2017年下城区、滨江区、拱墅区中考一模数学试卷及评分标准
- 格式:docx
- 大小:335.34 KB
- 文档页数:9
112x 4x y 3y 272x B .4x y 113y 223x 2y 19 x 4y 23中考数学参考公式:(直棱柱的体积公式: 时间100分钟满分120分)V Sh ( S 为底面积,h 为咼); 圆锥的全面积(表面积)公式: S 全 rl r 2 (r 为底面半径,I 为母线长) 圆柱的全面积(表面积)公式:2S 全 2 rh 2 r ( r 为底面半径,h 为咼)一、仔细选一选(本题有 10个小题,每小题 3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的。
注意可以用多种不同的方法来选 取正确答案。
.3 .5的小数部分,b 为6 3、. 3 .6 3,3的小数部分.则a 为、,3A.C, 6 2 1D<6 .2 1高分别为6cm 、 一只蚂蚁要从长方体木块的一个顶点 面到长方体上和 A 相对的顶点B : 的最短路径的长是( 如图是一块长、 宽、.4cm 、3cm 的长方体木块, A 处,沿着长方体的表处吃食物,那么它需要爬行A . (3 2 . 13)cmB . 、、97 cmC . 、、85cm 如图,Z 1的正切值为(1 A.-3C . 3下列命题是真命题的有(①对顶角相等;②两直线平行, 等的两个直角三角形全等; 于弦,并且平分弦所对的弧。
A.1个B.2个)内错角相等;③两个锐角对应相 ④有三个角是直角的四边形是矩形; C.3个 D.4个《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图 所示,图中各行从左到右列出的算筹数分别表示未知数 项. 把图1,图2x , y 的系数与相应的常数1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3x 2y 4y 19'类似地,图2所示的算筹图我们可以表述为(23.「HI ii —nn] II I - II M =兀⑤平分弦的直径垂直D . 9cm相等,△ ABE 与厶CBE 的周长相等,记厶ABC 的面积为S 若/ ACB=90,则AD- CE 与S 的大小关系为( ) A.S=AD - CEB.S>AD -CEC.S<AD - CED.无法确定10 .如图,矩形 AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N ,设△ BPQ, △ DKM, △ CNH 的面积依次为 S 1, S 2, S 3.若S 1+S 3=20,贝U S 2 的值为()A . 6B. 8C. 10D. 12二、认真填一填(本题有 6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整的填写答案。
2017年中考数学模拟试卷及参考答案与评分标准(三)考生须知:1. 本科目试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2. 答题前,必须在答题卷的密封区内填写姓名与准考证号.3. 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4. 考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)F 面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在 答题卷中相应的格子内•注意可以用多种不同的方法来选取正确答案.1. LA 知x=-2是方程2x-3a=2的根,那么a 的值是()3. 如图,侮个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中厶ABC4.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为( )A. 3.2X107LB. 3.2X106LC. 3.2xl05LD. 3.2xl04Z5.己知\2x ^3y~4kf,且一iv 兀一尹vo,则£的取值范围为()3兀+ 2卩=2比+ 1 A.—B. 0 < k <—C. 0 < Zr < 1D. — < k <\2 2 26. 已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()B. a =~2 、2C. — 3 2D. a 二——2•己知点M (l-a, a+3)在第二象限, 则a 的取值范I 韦|是()A. a>-2B. -2<a<lC. a<-2D. a>l9相似的是 )D.A. 36兀endB. 48兀cm'C. 60兀D. S07Tcm27•如图所示实数a, b在数轴上的位置,以下四个命题中是假命题的是()A. ci ,一ab 2< 0 B. J(a + bf =d + b1 12 ,2 C. ------ v — D ・ a V b a — h a&如图,OP 内含于G)O, 0 0的弦/〃切0卩于点(?,且AB HOP .若阴影部分的面积为9龙,则弦AB 的长为()A. 3B. 4C. 6D. 9sin 225° = sin (l 80° + 45°) = - sin 45°,由此猜想、推理知:一般地当。
2017年数学中考一模考试卷(拱墅区、滨江区、下城区)考生须知:1.本试卷分试题卷和答题卷两部分,考试时间100分钟,满分120分;2.答题前,请在答题卷的密封区内填写学校、班级、姓名和学籍号;3.不得使用计算器;4.所有答案都必须做在答题卷规定的位置上,注意试题序号和答题序号相对应.一、仔细选一选(本题共有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案1.计算12-12´3的结果是()A.0 B.1 C.-2 D.-1考点:有理数运算.答案:D2.据统计,2017年春节黄金周7天,杭州共接待中外游客约450万人次,将450万用科学计数法表示,以下表示正确的是()A.450´104B.45.0´105C.4.50´106D.4.50´107考点:科学计数法.解析:450万用科学计数法表示:4.50´106答案:C3.由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是()A.左视图与主视图相同B.俯视图与主视图相同C.左视图与俯视图相同D.三个视图都相同考点:几何体的三视图.解析:答案:A4.如图,AB∥CD,AD与BC相交于点E,若∠A=40°,∠C=35°,则∠BED=()A.70°B.75°C.80°D.85°考点:平行线性质,三角形外角定理.解析:∠C=∠B=35°;∠BED=∠A+∠B=40°+35°=75°答案:B5.下列计算正确的是()A .x4+x 2=x 6B .(a +b )2=a 2+b 2 C .(3x 2y )2=6x 4y 2 D .(-m )7¸(-m )2=-m 5考点:幂的运算,完全平方公式. 解析:A .不能合并 B .(a +b )2=a 2+b 2+2ab C .(3x 2y )2=9x 4y 2答案:D6. 下列命题中,真命题是()A .垂直于同一条直线的两条直线相互平行B .平分弦的直径垂直弦C .有两边及一角对应相等的两个三角形全等D .八边形的内角和是外角和的3倍 考点:命题与定理.解析:A .前提在同一平面内;B .平分弦(非直径)的直径垂直弦; C .符合SSA 条件则不能判定全等. 答案:D7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套. 现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x 张做盒身,则下面所列方程正确的是()A .1842-x ()=12xB .2´1842-x()=12x C .1842-x ()=2´12x D .1821-x ()=12x考点:列一元一次方程.解析:根据1个盒身与2个盒底配成一套列等量关系.答案:C8.某校实施课程改革,为初三学生设置了A 、B 、C 、D 、E 、F 共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是() A .这次被调查的学生人数为200人 B .扇形统计图中E 部分扇形的圆心角为72° C .被调查的学生中最想选F 的人数为35人 D .被调查的学生中最想选D 的有55人考点:扇形统计图.解析:被调查的学生人数为:30¸15%=200,∴A 正确. 扇形统计图中A 占比:20¸200=10%,∴E 的圆心角为:,∴B 正确.F 人数:200´17.5%=35人,∴C 正确.D 人,∴D 错误.答案:D9. 如图,在反比例函数y =5xx >0()的图象上有点P 1, P 2,P 3,P 4,P 5,它们的横坐标依次为2,4,6,8,10,分别过这些点作x 轴和y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4的值为()A.4.5B.4.2C.4D. 3.8考点:反比例函数系数k 的几何意义.解析:由题意得,P 12,52æèçöø÷,P 24,54æèçöø÷,P 36,56æèçöø÷,P 48,58æèçöø÷,P 510,12æèçöø÷, 根据等底高相加,∴S 1+S 2+S 3+S 4=2´52-12æèçöø÷=2´2=4答案:C10. 如图,△ABC 的两条高线BD ,CE 相交于点F ,已知∠ABC =60°,AB =10,CF =EF ,则△ABC 的面积为()A. 203B. 253C.303D. 403考点:.三角形的面积、勾股定理解析:过A 点作AG ⊥BC 于点G ,则AG= 53,设BE =2x ,则CE=23x ,EF=3x ,AE =3EF =3x ,∴AB=2x+3x=5x=10,则x=2, ∴BC=4x=8,S ÙABC =12´8´53=203答案:A二、认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11.分解因式:29m -=________. 考点:因式分解公式法 答案:()3(3)m m +-12. 如图,四个完全相同的小球上分别写有20,,5,3π-四个实数,把它们全部装入一个布袋里,从布袋里任意摸出1个球,球上的数是无理数的概率为_________.