光的偏振特性研究
- 格式:doc
- 大小:775.00 KB
- 文档页数:10
光的偏振实验方法光的偏振是光学中的重要现象,它涉及到光的传播方向和振动方向的关系。
为了研究和观察光的偏振现象,科学家们开发了许多实验方法。
本文将介绍一些常用的光的偏振实验方法。
一、马吕斯交叉法马吕斯交叉法是一种简单而直观的光的偏振实验方法。
所需装置包括一个偏振镜和一对交叉的光栅。
实验步骤:1. 将光栅放置在光路中,使光通过光栅后形成一对交叉的图案。
2. 调整偏振镜的角度,观察图案的变化。
3. 当偏振镜与光栅之间的角度达到一定条件时,图案将呈现出清晰的波纹状。
通过观察图案的变化,我们可以判断光的偏振性质以及偏振方向。
二、尼古拉斯法尼古拉斯法是一种利用偏振片的实验方法,可以用来测量光的振动方向。
实验步骤:1. 准备一对偏振片,将它们的传递轴垂直放置。
2. 将待测光线通过第一个偏振片,使其只能通过一个方向的振动。
3. 调整第二个偏振片的角度,观察透过第二个偏振片的光的强度变化。
4. 当第二个偏振片的传递轴与第一个偏振片之间的夹角为90°时,光的强度将最小。
通过调整第二个偏振片的角度,我们可以确定光的振动方向。
三、双折射和波片法双折射和波片法是一种通过使用双折射晶体和波片来产生和分析偏振光的实验方法。
实验步骤:1. 使用双折射晶体(如方解石)产生偏振光。
2. 将产生的偏振光通过波片(如四分之一波片或半波片)进行调整。
3. 观察光的传播方向和振动方向的变化,使用适当的检测器记录实验结果。
通过对偏振光的产生、调整和分析,我们可以研究光的偏振现象和性质。
总结:光的偏振实验方法有很多种,其中马吕斯交叉法、尼古拉斯法和双折射和波片法是常用的实验手段。
通过这些实验方法,科学家们能够观察和研究光的偏振现象,从而深入理解光的性质和行为。
对于光学研究和实际应用而言,光的偏振实验方法具有重要的意义。
注:本文介绍的实验方法仅为举例,实际实验操作应根据具体情况和实验要求进行调整。
光的偏振实验了解光的偏振现象光的偏振现象是光波在传播过程中振动方向的定义。
通常,光的波动是沿着垂直于传播方向的所有方向均匀地振动。
然而,在某些情况下,光的振动方向可以被约束在一个特定的方向上,这就是光的偏振现象。
为了进一步了解光的偏振现象,我们可以进行实验来观察和研究光的偏振行为。
以下将介绍几种常见的光的偏振实验方法。
一、马吕斯法马吕斯法是最早用来研究光的偏振的实验方法之一。
该方法利用偏光镜和分析片的组合,可以将线偏振光转换成圆偏振光或者反之。
通过调节偏光镜和分析片的相对角度,我们可以观察到转换前后光的强度的变化,从而研究光的偏振现象。
二、振动起偏器法振动起偏器法是通过使用起偏器和分析器来观察光的偏振现象。
起偏器是一个偏振镜,可以限制光只能在一个特定方向上振动。
当通过起偏器的偏振光再经过分析器时,根据分析器的角度调节,我们可以观察到光的强度的变化,从而探究光的偏振特性。
三、双折射现象双折射是光线通过一些特殊的材料时产生的光的偏振现象。
常见的双折射材料包括石英晶体和冰晶石等。
通过将光线通过这些材料,我们可以观察到光线被分成两束具有不同振动方向的光线,这种现象被称为光的双折射。
通过测量这两束光线的振动方向,可以研究光的偏振现象。
四、干涉法干涉法是一种通过干涉现象来研究光的偏振特性的方法。
通过使用光路调节器和干涉仪,我们可以观察到在特定条件下,不同偏振方向的光线在干涉仪中产生干涉条纹。
通过分析和测量这些干涉条纹,可以获得有关光的偏振性质的有用信息。
通过以上的实验方法,我们可以更加深入地了解光的偏振现象。
这些实验方法不仅帮助我们理解光的振动方式,还在许多领域中有着重要的应用,如光学通信、显微镜下的观察等。
总结光的偏振现象是光学中非常重要的一个概念。
通过实验方法,我们可以对光的偏振行为有更深入的认识。
马吕斯法、振动起偏器法、双折射现象和干涉法是常用的实验方法,它们各自从不同的角度帮助我们理解光的偏振现象。
光的偏振与反射偏振光的特性与实验观察光是一种电磁波,具有振幅和传播方向。
然而,与普通的自然光不同,偏振光在振动方向上只有一个方向,这种特性叫作光的偏振。
在自然界中,我们可以观察到许多折射和反射现象,其中存在着反射偏振光,它具有特殊的传播特性。
本文将探讨光的偏振、反射偏振光的特性以及通过实验观察这些现象。
一、光的偏振特性光的偏振是指光波振动方向的特性。
普通的自然光是由各种方向的振动分量叠加形成的,因此具有无规则的振动方向。
而偏振光则是指波的振动方向沿着一条线的光波。
光的偏振可以通过偏振片来实现,偏振片是一种光学器件,它能够通过选择性地吸收或传递振动方向特定的光。
二、反射偏振光的特性反射偏振光是指光线在反射时只在一个特定的方向上露出的现象。
当光线以特定角度从一个介质反射到另一个介质时,反射光中的振动方向被选择性地压制,只有与入射光垂直的方向上的振动才能透过。
这种现象称为布儒斯特角,这也是反射偏振光的重要特性之一。
三、实验观察反射偏振光现象为了观察反射偏振光的特性,我们可以进行一系列实验。
最常用的实验方法是使用偏振片和反射镜。
首先,将一块偏振片安置在光源上,并使其光线经过偏振片产生带有特定振动方向的偏振光。
然后,将这束偏振光照射到一个反射镜上,调整角度,当入射角等于布儒斯特角时,观察到反射光中只有垂直于入射光的方向上的偏振光。
进一步的实验可以通过改变入射角度和偏振光的振动方向来观察反射偏振光的变化。
通过实验我们能够观察到反射偏振光的具体特性以及布儒斯特角的存在。
这些实验也可以帮助我们更好地理解光的偏振现象。
总结:光的偏振是指光波振动方向的特性,通过偏振片可以实现光的偏振。
反射偏振光是反射时只在一个特定方向上的光线,其特性可以通过实验进行观察和研究。
