5.4一次函数的图象
- 格式:ppt
- 大小:453.00 KB
- 文档页数:20
一次函数的图象介绍一次函数,又称线性函数,是形如y = ax + b的函数,其中a和b是常数。
一次函数是数学中的基本概念之一,具有高度的实用性和广泛的应用范围。
在本文档中,我们将探讨一次函数的图象、性质和画图方法。
一次函数的图象特点一次函数的图象呈直线,其特点包括: - 直线斜率:斜率a决定了直线的倾斜程度。
当a为正数时,直线向右上方倾斜;当a为负数时,直线向右下方倾斜;当a为0时,直线为水平线。
- y截距:常数b决定了直线与y轴的交点位置。
当b为正数时,直线在y轴上方与之交叉;当b为负数时,直线在y轴下方与之交叉;当b为0时,直线通过原点。
- 斜率变化:当a的绝对值增大时,直线斜率的绝对值也增大,表示直线的倾斜程度增大;当a的绝对值减小时,直线斜率的绝对值也减小,表示直线的倾斜程度减小。
一次函数的图象示例下面以几个示例说明一次函数的图象:示例1: y = 2x + 3考虑函数y = 2x + 3,我们绘制其图象。
根据图象特点,我们知道该函数的斜率为2,y截距为3。
通过选择2个点,并确定直线,我们可以轻松画出图象。
选择x = 0时,得到y = 2 * 0 + 3 = 3,因此第一个点为(0, 3)。
选择x = 1时,得到y = 2 * 1 + 3 = 5,因此第二个点为(1, 5)。
连接这两个点,我们得到直线的图象。
示例2: y = -0.5x - 2考虑函数y = -0.5x - 2,同样我们绘制其图象。
根据图象特点,我们知道该函数的斜率为-0.5,y截距为-2。
选择x = 0时,得到y = -0.5 * 0 - 2 = -2,因此第一个点为(0, -2)。
选择x = 4时,得到y = -0.5 * 4 - 2 = -4,因此第二个点为(4, -4)。
通过连接这两个点,我们得到直线的图象。
画一次函数图象的方法通过上述示例,我们可以总结出画一次函数图象的方法: 1. 确定斜率a和y 截距b。
专题 5.4 一次函数的图象 模块一:知识清单 知识点1-4 一次(正比例)函数的图象与性质1)一次函数图象是一条直线;2)已知两点可以作图,也可求出解析式;3)交y 轴于点(0,b ),交x 轴于点(b k -,0); 4)过象限、增减性 0b >(过一、二象限) 0b <(过三、四象限) 0b =(过原点)0k >(过一、三象限) y 随x 的增大而增大经过第一、二、三象限 经过第一、三、四象限经过第一、三象限 0k <(过二、四象限) y 随x 的增大而减小经过第一、二、四象限 经过第二、三、四象限经过第二、四象限 5)函数图象大小比较:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低。
6) 一次函数的平移与位置关系1)一次函数11y k x b =+与22y k x b =+的位置关系:两直线平行⇔12=k k 且12b b ≠ 两直线垂直⇔12=1k k ⋅-2)、一次函数的平移法则:左加右减,上加下减。
模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河南·洛阳市第二外国语学校八年级期中)当0x >时,y 与x 之间的函数解析式为2y x =,当0x ≤时,y 与x 之间的函数解析式为2y x =-,则在同一直角坐标系中y 与x 之间的函数关系图象大致为图中的( )A .B .C .D . 【答案】C【分析】根据正比例函数的图象和性质判断即可;【详解】解:∵当0x >时,2y x =,∴此时函数在第一象限,∵当0x ≤时,2y x =-,∴此时函数过原点及第二象限,故选: C .【点睛】本题考查了正比例函数的性质:在y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大,直线经过原点及第一、三象限, 当k <0时,y 随x 的增大而减小,直线经过原点及第二、四象限. 2.(2022·辽宁大连·八年级阶段练习)下列函数中,y 随x 的增大而减小的是( )A .42y x =-B .23y x =-C .13y x =D .1y x =- 【答案】A【分析】根据一次函数的增减性进行判断即可.