阻;(2)在整个运动过程中金属棒b产生的焦耳热;(3)从开始计时到金属棒b向左减速至零的过程中,金属棒a与金属棒b之间距离的变化量。
电磁感应的双杆切割问题。
但考点相对容易,属于等间距、有初速、同磁场的模型。
电磁感应中的单杆、双杆切割问题,本质上属于力学问题,但这个力学问题中的受力比较有意思,安培力与电流有关,但电流又与导体切割磁场的速度有关,导致这类问题分析时需要注意动态分析,切割速度影响安培力,安培力影响合力,合力反过来又影响速度。
速度、加速度通过一连串的规律,导致相互影响。
从相互影响这一点来看,这倒很电磁感应,不动、不变化,就不会有感应电流。
分析本题:v—t图像的信息务必要看清楚,若这个图像信息看走眼了,整个题可以说就全部拉倒了。
a从倾斜轨道滑到水平轨道上开始计时,计时零时刻速度方向水平向右,为正方向。
b金属棒初速度方向根据图像水平向左。
这是初始的运动信息。
受力情况是动态变化的,从v—t图像看,最终两物体速度相同,又由于导轨等间距、同一磁场,所以最终回路中就没有感应电流了。
而且从v—t图像中可以看出,从计时零时刻到最后匀速运动,a、b的加速度一直减小,受力是变力。
分析安培力是关键。
而安培力与两金属棒的切割速度都有关系。
由于导轨光滑,两金属棒所受外力之和为零,所以两金属棒组成的系统动量守恒。
电磁感应中杆切割磁场问题1.单杆模型(1)单杆AB以一定的初速度v0在光滑的水平轨道上滑动,质量为m,电阻不计。
杆长为L杆减速最终静止。
(2)轨道水平光滑,单杆AB质量为m电阻不计,杆长为L.AB 杆作加速度减小的加速运动,当E 感=E 时,以最大的速度Vm 运动。
Vm=22L B FR =BLE 若电路中的电源换成充了电的电容,充电电容与电源作用效果相似。
(3)轨道水平光滑,杆AB 质量为,电阻不计,杆长为L,拉力F 恒定。
AB 杆作加速度减小的加速运动,最终以最大的速度Vm=22L B FR匀速运动。
(4)轨道水平光滑,杆AB 质量为m ,电阻不计,杆长为L,拉力F 恒定。
对杆用动量定理,Ft-BLq=mv-mv 0 , q=CBLv V=CL B m F22+t 由此式可知杆作匀加速度a=mL CB F+22的匀加速运动。
当F=0时,杆匀速运动。
(5)轨道水平光滑,杆AB 质量为,电阻不计,杆长为L,拉力F 与时间成一次关系(线性)。
导轨接电阻。
F-rR at v L B ++)(022=ma,即F=r R v L B +022+ma+rR L B +22at ,杆受F=Kt,杆做匀加速度运动。
F=K ,则杆最终以0ν匀速运动。
2.双杆模型(1)初速度不为零,不受其他水平外力作用。
①m 1=m 2 L 1=L 2MN作减速运动,PQ加速运动。
最终v1=v2匀速运动。
②m1=m2,L1=2L2MN减速运动,PQ加速。
最终以的速度。
v2=2v1③m1=m2 L1=L2PQ 先减速,MN 杆先减速到零后反向加速,最终二者以共同的速度匀速运动。
(2)初速度为零,受其他水平力作用。
①轨道光滑,质量m 1=m 2,电阻r 1=r 2,长度L 1=L 2开始PQ 作加速度减小的加速运动,MN 作加速度增大的加速运动,后来PQ 和MN 以共同的加速度作匀加速运动。
a=21m m F+,v p -v q =恒量。
15年高考物理辅导:解决电磁感应中切割问题(II)以下电路中均为双杆切割,电路中本身没有电源1.双杆切割磁感线,不受其他外力作用,初速度不为零,导轨始终同宽。
思路:因为安培力总是阻碍相对运动,一根杆做减速运动,另一根杆做加速运动。
只要两根杆速度不一样,两杆各自产生的感应电动势就不相同,回路中一定会有感应电流,产生安培力,从而有加速度,使一杆速度继续减小而另一杆速度继续增大。
直到两杆速度相同,两杆各自产生的感应电动势相同,回路中不再有感应电流,安培力为零,没有加速度,速度不再改变,两杆将保持这样的速度匀速运动下去。
在整个运动过程中,两杆各自受到的安培力方向相反、大小相等,即双杆所受安培力的合力为零,符合动量守恒的条件。
在这个过程中安培力总是阻碍相对运动,使两杆的速度趋于一致,回路电流减小,亦即为负反馈的原理,解决的关键在于最终回路电流为零。
例4、如图,两根间距为L光滑金属导轨(不计电阻),由一段圆弧部分和一段无限长的水平段部分组成。