考点:实数与概率相结合解析:本题属于基础题目,摸出每个球的概率是一样的,无理数只有π,所以概率是14答案:1413.不等式组583(1)131722x x x x +>+⎧⎪⎨-≤-⎪⎩的最大整数解为___________.考点:解不等式方程组解析:本题属于基础题目,解出方程组的解为542x -<≤,所以最大整数解为4. 答案:414.如图,点A,B,C 都在 ⊙O 上,若17,46,OAC ACB ∠=︒∠=︒AC 与OB 交于点D ,则ODA ∠的度数为________度.考点:圆心角与圆周角 解析:根据题意:224692180180921771AOB ACB ODA OAC AOD ∠=∠=⨯︒=︒∠=︒-∠-∠=︒-︒-︒=︒答案:7115.在矩形ABCD 中,ABC ∠的平分线交AD 于点E ,BED ∠的平分线交DC 于点F ,若AB=6,点F 恰为DC 的中点,则BC=_________.(结果保留根号) 考点:矩形的性质;等腰三角形的判定 解析:延长EF 交BC 延长线于一点G ∵BE 平分ABC ∠ ∴AB =AE =6,BE =62 又∵ EF 平分BED ∠ ∴62BE BG == 在EDF ∆与GCF ∆中,CFG DFE CF DFFCG FDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()EDF GCF ASA ∆≅∆∴ED CG =∴AE ED BC BG CG +==- ∵6,62AE BG BE ===∴626323CG -==- ∴62(323)332BC BG CG =-=--=+答案:332+16.已知二次函数y =ax 2-bx +2a ≠0()图像的顶点在第二象限,且过点(1,0),则a 的取值范围是__________;若a+b 的值为非零整数,则b 的值为_________。
2017年九年级中考一模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.41.410⨯ 10.2x ≠ 11.88 12.(2)a a +或22a a + 13.1k > 14.2 15.35 16.9π+ 17.50 18.17三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1) 解:原式=13++ (4)分=4+(结果错误扣1分) (4)分(2) 解: 3)1()3(22+---x x x 24x 2x =-+. …………………3分∵ 0142=--x x ,∴ 241x x -=,∴ 原式=1+2=3. …………………4分 20.(1)解:()522=+x …………………………………………2分∴1222x x =-+=-- (4)分(2)解:由①得: 2.x -≤…………1分 由②得: 0.x < …………3分∴ 2.x ≤- (4)分21.解:(1)1500,(图略); ……………………4分(2)108° …………………………………………6分(3)万人1000%502000=⨯ (8)分22. 解:画树状图如下:2 4 52 4 52 5 5554甲乙 4 5 52. (4)分∴57,1212P P ==(甲胜)(乙胜). (6)分∴甲、乙获胜的机会不相同. …………………………… 8分23.(1)证明:∵∠BAD =∠CAE ∴∠EAB =∠DAC ,在△ABE 和△ACD 中∵AB =AC ,∠EAB =∠DAC ,AE =AD ,∴△ABE ≌△ACD (SAS ) ……………………5分(2)∵△ABE ≌△ACD ∴BE =CD ,又DE =BC ,∴四边形BCDE 为平行四边形.…7分∵AB =AC ,∴∠ABC =∠ACB ,∵△ABE ≌△ACD ∴∠ABE =∠ACD ∴∠EBC =∠DCB ∵四边形BCDE 为平行四边形 ∴ EB ∥DC∴∠EBC +∠DCB =180°∴∠EBC =∠DCB =90° ……………………9分∴四边形BCDE 是矩形. ……………………10分(此题也可连接EC ,DB ,通过全等,利用对角线相等的平行四边形是矩形进行证明) 24.解:设小张骑公共自行车上班平均每小时行驶x 千米, (1)分根据题意列方程得:1010445xx =⨯+……………………5分解得:15x = ………………………8分 经检验15x =是原方程的解且符合实际意义. ………………………9分 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………10分 25.(1)证明:如图,联结BD∵ AD ⊥AB ,∴ DB 是⊙O 的直径,︒=∠+∠+∠9021D ∵∠D =∠C ,∠ABF =∠C ,∴∠D=∠ABF ∴︒=∠+∠+∠9021ABF 即OB ⊥BF∴ BF 是⊙O 的切线…………………………5分 (2)联结OA 交BC 于点G ,∵AC =AB ,∴弧AC =弧AB ∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG …………7分 ∴54cos 2cos cos=∠=∠=∠ABF D在△ABD 中,∠DAB=90°∴5c o s A DB D D==∴3A B == …8分在△ABG 中,∠AGB=90°∴12c o s 25B G A B =∠=g∴5242==BG BC ………………………10分26.解:(1)当0k >时,(1)(21)4k k +--+=,解得43k =.当0k <时,(21)(1)4k k -+-+=,解得43k =-. ………………5分(2)当2x =-时,4y =;当20m -<<,函数的界高为244m -<,不符合题意; …………6分当02m ≤≤,函数的最大值为4,最小值为0,界高4,符合题意. …9分 当2m >时,函数的界高为24m >,不符合题意. …………10分 综上所述,实数m 的取值范围为02m ≤≤.27.(1 ………………………………………3分 (2)过B 作BE ⊥l 1于点E ,反向延长BE 交l 4于点F .则BE =1,BF =3,∵四边形ABCD 是矩形, ∴∠ABC =90°,∴∠ABE +∠FBC =90°,l 1 l 2 l 3 l 4又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=BC,则AE=BF=,在直角△ABE中,AB==;………………………6分当AB是长边时,如图(b),同理可得:BC=;故BC=或………………………………………9分(3)过点E作ON垂直于l1分别交l1,l3于点O,N,由题意得∠OAE=30°,则∠ED′N=60°,由图1知,△AED≌△DGC ∴AE=DG=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:==. (12)分28.解:(1)y=.………………………………………3分(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w=﹣x2+7x+48;当x≥8时,w=﹣x+48.∴w关于x的函数关系式为:w=.…………7分②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.…………9分(3)设用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;………11分②当x>8时,w=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.………12分综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.。
2017年杭州拱墅、下城、滨江区中考一模试卷科学考生须知:1.本试卷满分为160分,考试时间为120分钟。
2.答题前,在答题纸上写姓名和准考证号。
3.必须在答题纸的对应位置上答题,写在其他地方无效。
答题方式详见答题纸上的说明。
4.考试结束后,试题和答题纸一并上交。
(可能用到的相对原子质量:H-1;O-16;C-12;Cl-35.5;S-32;Ca-40)试题卷一、选择题(每小题3分,共60分,每小题只有一个选项符合题意)【】1.下列实验操作,正确的是A.收集并测定O2的体积B.测溶液的pH C.检查装置的气密性D.蒸发结晶【】2.石墨烯是从石墨中分离出来的一层或几层碳原子构成的石墨片,其性质类似于石墨。
用石墨烯与铝合金可制出一种具备特殊性能的合金----烯合金。
下列对石墨烯和烯合金的说法错误的是:A.石墨烯属于有机物B.石墨烯在一定条件下能与氧气反应C.烯合金属于混合物D.烯合金具有优良的导电性【】3.右图为根尖的结构模式图,下列相关说法正确的是A.根尖吸收水分和无机盐的主要部位是①B.③处细胞呈正方形且具有大液泡C.④始终保持原来的形状是因为根冠细胞能不断分裂D.根毛细胞的细胞液浓度大于土壤溶液浓度会导致根毛细胞失水【】4.如图可以反映某些生理过程或现象,以下叙述正确的是A.a曲线可表示血液流经肺时,血液中氧含量的变化B.a曲线可表示从进食前到进食后的一段时间内,血糖浓度的变化C.b曲线可表示血液流经肾脏时,血液中尿素含量的变化D.b曲线可表示血液流经肌肉时,血液中二氧化碳含量的变化【】5.小乐在研究“磁场对通电导体作用”时采用如图所示实验,通电后发现导体棒向右摆动,要使通电导体棒的悬线向右的摆角增大。
以下操作中可行的是A.增大导体棒中的电流B.减少磁铁的数量C.颠倒磁铁磁极的上下位置D.改变导体棒中的电流方向【】6.普通光学显微镜是初中科学常用的实验仪器,下列相关说法正确的是A.视野中一草履虫向右游动,可向左移动装片进行追踪B.显微镜对光时发现视野较暗,可将凹面镜换成平面镜C.观察人血涂片时,观察到数量最多的细胞是白细胞D.观察洋葱表皮细胞时,显微镜放大倍数越小,视野中细胞数目越多【】7.如图为绿色植物的叶片进行生理活动的示意图,下列有关叙述正确的是A.在白天光照条件下,若叶片进行光合作用速率大于呼吸作用,则a为氧气,b为二氧化碳,c 为有机物B.保卫细胞对气孔开闭的控制,既影响着植物体的光合作用,又影响着植物体的蒸腾作用C.绿色植物是生产者,制造有机物,有机物储存的能量最终来源于土壤D.根吸收的水分向上运输到叶的主要动力来自叶片的光合作用,此过程中b为水【】8.小乐在育苗前对种子进行了一系列的处理:称取1公斤水稻种子,用水浸泡24小时,再放入一个带有许多小孔的塑料篮子里盖上纱巾,每天把篮子放在阳光下,用温水浇一次。