【详解】解:A. 42y x =-,∵k =-2<0,∴y 随x 的增大而减小,故该选项符合题意;B. 23y x =-,∵k =2>0,∴y 随x 的增大而增大,故该选项不符合题意;C. 13y x =,∵k =13>0,∴y 随x 的增大而增大,故该选项不符合题意;D. 1y x =-,∵k =1>0,∴y 随x 的增大而增大,故该选项不符合题意.故选:A .【点睛】本题考查一次函数的增减性,熟记当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小是解题关键.3.(2022•陇县一模)若正比例函数y =4x 的图象经过点A (2,3﹣m ),则m 的值为( )A .6B .﹣6C .5D .﹣5【思路点拨】根据正比例函数y =4x 的图象经过点A (2,3﹣m ),可以得到3﹣m =4×2,从而可以求得m 的值.【答案】解:∵正比例函数y =4x 的图象经过点A (2,3﹣m ),∴3﹣m =4×2,解得m =﹣5,故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.4.(2022·广东梅州·八年级期末)若点A (1x ,-1),B (2x ,-3),C (3x ,4)在一次函数y =-2x +m (m 是常数)的图象上,则1x ,2x ,3x 的大小关系是( )A .1x >2x >3xB .2x >1x >3xC .1x >3x >2xD .3x >2x >1x【答案】B【分析】利用一次函数的增减性判定即可.【详解】解:由y =-2x +m 知,函数值y 随x 的增大而减小,∵4>-1>-3,A (x 1,-1),B (x 2,-3),C (x 3,4),∴x 2>x 1>x 3.故选:B .【点睛】本题考查了一次函数的增减性,解题的关键是通过a =-2<0得知函数值y 随x 的增大而减小,反之x 随y 的增大也减小.5.(2022·河北清河·八年级期末)若0kb <,0b k ->,则一次函数y kx b =+与y bx k =+在同一坐标系中的大致图象为( )A .B .C .D .【答案】D【分析】由于k b 、的符号不能确定,只能对每个选项逐次分析.【详解】由0kb <可得:k b 、异号,由0b k ->得:0b >,从而:0k <.A.下面的直线:k b 、同号,故错误;B.上面的直线:k b 、同号,故错误;C.两条直线,一条直线直线k b 、同号、一条直线k b 、异号,故错误;D.两条直线k b 、都异号,故正确;故选:D .【点睛】本题考查一次函数图像与系数的关系,重点是掌握根据k b 、的取值,确定图像. 6.(2022·湖南常德·八年级期末)关于一次函数21y x =-+的图象和性质,下列结论不正确的是( ) A .图象与直线2y x =-平行B .图象与y 轴的交点坐标是(01),C .图象经过第一、二、四象限D .y 随自变量x 的增大而增大【答案】D【分析】根据一次函数的图象和性质,斜率相同,直线平行;当0x =时,1y =,得图象与y 轴的坐标;0k <,0b >,图像经过第一、二、四象限;0k <,y 随自变量x 的增大而减小,即可.【详解】∵两直线比例系数相同,直线平行又∵21y x =-+,2k =-,直线2y x =-,2k =-∴一次函数21y x =-+的图象与直线2y x =-平行∴A 正确;∵0x =时,1y =∴图像与y 轴的交点坐标是0,1∴B 正确;∵21y x =-+中20k =-<,10b =>∴图象经过第一、二、四象限∴C 正确;∵0k <,y 随自变量x 的增大而减小∴21y x =-+中20k =-<∴一次函数21y x =-+中,y 随自变量x 的增大而减小∴D 是错误的.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是熟练掌握一次函数的性质.7.(2022•雁塔区模拟)若直线y =kx +b (k ≠0)的图象经过点A (﹣1,1).且与y 轴的交点在x 轴的下方.则k 的取值范围是( )A .k <﹣1B .k >﹣1C .k <1D .k >1【思路点拨】由直线y =kx +b (k ≠0)的图象与y 轴的交点在x 轴的下方,可得出b <0,由直线y =kx +b (k ≠0)的图象经过点A (﹣1,1),可得出1=﹣k +b ,结合b <0,即可求出k 的取值范围.