其水平段加有竖直向下方向的匀强磁场,磁感应强度为B,导轨水平段上静止放置一金属棒cd,质量2m,电阻2r;另一个质量为m电阻为r的金属棒ab,从圆弧段M处由静止释放下滑至N处进入水平段,圆弧段MN半径为R,所对应的圆心角为60o,求:(1)ab棒在进入磁场区的速度是多大?此时棒中电流是多少?(2)cd棒能达到的最大速度是多大?(3)cd棒达到最大速度的过程中,cd棒所产生的电热是多少?解析:(1)ab棒由静止从M滑下到N的过程中,只有重力做功,机械能守恒,所以到N处速度可求,进而可求ab棒切割磁感线时产生的感应电动势和回路中的感应电流ab棒由M下滑到N的过程中,机械能守恒:mgR(1-cos60°)=-mv2 ①解得v=-进入磁场区的瞬间,回路电流强度为:I=-=- ②(2)设ab棒与cd棒所受安培力的大小为F,安培力作用时间为t,ab棒在安培力作用下做减速运动,cd棒在安培力作用下做加速运动,当两棒速度达到相同v'时,电路中的电流为零,安培力为零,cd棒达到了最大速度,运用动量守恒,得:mv=(2m+m)v'③,解得v'=--(3)系统释放热量等于系统机械能减少量,故有:Q总=-mv2--·3mv'2 ④解得Q总=-mgR因为ab棒与cd棒为同一个串联回路,所以电流强度总是相同的,由Q=I2Rt,∴-=-⑤,即Qcd=-Q总Qcd=-mgR (完毕)2.双杆切割磁感线,不受其他外力作用,初速度不为零,导轨不同宽度。
杆切割类之转动切割问题知识讲解1. 当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v -=12Bl 2ω,如图所示.2.导体的一部分旋转切割磁场,如图所示,设ON =l 1,OM =l 2,导体棒上任意一点到轴O 的间距为r ,则导体棒OM 两端电压为E =B (l 2-l 1)·ωl 2+l 12=Bωl 222-Bωl 212,其中(l 2-l 1)为处在磁场中的长度,ω·l 2+l 12为MN 中点即P 点的瞬时速度.3. 其他的电量与能量问题求解与单杆模型类似。
习题精炼1. 一直升机停在南半球的地磁极上空,该处地磁场的方向竖直向上,磁感应强度为B ,直升机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示.如果忽略a 到转轴中心线的距离,用E 表示每个叶片中的感应电动势,则( )A. E =πfl 2B ,且a 点电势低于b 点电势B. E =2πfl 2B ,且a 点电势低于b 点电势C. E =πfl 2B ,且a 点电势高于b 点电势D. E =2πfl 2B ,且a 点电势高于b 点电势2. 如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB Δt的大小应为( )A.4ωB 0πB.2ωB 0πC.ωB 0πD.ωB 02π3. (多选)如下图所示是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是( )A . 回路中有大小和方向作周期性变化的电流B . 回路中电流大小恒定,且等于BL 2ω2RC . 回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘D . 若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘,灯泡中也会有电流流过4. 如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计,R 左侧导线与圆盘边缘接触,右侧导线与圆盘中心接触)( )A.由c 到d ,I =Br 2ωRB.由d 到c ,I =Br 2ωRC.由c 到d ,I =Br 2ω2RD.由d 到c ,I =Br 2ω2R5. 如图所示,半径为a 的圆环电阻不计,放置在垂直于纸面向里,磁感应强度为B 的匀强磁场中,环内有一导体棒,电阻为r ,可以绕环匀速转动.将电阻R ,开关S 连接在环上和棒的O 端,将电容器极板水平放置,两极板间距为d ,并联在电阻R 和开关S 两端,如图所示.(1)开关S 断开,极板间有一带正电q 、质量为m 的粒子恰好静止,试判断OM 的转动方向和角速度的大小.(2)当S 闭合时,该带电粒子以14g 的加速度向下运动,则R 是r 的几倍?6. 某同学设计一个发电测速装置,工作原理如图所示.一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R 3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g =10 m/s 2)(1) 测U 时,与a 点相接的是电压表的“正极”还是“负极”?