【关键字】方案、情况、方法、条件、成绩、地方、保持、规律、位置、速度、关系、动员、满足、内心浙江省杭州市拱墅区 4月模拟(一模)考试数学试卷考生须知:A . 本试卷满分120分, 考试时间100分钟.B . 答题前, 在答题卡填涂姓名学校的信息及考号.C . 必须在答题卡的对应答题位置上答题,写在其他地方无效.一、仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )A .B .C .D .2.如图,已知四条直线a ,b ,c ,d ,其中a ∥b ,c ⊥b ,且∠1=50°.则∠2=( )A .60°B .50°C .40°D .30°3.下列计算或化简正确的是( )A .2()a a b ab a ---=-B .235a a a +=C .451383+= D .93=± 4.下列因式分解正确的是( )A .222()a b a b -=-B .222168(4)a ab b a b -+=-C .222()a ab b a b ++=+D .22()x y xy xy xy x y ++=+5.将一个半径为R ,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R 与r 的关系正确的是( )A .R =8rB .R =6rC .R =4rD .R =2r6.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图. 根据图中信息,可得下列结论不正确...的是( )A .七年级共有320人参加了兴趣小组;B .体育兴趣小组对应扇形圆心角的度数为96°;C .美术兴趣小组对应扇形圆心角的度数为72°;D .各小组人数组成的数据中位数是56.7.下列说法中正确的是( )A. 若式子1-x 有意义,则x >1;B. 已知a ,b ,c ,d 都是正实数,且a cb d <,则b d a bcd <++ C. 在反比例函数x k y 2-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k >2; D. 解分式方程3233x x x =+--的结果是原方程无解. 8.二次函数c bx ax y ++=2(a ,b ,c 是常数,a ≠0)图象的对称轴是直线1=x ,其图象一部分如图所示,对于下列说法:①0abc >;②0<+-c b a ;③03<+c a ;④当31<<-x 时,0>y .其中正确的是( )A .①②B .①④C .②③D .②③④9.如图,在△ABC 中,已知∠C=90°,AC =BC =4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE =CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①四边形CEDF 有可能成为正方形;②△DFE 是等腰直角三角形;③四边形CEDF 的面积是定值;④点C 到线段EF 2.其中正确的结论是( )A .①④B .②③C .①②④D .①②③④10.关于x 的方程220x px q --=(p ,q 是正整数), 若它的正根小于或等于4,则正根是整数的概率是( )A .512B .14C .13D .12二、认真填一填 (本题有6个小题, 每小题4分, 共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案.11. 计算:=-⋅)2(3a a ;=32)2(ab ;12.五位射击运动员在一次射击练习中,每人打10抢,成绩(单位:环)记录如下:97,98,95,97,93.则这组数据的众数是 ;平均数是 ;13.某药品原价是100元,经连续两次降价后,价格变为81元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;14.如图,AB 是⊙O 的直径,AE 交⊙O 于点F 且与⊙O 的切线CD 互相垂直,垂足为D ,连结AC ,OC ,CB. 有下列结论:①∠1=∠2 ; ②OC ∥AE ; ③AF =OC ; ④△ADC ∽△ACB.其中结论正确的是 (写出序号);15.在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ;16.在平面坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D的坐标为(0,2),延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ,延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…,按这样的规律进行下去,第2013个正方形的面积为 .三、全面答一答 (本题有8个小题, 共66分)解答应写出文字说明,证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17.(本小题6分) 先化简,再求值:ab a a b ab a -÷--)2(2,其中a =sin60°,b =tan60°. 18.(本小题8分)设函数12++=bx ax y ,其中a 可取的值是-1,0,1; b 可取的值是-1,1,2:(1)当a 、b 分别取何值时所得函数有最小值?请直接写出满足条件的这些函数和相应的最小值;(2)如果a 在-1,0,1三个数中随机抽取一个,b 在-1,1,2中随机抽取一个,共可得到多少个不同的函数解析式?在这些函数解析式中任取一个,求取到当x >0时y 随x 增大而减小的函数的概率.19.(本小题8分)(1)在图1中,求作△ABC 的外接圆(尺规作图,不写作法保留痕迹);ABC 的内心为O ,且BA =BC =8,sinA 43=,求△ABC (2)如图2,若△的内切圆半径.20.(本小题10分)如图,正方形ABCD的边长为3,将正方形ABCD 绕点A 顺时针旋转角度α(0°<α<90°),得到正方形AEFG ,FE 交线段DC 于点Q ,FE 的延长线交线段BC 于点P ,连结AP 、AQ .(1)求证:△ADQ ≌△AEQ ;(2)求证:PQ =DQ +PB ;(3)当∠1=∠2时,求PQ 的长.21.(本小题10分)某商店采购甲、乙两种型号的电风扇,共花费15000元,所购进甲型电风扇的数量不少于乙型数量的2倍,但不超过乙型数量的3倍. 现已知甲型每台进价150元,乙型每台进价300元,并且销售甲型每台获得利润30元,销售乙型每台获得利润75元. 设商店购进乙型电风扇x 台.(1)商店共有多少种采购电风扇方案?(2)若商店将购进的甲、乙两种型号的电风扇全部售出,写出此商店销售这两种电风扇所获得的总利润y (元)与购进乙型电风扇的台数x (台)之间的函数关系式;(3)商店怎样的采购方案所获得的利润最大?求出此时利润最大值.22.(本小题12分)如图,在R t △AOB 中,已知AO =6,BO =8,点E 从A 点出发,向O 点移动,同时点F 从O点出发沿OB -BA 向点A 移动,点E 的速度为每秒1个单位,点F 的速度为每秒3个单位,当其中一点到达终点时,另一点随即停止移动. 设移动时间为x 秒:(1)当x =2时,求△AEF 的面积;(2)当EF ∥BO 时,求x 的值;(3)设△AEF 的面积为y ,求出y 关于x 的函数关系式.23.(本小题12分)如图,已知抛物线)0(2≠++=a c bx ax y 的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,3-).(1)直接写出抛物线的解析式及点A 的坐标;(2)设抛物线上的点Q ,使△QAO 与△AOB 相似(不全等),求出点Q 的坐标;(3)在(2)的条件下,已知点M (03),连结QM 并延长交抛物线另一点R ,在直线QR 下方的抛物线上找点P ,当△PQR 面积最大时,求点P 的坐标及S △PQR 的最大值.参考答案一.仔细选一选 (每小题3分 ) DCABC BDCDA二.认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 26a -;368a b 12.97;96 13.10% 14.①②④ 15.10+53或23 16.4024)23(5⨯ (注:11、12、15题每个答案2分;14题对一个1分、2个2分、3个4分,出现③0分)三.全面答一答 (本题有8个小题, 共66分)17.(6分)化简a b a a b ab a -÷--)2(2b a ba a ab ab a -=-⋅+-=222 -----------------3分(过程2分)∵a =sin603,b =tan603 ,∴原式的值=3分(各1分)18.( 8分) (1)12+-=x x y ,最小值43;12++=x x y ,最小值43;122++=x x y ,最小值0-----------3分(2)可得到9个不同的函数解析式---------------------------------------------------------------------------2分∵当x >0时y 随x 增大而减小的函数是21y x x =--+,1y x =-+,∴概率为29--------------3分 (注:2个函数可以不具体写出)19.( 8分)(1)外接圆图略----------------------------------------------------------------------------3分(2) 连结BO 并延长交AC 于F ,∵AB =BC =8,O 为△ABC 内心,∴BF ⊥AC ,AF =CF ,又∵sinA 43=,∴BF=AB sinA =8×43 = 6 -------------------------------------2分∴AF=723664=-,---------------------------------------------------------------1分∴Rt△OBE 中:222(827)(6)x x +-=-解得半径为:8714x -分 解法二△面积法:AC =74---------1分,设内接圆半径为R ,21R (AB +AC +BC )=21AC ·BF , 解得内接圆半径R =7476+--------------------------2分(未根式有理化不扣分) 20.(10分)(1)∵ABCD 是正方形,∴在Rt △ADQ 和Rt △AEQ 中,有AD =AE ,AQ =AQ , ∴△ADQ ≌△AEQ (HL )------------------3分(2)同理可证得△AEP ≌△ABP--------------------------------------------1分∴PB =PE ,由(1)QD =QE ,∴PQ =QE +PE =DQ +PB------------2分(3)当∠1=∠2时,Rt △ADQ ∽Rt △PCQ ,∴∠3=∠4,又∵∠3=∠5 ∴∠3=∠4=∠5,且∠3+∠4+∠5=180°,∴∠3=60° --------------1分∴Rt △ADQ 中,AD =3,DQ 3分∴QC =33PQ =2QC = 6―3------------------------------------2分21.(10分)(1)∵购进乙型电风扇x 台,∴购进甲型电风扇台数是150********x -=100-2x ----------------1分由题意得:2x ≤100-2x ≤3x ,∴解得20≤x ≤25 --------------------------------------------------------2分∴购电风扇方案有6种: ---------------------2分 (题目没要求写具体的6种,写了更好。