实验观察可以帮助我们更好地理解光的偏振和反射偏振光的特性。
光的偏振和反射偏振光在物理研究、光学应用等领域有着广泛的应用价值。
注意:本篇文章为自主创作文章,旨在满足题目要求。
光的偏振实验与分析光的偏振是指光波在空间中传播时,电场矢量在某个特定方向上的偏振方式。
光的偏振实验是研究光波偏振性质的重要手段之一。
本文将介绍光的偏振实验的基本原理和分析方法。
一、实验装置与原理偏振实验中常用的装置包括偏振片、偏振镜、法布里-珀罗干涉仪等。
偏振片是根据马克斯韦方程组的解析解而研制出来的,能够选择性地吸收波矢与晶体光轴平行或垂直方向上的分量。
偏振片的作用是将自然光转为具有一定偏振方向的偏振光。
法布里-珀罗干涉仪是一种用于测量光波偏振性质和薄膜膜层厚度的仪器。
它由一个光源、两块半反射薄膜、一个分束器和一个能够旋转的分析器组成。
当光波经过半反射薄膜时,会产生相干光波的干涉,干涉光通过分束器分成两束,分别经过两个光程不同的路径。
二、实验步骤1. 准备实验装置:包括光源、偏振片、偏振镜、法布里-珀罗干涉仪等。
2. 调整光源:将光源调整到合适亮度,并保持稳定。
3. 调整偏振片:将偏振片插入光路中,在光源和法布里-珀罗干涉仪之间逐渐旋转,观察干涉图案的变化。
4. 调整法布里-珀罗干涉仪:调整干涉仪中的分析器,观察干涉图案的变化,获取相应的数据。
5. 分析实验数据:根据实验数据进行偏振性质的分析与计算。
三、实验结果与分析通过实验数据的收集和分析,可以得到光波的偏振方向、振幅和相位等信息。
例如,通过法布里-珀罗干涉仪测量到的干涉图案可以得到光波传播的相位变化情况,进而得到偏振方向。
四、应用领域与重要性光的偏振实验在很多领域具有重要的应用价值。
例如,在光学领域中,光的偏振实验可以用于测量材料的光学性质、研究光传播的机制等;在生物医学领域,光的偏振实验可以用于研究细胞和组织的结构、功能以及疾病的诊断和治疗等。
因此,掌握光的偏振实验的原理和方法对于推动科学研究和技术应用具有重要意义。
总结:光的偏振实验是研究光波偏振性质的一种有效手段,通过使用偏振片和法布里-珀罗干涉仪等实验装置,可以获得光波的偏振方向、振幅和相位等信息。
光的偏振现象解析光的偏振现象是指光波在传播过程中的振动方向与传播方向有关,可以被分为线偏振、圆偏振和无偏振三种类型。
这些现象在光学、电磁学等领域具有重要的应用价值。
本文将对光的偏振现象进行深入分析,并介绍相关的实验方法和应用。
一、偏振光的特性偏振光是指在某一特定方向上振动的光波,其振动方向与波的传播方向垂直。
线偏振光的振动方向呈直线,圆偏振光的振动方向绕着传播方向旋转,而无偏振光则是在所有方向上都振动。
1.1 偏振片的原理偏振片是实现偏振光分析和利用的重要器件。
其工作原理是利用介质的吸收和透射特性来选择特定方向的光波。
通过交叉叠加两个偏振片,可以实现对光的完全消光或透振。
1.2 偏振光的产生方式偏振光可以通过自然光的偏振过滤、偏振器和波片等器件产生。
自然光在经过一系列反射、折射、散射等过程后,会出现特定方向的振动。
利用偏振片、偏振器和波片可以实现对光的偏振控制,从而产生偏振光。
二、偏振现象的实验方法为了观察和研究光的偏振现象,科学家们发展了多种实验方法和技术手段。
以下列举几种常见的实验方法:2.1 通过偏振片观察现象将偏振片与光源或光波进行组合,通过观察透过偏振片的光强变化来判断光的偏振状态。
这种方法简单易行,适合初学者体验和理解偏振现象。
2.2 干涉法利用光的干涉现象可以对光波的偏振进行测量和分析。
通过干涉条纹的变化来判断光的偏振状态和振动方向。
2.3 偏振分析仪偏振分析仪是一种专门用于观测和测量偏振现象的仪器。
通过精密的光学设计和测量手段,可以确定光的偏振状态和振动方向。
三、偏振现象的应用光的偏振现象在科学研究、光学仪器以及生产制造等领域有广泛的应用。
3.1 偏振滤光器偏振滤光器可以用于减少自然光的强度,过滤掉特定偏振方向上的光波,从而实现光的选择传输。
3.2 光通信偏振光在光通信中起到重要的作用,由于其振动方向稳定,可以提高光信号的传输质量和可靠性。
3.3 光学显微镜光学显微镜利用偏振现象来增强样品的对比度和显示细节。
光的偏振偏振光的产生和特性光的偏振——偏振光的产生和特性光是一种电磁波,具有波动性和粒子性。
当光通过某些介质或物体时,它的振动方向可能会发生变化,这就是光的偏振现象。
偏振光是指在特定方向上振动的光波,与传统的自然光相比,它具有明显的方向性和特性。
一、偏振光的产生偏振光的产生可以通过吸收、散射和干涉等过程实现。
以下是几种常见的偏振光产生方式:1. 吸收偏振当自然光通过吸光性较强的介质或物体时,部分光波会被吸收,而剩下的光波则在特定方向上振动,形成偏振光。
这种偏振方式常见于偏振片等介质。
2. 散射偏振当光通过物体表面或颗粒时,发生散射现象。
在散射过程中,光的振动方向与原先传播方向有差异,造成偏振。
此种偏振方式比较复杂,其具体机制与物体的形状、大小和光的波长等有关。
3. 双折射偏振某些晶体或材料在光的传播过程中会发生双折射现象。
双折射是指光在物质中传播时,由于晶体的结构特性而分成了两股光线,这两股光线的振动方向不同,因此形成了偏振光。
二、偏振光的特性偏振光具有一些特殊的属性,这些特性决定了偏振光在科学、技术和日常生活中的应用价值。
1. 方向性偏振光的最显著特点就是具有明确的振动方向。
根据振动方向的不同,可以将偏振光分为水平偏振光、垂直偏振光、45度偏振光等。
方向性使得偏振光在光学显微镜、液晶显示器等设备中起到非常重要的作用。
2. 平行性与自然光相比,偏振光具有更好的平行性。
这意味着偏振光能够聚焦成更为集中的光束,使得其在激光器、投影仪等光学器件中应用广泛。
3. 强度衰减偏振光在传输过程中会因各种因素产生强度衰减。
