1.3勾股定理的应用
- 格式:ppt
- 大小:448.50 KB
- 文档页数:23
1.3 勾股定理的应用1.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支O路的管道总长(计算时视管道为线,中心O为点)是().A . 2mB.3mC.6mD.9m2.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2 m,坡角∠A =30°,∠B=90°,BC=6 m.当正方形DEFH运动到什么位置,即当AE=m时,有DC2=AE2+BC2.3.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.4.如图,一只蚂蚁从A点沿圆柱侧面爬到顶面相对的B点处,如果圆柱的高为8 cm,圆柱的半径为6cm,那么最短路径AB长( ).A.8B.6C.平方后为208的数D.105.一个圆桶,底面直径为24 cm,高32cm,则桶内所能容下的最长木棒为( ) .A.24cmB.32cmC.40 cmD.456.已知小龙、阿虎两人均在同一地点,若小龙向北直走160 m,再向东直走80 m 后,可到神仙百货,则阿虎向西直走多少米后,他与神仙百货的距离为340 m?A.100B.180C.220D.2607. 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m,8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.8.飞机在空中水平飞行....,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000 m处,过了20秒,飞机距离这个女孩头顶5000 m,则飞机速度是多少?参考答案1.C142.33. 154.D5.C6.C7. 周长=8+8+82=16+82.8.150 m/s.。
1.3 勾股定理的应用引言勾股定理是数学中的一个重要定理,它是我们学习数学的基础。
在八年级数学上册的第一章中,我们学习了勾股定理以及它的应用。
在本文档中,我们将重点讨论勾股定理的应用之一:蚂蚁怎样走最近。
蚂蚁怎样走最近在我们的日常生活中,我们经常会遇到类似的问题:蚂蚁在平面上的两个点之间移动,它应该选择怎样的路径才能够走得最近呢?这个问题可以通过勾股定理来解决。
假设蚂蚁需要从点A到达点B,我们可以将平面上的点A和点B连接起来,形成一条直线。
根据勾股定理,直角三角形的斜边的长度等于两个直角边长度的平方和的平方根。
因此,我们可以通过计算直线AB的长度,再结合其他已知条件,来确定蚂蚁应该走的最短路径。
解决问题的步骤在解决蚂蚁怎样走最近的问题时,我们可以按照以下步骤进行:1.确定两点的坐标:首先,我们需要确定点A和点B的坐标。
假设点A的坐标为(x1, y1),点B的坐标为(x2, y2)。
2.计算直线AB的长度:根据勾股定理,直线AB的长度可以通过以下公式计算:AB = √((x2-x1)^2 + (y2-y1)^2)。
3.根据其他条件确定最短路径:除了直线AB的长度,我们还需要根据其他条件来确定最短路径,例如是否存在障碍物等。
示例接下来,我们通过一个示例来演示蚂蚁怎样走最近的问题。
假设蚂蚁需要从点A(1, 2)到达点B(4, 6),我们需要确定蚂蚁应该走的最短路径。
首先,我们可以计算直线AB的长度:AB = √((4-1)^2 + (6-2)^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5因此,直线AB的长度为5。
接下来,我们需要根据其他条件确定最短路径。
假设在点C(2, 4)处存在一个障碍物,蚂蚁不能穿过障碍物。
根据直线AB的长度为5,我们可以尝试绘制一条与直线AB等长的线段CD,并且使得线段CD与直线AB垂直相交。
请注意,我们可以使用勾股定理来计算线段CD的长度。
假设线段CD的长度为d,则有:d^2 + 4^2 = 5^2解方程,我们可以得到:d^2 + 16 = 25d^2 = 9d = 3因此,线段CD的长度为3。
1.3 勾股定理的应用课题 1.3 勾股定理的应用课型新授课教学目标知识技能:通过观察图形,探索图形间的关系,发展学生的空间观念.过程与方法:在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感态度价值观:在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.重难点利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点教学用具圆柱体纸筒正方体盒子长方体盒子教学环节说明二次备课复习新课导入课程讲授(一)情景引入活动1:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B处,你们想一想,蚂蚁怎么走最近?(合作探究:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.)方法汇总:汇总了四种方案:(1)(2)(3)(4)A’A’A’北东CB A (1)中A →B 的路线长为:'AA d +.(2)中A →B 的路线长为:''AA A B +>AB .(3)中A →B 的路线长为:AO+OB>AB .(4)中A →B 的路线长为:AB .活动2:李叔叔想要检测雕塑底座正面的AD 边和BC 边是否分别垂直于底边AB ,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD 长是30厘米,AB 长是40厘米,BD 长是50厘米,AD 边垂直于AB 边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB 边吗?BC 边与AB 边呢?(二)简单应用例1:甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6 km/h 的速度向正东行走,1时后乙出发,他以5 km/h 的速度向正北行走.上午10:00,甲、乙两人相距多远?例2:有一个高为1.5 m ,半径是1m 的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5 m ,问这根铁棒有多长?(三)当堂检测1. 如图,台阶A 处的蚂蚁要爬到B 处搬运食物,它怎么走最近?并求北东C B A 出最近距离.(四)拓展延伸如图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同同伴交流设计方案?小结 学生畅谈收获:知识上和方法上的。
