2020届高考物理总复习第6章碰撞与动量守恒第2课时碰撞反冲和火箭课件教科版
- 格式:pptx
- 大小:1.23 MB
- 文档页数:53
第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。
[注2] 外力的冲量在相互作用的时间内忽略不计。
[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。
[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。
[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。
2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。
3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。
4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。
[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。
(×)(2)系统动量不变是指系统的动量大小和方向都不变。
第二节动量守恒定律碰撞爆炸反冲【基础梳理】提示:不受外力所受外力的矢量和为零m1v′1+m2v′2-Δp2所受合外力为零合力为零远大于守恒不增加守恒增加守恒可能增加【自我诊断】判一判(1)两物体相互作用时若系统不受外力,则两物体组成的系统动量守恒.( )(2)动量守恒只适用于宏观低速.( )(3)当系统动量不守恒时无法应用动量守恒定律解题.( )(4)物体相互作用时动量守恒,但机械能不一定守恒.( )(5)若在光滑水平面上两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相等.( )(6)飞船做圆周运动时,若想变轨通常需要向前或向后喷出气体,该过程中系统动量守恒.( )提示:(1)√(2)×(3)×(4)√(5)√(6)√做一做(2019·安徽名校联考)如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确.对动量守恒定律的理解和应用【知识提炼】1.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的矢量和为零,则系统动量守恒.(2)近似守恒:系统受到的外力矢量和不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)某一方向上守恒:系统在某个方向上所受外力矢量和为零时,系统在该方向上动量守恒.2.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.3.动量守恒定律的“五性”4.【典题例析】(2018·高考全国卷Ⅰ)一质量为m 的烟花弹获得动能E 后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量.求(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度.[解析] (1)设烟花弹上升的初速度为v 0,由题给条件有E =12mv 2①设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有0-v 0=-gt ② 联立①②式得t =1g2E m. ③(2)设爆炸时烟花弹距地面的高度为h 1,由机械能守恒定律有E =mgh 1 ④火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为v 1和v 2.由题给条件和动量守恒定律有14mv 21+14mv 22=E ⑤ 12mv 1+12mv 2=0 ⑥由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹向上运动部分继续上升的高度为h 2,由机械能守恒定律有14mv 21=12mgh 2 ⑦联立④⑤⑥⑦式得,烟花弹向上运动部分距地面的最大高度为 h =h 1+h 2=2E mg .[答案] 见解析【迁移题组】迁移1 动量守恒的条件判断1.一颗子弹水平射入置于光滑水平面上的木块A 并留在其中,A 、B 用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹打击木块A 及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统( )A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判定动量、机械能是否守恒解析:选C.动量守恒的条件是系统不受外力或所受外力的合力为零,本题中子弹、两木块、弹簧组成的系统,水平方向上不受外力,竖直方向上所受外力的合力为零,所以动量守恒.机械能守恒的条件是除重力、弹力对系统做功外,其他力对系统不做功,本题中子弹射入木块瞬间有部分机械能转化为内能(发热),所以系统的机械能不守恒,故C正确,A、B、D错误.迁移2 某一方向上的动量守恒问题2.(多选)(2019·佛山模拟)如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑( )A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球能回到槽上高h处解析:选BC.在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B正确;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,故小球和槽都做匀速运动,选项C正确;小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球不能滑到槽上,选项D错误.迁移3 爆炸反冲现象中的动量守恒3.(2017·高考全国卷Ⅰ)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A.30 kg·m/s B.5.7×102 kg·m/sC.6.0×102 kg·m/s D.6.3×102 kg·m/s解析:选A.燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p,根据动量守恒定律,可得p-mv0=0,解得p=mv0=0.050 kg×600 m/s=30 kg·m/s,选项A正确.1.对反冲运动的三点说明2.对碰撞现象中规律的分析【知识提炼】1.碰撞遵守的规律(1)动量守恒,即p 1+p 2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E ′k1+E′k2或p 212m 1+p 222m 2≥p′212m 1+p′222m 2.(3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v′前≥v′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.2.碰撞模型类型 (1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m 1、速度为v 1的小球与质量为m 2的静止小球发生正面弹性碰撞为例,有 m 1v 1=m 1v′1+m 2v′2 12m 1v 21=12m 1v′21+12m 2v′22 解得v′1=(m 1-m 2)v 1m 1+m 2,v′2=2m 1v 1m 1+m 2.结论:①当两球质量相等时,v′1=0,v′2=v 1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v′1>0,v′2>0,碰撞后两球都沿速度v 1的方向运动. ③当质量小的球碰质量大的球时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来. ④撞前相对速度与撞后相对速度大小相等. (2)完全非弹性碰撞①撞后共速.②有动能损失,且损失最多.【典题例析】如图所示,在足够长的光滑水平面上,物体A、B、C 位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.[审题指导] 由于是弹性碰撞,则同时满足动量守恒和机械能守恒,并且物体间碰后速度还要满足实际情况,即前面的速度大于后面的速度.[解析] A向右运动与C发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A的速度为v0,第一次碰撞后C的速度为v C1,A的速度为v A1.由动量守恒定律和机械能守恒定律得mv0=mv A1+Mv C1 ①12mv 20=12mv 2A1+12Mv 2C1 ②联立①②式得 v A1=m -M m +M v 0③ v C1=2m m +Mv 0④如果m>M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m<M 的情况.第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A2,B 的速度为v B1,同样有v A2=m -M m +M v A1=⎝ ⎛⎭⎪⎫m -M m +M 2v 0⑤根据题意,要求A 只与B 、C 各发生一次碰撞,应有 v A2≤v C1⑥联立④⑤⑥式得m 2+4mM -M 2≥0 解得m≥(5-2)M另一解m≤-(5+2)M 舍去. 所以,m 和M 应满足的条件为 (5-2)M≤m<M. [答案] (5-2)M≤m<M【迁移题组】迁移1 碰撞的可能性分析1.两球A 、B 在光滑水平面上沿同一直线、同一方向运动,m A =1 kg ,m B =2 kg ,v A =6 m/s ,v B =2 m/s.当A 追上B 并发生碰撞后,两球A 、B 速度的可能值是( )A .v′A =5 m/s ,v′B =2.5 m/s B .v′A =2 m/s ,v′B =4 m/sC .v′A =-4 m/s ,v′B =7 m/sD .v′A =7 m/s ,v′B =1.5 m/s解析:选B.虽然题中四个选项均满足动量守恒定律,但A 、D 两项中,碰后A 的速度v′A 大于B 的速度v′B ,必然要发生第二次碰撞,不符合实际;C 项中,两球碰后的总动能E ′k =12m A v′2A +12m B v′2B =57 J ,大于碰前的总动能E k =22 J ,违背了能量守恒定律;而B 项既符合实际情况,也不违背能量守恒定律,故B 项正确.迁移2 弹性碰撞规律求解2.(2016·高考全国卷Ⅲ)如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m.两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动,此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g.求物块与地面间的动摩擦因数满足的条件.解析:设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12mv 20>μmgl ①即μ<v 22gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1,由能量守恒定律有12mv 20=12mv 21+μmgl③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v′1、v′2,由动量守恒定律和能量守恒定律有mv 1=mv′1+3m4v′2④ 12mv 21=12mv′21+12⎝ ⎛⎭⎪⎫3m 4v′22 ⑤ 联立④⑤式解得v′2=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知 12⎝ ⎛⎭⎪⎫3m 4v′22≤μ3m4gl ⑦ 联立③⑥⑦式,可得μ≥32v 2113gl⑧联立②⑧式,可得a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件为32v 20113gl ≤μ<v 22gl.答案:32v 20113gl ≤μ<v 22gl迁移3 非弹性碰撞的分析3.(多选)(2019·宁夏银川模拟)A 、B 两球沿一直线运动并发生正碰,如图所示为两球碰撞前、后的位移随时间变化的图象,a 、b 分别为A 、B 两球碰前的位移随时间变化的图象,c 为碰撞后两球共同运动的位移随时间变化的图象,若A 球质量是m =2 kg ,则由图判断下列结论正确的是 ( )A .