【答案】解:∵直线y =kx +b (k ≠0)的图象与y 轴的交点在x 轴的下方,∴b <0,∵直线y =kx +b (k ≠0)的图象经过点A (﹣1,1),∴1=﹣k +b ,∴b =1+k <0∴k <﹣1.故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx +b 是解题的关键.8.(2022•台江区校级期中)若点(x 1,y 1)、(x 2,y 2)是一次函数y =ax +2图象上不同的两点,记m =(x 1﹣x 2)(y 1﹣y 2),当m <0时,a 的取值范围是( )A .a >0B .a <0C .a <1D .a >1【思路点拨】由已知条件可判断出y 随x 的增大而减小,根据一次函数图象增减性与一次项系数的关系,可得a <0.【答案】解:∵点(x 1,y 1)、(x 2,y 2)是一次函数y =ax +2图象上不同的两点,m =(x 1﹣x 2)(y 1﹣y 2)<0,∴x 1﹣x 2与y 1﹣y 2异号,∴该图象是y 随x 的增大而减小,∴a <0.故选:B .【点睛】此题考查了一次函数图象上点的坐标特征,解决本题的关键是要根据函数的增减性进行推理.9.(2022•鼓楼区校级期中)如果M (x 1,y 1),N (x 2,y 2)是一次函数y =kx ﹣2的图象的两点,且x 1﹣x 2=﹣1,y 1﹣y 2=3,那么k 的值为( )A .1B .2C .﹣3D .【思路点拨】将M (x 1,y 1),N (x 2,y 2)代入一次函数y =kx ﹣2的解析式,结合x 1﹣x 2=﹣1,y 1﹣y 2=3,即可求解.【答案】解:∵M (x 1,y 1),N (x 2,y 2)是一次函数y =kx ﹣2的图象的两点,∴y 1=kx 1﹣2,y 2=kx 2﹣2,∴y 1﹣y 2=kx 1﹣2﹣(kx 2﹣2)=k (x 1﹣x 2 ),∵y 1﹣y 2=3,∴k (x 1﹣x 2 )=3,∵x 1﹣x 2=﹣1,∴﹣k =3,解得k =﹣3.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征,代数式整体思想,解决本题关键是代入后的变形.10.(2022•郑州期中)已知关于x 的一次函数为y =ax +2a ﹣2,下列说法中正确的个数为( ) ①若函数图象经过原点,则a =1; ②若a =,则函数图象经过第一、三、四象限;③函数图象与y 轴交于点(0,﹣2);④无论a 取任何实数,函数的图象总经过点(﹣2,﹣2).A .1个B .2个C .3个D .4个 【思路点拨】把(0,0)代入即可判断①;根据二次函数的性质即可判断②;令x =0,即可求得函数图象与y 轴交于点(0,2a ﹣2),即可判断③;把x =﹣2代入解析式求得y =﹣2,即可判断④.【答案】解:①∵函数图象经过原点,∴2a ﹣2=0,∴a =1,故正确;②∵a =>0,∴2a ﹣2=﹣1<0,∴函数图象经过第一、三、四象限,故正确;③当x =0时,y =2a ﹣2,∴函数图象与y 轴交于点(0,2a ﹣2),故错误;④∵y =ax +2a ﹣2=a (x +2)﹣2,∴x =﹣2时,y =﹣2,∴函数的图象总经过(﹣2,﹣2),故正确.故选:C .【点睛】本题考查一次函数的图象及性质,一次函数图象上点的坐标特征;熟练掌握一次函数的性质是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·河南·八年级期末)甲,乙两名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点()0,2-;乙:y 随x 的增大而减小;根据他们的叙述,写出满足上述性质的一个一次函数的表达式为______.【答案】2y x =--【分析】设一次函数解析式为y =kx +b ,根据函数的性质得出2b =-,k < 0,从而确定一次函数解析式,本题答案不唯一.【详解】解:设一次函数解析式为y =kx +b ,∵函数的图象经过点(0,-2),∴2b =- ,∵y 随x 的增大而减小,∴k <0, 当取k =−1时,一次函数表达式为:2y x =--,∴满足上述性质的一个函数表达式为:2y x =--(答案不唯一).