北师大版数学八年级上册1.3勾股定理的应用教学设计师:1. 勾股定理的内容是什么?如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.2. 勾股定理的逆定理是什么?a2+b2=c2三角形是直角三角形3.欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.提出问题,学生探究热情高涨,为下一环节奠定了良好基础.合作探究蚂蚁爬行的最短(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图所示,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?师:想一想为什么线段AB是最短的路线?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?已知圆柱的高是12,∴AA'=12;底面周长是18,∴A'B=9;∴AB2=AA'2+A'B2=144+81=225,∴AB=15答:爬行的最短路程是15cm。
【总结提高】求圆柱侧面上两点间的最短路线长的方法:路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.生:两点之间,线段最短【解】设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)m,在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.1.如图,正方体的边长为1,一只蚂蚁沿正方体的表面从一个顶点A爬行到另一个顶点B,则蚂蚁爬行的最短路程的平方是( D )。
A.2 B.3 C.4 D.52.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是__5KM______;若A地在C地的正东方向,则B地在C地的____正北____方向.3.甲、乙两位探险者,到沙漠进行探险。
北师大版八年级数学上册:1.3《勾股定理的应用》教学设计一. 教材分析《勾股定理的应用》是人教版八年级数学上册第1章第3节的内容。
本节主要让学生掌握勾股定理在实际问题中的应用。
教材通过引入实际问题,引导学生运用勾股定理解决问题,培养学生的数学应用能力。
二. 学情分析学生在学习本节内容前,已经学习了勾股定理的定义和证明,对勾股定理有了初步的了解。
但学生在实际应用勾股定理解决实际问题时,可能会遇到一些困难。
因此,在教学过程中,教师需要关注学生的学习困难,引导学生正确运用勾股定理解决问题。
三. 教学目标1.知识与技能目标:学生能够理解勾股定理的应用,并能运用勾股定理解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维。
四. 教学重难点1.重点:引导学生理解勾股定理的应用。
2.难点:如何引导学生运用勾股定理解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.案例教学法:通过分析典型例题,引导学生掌握勾股定理的应用方法。
3.小组合作学习法:学生在小组内讨论问题,培养学生的合作意识和团队精神。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,准备典型例题和练习题。
2.学生准备:预习本节内容,了解勾股定理的定义和证明。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如直角三角形的边长关系,引导学生回顾勾股定理的内容。
2.呈现(10分钟)教师展示典型例题,如直角三角形斜边长度的计算。
引导学生运用勾股定理解决问题。
3.操练(10分钟)学生独立完成练习题,巩固勾股定理的应用。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法。
学生互相评价,总结勾股定理的应用技巧。
5.拓展(10分钟)教师提出一些生活中的实际问题,引导学生运用勾股定理解决问题。
13.勾股定理的应用1、定理内容:文字形式:直角三角形的两直角边的平方和,等于斜边的平方。
几何形式:如果直角三角形的直角边分别为a、b,斜边为c ,那么a2+b2 = c22、相关知识链接:直角三角形1)我国古代把直角三角形中较短的直角边叫作勾,较长的直角边叫作股,斜边叫作弦;2)汉代数学家赵爽把勾股定理叙述成:勾股各自乘,并之为弦实,开方除之即弦;3)国外称之为毕达哥拉斯定理;4)也有人称勾股定理为千古第一定理。
3、勾股定理的作用:1)己知直角三角形的两边长,求第三边长;2)知道一边长时,能够确定直角三角形的其余两个边长之间的关系;3)在证明含平方问题时,有时就可以考虑构造直角三角形帮助解决问题。
4、勾股定理的各种表达式在中,,A、B、C的对边分别为a、b、c,则,,,,,。
5、定理证明及典型例题:例1、已知:中,匕0 90,Z B. N C的对边为a、b、c。
求证:a2+b2=c2o证明方法一:取四个与R t AABC全等的直角三角形,把它们拼成如图所示的正方形。
如图,正方形ABCD的面积=4个直角三角形的面积+正方形PQRS的面积・,.(a + b )2 = 1/2 ab x 4 4- c2a2 + 2ab + b2 = 2ab + c2故a2 + b2 =c2证明方法二:图1中,甲的面积=(大正方形面积)一(4个直角三角形面积)。
图2中,乙和丙的面积和=(大正方形面积)一(4个直角三角形面积)。
四个直角三角形的面积和+小正方形的面积=大正方形的面 积,2ab + ( a —b ) 2 =。
2,2ab + a 2 — 2ab + b 2 = c 2故 a 2 + b 2 = c 2证明方法四:梯形面积=三个直角三角形的面积和1/2x(a^b)x(a + b) = 2x1/2xaxb - 1/2 x c x c(a + b 沪=2ab + c 2a 2 + 2ab + b 2 = 2ab +c 2故 a 2 + b 2=c 2例 2、在 Rt^ABC , zC = 90° ⑴已知a = b = 5 ,求c 。