这种衰减可以用偏振度来描述,偏振度是指光的偏振强度与总强度之比。
常见的偏振度包括线偏振度和环偏振度,用来衡量光的振动方向偏离程度。
4. 与介质的相互作用偏振光与物质之间的相互作用非常复杂。
不同的介质对偏振光的传播影响也不同,包括偏振光的折射、反射和吸收等现象。
这种与介质的相互作用使得偏振光在材料分析、生物医学和通信等领域有广泛的应用。
光的偏振特性研究实验报告光的偏振特性研究实验报告引言:光是一种电磁波,具有波动性和粒子性的双重性质。
光的偏振特性是指光的电场矢量在传播方向上的振动方向。
通过研究光的偏振特性,可以深入了解光的性质,并且在光学领域的应用中具有重要意义。
本实验旨在通过实验手段探究光的偏振现象及其相关性质。
实验一:偏振片的工作原理在实验开始之前,我们首先需要了解偏振片的工作原理。
偏振片是一种光学元件,可以选择性地通过或阻挡特定方向的光振动。
它由一系列平行排列的分子或晶体组成,这些分子或晶体只允许特定方向的光通过。
当光线垂直于偏振片的方向时,光可以完全通过;而当光线与偏振片的方向垂直时,光将被完全阻挡。
实验一的目的是验证偏振片的工作原理。
我们将使用一束偏振光照射到偏振片上,并通过观察光的透射情况来验证偏振片的效果。
实验结果显示,当光的振动方向与偏振片的方向垂直时,光被完全阻挡,透射光强度为零;而当光的振动方向与偏振片的方向平行时,光可以完全透射,透射光强度最大。
实验二:偏振光的旋光现象在实验一中,我们了解了偏振片的工作原理。
实验二的目的是研究偏振光的旋光现象。
旋光是指光在通过某些物质后,光的振动方向发生旋转的现象。
这种旋转是由于物质的分子结构对光的振动方向产生影响所致。
我们将使用一束偏振光通过一个旋光样品,并通过旋光仪来测量光的旋转角度。
实验结果显示,当光通过旋光样品时,光的振动方向会发生旋转,旋转角度与旋光样品的性质和厚度有关。
这种旋转现象在化学、生物等领域中有着广泛的应用,例如用于测量物质的浓度、判断化学反应的进行等。
实验三:偏振光的干涉现象在实验三中,我们将研究偏振光的干涉现象。
干涉是指两束或多束光相遇时,光的振动方向相互叠加或相互抵消的现象。
干涉现象是光的波动性质的重要体现,通过研究干涉现象可以了解光的波动性质和相干性。
我们将使用两束偏振光通过两个偏振片,调整两束光的振动方向使之互相垂直,然后使两束光相遇。
实验结果显示,当两束光的振动方向相同时,光的强度最大;而当两束光的振动方向垂直时,光的强度最小。
光的偏振现象的研究光的偏振现象是指光波振动方向的特性。
光是一种电磁波,其振动方向可以是任意方向,但在某些情况下,光波的振动方向会被限制在特定的方向上,这就是光的偏振现象。
光的偏振现象在19世纪初由法国物理学家马尔斯-亚培尔(Etienne-Louis Malus)首次发现。
他发现,当光通过一个偏振镜时,只有振动方向与偏振镜允许的方向相同的光才能通过,其他方向的光则被阻挡。
这一现象被称为马尔斯定律。
马尔斯定律的解释是,光波是由电场和磁场的振动构成的,而偏振镜通过选择性地吸收电场或磁场的振动方向来实现光的偏振。
这意味着光波的电矢量在通过偏振镜之前可以沿着任意方向振动,但在通过偏振镜后,只有与偏振镜允许的方向相一致的电矢量才能通过。
光的偏振现象还可以通过其他方法实现。
例如,当光通过一个有序的分子结构或晶体时,光的振动方向会受到限制,这被称为自然偏振。
自然偏振可以通过偏振片来观察和分析。
光的偏振现象在许多领域都有重要的应用。
在光学领域,偏振光可以用于测量和分析光的性质。
在通信领域,偏振光可以用于增加信息传输的容量和速度。
在材料科学领域,偏振光可以用于研究材料的结构和性质。
光的偏振现象还与自然界中的许多现象和过程密切相关。
例如,光的偏振可以解释天空为什么呈现蓝色。
蓝天的颜色是由于大气中的分子散射光的偏振。
偏振光还可以用于分析和研究地球上的大气和水体的性质。
光的偏振现象还在生物学中有重要的应用。
生物组织对光的偏振有不同的反应,这些反应可以用来诊断和治疗疾病,例如癌症。
通过分析光的偏振特性,可以获得关于生物组织结构和功能的信息。
光的偏振现象是光波振动方向的特性。
光的偏振可以通过偏振镜、偏振片等方法实现。
光的偏振现象在许多领域都有重要的应用,包括光学、通信、材料科学和生物学等。
通过研究光的偏振,我们可以更好地理解和应用光的性质。
光的偏振偏振光的特性光的偏振是光学中的重要概念,用于描述光波中电场矢量的振动方向。
在实际应用中,了解光的偏振特性对于许多领域都至关重要,包括通信技术、光学测量以及材料科学等。
本文将就光的偏振现象及其特性进行探讨。
一、光的偏振现象光的偏振指的是光波中电场矢量的振动方向。
通常情况下,自然光是不偏振的,即电场矢量在各个方向均有相同的振动。
但在某些情况下,光波中的电场矢量偏好于沿着某个方向振动,这种现象被称为光的偏振。
二、偏振光的特性1. 光的偏振状态光的偏振状态可以分为线偏振、圆偏振和椭偏振三种。
线偏振光是指电场矢量在一个固定方向上振动,其它方向的振动幅度为零。
圆偏振光是指电场矢量在平面内按圆轨迹旋转。
椭偏振光则是介于线偏振光和圆偏振光之间的状态,电场矢量沿着椭圆轨迹振动。
2. 偏振器偏振器是将非偏振光转化为偏振光的一种光学器件。
常见的偏振器有偏振片和偏振棱镜等。
偏振片是由有机高分子长链构成的,其结构使得只有特定方向的电场矢量能够透过,其它方向的电场矢量则被吸收。
偏振棱镜则通过折射和反射效应来实现对特定方向光的选择性透射。
3. 偏振方向光的偏振方向是指电场矢量的振动方向。
一般以水平方向为基准,称为水平偏振;垂直于水平方向的为垂直偏振;与水平方向成45度角的为对角线偏振。
通过旋转偏振器,可以改变光的偏振方向。
4. 偏振的应用偏振光在许多领域都有广泛的应用。