碰撞前、后A 球的动量变化量为4 kg ·m/sB .碰撞时A 球对B 球所施的冲量为-4 N ·sC .A 、B 两球碰撞前的总动量为3 kg ·m/sD .碰撞中A 、B 两球组成的系统损失的动能为10 J解析:选ABD.根据题图可知,碰前A 球的速度v A =-3 m/s ,碰前B 球的速度v B =2 m/s ,碰后A 、B 两球共同的速度v =-1 m/s ,故碰撞前、后A 球的动量变化量为Δp A =mv -mv A =4 kg ·m/s ,选项A 正确;A 球的动量变化量为4 kg ·m/s ,碰撞过程中动量守恒,B 球的动量变化量为-4 kg ·m/s ,根据动量定理,碰撞过程中A 球对B 球所施的冲量为-4 N ·s ,选项B 正确;由于碰撞过程中动量守恒,有mv A +m B v B =(m +m B )v ,解得m B =43 kg ,故碰撞过程中A 、B 两球组成的系统损失的动能为ΔE k =12mv 2A +12m B v 2B -12(m +m B )v2=10 J ,选项D 正确;A 、B 两球碰撞前的总动量为p =mv A +m B v B =(m +m B )v =-103kg ·m/s ,选项C 错误.1.碰撞现象满足的三个规律2.碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解.(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足: v′1=m 1-m 2m 1+m 2v 1 v′2=2m 1m 1+m 2v 1(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1.当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹.动量守恒定律的应用实例【知识提炼】1.“人船模型”(1)两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.(2)“人船模型”的特点①两物体满足动量守恒定律:m 1v 1-m 2v 2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1.③应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的. 2.“子弹打木块”模型(1)木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒. (2)两者发生的相对位移为子弹射入的深度x 相.(3)根据能量守恒定律,系统损失的动能等于系统增加的内能.(4)系统产生的内能Q =F f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.(5)当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L(L 为木块的长度).【典题例析】如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)[解析] 设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,先选乙船、人和货物为研究系统,由动量守恒定律得12mv0=11mv1-mv min ①再选甲船、人和货物为研究系统,由动量守恒定律得10m×2v0-mv min=11mv2 ②为避免两船相撞应满足v1=v2 ③联立①②③式得v min=4v0.[答案] 4v0【迁移题组】迁移1 “人船模型”1.(2019·河南淮阳中学模拟)有一条捕鱼小船停靠在湖边码头,小船又窄又长,一位同学想用一个卷尺测量它的质量.他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船,用卷尺测出船后退的距离d 和船长L.已知他自身的质量为m ,则船的质量为( )A .m (L +d )dB .m (L -d )dC .mL dD .m (L +d )L解析:选B.画出如图所示的草图,设人走动时船的速度大小为v ,人的速度大小为v′,船的质量为M ,人从船尾走到船头所用时间为t.则v =d t ,v′=L -dt ;人和船组成的系统在水平方向上动量守恒,取船的速度方向为正方向,根据动量守恒定律得Mv -mv′=0,解得船的质量M =m (L -d )d.迁移2 “子弹打木块”模型2.(多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J解析:选AB.法一:设子弹的初速度为v 0,与木块的共同速度为v ,则由动量守恒定律有mv 0=(M +m)v ;系统产生的内能Q =fd =12mv 20-12(m +M)v 2,木块得到的动能为E k1=fs =12Mv 2,其中,f 为子弹与木块间的摩擦力,d 为子弹在木块内运动的位移,s 为木块相对于地面运动的位移,变形可得Q =M +mm E k1>E k1,故选项A 、B 正确.法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,△OAt 的面积表示木块的位移s ,△OAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d>s ,故系统产生的内能大于木块得到的动能.迁移3 “弹簧类”模型3.(多选)光滑水平面上放有质量分别为2m 和m 的物块A 和B ,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A 的加速度大小为a ,两物块刚要离开弹簧时物块A 的速度大小为v ,则( )A .物块B 的加速度大小为a 时弹簧的压缩量为 x2B .物块A 从开始运动到刚要离开弹簧时位移大小为 23xC .物块开始运动前弹簧的弹性势能为 32mv 2D .物块开始运动前弹簧的弹性势能为3mv 2解析:选AD.当物块A 的加速度大小为a 时,根据胡克定律和牛顿第二定律可得kx =2ma.