故答案为:2y x =--.【点睛】本题主要考查一次函数的性质,数形结合是解题的关键,属于开放型的题型.12.(2022•海陵区一模)将一次函数y =3x +2的图象向下平移3个单位,则平移后一次函数的图象与y 轴的交点坐标是 .【思路点拨】先求出该函数图象向下平移3个单位后的直线解析式,再令x =0,求出y 的值即可.【答案】解:由“上加下减”的原则可知:将一次函数y =3x +2的图象向下平移3个单位,则平移后一次函数的解析式为:y =3x +2﹣3,即y =3x ﹣1,∴当x =0时,y =﹣1,∴平移后与y 轴的交点坐标为(0,﹣1),故答案为(0,﹣1).【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.(2022•鼓楼区校级期中)若一次函数y =(2m ﹣1)x +3﹣m 的图象经过一、二、四象限,则m 的取值范围是 .【思路点拨】根据一次函数的性质可知(2m ﹣1)<0,3﹣m >0,即可求出m 的取值范围.【答案】解:∵y =(2m ﹣1)x +3﹣m 的图象经过 一、二、四象限∴,解得m <∴m 的取值范围是m <.故答案为:m <.【点睛】本题主要考查一次函数的图象与系数的关系,关键是熟练掌握一次函数的性质. 14.(2022·辽宁大连·八年级期末)已知一次函数11y kx k =-,当46x -≤≤时,39y ≤≤,则k 的值为_______.【答案】35##-0.6 【分析】由x 与y 的范围,确定出点坐标,代入一次函数解析式求出k 的值即可.【详解】解:当k >0时,y 随x 的增大而增大,∴x =−4,y =3,∴−4k −11k =3,解得:15k =-(不合题意,舍去), 当k <0时,y 随x 的增大而减小,∴x =−4时,y =9;x =6时,y =3,∴−4k −11k =9,∴35k =-.故答案为:35. 【点睛】本题主要考查了一次函数的性质,待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.15.(2022•海安市模拟)一次函数y =(2a ﹣3)x +a +2(a 为常数)的图象,在﹣1≤x ≤1的一段都在x轴上方,则a的取值范围是.【思路点拨】根据一次函数y=(2a﹣3)x+a+2的图象在﹣1≤x≤1的一段都在x轴的上方,由一次函数的性质,则有2a﹣3≠0,再分2a﹣3>0和2a﹣3<0来讨论,解得即可.【答案】解:因为y=(2a﹣3)x+a+2是一次函数,所以2a﹣3≠0,a≠,当2a﹣3>0时,y随x的增大而增大,由x=﹣1得:y=﹣2a+3+a+2,根据函数的图象在x轴的上方,则有﹣2a+3+a+2>0,解得:<a<5.当2a﹣3<0时,y随x的增大而减小,由x=1得:y=2a﹣3+a+2,根据函数的图象在x轴的上方,则有:2a﹣3+a+2>0,解得:<a<,故答案为:<a<5或<a<.【点睛】本题考查了一次函数图象和系数的关系,属于基础题,转化为解不等式的问题是解决本题的关键.16.(2022·黑龙江绥化·八年级期末)下列对于一次函数y=﹣3x+6的说法,正确的有________(填写序号).①图象经过一、二、四象限;②图象与两坐标轴围成的面积是6;③y随x的增大而增大;④当x>2时,﹣3x+6>0;⑤对于直线y=﹣3x+6上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2.【答案】①②⑤【分析】根据一次函数图象的性质进行逐一分析解答即可.【详解】解:①∵﹣3<0,6>0,∴一次函数y=﹣3x+6的图象在一、二、四象限,故①正确,符合题意;②当y=0时,0=﹣3x+6,解得x=2,当x=0时,y=6,∴一次函数y=﹣3x+6的图象与x轴交于点(2,0),与y轴的交点为(0,6),∴图象与两坐标轴围成的面积是1262⨯⨯=6,故②正确,符合题意;③∵﹣3<0,∴一次函数y=﹣3x+6的图象y随x的增大而减小,故③错误,不符合题意;④当x>2时,﹣3x+6<0,故④错误,不符合题意;⑤∵﹣3<0,∴一次函数y=﹣3x+6的图象y随x的增大而减小,∴对于直线y=﹣3x+6上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2.