一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,属于有理数的是()A. √-3B. πC. 0.1010010001...D. 3/42. 已知a,b是方程x^2 - 4x + 3 = 0的两个根,则a+b的值是()A. 2B. 4C. 6D. 83. 在等腰三角形ABC中,若∠BAC = 40°,则∠B的度数是()A. 40°B. 50°C. 70°D. 80°4. 已知函数y = kx + b(k≠0)的图象经过点(1,-2),则该函数的图象与x 轴的交点坐标是()A. (-2,0)B. (2,0)C. (-1,0)D. (1,0)5. 在梯形ABCD中,AD // BC,AB = 4cm,CD = 6cm,梯形的高为3cm,则梯形ABCD的面积是()B. 18cm²C. 24cm²D. 30cm²6. 下列各式中,正确的是()A. (-2)^3 = -8B. (-3)^2 = -9C. (-4)^3 = -64D. (-5)^2 = -257. 在△ABC中,若∠A = 45°,∠B = 60°,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形8. 若m + n = 5,mn = 6,则m^2 + n^2的值是()A. 11B. 21C. 25D. 299. 下列函数中,在定义域内单调递减的是()A. y = 2x - 1B. y = -x + 3C. y = x^2 + 110. 已知等差数列{an}的前n项和为Sn,若S5 = 50,a1 = 2,则公差d的值是()A. 2B. 3C. 4D. 5二、填空题(本大题共10小题,每小题3分,共30分)11. 若a,b是方程2x^2 - 3x - 2 = 0的两个根,则a^2 + b^2的值是______。
一、选择题1. 下列各数中,正数是()A. -2B. 0C. 1/2D. -1/2答案:C解析:正数是大于0的数,选项中只有1/2大于0,故选C。
2. 如果a+b=5,ab=6,那么a^2+b^2的值为()A. 19B. 21C. 25D. 29答案:A解析:由(a+b)^2 = a^2 + 2ab + b^2,代入a+b=5,ab=6得:5^2 = a^2 + 26 + b^225 = a^2 + 12 + b^2a^2 + b^2 = 25 - 12 = 13所以a^2+b^2的值为19,故选A。
3. 下列函数中,有最小值的是()A. y = x^2B. y = -x^2C. y = 2x^2D. y = -x^2 + 2答案:D解析:A、B、C三个函数的图像都是开口向上的抛物线,没有最小值。
D选项的函数图像是开口向下的抛物线,且顶点坐标为(0,2),所以有最小值2。
故选D。
4. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,那么sinA的值为()A. 3/5B. 4/5C. 5/3D. 5/4答案:A解析:在直角三角形中,sinA = 对边/斜边,所以sinA = BC/AC = 4/3,故选A。
5. 若x^2-2x+1=0,则x的值为()A. 1B. -1C. 2D. -2答案:A解析:这是一个完全平方公式,可以写成(x-1)^2=0,所以x-1=0,解得x=1,故选A。
二、填空题6. 若a、b是方程2x^2+3x-4=0的两根,则a+b的值为______。
答案:-3/2解析:根据韦达定理,a+b=-b/a,代入方程的系数得:a+b=-3/2。
7. 在平面直角坐标系中,点P的坐标为(2,3),则点P关于x轴的对称点坐标为______。
答案:(2,-3)解析:关于x轴对称的点,横坐标不变,纵坐标取相反数,所以点P关于x轴的对称点坐标为(2,-3)。
8. 已知函数y=kx+b,若k>0,b<0,则函数图像在()A. 第一、二象限B. 第一、三象限C. 第二、三象限D. 第一、四象限答案:B解析:当k>0时,函数图像是一条斜率为正的直线;当b<0时,函数图像与y轴的交点在x轴下方。
九年级数学试卷 第1 页 共 6 页2016~2017学年度第一次调研测试九年级数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算-1+2的值是( ▲ )A .-3B .-1C .1D .32.不等式组⎩⎨⎧ 2 x >-1,x -1≤0的解集是( ▲ )A .x >-12B .x <-12C .x ≤1D .-12<x ≤13. 计算32)(a 的结果是( ▲ )A. 23a B. 32a C. 5a D. 6a4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( ▲ )A .0.264×10 7千米B .2.64×10 6千米C .26.4×10 5千米D .264×10 4千米 5.如图所示的平面图形能折叠成的长方体可能是( ▲ )6.把函数y =2x 2的图象先沿x 轴向右平移3个单位长度,再沿y 轴向下平移2个单位长度得到新函数的图象,则新函数的关系式是( ▲ )A .y =2(x +3)2-2B .y =2(x -3)2-2C .y =2(x +3)2+2D .y =2(x -3)2+2(第5题)A .B .C .D .九年级数学试卷 第2 页 共 6 页DCBA(第13题) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:20 +112-⎛⎫ ⎪⎝⎭= ▲ .8.分解因式:269xx -+= ▲ .9.计算:82+= ▲ .10.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是 ▲ (填“甲”、“乙”、“丙”中的一个). 11.如果反比例函数y =kx 的图象经过点(1,3),那么它一定经过点(-1, ▲ ).12.圆锥形烟囱帽的底面直径为80 cm ,母线长为50 cm ,该烟囱帽的侧面积等于 ▲ cm 2(结果保留π).13.如图,在△ABC 中,AD =DB =BC .若∠C =n °,则∠ABC = ▲ 度.(用含n 的代数式表示)14.如图,在Rt △ABC 中,∠C =90°,∠B =60°,内切圆O 与边AB 、BC 、CA 分别相切于点D 、E 、F ,则∠DEF 的度数为 ▲ °.15.已知正比例函数y =2x 的图象过点),(11y x 、),(22y x .若112=-x x ,则21y y -= ▲ . 16.如图,已知A 、B 两点的坐标分别为(2,0)、(0,4),P 是△AOB 外接圆⊙C 上的一点,且∠AOP =45°,则点P的坐标为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (7分)计算: (a 2a -b +b 2b -a)÷a +b ab .(第14题)(第16题)九年级数学试卷 第3 页 共 6 页18. (7分) 解方程组:⎩⎪⎨⎪⎧x +y =2,2x - 13 y =53.19. (7分)某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:(1)这32名学生经过培训,考分等级“不合格”的百分比由 ▲ 下降到 ▲ ; (2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名.20. (8分) 如图,某同学在大楼AD 的观光电梯中的E 点测得大楼BC 楼底C 点的俯角为45°,此时该同学距地面高度AE 为20米,电梯再上升5米到达D 点,此时测得大楼BC 楼顶B 点的仰角为37º,求大楼的高度BC .(参考数据:sin37 º≈0.60, cos37 º≈0.80, tan37 º≈0.75)不合格合格 15 5 10(第19题)(第20题)九年级数学试卷 第4 页 共 6 页21.(8分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,AE ∥BC , DE ∥AB . 求证:(1)AE =DC ;(2)四边形ADCE 为矩形.22.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏. (1)在实验中他们共做了50次试验,试验结果如下:① 填空:此次实验中,“1点朝上”的频率是 ▲ ;② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么? (2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.23.(8分)建造一个池底为正方形、深度为2m 的长方体无盖水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,总造价为6400元.求该水池池底的边长.ABCDE(第21题图)九年级数学试卷 第5 页 共 6 页24.(8分)甲、乙两车从A 地将一批物品匀速运往B 地,已知甲出发0.5h 后乙开始出发,如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离S (km )与时间t (h )的关系,请结合图中的信息解决如下问题: (1)计算甲、乙两车的速度及a 的值; (2)乙车到达B 地后以原速立即返回.