当物块B 的加速度大小为a 时,有kx′=ma ,故x′=x2,选项A 正确;取水平向左为正方向,根据系统动量守恒得2m x A t -m x B t =0,又因为x A +x B =x ,解得物块A 的位移为x A =x3,选项B 错误;由动量守恒定律可得0=2mv -mv B ,得物块B 刚离开弹簧时的速度为v B =2v ,由系统机械能守恒可得物块开始运动前弹簧的弹性势能为E p =12·2mv 2+12mv 2B =3mv 2,选项C 错误,D 正确.动量守恒定律的应用(多选)在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心发生对心碰撞如图(a)所示,碰后运动员用冰壶刷摩擦蓝壶前进方向的冰面来减小阻力,碰撞前后两壶运动的v-t图线如图(b)中实线所示,其中红壶碰撞前后的图线平行,两冰壶质量均为19 kg,则( )A .碰后蓝壶速度为0.8 m/sB .碰后蓝壶移动的距离为2.4 mC .碰撞过程两壶损失的动能为7.22 JD .碰后红、蓝两壶所受摩擦力之比为5∶4 答案:AD(2019·河南郑州模拟)如图所示,光滑水平地面上有一小车,车上有固定的光滑斜面和连有轻弹簧的挡板,弹簧处于原长状态,自由端恰在C 点,小车(包括光滑斜面和连有弹簧的挡板)总质量为M =2 kg.物块从斜面上A 点由静止滑下,经过B 点时无能量损失.已知物块的质量m =1 kg ,A 点到B 点的竖直高度为h =1.8 m ,BC 的长度为L =3 m ,BD 段光滑.g 取10 m/s 2.求在运动过程中:(1)弹簧弹性势能的最大值; (2)物块第二次到达C 点的速度.解析:(1)物块由A 点到B 点的过程中,由动能定理得mgh =12mv 2B -0,代入数据解得v B =6 m/s.物块由B 点运动到将弹簧压缩到最短的过程中,系统动量守恒,取v B 的方向为正方向,mv B =(M +m)v ,弹簧压缩到最短时弹簧的弹性势能最大,由能量守恒可得E pmax =12mv 2B -12(M +m)v 2,由以上两式可得E pmax =12 J.(2)物块由B 点运动到第二次到达C 点的过程中,系统动量守恒,取v B 方向为正方向,则有mv B =mv C+Mv′,物块由B 点运动到第二次到达C 点的整个过程中,根据机械能守恒,有12mv 2B =12mv 2C +12Mv′2,联立以上两式并结合题意可解得v C =-2 m/s ,即物块第二次到达C 点的速度大小为2 m/s ,方向水平向左.答案:见解析(建议用时:40分钟)一、单项选择题1.如图所示,甲木块的质量为m 1,以v 的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m 2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )A .甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的动能守恒解析:选C.两木块在光滑水平地面上相碰,且中间有弹簧,则碰撞过程系统的动量守恒,机械能也守恒,故选项A、B错误,选项C正确;甲、乙两木块碰撞前、后动能总量不变,但碰撞过程中有弹性势能,故动能不守恒,只是机械能守恒,选项D错误.2.(2019·泉州检测)有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是( )A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v解析:选C.在最高点水平方向动量守恒,由动量守恒定律可知,3mv0=2mv+mv′,可得另一块的速度为v′=3v0-2v,对比各选项可知,答案选C.3.如图所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是( )A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动解析:选D.选向右为正方向,则A的动量p A=m·2v0=2mv0,B的动量p B=-2mv0.碰前A、B的动量之和为零,根据动量守恒,碰后A、B的动量之和也应为零,可知四个选项中只有选项D符合题意.4.将静置在地面上,质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A .m M v 0B .M m v 0C .M M -mv 0 D .m M -mv 0 解析:选D.应用动量守恒定律解决本题,注意火箭模型质量的变化.取向下为正方向,由动量守恒定律可得:0=mv 0-(M -m)v′故v′=mv 0M -m,选项D 正确.5.如图所示,小车(包括固定在小车上的杆)的质量为M ,质量为m 的小球通过长度为L 的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O 点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是( )A .2LM M +mB .2Lm M +mC .ML M +mD .mL M +m解析:选B.分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O 点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L.小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有mv 1=Mv 2,故ms 1=Ms 2,s 1+s 2=2L ,其中s 1代表小球的水平位移大小,s 2代表小车的水平位移大小,因此s 2=2LmM +m,选项B 正确.6.(2019·江西赣州信丰模拟)如图所示,B 、C 、D 、E 、F ,5个小球并排放置在光滑的水平面上,B 、C 、D 、E ,4个球质量相等,而F 球质量小于B 球质量,A 球的质量等于F 球质量.A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后( )A.3个小球静止,3个小球运动B.4个小球静止,2个小球运动C.5个小球静止,1个小球运动D.6个小球都运动解析:选A.