故⑤正确,符合题意.故答案为:①②⑤.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.17.(2022·福建·莆田哲理中学九年级期末)已知直线y=(m-1)x+3﹣2m(m为常数,且m≠1).当m变化时,下列结论正确的有_________.①当m=2,图象经过一、三、四象限;②当m>0时,y随x的增大而减小;③直线必过定点(2,1);④坐标原点到直线的最大距离是5.【答案】①③④【分析】根据一次函数的性质逐项分析即可.【详解】解:当m=2时,y=(2-1)x+3﹣2×2=x-1,此时一次函数y=x-1,经过一、三、四象限,故①正确;对于直线y=(m-1)x+3﹣2m(m为常数,且m≠1)来说,当m-1>0时,即m>1时,y随x的增大而减小;故②错误;当x=2时,y=(m-1)x+3﹣2m=2(m-1)+3-2m=2m-2+3-2m=1,∴直线必过定点(2,1);故③正确;设原点到直线的距离为d,∵由③知直线y=(m-1)x+3﹣2m必过定点(2,1),设点P(2,1),∴d≤|OP|=22,1+25∴坐标原点到直线的最大距离是5.故④正确.故答案为:①③④【点睛】此题主要考查了一次函数的性质、勾股定理等知识,熟练掌握一次函数的性质是解题的关键.18.(2022•莲都区期末)如图,在平面直角坐标系中,直线y=kx+4经过点A(3,0),与y轴交于点B.(1)k的值为;(2)y轴上有点M(0,),线段AB上存在两点P,Q,使得以O,P,Q为顶点的三角形与△OMP全等,则符合条件的点P的坐标为.【思路点拨】(1)根据点的坐标求出k;(2)分两种情况分别讨论,①过点O作OQ⊥AB于Q,过点M作MP⊥OB于M,用面积法求出OQ,证明△OPM≌△OPQ,从而得P点纵坐标,代入一次函数解析式求出横坐标;当OB=BP,OM=PQ,如图②,过点P作PF⊥OB于F,过点O作OE⊥AB于E,证明△MOP≌△QPO推这两个三角形面积相等,推出PF=OE=,从而得P点横坐标,代入一次函数解析式求出纵坐标.【答案】解:(1)把(3,0)横纵坐标代入y=kx+4,得k=﹣,y=﹣x+4,故答案为:﹣;(2)①过点O作OQ⊥AB于Q,过点M作MP⊥OB于M,如图①,∴∠PMO=∠OQP=90°,令x=0,y=4,y=0,x=3,∴OA=3,OB=4,∴AB==5,∵×AB•OQ=×OA•OB,∴OQ=,∴OQ=OM,在Rt△OPM和Rt△OPQ中,,∴△OPM≌△OPQ(HL),∴P点纵坐标是,∵点P在y=﹣x+4,∴x=,∴P(,),②当OB=BP,OM=PQ,如图②,过点P作PF⊥OB于F,过点O作OE⊥AB于E,∵OB=BP,∴∠BOP=∠BPO在△MOP和△QPO中,,∴△MOP≌△QPO(SAS),∴S△MOP=S△OPQ,∵OM=PQ.∴PF=OE=,∵点P在y=﹣x+4,∴把x=代入y=﹣x+4,解得y=,∴P(,),综上所述:P(,)或P(,).故答案为:P(,)或P(,).【点睛】本题考查了过定点的直线、一次函数的性质、全等三角形判定,掌握一次函数图象上点的坐标特点,性质、判定的熟练应用,分情况讨论和辅助线的做法是解题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022•金安区校级月考)已知一次函数的图象经过点(3,5)和(﹣4,﹣9).(1)求此一次函数的表达式.(2)若点(a,2)在函数图象上,求a的值.【思路点拨】(1)利用待定系数法即可求得函数的解析式;(2)把点(a,﹣2)代入一次函数的解析式,求出a的值即可.【答案】解:(1)设一次数解析式为y=kx+b,把点(3,5),(﹣4,﹣9)分别代入解析式得,解得,∴一次函数解析式为y=2x﹣1;(2)把A(a,﹣2)在该函数的图象上,可得:2a﹣1=﹣2,解得:a=﹣0.5.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.20.(2022春•潮阳区期末)已知y﹣2与x成正比例,且当x=﹣2时,y=4.(1)求y与x的函数表达式;(2)在坐标系中画出(1)中的函数图象.