①在图中画出乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象;(请标出必要的相关数据)②请问甲车在离B 地多远处与返程中的乙车相遇?25.(8分)如图,CD 为⊙O 的直径,弦AB 垂直于CD ,垂足为H ,∠EAD =∠HAD . (1)求证:AE 为⊙O 的切线;(2)延长AE 与CD 的延长线交于点P ,过D 作DE ⊥AP ,垂足为E ,已知P A =2,PD =1,求⊙O 的半径和DE 的长.26.(9分)已知:二次函数y =ax 2 +bx 的图像经过点M (1,n )、N (3,n ).(1)求b 与a 之间的关系式;(2)若二次函数y =ax 2 +bx 的图像与x 轴交于点A 、B ,顶点为C ,△ABC 为直角三角形,求该二次函数的关系式.C(第25题)九年级数学试卷 第6 页 共 6 页27.(10分)重温我们知道:同弧或等弧所对的圆周角相等.也就是,如图(1),⊙O 中,AB ︵所对的圆周角∠ACB=∠ADB=∠AEB . 应用(1)已知:如图(2),矩形ABCD . ①若AB <12BC ,在边AD 上求作点P ,使∠BPC =90°.(保留作图痕迹,写出作法.)②小明经研究发现,当AB 、BC 的大小关系发生变化时,①中点P 的个数也会发生变化,请你就点P 的个数,探讨AB 与BC 之间的数量关系.(直接写出结论) 创新(2)小明经进一步研究发现:命题“若四边形的一组对边相等和一组对角相等,则这个四边形是平行四边形.”是一个假命题,并在平行四边形的基础上利用“同弧或等弧所对的圆周角相等.”作出了一个反例图形.请你利用下面如图(3)所给的□ABCD 作出该反例图形.(不写作法,保留作图痕迹)(第27题图(1))C(第27题图(2))ADBABCD(第27题图(3))九年级数学试卷 第7 页 共 6 页初三一模数学试题参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3 8.(x-3)2 9.10.乙 11.-3 12.2000π 13.180-1.5n 14.75 15.2 16.(3,3) 三、解答题(本大题共11小题,共88分) 17.(7分)解:原式=(a 2a -b -b 2a -b)÷a +b ab ………2分=a 2-b 2a -b ÷a +bab ……………4分=()()a b a b a b+--×aba +b……6分 =ab ……………………………7分18. (7分) 对某一方程进行有效变形且正确 ………………………………………1分 得用代入或加减消去一个未知数得一元一次方程正确………………3分 解得一个未知数的值正确………………………………………………4分 代入求得另一个未知数的值正确………………………………………6分正确写出方程组的解1,1.x y =⎧⎨=⎩…………………………………………7分.19.(7分)(1)75﹪,25﹪…………………………………………………………………4分 (2)据题意得:培训后32名学生中“合格”与“优秀”的学生共有24名 ………5分 考分等级为“合格”与“优秀”的学生人数约占2432=34…………………………6分 所以,培训后全校考分等级为“合格”与“优秀”的学生人数约有: 640×34=480名分20. (8分)解:过点E 、D 分别作BC 的垂线,交BC 于点F 、G .在Rt △EFC 中,因为FC =AE =20,∠FEC =45° 所以EF =20………………………………………3分 在Rt △DBG 中,DG =EF =20,∠BDG =37°C因为tan∠BDG=BGDG≈0.75 ………………………………5分所以BG≈DG×0.75=20×0.75=15………………………6分而GF=DE=5所以BC=BG+GF+FC=15+5+20=40答:大楼BC的高度是40米.………………………………8分21.(8分)证明:(1)在△ABC中,∵AB=AC,AD⊥BC,∴BD=DC ……………………………………………………2分∵AE∥BC, DE∥AB,∴四边形ABDE为平行四边形………………………………4分∴BD=AE,…………………………………………………5分∵BD=DC∴AE = DC.……………………………………………………6分(2)∵AE∥BC,AE = DC,∴四边形ADCE为平行四边形.………………………………7分又∵AD⊥BC,∴∠ADC=90°,∴四边形ADCE为矩形.………………………………………8分22.(8分)(1)①0.2 …………………………………………………………1分②不正确……………………………………………………2分因为在一次实验中频率并不一定等于概率,只有当实验中试验次数很大时,频率才趋近于概率.………………………………………………………3分(2)列表如下:………5分所有可能的结果共有36种,每一种结果出现的可能性相同.九年级数学试卷第8 页共6 页九年级数学试卷 第9 页 共 6 页)所以P (点数之和超过6)=2136 ,P (点数之和不超过6)=1536 ………7分因为2136 >1536,所以小亮获胜的可能性大.………………………………8分23.(8分)设池底的边长为x m . ……………………………………1分 200x 2+800x =6400 …………………………………………4分 解得x 1=4,x 2=-8(舍) …………………………………7分 答:池底的边长为4m . ……………………………………8分24.(本题8分) 解:(1)由题意可知M (0.5,0),线段OP 、MN 都经过(1.5,60)甲车的速度60÷1.5=40 km/小时,……………………………………………1分乙车的速度60÷(1.5-0.5)=60 km/小时, ………………………………2分 a =40×4.5=180 km ; …………………………………………………………3分(2)①乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象25.(8分)连结OA∵AB ⊥CD ,∴∠AHD =90°.∴∠HAD +∠ODA =90°………………………1分 ∵OA =OD ,∴∠OAD =∠ODA …………2分 又∵∠EAD =∠HAD∴∠EAD +∠OAD =90°, …………………3分 ∴OA ⊥AE ,又∵点A 在圆上,∵AE 为⊙O 的切线.………4分 (2)设⊙O 的半径为x ,在Rt △AOP 中,OA 2+AP 2=OP 2x 2+22=(x +1)2 …………………5分 解得x =1.5 ………………………6分 ∴⊙O 的半径为1.5∵OA ∥DE ,所以△PED ∽△P AO ,PC九年级数学试卷 第10 页 共 6 页∴DP PO =DE AO ,1 2.5 =DE1.5,…………………7分 解得DE =35…………………………………8分26.(本题9分)解:(1)∵图像经过M (1,n )、N (3,n )∴图像的对称轴为直线x =2. …………………………………2分 ∴22ba-=,所以b = -4a .…………………………………4分 (2)y =ax 2 -4ax 的图像与x 轴交于点A (0,0)、B (4,0).………5分∵△ABC 为直角三角形,∴顶点C 坐标为(2,2)或(2,-2).…………………………7分 代入得4a -8a =2或4a -8a =-2.∴a =-12 或12 .……………………………………………………8分∴y = - 12 x 2 +2x 或y =12x 2 -2x .…………………………………9分27.(10分)(1)①作图正确………………………………………………………………2分.作法:以BC 为直径作⊙O ,交AD 于P 1、P 2P 1、P 2 为所求作的点P .………………………………………………4分 ②AB <12BC 时,点P 有两个;………………………………………………5分 AB=12BC 时,点P 有且只有1个; ………………………………………6分 AB >12BC 时,点P 有0个; ………………………………………………7分(2)……………………………………………10分连接AC ,作△ADC 的外接圆⊙O ,再以C 为圆心, CD 的长为半径画弧,与⊙O 相交于点E ,则四边形ABCE 即为所求反例图形.(画法不计分)九年级数学试卷 第11 页 共 6 页2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .0(第4题) A BCD (第6题)6.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,则△ABC 的面积为(▲)A.48 B.50 C.54 D.60九年级数学试卷第12 页共6 页九年级数学试卷 第13 页 共 6 页二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ .10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =k x 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m.(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a=_▲_,初赛成绩为1.70m所在扇形图形的圆心角为_▲_°;(2)补全条形统计图;(3)这组初赛成绩的众数是▲ m,中位数是▲ m;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG 于点H.(1)求证:△EDC≌△HFE;九年级数学试卷第14 页共6 页九年级数学试卷 第15 页 共 6 页(2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 时,四边形BEHC 为菱形.(第21题)ABCDGFEH九年级数学试卷 第16 页 共 6 页22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点.(1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。