(2) 求此时铝块的速度大小;(3) 求此下落过程中铝块机械能的损失.7. 半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过圆导轨中心O ,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:(1) 通过电阻R 的感应电流的方向和大小;(2) 外力的功率.8.某同学看到有些玩具车在前进时车轮上能发光,受此启发,他设计了一种带有闪烁灯的自行车后轮,可以增强夜间骑车的安全性.如图所示为自行车后车轮,其金属轮轴半径可以忽略,金属车轮半径r=0.4m,其间由绝缘辐条连接(绝缘辐条未画出).车轮与轮轴之间均匀地连接有4根金属条,每根金属条中间都串接一个LED灯,灯可视为纯电阻,每个灯的阻值为R=0.3Ω并保持不变.车轮边的车架上固定有磁铁,在车轮与轮轴之间形成了磁感应强度B=0.5T,方向垂直于纸面向外的扇形匀强磁场区域,扇形对应的圆心角θ=30°.自行车匀速前进的速度为v=8m/s(等于车轮边缘相对轴的线速度).不计其它电阻和车轮厚度,并忽略磁场边缘效应.(1)在如图所示装置中,当其中一根金属条ab进入磁场时,指出ab上感应电流的方向,并求ab中感应电流的大小;(2)若自行车以速度为v=8m/s匀速前进时,车轮受到的总摩擦阻力为2.0N,则后车轮转动一周,动力所做的功为多少?(忽略空气阻力,π≈3.0)杆切割类之转动切割问题答案1.A2.C3.BC4.D5.【答案】(1)OM应绕O点逆时针转动2mgdqBa2(2)36.【答案】(1)正极(2)2 m/s(3)0.5 J7.【答案】(1)方向为C→D232B rRω(2)22494B rRω+32mg rμω8.【答案】(1)①2A (2)4.96J。
电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
例2、如右图所示,一平面框架与水平面成37°角,宽L= m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =为金属杆,其长度为L = m ,质量m = kg ,电阻r =Ω,棒与框架的动摩擦因数μ=.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=(已知sin37°=,cos37°=;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。
2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
电磁感应双杆问题电磁感应双杆问题(排除动量范畴)1.导轨间距相等例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。
匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。
两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。
已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。
求此时杆2克服摩擦力做功的功率。
解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ① 感应电流21R R EI +=②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③导体杆2克服摩擦力做功的功率 gvm P 2μ=④解得)]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--B I l g m F μ ①对杆2有2=-g m B I l μ ②v外力F 的功率Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P Fμ-+-= ④由以上各式得)]([212202R R lB g m v g m P g +-=μμ ⑤2. 导轨间距不等例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。
导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。
11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。