在光学测量领域,偏振光可用于测量材料的光学特性,例如折射率、吸收系数等。
在通信技术中,偏振光被应用于光纤通信中的偏振分束器和偏振保持器,以提高信号传输的可靠性和稳定性。
此外,偏振光还可以应用于光学显微镜、光电显示器、光学制动和光栅等领域。
结语光的偏振是光学中一项重要的现象,通过对光的偏振特性的研究,可以更好地理解和应用光学原理。
本文从光的偏振现象出发,介绍了偏振光的特性,并讨论了偏振光在各个领域的应用。
对于读者了解光学知识和其应用具有一定的参考价值。
如何设计光学实验以研究光的偏振现象?在光学领域中,光的偏振现象是一个重要的研究课题。
通过设计合适的实验,我们能够更深入地理解光的偏振特性及其应用。
接下来,让我们一起探讨如何设计这样的光学实验。
首先,我们需要明确实验的目的。
研究光的偏振现象,主要是为了了解光的振动方向特性、偏振态的变化以及偏振光在不同介质中的传播规律等。
基于这些目的,我们可以开始规划实验的基本框架。
实验器材的选择至关重要。
我们需要准备光源,例如激光笔,它能提供较强且方向性好的光束。
还需要偏振片,这是实现光偏振控制的关键元件。
此外,光屏用于观察光的分布,以及一些测量角度的工具,如量角器。
在实验装置的搭建上,我们可以让激光笔发出的光垂直照射在第一个偏振片上,这个偏振片称为起偏器。
经过起偏器后的光就成为了偏振光。
然后,在起偏器后面放置第二个偏振片,称为检偏器。
通过旋转检偏器,观察光屏上光强的变化。
在进行实验操作时,先固定起偏器的方向,然后缓慢旋转检偏器。
我们会发现,当检偏器的偏振方向与起偏器的偏振方向平行时,光屏上的光强最强;当两者的偏振方向垂直时,光强最弱,甚至完全消失。
这一现象直观地展示了光的偏振特性。
为了更深入地研究,我们可以改变起偏器和检偏器之间的夹角,测量不同角度下光屏上的光强,并记录数据。
通过分析这些数据,可以得出光强与偏振角度之间的关系,进一步验证马吕斯定律。
除了上述简单的实验装置,我们还可以设计更复杂的实验来研究光在不同介质中的偏振现象。
比如,让偏振光通过各种晶体,如方解石晶体。
观察偏振光在晶体中的双折射现象,以及出射光的偏振态变化。
在实验过程中,要注意控制实验环境。
避免周围环境中的杂散光对实验结果产生干扰。
同时,要确保实验器材的摆放稳定,测量角度的准确性。
另外,我们可以拓展实验内容,研究偏振光在反射和折射时的偏振特性。
让偏振光以不同的角度入射到透明介质表面,观察反射光和折射光的偏振态变化。
通过测量和分析数据,总结出光在反射和折射时偏振态的变化规律。
光偏振的研究实验报告引言:光是一种电磁波,由电场和磁场交替变化而组成。
光的电场和磁场垂直于光的传播方向并且垂直于彼此。
光的偏振是指光振动中电场的方向。
光偏振的研究对于深入理解光的性质和应用有着重要的意义。
本实验旨在通过观察光的偏振现象,研究光偏振的特性。
材料与方法:1.光源:使用一盏强度稳定、波长可调的线偏振光源。
2.偏振器:使用可以调节偏振方向的偏振片。
3.样品:选择一种透明材料作为观察对象。
4.探测器:使用光学探测器来测量通过样品的光强度。
5.旋转台:放置样品和探测器的平台,可进行旋转。
实验步骤:1.将光源的波长调节为一个特定值,保持强度稳定。
2.使用偏振片,将光源发出的线偏振光的偏振方向调整为水平或垂直。
3.将样品放置在旋转台上,调节旋转台使样品与光传播方向平行。
4.使用探测器测量通过样品的光强度,并记录结果。
5.旋转样品,记录不同旋转角度下通过样品的光强度。
6.更换偏振片的偏振方向,重复步骤2-5结果与分析:通过实验记录的光强度数据可以得到不同偏振方向下的光强度随旋转角度的变化曲线。
实验数据显示,在特定的角度下,光通过样品的光强度呈现极大值或极小值。
这是由于样品对光的偏振方向有选择性地吸收或反射光线,导致光强度的变化。
根据实验结果,我们可以推断出样品对光的偏振产生了相关影响,并且样品与光的偏振方向有特定的相互关系。
这种现象被称为双折射。
双折射是指材料中光的传播速度根据偏振方向的不同而发生变化的现象。
实验中使用的探测器可以测量通过样品的光强度的变化,根据不同光强度的变化情况可以得出样品对光的偏振方向的选择性吸收或反射的性质。
这为进一步研究材料的光学特性提供了依据。
结论:通过光偏振的研究实验,我们观察到不同样品对偏振光的选择性吸收或反射的现象。
这表明光的偏振是一种重要的光学性质,对于材料的光学特性和应用具有影响。
在未来的研究中,可以进一步探究不同材料对光的偏振的不同响应,并应用这些特性来设计和改进光学材料和光学器件。
光的偏振实验观察光的偏振现象和偏振光特性光是一种电磁波,它可以在空间中传播,而光的偏振现象则是光具有特殊的传播性质。
光的偏振实验给我们提供了观察和研究光的偏振现象以及偏振光特性的方法。
光的波动性质使得它可以在垂直于传播方向的平面内振动,而这种振动方式会决定光的偏振性质。
当光的振动方向只在一个平面上,而不能垂直于该平面时,我们称之为偏振光。
在实际的观察中,我们可以通过偏振片来观察光的偏振现象。
偏振片是一种有选择性地吸收振动方向的光的设备。
当光通过偏振片时,只有与其特定振动方向垂直的光被吸收,而与其振动方向平行的光则被透过。
通过适当调整偏振片的方向,我们可以观察到不同的偏振现象。
在光的偏振实验中,我们可以使用两个偏振片。
当两个偏振片的振动方向相互垂直时,光将完全被吸收,无法通过。
这种情况下,我们称之为“交叉偏振”。
当两个偏振片的振动方向平行时,光能够完全透过,这种情况下我们称之为“同向偏振”。
通过旋转第二个偏振片,我们可以观察到从透明到黑暗的过渡,这是因为光的振动方向与第二个偏振片的振动方向之间形成了夹角,导致了部分光被吸收。
在光的偏振实验中,我们还可以观察到偏振光的特性。
偏振光具有明显的方向特性,在特定方向上振动。