因A、B质量不等,M A<M B.A、B相碰后A速度向左运动,B向右运动.B、C、D、E质量相等,弹性碰撞后,不断交换速度,最终E有向右的速度,B、C、D静止.E、F质量不等,M E>M F,则E、F 都向右运动.所以碰撞后B、C、D静止;A向左,E、F向右运动.故A正确,B、C、D错误.7.2017年7月9日,斯诺克世界杯在江苏无锡落下帷幕,由丁俊晖和梁文博组成的中国A队在决赛中1比3落后的不利形势下成功逆转,最终以4比3击败英格兰队,帮助中国斯诺克台球队获得了世界杯三连冠.如图所示为丁俊晖正在准备击球,设在丁俊晖这一杆中,白色球(主球)和花色球碰撞前、后都在同一直线上运动,碰前白色球的动量p A=5 kg·m/s,花色球静止,白色球A与花色球B发生碰撞后,花色球B的动量变为p′B=4 kg·m/s,则两球质量m A与m B间的关系可能是( )A .mB =m A B .m B =14m AC .m B =16m AD .m B =6m A解析:选A.由动量守恒定律得p A +p B =p′A +p′B ,解得p′A =1 kg ·m/s ,根据碰撞过程中总动能不增加,则有p 2A 2m A ≥p′2A 2m A +p′2B 2m B ,代入数据解得m B ≥23m A ,碰后两球同向运动,白色球A 的速度不大于花色球B的速度,则p′A m A ≤p′B m B ,解得m B ≤4m A ,综上可得23m A ≤m B ≤4m A ,选项A 正确.二、多项选择题8.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg ·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4 kg ·m/s ,则( )A .该碰撞为弹性碰撞B .该碰撞为非弹性碰撞C .左方是A 球,碰撞后A 、B 两球速度大小之比为2∶5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1∶10解析:选AC.由m B =2m A ,p A =p B 知碰前v B <v A ,若右方为A 球,由于碰前动量都为6 kg ·m/s ,即都向右运动,两球不可能相碰;若左方为A 球,设碰后二者速度分别为v′A 、v′B ,由题意知p′A =m A v′A =2 kg ·m/s ,p ′B =m B v′B =10 kg ·m/s ,解得v′A v ′B =25.碰撞后A 球动量变为2 kg ·m/s ,B 球动量变为10 kg ·m/s ,又m B =2m A ,由计算可知碰撞前后A 、B 两球动能之和不变,即该碰撞为弹性碰撞,选项A 、C 正确.9.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则。
专题6.2 碰撞、反冲与动量守恒定律的应用1.理解动量守恒定律的确切含义,知道其适用范围。
2.掌握动量守恒定律解题的一般步骤。
3.会应用动量守恒定律解决一维运动有关问题。
知识点一 动量守恒定律及其应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.(2)动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′或Δp 1=-Δp 2.2.系统动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.知识点二 碰撞1.概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类 种类动量是否守恒 机械能是否守恒 弹性碰撞守恒 守恒 非弹性碰撞守恒 有损失 完全非弹性碰撞守恒 损失最大 【拓展提升】1.弹性碰撞后速度的求解根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 21+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ②解得v 1′=1212212()2m m v m v m m -++ v 2′=2121112()2m m v m v m m -++ 2.弹性碰撞分析讨论当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度。
当碰前物体2的速度为零时,v 2=0,则:v 1′=12112()m m v m m -+,v 2′=2m 1v 1m 1+m 2, (1)m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度。
2019年高考物理总复习第六章碰撞与动量守恒第2课时碰撞反冲和火箭课时训练教科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理总复习第六章碰撞与动量守恒第2课时碰撞反冲和火箭课时训练教科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理总复习第六章碰撞与动量守恒第2课时碰撞反冲和火箭课时训练教科版的全部内容。
第2课时碰撞反冲和火箭1。
(2018·福建泉州质检)“爆竹声中一岁除,春风送暖入屠苏”,爆竹声响是辞旧迎新的标志,是喜庆心情的流露。
有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向东,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向东;则另一块的速度为( C )A.3v0-vB.2v0—3vC.3v0—2vD.2v0+v解析:由动量守恒定律3mv0=2mv+mv′,得v′=3v0—2v,选项C正确.2.(多选)A,B两球沿同一条直线运动,如图所示的x t图像记录了它们碰撞前后的运动情况,其中a,b分别为A,B碰撞前的x t图像.c为碰撞后它们的x t图像.若A球质量为1 kg,则B球质量及碰后它们的速度大小为(BD )A.2 kgB. kgC.4 m/s D。
1 m/s解析:由图像可知碰撞前二者都做匀速直线运动,v a= m/s= —3 m/s,v b= m/s=2 m/s,碰撞后二者连在一起做匀速直线运动,v c=m/s=—1 m/s。
碰撞过程中动量守恒,即m A v a+m B v b=(m A+m B)v c可解得m B= kg由以上可知选项B,D正确.3。