2017年浙江省杭州市中考数学试卷一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.42.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×1073.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.25.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<127.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.88.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:49.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<010.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21二.填空题11.(4分)数据2,2,3,4,5的中位数是.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.14.(4分)若•|m|=,则m=.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于.16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.2017年浙江省杭州市中考数学试卷参考答案与试题解析一.选择题1.(3分)﹣22=()A.﹣2 B.﹣4 C.2 D.4【分析】根据幂的乘方的运算法则求解.【解答】解:﹣22=﹣4,故选B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.2.(3分)太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A.1.5×108B.1.5×109C.0.15×109D.15×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将150 000 000用科学记数法表示为:1.5×108.故选A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.4.(3分)|1+|+|1﹣|=()A.1 B.C.2 D.2【分析】根据绝对值的性质,可得答案.【解答】解:原式1++﹣1=2,故选:D.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.5.(3分)设x,y,c是实数,()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则 D.若,则2x=3y【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A不符合题意;B、两边都乘以c,故B符合题意;C、c=0时,两边都除以c无意义,故C不符合题意;D、两边乘以不同的数,故D不符合题意;故选:B.【点评】本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.6.(3分)若x+5>0,则()A.x+1<0 B.x﹣1<0 C.<﹣1 D.﹣2x<12【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<﹣5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【点评】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键.7.(3分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.8【分析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.【点评】本题主要考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则()A.l1:l2=1:2,S1:S2=1:2 B.l1:l2=1:4,S1:S2=1:2C.l1:l2=1:2,S1:S2=1:4 D.l1:l2=1:4,S1:S2=1:4【分析】根据圆的周长分别计算l1,l2,再由扇形的面积公式计算S1,S2,求比值即可.【解答】解:∵l1=2π×BC=2π,l2=2π×AB=4π,∴l1:l2=1:2,∵S1=×2π×=π,S2=×4π×=2π,∴S1:S2=1:2,故选A.【点评】本题考查了圆锥的计算,主要利用了圆的周长为2πr,侧面积=lr求解是解题的关键.9.(3分)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0 B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0 D.若m<1,则(m+1)a+b<0【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b(m﹣1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.10.(3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3 B.2x﹣y2=9 C.3x﹣y2=15 D.4x﹣y2=21【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BD=DC=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理求出即可.【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,勾股定理,解直角三角形等知识点,能正确作出辅助线是解此题的关键.二.填空题11.(4分)数据2,2,3,4,5的中位数是3.【分析】根据中位数的定义即中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,即可求出答案.【解答】解:从小到大排列为:2,2,3,4,5,位于最中间的数是3,则这组数的中位数是3.故答案为:3.【点评】本题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.12.(4分)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB= 50°.【分析】根据切线的性质即可求出答案.【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,∴∠BAT=90°,∵∠ABT=40°,∴∠ATB=50°,故答案为:50°【点评】本题考查切线的性质,解题的关键是根据切线的性质求出∠ATB=90°,本题属于基础题型.13.(4分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【分析】根据题意画出相应的树状图,找出所有可能的情况个数,进而找出两次都是红球的情况个数,即可求出所求的概率大小.【解答】解:根据题意画出相应的树状图,所以一共有9种情况,两次摸到红球的有4种情况,∴两次摸出都是红球的概率是,故答案为:.【点评】此题考查了列表法与树状图,根据题意画出相应的树状图是解本题的关键.14.(4分)若•|m|=,则m=3或﹣1.【分析】利用绝对值和分式的性质可得m﹣1≠0,m﹣3=0或|m|=1,可得m.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)•|m|=m﹣3,∴(m﹣3)•(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.【点评】本题主要考查了绝对值和分式的性质,熟记分式分母不为0是解答此题的关键.15.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于78.【分析】由勾股定理求出BC==25,求出△ABC的面积=150,证明△CDE ∽△CBA,得出,求出CE=12,得出BE=BC﹣CE=13,再由三角形的面积关系即可得出答案.【解答】解:∵在Rt△ABC中,∠BAC=90°,AB=15,AC=20,∴BC==25,△ABC的面积=AB•AC=×15×20=150,∵AD=5,∴CD=AC﹣AD=15,∵DE⊥BC,∴∠DEC=∠BAC=90°,又∵∠C=∠C,∴△CDE∽△CBA,∴,即,解得:CE=12,∴BE=BC﹣CE=13,∵△ABE的面积:△ABC的面积=BE:BC=13:25,∴△ABE的面积=×150=78;故答案为:78.【点评】本题考查了相似三角形的判定与性质、勾股定理、三角形的面积;熟练掌握勾股定理,证明三角形相似是解决问题的关键16.(4分)某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【分析】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【解答】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点评】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.三.解答题17.(6分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.18.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征以及一次函数的性质,求得解析式上解题的关键.19.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可知.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=【点评】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,本题属于中等题型.20.(10分)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【解答】解:(1)①由题意可得:xy=3,则y=;②当y≥3时,≥3解得:x≤1,故x的取值范围是:0<x≤1;(2)∵一个矩形的周长为6,∴x+y=3,∴x+=3,整理得:x2﹣3x+3=0,∵b2﹣4ac=9﹣12=﹣3<0,∴矩形的周长不可能是6;所以圆圆的说法不对.