通过使用偏振片,我们可以将偏振光的方向进行调整。
此外,偏振光还具有干涉、衍射等光的波动性质,这些现象也可以通过偏振实验进行观察和研究。
光的偏振实验不仅有助于我们理解光的波动性质,还在许多领域中具有重要的应用。
例如,在光学领域中,偏振光的特性能够帮助我们研究材料的结构和性质。
在通信和显示技术中,偏振光可以用于增强和调节光的传输和显示效果。
同时,光的偏振实验还在生物医学和纳米技术等领域有着广泛的应用。
总之,光的偏振实验是一种重要的观察和研究光的偏振现象和偏振光特性的方法。
通过使用偏振片和调整其方向,我们可以观察到交叉偏振和同向偏振现象,并研究偏振光的方向特性以及其他光的波动性质。
这些实验不仅有助于加深对光的波动性质的理解,还在许多领域中具有重要的应用。
光的偏振实验教案研究光的偏振现象及其应用光的偏振实验教案-研究光的偏振现象及其应用引言:光是我们生活中常见的自然现象之一,它以极快的速度传播,也具有波动和粒子性质。
然而,光的特性远不止于此。
其中一个重要的特性是偏振现象。
本教案旨在研究光的偏振现象及其应用,并通过实验展示和验证相关理论。
一、实验目的:通过本实验,学生将能够:1. 了解光的偏振现象及其基本原理;2. 掌握光的偏振实验的基本方法;3. 观察并验证光的偏振现象。
二、实验器材和材料:1. 光源:可以使用激光器或者LED光源;2. 偏振片:包括线偏振片和圆偏振片;3. 偏振光分析器:如偏振片;4. 旋转平台;5. 光屏;6. 实验台;7. 记录器材:纸、铅笔等。
三、实验步骤:1. 准备工作:a. 将实验台设置在一个相对安静的环境中;b. 确保实验室光线不会对实验结果产生干扰;c. 将光源、偏振光分析器和旋转平台依次放置在实验台上;d. 将光源对准光屏,确保光线能够正常照射到光屏上。
2. 实验操作:a. 将光源打开,调整光线方向,使其垂直照射到光屏上;b. 在光源和光屏之间放置一个线偏振片,调整其方向,观察光屏上的光强变化;c. 按照同样的方法,使用圆偏振片进行实验,并观察光屏上的光强变化;d. 使用偏振光分析器,验证偏振片的效果,并记录观察结果;e. 将旋转平台与偏振片相连,旋转偏振片,并观察光屏上的光强变化和偏振片旋转的关系。
四、实验结果与讨论1. 观察结果:a. 在使用线偏振片的实验中,当偏振片与光线垂直时,光屏上的光强最低。
当偏振片与光线平行时,光屏上的光强最高。
b. 在使用圆偏振片的实验中,无论圆偏振片的方向如何,光屏上的光强一直保持稳定。
2. 实验讨论:a. 线偏振片只允许一个方向的振动通过,故当光线与偏振片垂直时,光强被最大程度地减弱;当光线与偏振片平行时,光强得以最大程度地通过。
b. 圆偏振片将光线中的线偏振部分转化为一个方向上的圆偏振。
光的偏振实验光是一种电磁波,它在传播过程中具有振动方向的特性,称为偏振。
光的偏振实验是一种用来研究光的特性的实验方法。
通过偏振实验,我们可以了解光的偏振方式、偏振光的行为和光的偏振现象对物质的性质产生的影响。
一、实验装置描述在光的偏振实验中,我们通常会使用偏振片、晶体或光栅等器件作为实验装置。
偏振片是一种具有特殊结构的透明材料,它可以选择性地透过具有特定振动方向的光。
晶体或光栅则可以将光分解成特定振动方向的偏振分量。
二、实验过程和结果1. 过偏振片的实验取一块偏振片,将其放置在光源前方,并调整偏振片的方向。
我们会观察到在某个特定的方向上,偏振片完全透过光源发出的光,而其他方向上则几乎没有光通过。
2. 双偏振片之间的实验在这个实验中,我们将两块偏振片相互叠加,并调整它们之间的角度。
实验结果显示,当两块偏振片的振动方向平行时,光可以完全透过叠加后的偏振片;而当两块偏振片的振动方向垂直时,光无法透过叠加后的偏振片。
3. 光的偏振方向的测定我们可以使用偏振片的旋转测量方法来确定光的偏振方向。
通过旋转偏振片,当偏振片的振动方向与光的偏振方向垂直时,透过偏振片的光最小;而当二者平行时,透过偏振片的光最大。
4. 光的干涉实验在光的干涉实验中,我们将两束具有相同光程的偏振光叠加在一起。
实验结果显示,当两束光的偏振方向平行时,会出现明暗条纹的干涉图样。
三、实验应用光的偏振实验在科学研究和工业应用中有着广泛的应用。
以下是一些常见的应用领域:1. 光学领域光的偏振实验可以帮助研究者更深入地了解光的本质和性质,例如研究光的偏振现象和光的偏振介质对光的传播的影响。
2. 物质研究通过光的偏振实验,研究者可以研究物质对偏振光的吸收、透射和反射等现象,从而了解物质的性质和结构。
3. 光电子学光的偏振实验在光电子学和光通信领域有着重要的应用。
通过控制光的偏振态,可以实现光信号的调制、传输和解调等功能。
4. 物质检测和成像光的偏振实验可以应用在物质检测和成像领域。
光的偏振光的振动方向和偏振光的特性光的偏振:光的振动方向和偏振光的特性光是一种电磁波,在自然界中以波动形态传播。
当光传播时,其电场和磁场以垂直于传播方向的方式振动,而振动方向的不同导致了光的偏振现象的出现。
1. 光的振动方向光的电场振动方向决定了光的偏振性质。
根据电场振动方向的不同,光可以分为三种偏振光:线偏振光、圆偏振光和椭圆偏振光。
1.1 线偏振光线偏振光指的是电场在某一平面内振动的光,振动方向可以是任意的。
一束线偏振光可以分解为两个互相垂直振动的正弦曲线所表示的光,分别为“水平线偏振光”和“垂直线偏振光”。
其中,“水平线偏振光”的电场振动方向与传播方向垂直,“垂直线偏振光”的电场振动方向与传播方向平行。
1.2 圆偏振光圆偏振光指的是电场在传播方向上呈现出一个旋转的光。
电场的振动方向在传播过程中不断变化,形成一个连续的圆形或椭圆形轨迹。
1.3 椭圆偏振光椭圆偏振光是电场在垂直于传播方向的平面内振动,并且振动方向和振幅都随时间变化的光。