【思路点拨】(1)根据正比例的定义设y﹣2=kx(k≠0),然后把已知数据代入进行计算求出k值,即可得解;(2)利用描点法法作出函数图象即可;【答案】解:(1)∵y﹣2与x成正比例.∴设y﹣2=kx.∵当x=﹣2时,y=4.∴4﹣2=﹣2k.∴k=﹣1.∴y与x的函数关系式为:y=﹣x+2;(2)由两点法取点(0.2),(2,0)通过描点,连线,函数图象如图:.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.21.(2022•淮北月考)已知一次函数y=ax﹣(a﹣2).(1)若图象经过点(0,3),则a的值是多少?.(2)若图象经过第一、二、四象限,则a的取值范围是多少?(3)若直线不经过第四象限,则a的取值范围是多少?【思路点拨】(1)根据一次函数y=ax﹣(a﹣2)的图象过点(0,3),即可求得a的值;(2)根据一次函数y=ax﹣(a﹣2)的图象经过一、二、四象限,可以得到,从而可以求得a的取值范围;(3)根据一次函数y=ax﹣(a﹣2)的图象不经过第四象限,可以得到,即可得到a 的取值范围.【答案】解:(1)∵一次函数y=ax﹣(a﹣2)的图象过点(0,3),∴3=﹣(a﹣2),解得a=﹣1;(2)∵一次函数y=ax﹣(a﹣2)的图象经过一、二、四象限,∴,解得a<0,即a的取值范围是a<0;(3)∵一次函数y=ax﹣(a﹣2)的图象不经过第四象限,∴,解得0<a≤2,即a的取值范围是0<a≤2.【点睛】本题考查一次函数的性质、一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答.22.(2022•沂水县期末)已知,如图,一次函数的图象经过了点P(3,2)和B(0,﹣2),与x 轴交于点A.(1)求一次函数的解析式;(2)点M在y轴上,且△ABM的面积为,求点M的坐标.【思路点拨】(1)把P点和B点坐标代入y=kx+b得到关于k、b的方程组,然后解方程组求出k、b即可得到一次函数解析式;(2)利用x轴上点的坐标特征求出A点坐标,根据三角形面积公式列等式求解.【答案】解:(1)设一次函数的解析式为y=kx+b,把点P(3,2)和B(0,﹣2)代入y=kx+b得,解得,所以一次函数解析式为y=x﹣2;(2)当y=0时,x﹣2=0,解得x=,则A(,0),∵点M在y轴上,且△ABM的面积为,∴S△ABM=BM•x A=,即BM×=,∴BM=5,∵B(0,﹣2),∴M(0,3)或(0,﹣7).【点睛】本题考查待定系数法求一次函数解析式、三角形的面积,熟练掌握待定系数法是解题的关键.23.(2022•西湖区校级二模)一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.【思路点拨】(1)根据一次函数图象上点的坐标特征把(2,﹣3)代入y=ax﹣a+1中可求出a的值;(2)a<0时,y随x的增大而减小,所以当x=﹣1时,y有最大值2,然后把x=﹣1代入函数关系式可计算对应a的值.【答案】解:(1)把(2,﹣3)代入y=ax﹣a+1得2a﹣a+1=﹣3,解得a=﹣4;(2)∵a<0时,y随x的增大而减小,则当x=﹣1时,y有最大值2,把x=﹣1代入函数关系式得2=﹣a﹣a+1,解得a=﹣,所以a=﹣.【点睛】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x 的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.24.(2021春•陇县期末)如图,直线l1:y=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线AB上一点,另一直线l2:y=kx+4经过点P.(1)求点A、B坐标;(2)求点P坐标和k的值;(3)若点C是直线l2与x轴的交点,点Q是x 轴上一点,当△CPQ的面积等于3时,求出点Q的坐标.【思路点拨】(1)令x=0,则y=2,令y=0,则x=2,即可求得点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)在直线AB上,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4,即可求得k的值;(3)求得C的坐标,然后根据三角形面积求得CQ,结合C的坐标即可求得点Q的坐标.