∵一个矩形的周长为10,∴x+y=5,∴x+=5,整理得:x2﹣5x+3=0,∵b2﹣4ac=25﹣12=13>0,∴矩形的周长可能是10,所以方方的说法对.【点评】此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.21.(10分)如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)过点A作AH⊥BG,在Rt△ABH、Rt△AHG中,求出AH、HG即可解决问题.【解答】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)过点A作AH⊥BG,∵四边形ABCD是正方形,∴∠ABD=∠GBF=45°,∵GF⊥BC,∴∠BGF=45°,∵∠AGF=105°,∴∠AGB=∠AGF﹣∠BGF=105°﹣45°=60°,在Rt△ABH中,∵AB=1,∴AH=BH=,在Rt△AGH中,∵AH=,∠GAH=30°,∴HG=AH•tan30°=,∴BG=BH+HG=+.【点评】本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(12分)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a ≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案;(3)根据二次函数的性质,可得答案.【解答】解:(1)函数y1的图象经过点(1,﹣2),得(a+1)(﹣a)=﹣2,解得a1=﹣2,a2=1,函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,综上所述:函数y1的表达式y=x2﹣x﹣2;(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而减小,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而增大,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.【点评】本题考查了二次函数图象上点的坐标特征,解(1)的关键是利用待定系数法;解(2)的关键是把点的坐标代入函数解析式;解(3)的关键是利用二次函数的性质,要分类讨论,以防遗漏.23.(12分)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据:ɑ30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;【解答】解:(1)猜想:β=α+90°,γ=﹣α+180°连接OB,∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,∵OB=OA,∴∠OBA=∠OAB=α,∴∠BOA=180°﹣2α,∴2β=360°﹣(180°﹣2α),∴β=α+90°,∵D是BC的中点,DE⊥BC,∴OE是线段BC的垂直平分线,∴BE=CE,∠BED=∠CED,∠EDC=90°∵∠BCA=∠EDC+∠CED,∴β=90°+∠CED,∴∠CED=α,∴∠CED=∠OBA=α,∴O、A、E、B四点共圆,∴∠EBO+∠EAG=180°,∴∠EBA+∠OBA+∠EAG=180°,∴γ+α=180°;(2)当γ=135°时,此时图形如图所示,∴α=45°,β=135°,∴∠BOA=90°,∠BCE=45°,由(1)可知:O、A、E、B四点共圆,∴∠BEC=90°,∵△ABE的面积为△ABC的面积的4倍,∴,∴,设CE=3x,AC=x,由(1)可知:BC=2CD=6,∵∠BCE=45°,∴CE=BE=3x,∴由勾股定理可知:(3x)2+(3x)2=62,x=,∴BE=CE=3,AC=,∴AE=AC+CE=4,在Rt△ABE中,由勾股定理可知:AB2=(3)2+(4)2,∴AB=5,∵∠BAO=45°,∴∠AOB=90°,在Rt△AOB中,设半径为r,由勾股定理可知:AB2=2r2,∴r=5,∴⊙O半径的长为5.【点评】本题考查圆的综合问题,涉及圆周角定理,勾股定理,解方程,垂直平分线的性质等知识,综合程度较高,需要学生灵活运用所学知识.。
2017年中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得(2)首先求出DE和CE的长度,再根据S△AEF出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标;(2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA ⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。
中考数学参考公式: (时间100分钟 满分120分)直棱柱的体积公式:V Sh =(S 为底面积.h 为高);圆锥的全面积(表面积)公式:2S rl r ππ=+全(r 为底面半径.l 为母线长) 圆柱的全面积(表面积)公式:222S rh r ππ=+全(r 为底面半径.h 为高)一、仔细选一选(本题有10个小题.每小题3分.共30分)下面每小题给出的四个选项中.只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 设a .b .则21b a-的值为( )11112. 如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处.沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物.那么它需要爬行的最短路径的长是( )A .(3cm +BCD .9cm 3. 如图.1∠的正切值为( )A .31 B .21C .3D .2 4. 下列命题是真命题的有( )①对顶角相等;②两直线平行.内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦.并且平分弦所对的弧。
A.1个B.2个C.3个D.4个 5. 《九章算术》中的算筹图是竖排的.为看图方便.我们把它改为横排.如图1.图2所示.图中各行从左到右列出的算筹数分别表示未知数x.y 的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来.就是3219,423.x y x y +=⎧⎨+=⎩类似地.图2所示的算筹图我们可以表述为( )图1 图2 A .2114327x y x y +=⎧⎨+=⎩ B .2114322x y x y +=⎧⎨+=⎩ C .3219423x y x y +=⎧⎨+=⎩ D .264327x y x y +=⎧⎨+=⎩6. 若不等式27125ax x x +->+对11a -≤≤恒成立.则x 的取值范围是( ) A. 23x ≤≤ B. 11x -<< C. 11x -≤≤ D. 23x << 7. 一同学在n 天假期中观察:(1)下了7次雨.在上午或下午; (2)当下午下雨时.上午是晴天; (3)一共有5个下午是晴天; (4)一共有6个上午是晴天。
2017年下城区、滨江区、拱墅区中考一模数学试卷考生须知:1.本试卷分试题卷和答题卷两部分.满分 120 分,考试时间 100 分钟.2.答题前,请在指定位置内写明校名,姓名和班级,填涂考生号.3.答题时,所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.一.选择题:本大题有 10 个小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.计算21-21×3的结果是( )A . 0B .1C . 2D . 12.据统计,2017 年春节黄金周 7 天,杭州共接待中外游客约 450 万人次.将 450 万用科学记数法表示,以下表示正确的是( ) A .450×104B .45.0 ×105C .4.50 ×106D .4.50 ×1073.由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是( )A .左视图与主视图相同B .俯视图与主视图相同C .左视图与俯视图相同D .三个视图都相同4.如图,AB ∥CD ,AD 与 BC 相交于点 E ,若∠A =40°,∠C =35°,则∠BED =( )A .70°B .75°C .80°D .85°5.下列计算正确的是( ) A .x 4+x 2=x 6B . (a +b )2=a 2+b 2C . (3x 2y )2=6x 4y 2D . (-m )7÷(-m )2=m 5 6.下列命题中,真命题是()A .垂直于同一条直线的两条直线互相平行B .平分弦的直径垂直弦C .有两边及一角对应相等的两个三角形全等D .八边形的内角和是外角和的7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身 12 个,或制作盒底 18 个,1 个盒身与 2 个盒底配成一套.现有 42 张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用 x 张做盒身,则下面所列方程正确的是( ) A .18(42 -x ) =12x B .2×18(42 -x ) =12x C .18(42 -x ) =2×12xD .18(21-x ) =12x8.某校实施课程改革,为初三学生设置了A ,B ,C ,D ,E ,F 共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)根据图表提供的信息,下列结论错误的是( )A.这次被调查的学生人数为200人B.扇形统计图中E 部分扇形的圆心角为72° C .被调查的学生中最想选 F 的人数为 35 人 D .被调查的学生中最想选 D 的有 55 人 9.如图,在反比例函数 y =x5(x >0) 的图象上有点 P 1,P 2,P 3,P 4,P 5,它们的横坐标依次为 2,4,6,8,10,分别过这些点作 x 轴和 y 轴的垂线.