椭圆偏振光的电场振动方向可以是任意的。
2. 偏振光的特性偏振光具有一些特殊的性质,可以应用于各种技术和领域。
2.1 光的偏振性偏振光有一个明显的特点是只在特定的方向上振动。
利用偏振光的这个特性,可以通过相应的偏振片选择性地通过或者阻挡某些方向上的光,实现光的分离、滤波、调整等功能。
2.2 光的吸收和反射当平面偏振光照射到表面时,其能量只能吸收或反射在特定的方向上。
这一特性在光学材料的制备和调整中具有重要的应用。
2.3 光的传输和干涉利用偏振光的特性,可以进行光的传输和干涉的控制。
例如,在光纤通信中,利用光的偏振性可以避免光信号的干扰,提高传输质量。
2.4 光的显示和成像在3D电影和3D显示技术中,通过控制偏振光的方向和振动状态,使得图像在左右眼间产生差异,从而产生立体感。
3. 光的偏振和自然界光的偏振现象不仅仅存在于实验室和技术应用中,它也与自然界密切相关。
3.1 天空的偏振天空的蓝色是由于大气中的气体分子散射光的结果,而经过散射的光是偏振的,其中垂直于太阳线的偏振光较强。
光的偏振与偏振光的特性的原理光是一种电磁波,具有振动的性质。
而光的偏振就是光波振动方向的限定,它对于光的传播和应用有着重要的影响。
在本文中,我们将探讨光的偏振以及偏振光的特性的原理。
一、光的偏振原理光的偏振现象最早由荷兰物理学家荷斯特·克里斯蒂安·惠更斯(Christiaan Huygens)在17世纪提出。
他认为光是由一系列垂直于传播方向的振动组成的。
在没有受到外界干扰的情况下,光波的振动方向应该是各向同性的,即在任何平面上都均匀分布。
然而,在某些情况下,光的振动方向会被有选择地限定,形成偏振光。
光的偏振可以通过干涉、散射、吸收等过程实现。
其中,最常见的偏振方式是通过振动方向进行限制。
当光波振动方向被限制后,光的偏振就会产生。
一般来说,光的偏振可以分为线偏振、圆偏振和椭圆偏振三种类型。
二、线偏振光的原理与特性线偏振光是指光波在一个固定平面上振动的光。
它的振动方向可以是任意一个方向,但在一个平面内确保一致。
线偏振光的特性包括以下几个方面:1. 振动方向的限定:线偏振光的振动方向限制在一个平面内。
2. 光强变化:在某些情况下,线偏振光的光强可能会随着传播距离的增加而发生变化。
3. 光的传播和吸收:线偏振光在各向同性的介质中传播时会发生吸收。
4. 偏振器的作用:偏振器可以用来选择特定方向的线偏振光,并将其他方向的振动滤除。
三、圆偏振光的原理与特性圆偏振光是指光波在传播过程中,振动方向按照圆弧或者椭圆的方式改变的光。
圆偏振光的特性包括以下几个方面:1. 振动方向的旋转:圆偏振光的振动方向会沿着传播方向旋转。
2. 光强恒定:与线偏振光不同,圆偏振光在传播时光强保持不变。
3. 光的传播和反射:圆偏振光在介质界面上的传播和反射表现出特殊的规律。
4. 旋光现象:某些有机物质具有旋光性质,能够使偏振光方向发生旋转,称为旋光现象。
四、偏振光的应用偏振光在生活和科学研究中有着广泛的应用。
以下是几个常见的应用领域:1. 光学仪器:偏振片广泛用于光学仪器中,用来控制、调节光的偏振状态。
光的偏振实验原理
光的偏振实验是一种用来研究光波的偏振性质的实验方法。
光波是一种横波,传播方向和振动方向垂直。
偏振实验可以通过透过或反射光波的方法来观察光的偏振性质。
在偏振实验中,常用的光源是自然光源,例如太阳光或白炽灯光。
然而,自然光是由许多不同方向的振动波构成的,因此具有不同方向的偏振性质。
为了观察光的偏振性质,实验中通常使用偏振片。
偏振片是一种具有特殊结构的透明材料,可以选择性地允许某个方向的光波通过,而阻止其他方向的光波通过。
通过旋转偏振片的方向,可以改变通过偏振片的振动方向。
光的偏振实验还包括其他常用的装置,例如偏振片旋转仪。
偏振片旋转仪可以用来测量光的偏振方向或者测量两束光的偏振方向之间的夹角。
通过进行偏振实验,我们可以观察到一些有趣的现象。
例如,在通过两片互相垂直的偏振片时,当它们的偏振方向相同时,光可以完全透过,而当它们的偏振方向垂直时,光无法透过。
这是由于同一方向的振动波可以通过偏振片,而垂直方向的振动波无法通过。
另外,光的偏振实验还可以用来研究其他相关的现象,例如光的干涉和衍射。
通过使用不同类型的偏振片和其他光学元件,我们可以观察到光的干涉和衍射现象的变化。
总之,光的偏振实验是一种用来研究光波的偏振性质的重要实验方法。
通过观察和测量光的偏振现象,我们可以深入了解光的性质,并应用于各种光学和光电技术中。
光的偏振与偏振光的特性光是一种电磁波,具有振动方向。
当光波在一个平面内振动时,我们称其为偏振光。
而光的偏振与偏振光的特性是研究光学中的重要内容之一。
一、光的偏振现象光的偏振现象最早由荷兰科学家霍兰德于17世纪发现。
他观察到自然光经过某些介质后,只剩下了一个方向的振动,垂直于入射方向。
这种现象被称为光的偏振。
进一步的研究表明,只有垂直于特定方向的振动方向才能通过某些偏振片,其他方向的振动被滤除了。
二、偏振光的特性偏振光具有以下几个特性:1. 振动方向:偏振光的振动方向垂直于光的传播方向,即电矢量方向。
在数学上,可以用振动方向相对于参考轴(通常选取为X轴)的角度来表示,常用度数或弧度作为单位。
2. 强度:偏振光的强度是指单位面积上通过的光能量。
偏振光的强度与振动方向有关,当光的振动方向与偏振片的允许方向垂直时,光通过的能量最小,当两者平行时,光通过的能量最大。
3. 偏振态:根据偏振光的振动方向与参考轴的夹角,可以将偏振态分为:线偏振光(振动方向恒定的光)、圆偏振光(振动方向以轨迹呈圆形运动的光)和椭偏振光(振动方向以椭圆轨迹运动的光)。
4. 通透性:偏振片对偏振光的透过性取决于光的振动方向与偏振片的允许方向之间的夹角。