【答案】解:(1)y=﹣x+2与x轴,y轴分别交于A,B两点,令x=0,则y=2,令y=0,则x=2,故点A、B的坐标分别为:(2,0)、(0,2);(2)点P(m,3)为直线AB上一点,则﹣m+2=3,解得:m=﹣1,故点P(﹣1,3);将点P的坐标代入y=kx+4得:3=﹣k+4,解得k=1;故点P的坐标为(﹣1,3),k=1;(3)∵直线y=x+4与x轴的交点为C,∴C(﹣4,0),∵P(﹣1,3),△CPQ的面积等于3,∴CQ•y P=3,即CQ×3=3,∴CQ=2,∴Q点的坐标为(﹣6,0)或(﹣2,0).【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质、面积的计算等,求得交点坐标是解题的关键。
2020年浙教新版八年级上册同步练习:5.4《一次函数的图像》一.选择题1.下列函数中,y随x增大而减小的函数是()A.y=﹣2+x B.y=3x+2C.y=4x D.y=4﹣3x2.函数y=﹣4x﹣5的图象不经过的象限是()A.第一B.第二C.第三D.第四3.正比例函数y=3x的图象经过()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得到的函数图象对应的函数表达式()A.y=﹣4x+2B.y=﹣6x C.y=﹣4x﹣2D.y=﹣2x5.下列各点在直线y=2x+6上的是()A.(﹣5,4)B.(﹣7,20)C.(,)D.(,1)6.下面所画的函数图象中,不可能是一次函数y=mx+2﹣m图象的是()A.B.C.D.7.一次函数y1=ax+b与一次函数y2=bx﹣a在同一平面直角坐标系中的图象大致是()A.B.C.D.8.若点A(﹣3,y1)和点B(1,y2)都在如图所示的直线上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1 <y2D.y1≤y29.若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.10.函数y=|x﹣1|的图象是()A.B.C.D.11.直线y=kx+b的图象如图所示,则()A.k=﹣,b=﹣2B.k=,b=﹣2C.k=﹣,b=﹣2D.k=,b=﹣2 12.若正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个正比例函数的表达式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x二.填空题13.若点A(﹣2,y1),B(1,y2)都在正比例函数y=﹣5x的图象上,则y1y2(填“>、<或=”).14.在一次函数y=﹣2x+5图象上有A(x1,y1)和A(x2,y2)两点,且x1>x2,则y1y2(填“>,<或=”).15.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.16.一次函数y=kx+b的图象如图所示,其中b=,k=.17.已知y与x的函数如图所示,则y与x的函数解析式为.18.如图,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B,与x轴交于点C,连接AB,AB=4,则OC的长为.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,则△AOB的面积为.20.如图,正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…在直线y=x+1上,点B1,B2,B3,…在x轴上.已知点A1是直线与y轴的交点,则点C2020的纵坐标是.三.解答题21.画出直线y=x﹣2,并求它的截距.22.在平面直角坐标系中,点A(2,2),点B(﹣4,0),直线AB交y轴于点C.试求直线AB的表达式和点C的坐标;并在平面直角坐标系中画出直线AB.23.如图,直线l是一次函数y=kx+b的图象,填空:(1)b=,k=.(2)当x=30时,y=.(3)当y=30时,x=.24.直线y=kx+b经过点A(1,0)、B(0,﹣2).