人教版八年级上册数学 全等三角形专题练习(解析版)
- 格式:doc
- 大小:1.49 MB
- 文档页数:20
人教版八年级上册数学 全等三角形专题练习(解析版)
一、八年级数学轴对称三角形填空题(难)
1.△ABC 与△DEF 是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF 与△ABC 按如图所示的方式叠放在一起,使△ABC 保持不动,△DEF 运动,且满足点E 在边BC 上运动(不与B ,C 重合),边DE 始终经过点A ,EF 与AC 交于点M .在△DEF 运动过程中,若△AEM 能构成等腰三角形,则BE 的长为______.
【答案】363【解析】
【分析】
分若AE =AM 则∠AME =∠AEM =45°;若AE =EM ;若MA =ME 则∠MAE =∠AEM =45°三种情况讨论解答即可;
【详解】
解:①若AE =AM 则∠AME =∠AEM =45°
∵∠C =45°
∴∠AME =∠C
又∵∠AME >∠C
∴这种情况不成立;
②若AE =EM
∵∠B =∠AEM =45°
∴∠BAE+∠AEB =135°,∠MEC+∠AEB =135°
∴∠BAE =∠MEC
在△ABE 和△ECM 中,
B BAE CEN
AE EII C ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△ABE ≌△ECM (AAS ),
∴CE =AB 6,
∵AC =BC 2AB =3
∴BE =23﹣6;
③若MA =ME 则∠MAE =∠AEM =45°
∵∠BAC =90°,
∴∠BAE =45°
∴AE 平分∠BAC
∵AB =AC ,
∴BE =12
BC =3. 故答案为23﹣6或3.
【点睛】
本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.
2.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.
【答案】①③④
【解析】
【分析】
①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则
∠C=12
∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于
∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.
【详解】
∵∠BAC=90°,AD ⊥BC ,
∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,
∴∠ABC=∠DAC ,∠BAD=∠C ,
故①正确;
若∠EBC=∠C ,则∠C=
12
∠ABC , ∵∠BAC=90°,
那么∠C=30°,但∠C 不一定等于30°,
故②错误;
∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,
∴∠ABF=∠EBD ,
∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,
又∵∠BAD=∠C ,
∴∠AFE=∠AEF ,
∴AF=AE ,
故③正确;
∵AG 是∠DAC 的平分线,AF=AE ,
∴AN ⊥BE ,FN=EN ,
在△ABN 与△GBN 中, ∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
,
∴△ABN ≌△GBN (ASA ),
∴AN=GN ,
又∵FN=EN ,∠ANE=∠GNF ,
∴△ANE ≌△GNF (SAS ),
∴∠NAE=∠NGF ,
∴GF ∥AE ,即GF ∥AC ,
故④正确;
∵AE=AF ,AE=FG ,
而△AEF 不一定是等边三角形,
∴EF 不一定等于AE ,
∴EF 不一定等于FG ,
故⑤错误.
故答案为:①③④.
【点睛】
本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.
3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.
【答案】10
【解析】
利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.
故答案为10.
4.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.
【答案】30°.
【解析】
【分析】
如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,
∠AOB=1
2
∠P'O P''=30°.