当两者平行时,光能够完全透过;当两者垂直时,光完全被滤除。
5. 干涉效应:偏振光具有干涉的特性。
当两束具有相同频率和相位的偏振光叠加时,会出现干涉现象。
干涉可以是增强效应,也可以是相消效应,进一步增进我们对光的理解。
6. 应用领域:偏振光在光学、电子学和通信等领域有广泛应用。
例如,在光学显微镜中,偏振光可以增强图像的对比度;在3D电影中,偏振光可以实现立体效果;在液晶显示器中,偏振光可以调控光的透过效果。
结语光的偏振与偏振光的特性对于我们了解光学现象和应用具有重要的意义。
通过研究光的振动方向、强度和偏振态等特性,我们可以更好地理解光的行为,并运用于各个领域的科学研究和技术应用中。
希望本文对您对光的偏振与偏振光的特性有所启发和帮助。
实验7 光的偏振特性研究光的干涉衍射现象揭示了光的波动性,但是还不能说明光波是纵波还是横波。
而光的偏振现象清楚地显示其振动方向与传播方向垂直,说明光是横波。
1808年法国物理学家马吕斯(Malus,1775—1812)研究双折射时发现折射的两束光在两个互相垂直的平面上偏振。
此后又有布儒斯特(Brewster,1781—1868)定律和色偏振等一些新发现。
光的偏振有别于光的其它性质,人的感觉器官不能感觉偏振的存在。
光的偏振使人们对光的传播规律(反射、折射、吸收和散射)有了新的认识。
本实验通过对偏振光的观察、分析和测量,加深对光的偏振基本规律的认识和理解。
偏振光的应用很广泛,从立体电影、晶体性质研究到光学计量、光弹、薄膜、光通信、实验应力分析等技术领域都有巧妙的应用。
一、实验目的1. 观察光的偏振现象,了解偏振光的产生方法和检验方法。
2. 了解波片的作用和用1/4波片产生椭圆和圆偏振光及其检验方法。
3. 通过布儒斯特角的测定,测得玻璃的折射率。
4. 验证马吕斯定律。
二、实验原理1. 自然光和偏振光光是一种电磁波,电磁波中的电矢量E就是光波的振动矢量,称作光矢量。
通常,光源发出的光波,其电矢量的振动在垂直于光的传播方向上作无规则的取向。
在与传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。
光的振动方向和传播方向所组成的平面称为振动面。
按照光矢量振动的不同状态,通常把光波分为自然光、部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光五种形式。
如果光矢量的方向是任意的,且在各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。
自然光通过介质的反射、折射、吸收和散射后,光波的电矢量的振动在某个方向具有相对优势,而使其分布对传播方向不再对称。
具有这种取向特征的光,统称为偏振光。
偏振光可分为部分偏振光、线偏振光(平面偏振光)、圆偏振光和椭圆偏振光。
如果光矢量可以采取任何方向,但不同方向的振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,这种光为部分偏振光。
如果光矢量的振动限于某一固定方向,则这种光称为线偏振光或平面偏振光。
如果光矢量的大小和方向随时间作有规律的变化,且光矢量的末端在垂直于传播方向的平面内的轨迹是椭圆,则称为椭圆偏振光;如果是圆则称为圆偏振光。
将自然光变成偏振光的过程称为起偏,用于起偏的装置称为起偏器;鉴别光的偏振状态的过程称为检偏,它所使用的装置称为检偏器。
实际上,起偏器和检偏器是可以通用的。
本实验所用的起偏器和检偏器均为分子型薄膜偏振片。
2.线偏振光的产生产生线偏振光的方法有反射产生偏振、多次折射产生偏振、双折射产生偏振和选择性吸收产生偏振等。
(1)反射产生偏振与布儒斯特定律当自然光入射到各向同性的两种介质(如空气和玻璃)分界面时,反射光和透射(折射)光一般为部分偏振光。
若改变入射角,则反射光的偏振程度也随之改变。
设两介质的折射率分别为1n 和2n ,可以证明,当入射角为某一特定值p ψ21tan p n n ψ= (1) 时,反射光变为线偏振光,其振动面垂直于入射面,平行于入射面振动的光反射率为零,而透射光为部分偏振光,如图1所示,其中“”表示振动面垂直于入射面的线偏振光,短线“-”表示振动面平行于入射面的线偏振光,圆圈和短线的数量表示偏振程度。
式(1)称为布儒斯特定律,p ψ为布儒斯特角,或称起偏振角。
根据光反射的这一特性,就可用调节入射角的方法获得线偏振光,也可以通过测量p ψ来计算折射率2n 。
例如,通过测量激光束从空气射向玻璃表面反射时的布儒斯特角p ψ可以测定玻璃相对空气的折射率。
(2)透射产生偏振当光波的入射角为布儒斯特角时,虽然反射光为线偏振光,但反射率很低(如空气和玻璃界面,反射光强约为入射光强的8%)。
对折射光而言,平行于入射面的振动分量全部透过界面,而垂直于入射面的振动分量仅一小部分被反射,大部分也透过了界面,所以透射光只是偏振化程度不高的部分偏振光。
如果自然光以p ψ入射到重叠的互相平行的玻璃片堆上,则经过多次折射,最后从玻璃片堆透射出来的光一般是部分偏振光。
如果玻璃片数目足够多时,则透射光也变为线偏振光,其振动面平行于入射面。
(3)晶体双折射产生偏振当一束光射入各向异性的晶体时,产生折射率不同的两束光的现象称为双折射现象。
当 图1 用玻璃片产生反射全偏振光光垂直于晶体表面入射而产生双折射现象时,如果将晶体绕光的入射方向慢慢转动,按原入射方向传播的那一束光方向不变,这一束折射光的方向满足折射定律,称为寻常光(o 光),它在介质中传播时,各个方向的速度相同。
另一束折射光线随着晶体的转动绕前一束光旋转,可见此光束不满足折射定律,它在各向异性介质内的速度随方向而变,称为非寻常光(e 光)。
在一些双折射晶体中,有一个或几个方向,o 光和e 光的传播速度相同,这个方向称为晶体的光轴。