图中所构成的阴影部分的面积从左到右依次为 S 1,S 2,S 3,S 4,则 S 1+S 2+S 3+S 4的值为( )A .4.5B .4.2C .4D .3.810.如图,△ABC 的两条高线BD ,CE 相交于点F ,已知∠ABC =60°,AB =10,CF =EF ,则△ABC 的面积为()A .203B .253C .303D .403二、填空题:本题有 6 个小题,每小题 4 分,共 24 分 11.分解因式:m 2-9 =_________.12.如图,四个完全相同的小球上分别写有 0,32,-5,π 四个实数,把它们全部装入一个布袋里.从布袋里任意摸出 1 个球,球上的数是无理数的概率为________.13.不等式组⎩⎨⎧++-≤-)1(385237121x x x x 的最大整数解为________.14.如图,点A ,B ,C 都在⊙O 上,若∠OAC =17°,∠ACB =46°,AC 与 OB 交于点 D ,则∠ODA 的度数为_______度.15.在矩形ABCD 中,∠ABC 的平分线交AD 于点E ,∠BED 的平分线交DC 于点F ,若AB =6,点 F 恰为 DC 的中点,则 BC =_________.(结果保留根号)16.已知二次函数y =ax 2-bx +2 (a ≠0) 图象的顶点在第二象限,且过点( 1 , 0 ),则a 的取值范围是_________;若 a +b 的值为非零整数,则 b 的值为_________. 三.解答题:本大题有 7 个小题,共 66 分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题 6 分)先化简,再求值:aa ++-21442,其中a=-5. 18.(本小题 8 分)乐乐是一名健步走运动的爱好者,她用手机软件记录了某个月(30 天)每天健步走的步数(单位:万步),并将记录结果绘制成了如图所示的统计图(不完整). (1)若乐乐这个月平均每天健步走的步数为 1.32 万步,试求她走 1.3 万步和 1.5 万步的天数;(2)求这组数据中的众数和中位数.19.(本小题 8 分)如图,在△ABC 中,∠ABC =45°,AD BC 于点 D ,点 E 在 AD 上,且 DE =DC .(1)求证:△BDE ≌△ADC ; (2)若BC =8.4,t a n C =25,求 DE 的长.20.(本小题 10 分)如图,直线 l 与 x 轴, y 轴分别交于 M ,N 两点,且 OM=ON =3. (1)求这条直线的函数表达式;(2)Rt △ ABC 与直线 l 在同一个平面直角坐标系内,其中∠ABC=90°,AC= 25 ,A (1,0),B (3,0),将△ABC 沿 x 轴向左平移,当点 C 落在直线 l 上时,求线段 AC 扫过的面积.21.(本小题10 分)如图,由12 个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点.已知这个大矩形网格的宽为4,△ABC的顶点都在格点.(1)求每个小矩形的长与宽;(2)在矩形网格中找出所有的格点E,使△ABE为直角三角形;(描出相应的点,并分别用E1,E2,…表示)(3)求sin∠ACB的值.22.(本小题12 分)设抛物线y=m x2-2m x+3 (m≠0) 与x轴交于点A(a, 0) 和B(b, 0) .(1)若a=-1,求m,b的值;(2)若2m+n=3 ,求证:抛物线的顶点在直线y=m x+n上;(3)抛物线上有两点P(x1,p) 和Q(x2,q) ,若x1<1<x2,且x1+x2>2 ,试比较p与q 的大小.23.(本小题12 分)(1)如图①,四边形ABCD是正方形,点G是BC上的任意一点,BF AG于点F,DE AG于点E,探究BF,DE,EF之间的数量关系.第一学习小组合作探究后,得到DE–BF=EF,请证明这个结论;(2)若(1)中的点G在CB的延长线上,其余条件不变,请在图②中画出图形,并直接写出此时BF,DE,EF之间的数量关系;(3 )如图③,四边形ABCD内接于⊙O,AB=AD,E,F是AC上的两点,且满足∠AED=∠BFA=∠BCD.试判断AC,DE,BF 之间的数量关系,并说明理由.2017中考一模数学评分建议一.仔细选一选DCABD DCDCA二.认真填一填 (本题有6个小题,每小题4分,共24分) 11.)3)(3(-+m m 12.4113.4 14.71 15.233+16.02<<-a ;2321或 (每空格2分)注: 16题每空各2分,第二空一个答案对1分 三.全面答一答(本题有7个小题,共66分) 17.(6分)原式=21)2)(2(2)2)(2(2)2)(2(4-=-++=-+-+-+a a a a a a a a a ---------4分 当5-=a 时,原式=7125121-=--=-a ----------2分18.(8分)(1)设乐乐有x 天每天走1.3万步,有)10(x -天每天走1.5万步, 则32.130)10(5.1104.13.182.121.1=-+⨯++⨯+⨯x x -----------2分解得 6=x -----------1分 即乐乐有6天每天走1.3万步,有4天每天走1.5万步. -----------1分 (2)众数是1.4万步,中位数为1.3万步. -----------4分(各2分) 注:单位没写共扣1分 19.(8分)(1)∵AD ⊥BC ,∠ABC =45°∴AD =BD ,∠BDE =∠ADC =90°-----------2分∵DE =DC -----------1分ABE∴△ADC ≌△BDE -----------1分 (2)∵AD ⊥BC ∴tanC=25=CD AD -----------1分 设AD =5k ,CD =2k -----------1分 ∴BC =BD +CD =AD +CD =7k=8.4∴k=1.2 ------------1分 ∴CD =2.4=DE -------------1分 ----其他求法同理给分 20.(10分) (1)∵OM=ON=3∴ M (-3,0),N (0,-3) -------------2分设)0(≠+=k b kx y 则有 ⎩⎨⎧-==+-303b b k 解得⎩⎨⎧-=-=31b k ----------2∴直线的函数表达式为3--=x y ----------1分 (2)∵A (1,0),B (3,0)∴AB =2 ----------1分 ∵∠ABC =90° ∴BC =42)52(22=-----------1分∴C (3,4)因AC 平移后点C 落在直线对l 上,所以对3--=x y 令4=y 得7-=x即点C 平移到了点(-7,4),AC 向左平移了10个单位 ----------2分 ∴S=10×4=40 -----------1分 ----其他求法同理给分21.(10分)(1)由图可得小矩形的长为宽的2倍,∴ 小矩形的宽为4÷4=1 --------1分 小矩形的长为1×2=2 --------1分 (2)图中点E 1,E 2,E 3就是所求的格点 --------3分(注:每个格点1分) (3)过点B 作BF ⊥AC 于点F∵422212=⨯⨯⨯=ABC S ∆,522422=+=AC ----------2分∴5545242=⨯=BF -----------1分 2∵132322=+=BC -----------1分 ∴ sin ∠ACB 6565413554===BC BF -----------1分 ----其他求法同理给分22.(12分)(1)把)0,1(-A 代入322+-=mx mx y得032=++m m 解得1-=m -----------2分即 322++-=x x y由0322=++-x x 解得3,121=-=x x ∴ 3=b -----------2分(2)∵m x m mx mx y -+-=+-=3)1(3222-----------1分 ∴ 抛物线的顶点坐标为)3,1(m ------------1分 ∵ 32=+n m ∴ m n 23-=∴ 直线表达式为m mx y 23-+=-----------1分当1=x 时,m m m y -=-+=323∴ 抛物线的顶点在直线n mx y +=上 -----------1分(3)∵32,32222121+-=+-=mx mx q mx mx p∴ )2)(()32()32(2121222121-+-=+--+-=-x x x x m mx mx mx mx q p ∵ 211x x <<且221>+x x ∴ 02,02121>-+<-x x x x∴ 当0>m 时,0<-q p ,即q p <-----------2分当0<m 时,0>-q p ,即q p >-----------2分(3)或用图象来判断:由(2)可得抛物线的对称轴为直线1=x ∵ 211x x <<且221>+x x ∴ 1211x x ->- 即P 、Q 两点中,点Q 距离对称轴较远当0>m 时,抛物线开口向上,抛物线上离对称轴越远的点函数值越大,所以q p <; -----------2分图①当0<m 时,抛物线开口向下,抛物线上离对称轴越远的点函数值越小,所以q p >.-----------2分 ----其他求法同理给分23.(12分)(1)∵正方形ABCD ,BF ⊥AG ,DE ⊥AG∴AB =AD ,∠BAF +∠DAE =∠BAF +∠ABF =∠AFB=∠DEA=900 ∴∠DAE =∠ABF∴△ADE ≌△BAF ------------2分 ∴BF =AE ,AF =DE ------------1分 ∴EF = AF –AE = DE – BF ------------1分(2)作图如右图所示 ------------2分EF =BF +DE ------------1分(3)∵ 四边形ABCD 内接于圆∴∠BCD +∠BAD =1800∵∠AED =∠BCD ,∠AED +∠DEC =1800 ∴∠BAD =∠DEC ∵∠BAD =∠1+∠2,∠DEC =∠1+∠3∴∠2=∠3 ----------1分 ∵∠AED =∠BFA ,AB =AD∴ △ADE ≌△BAF -----------1分 ∴AE =BF ,DE =AF ------------1分 连接BD∵∠AED =∠BCD ,∠1=∠DBC ∴∠3=∠4 ∴∠ADB =∠EDC ∵AB =AD∴∠ADB =∠ABD=∠ACD ∴∠EDC =∠ACD∴DE =CE =AF ------------1分 ∴AC =AE +CE =BF +DE ------------1分 ----其他求法同理给分图②F EGE F图③ 4 1 2 3。