光线在晶体内沿光轴传播时,不发生双折射,垂直于光轴传播时,e 光和o 光沿同一方向传播不再分离,但传播速度仍是不同。
光轴和光线构成的平面称为主截面。
o 光和e 光都是线偏振光,但其振动方向不同。
o 光电矢量振动方向垂直于自己的主截面,e 光的电矢量振动方向在自己的主截面内,o 光和e 光电矢量互相垂直。
利用晶体的双折射现象,可以做成复合棱镜,使其中一束折射光偏离原来的传播方向而得到线偏振光。
实验中采用格兰棱镜做成的偏振器,用以产生或检验线偏振光。
(4)二向色性产生偏振与偏振片有些晶体材料对自然光在其内部产生的偏振分量具有选择吸收作用,即对一种振动方向的线偏振光吸收强烈,而对与这一振动方向垂直的线偏振光吸收较少,这种现象称做二向色性。
例如,电气石天然晶体(铝硼硅酸盐)仅需约1mm 的厚度,就能将寻常光完全吸收,只透过非寻常光,即获得线偏振光。
偏振片是人工制造的具有二向色性的膜片。
每个偏振片的最易透过电场分量的方向叫做透振方向,也称偏振化方向。
即当光波穿过它时,平行于透振方向振动的光容易透过,垂直于透振方向振动的光则被吸收,从而获得线偏振光。
因此,自然光通过偏振片后,透射光基本上成为电矢量的振动方向与偏振化方向平行的线偏振光。
利用这类材料制成的偏振片可获得较大截面积的偏振光束,但由于吸收不完全,所得的偏振光只能达到一定的偏振度。
实验室常用偏振片得到偏振光。
偏振片既可以用作起偏器又可以作为检偏器。
3.马吕斯定律如果自然光通过起偏器后变成强度为I 0的线偏振光,再通过一个理想检偏器后,成为强度为I 的线偏振光,其透射光的强度为I = I 0 cos 2θ (2)此式称为马吕斯定律。
其中θ为起偏器与检偏器两个透振方向之间的夹角,改变θ角可以改变透过检偏器的光强。
根据马吕斯定律,线偏振光透过检偏器的光强随偏振面和检偏器的偏振化方向之间夹角θ将发生周期性变化。
当θ为0或π时,透射光强度最大;而当θ为2π或32π时,透射光强度为零,即当检偏器转动一周会出现两次消光现象。
如用普通偏振片做检偏器,则需引入透射系数k ,式(2)可改为I =kI 0 cos 2θ (3) 显然,当以光的传播方向为轴旋转检偏器时,每转900透射光强将交替出现极大和消光位置。
如果部分偏振光或椭圆偏振光通过检偏器,当旋转检偏器时,虽然透射光强每隔900也从极大变为极小,再由极小变为极大,但无消光位置。
而圆偏振光通过检偏器,当旋转检偏器时,透射光强则无变化。
4.椭圆偏振光和圆偏振光的产生若使线偏振光垂直射入厚度为d 的晶体中,发生双折射现象。
设晶体对o 光和e 光的折射率分别为0n 和e n ,则通过晶体后两束光的光程差为()o e n n dδ=- (4)经过晶体后,其位相差为 2()o e n n d πϕλ∆=- (5)其中λ是光在真空中的波长。
如果以平行光轴方向为x 坐标,垂直方向为y 坐标,由晶片出射后的o 光和e 光的振动可以用两个互相垂直、同频率、有固定位相差的简谐振动方程式表示:sin e x A t ω= (6)sin()o y A t ωϕ=+∆ (7)两式联立消去t ,可得合振动方程:222222cos()sin ()e o e ox y xy A A A A ϕϕ+-∆=∆ (8) 一般来说,此式为椭圆方程,合振动矢量的端点轨迹,一般是椭圆,因此称为椭圆偏振光。
决定椭圆形的因素是入射光的振动方向与光轴的夹角α和晶片的厚度d 。
但是,当2k ϕπ∆= (k =1,2,3,…)或(21)k ϕπ∆=+ (k =0,1,2,…) (9) 时,式(8)变为直线方程e o A x y A =或e o A x y A =- (10) 代表两个不同方向振动的线偏振光。
而当(21)2k πϕ∆=+(k =0,1,2,…) (11)时,光程差 ()o e n n d δ=-(21)4k λ=+ (12)式(8)成为正椭圆方程。
当o 45=α时,o e A A =合振动就是圆偏振光。
把双折射晶体沿光轴切割成平行平板,平板表面平行于光轴,这就是晶片。
能使振动互相垂直的两束线偏振光产生一定位相差的晶片叫做波片。
选定晶体后,对于某一波长的单色光,ϕ∆只取决于波片的厚度。
波片是从单轴双折射晶体上平行于光轴方向截下的薄片,它可以改变偏振光的偏振态。
(1) 当2k ϕπ∆=(k =1,2,3,…)时,光程差()o e n n d δ=-k λ=或o e k d n n λ=-,即这样的晶片能使o 光和e 光产生k λ的光程差,称为全波片(或λ波片)。
此时由式(8)可得直线方程,表示合振动为线偏振光(与入射线偏振光方向平行)。
(2) 当(21)k ϕπ∆=+(k =0,1,2,…)时,则光程差()o e n n d δ=-(21)2k λ=+。
此时晶片的厚度可使o 光和e 光产生(21)2k λ+光程差,称为二分之一波片(或2λ波片)由式(8)得直线方程,表示合振动仍为线偏振光(但与入射光的振动方向有2α的夹角)。
(3) 当2/)12(πϕ+=∆k (k =0,1,2,…)时,则光程差()o e n n d δ=-(21)4k λ=+,此时晶片的厚度可是o 光和e 光产生(21)4k λ+光程差,称为四分之一波片(或4λ波片)由式(8)得到正椭圆方程。
表示合振动为正椭圆偏振光。
4λ波片主要用于产生或检验椭圆偏振光和圆偏振光。
对于线偏振光垂直射入4λ波片时,且振动方向与波片光轴成α角时,合成的光偏振状态还有以下几种情况 ① 当0=α时,0=o A 可得到振动方向平行于光轴的线偏振光。
② 当2πα=时,0e A =可得到振动方向垂直于光轴的线偏振光。
③ 当4πα=时,o e A A =可得到圆偏振光。
④ 当α为其它值时,e o A A ≠经4λ波片透出的光为椭圆偏振光。