(1)求直线y=kx+b的解析式;(2)若点C在x轴上,且S△ABC=3S△AOB,求出点C坐标.25.如图,已知一次函数y=﹣2x﹣4与x轴、y轴分别相交于A、B两点;(1)求出A、B两点的坐标;(2)若点P在直线y=﹣2x﹣4上(与A、B不重合),且使S△POA=S△AOB,求出P点坐标.26.已知一次函数图形经过(0,5),(2,﹣5)两点.(1)求这个函数的表达式;(2)试判断点P(3,﹣5)是否在该直线上.27.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值.(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C坐标.28.已知一次函数y=﹣2x+4.(1)在如图所示平面直角坐标系中,画出该函数的图象;(2)若一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,求出A、B两点的坐标;(3)求△AOB的面积;(4)利用图象直接写出:当y≤0时,x的取值范围.参考答案一.选择题1.解:A、∵k=1>0,∴y随x的增大而增大,故本选项不符合题意;B、∵k=3>0,∴y随x的增大而增大,故本选项不符合题意;C、∵k=4>0,∴y随x的增大而增大,故本选项不符合题意;D、∵k=﹣3<0,∴y随x的增大而减小,故本选项符合题意.故选:D.2.解:∵在一次函数y=﹣4x﹣5中,k=﹣4<0,b=﹣5<0,∴函数y=﹣4x﹣5的图象经过第二、三、四象限,不经过第一象限.故选:A.3.解:正比例函数y=3x中k=3>0,因此图象经过第一、三象限,故选:B.4.解:将函数y=﹣4x的图象沿y轴向下平移2个单位后,所得图象对应的函数关系式为:y=﹣4x﹣2.故选:C.5.解:A、当x=﹣5时,y=2×(﹣5)+6=﹣4,∴点(﹣5,4)不在直线y=2x+6上;B、当x=﹣7时,y=2×(﹣7)+6=﹣8,∴点(﹣7,20)不在直线y=2x+6上;C、当x=时,y=2×+6=,∴点(,)在直线y=2x+6上;D、当x=﹣时,y=2×(﹣)+6=﹣1,∴点(﹣,1)不在直线y=2x+6上.故选:C.6.解:根据图象知:A、m<0,2﹣m>0.解得m<0,所以有可能;B、m>0,2﹣m>0.解得0<m<2,所以有可能;C、m<0,2﹣m<0.两不等式无公共部分,所以不可能;D、m>0,2﹣m<0.解得m>2,所以有可能.故选:C.7.解:A、由y1的图象可知,a>0,b>0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故错误;B、由y1的图象可知,a>0,b<0;由y2的图象可知,b<0,﹣a>0,即a<0,两结论矛盾,故错误;C、由y1的图象可知,a<0,b<0;由y2的图象可知,b<0,﹣a<0,即a>0,两结论相矛盾,故错误;D、由y1的图象可知,a>0,b>0;由y2的图象可知,b>0,﹣a<0,即a>0,两结论符合,故正确.故选:D.8.解:观察函数图象,可知:y随x的增大而减小,∵﹣3<1,∴y1>y2.故选:A.9.解:一次函数y=kx+b过一、二、四象限,则函数值y随x的增大而减小,因而k<0;图象与y轴的正半轴相交则b>0,因而一次函数y=bx﹣k的一次项系数b>0,y随x的增大而增大,经过一三象限,常数项k<0,则函数与y轴负半轴相交,因而一定经过一三四象限,故选:D.10.解:∵函数y=|x﹣1|=,∴当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小;故选:B.11.解:观察图象,可得直线y=kx+b的图象过点(0,﹣2)与(3,0)则有,解可得k=,b=﹣2,故选:B.12.解:将点(2,﹣1)代入正比例函数y=kx(k≠0),得﹣1=2k,∴k=﹣,∴函数的表达式为y=﹣x,故选:D.二.填空题13.解:根据题意得y1=﹣5×(﹣2)=10,y2=﹣5×1=﹣5,所以y1>y2.故答案为>.14.解:∵一次函数y=﹣2x+5中,k=﹣2<0,∴y随x的增大而减小.∵x1>x2,∴y1<y2.故答案为:<.15.解:由图象可得,当y>0时,x的取值范围是x<2,故答案为:x<2.16.解:由函数的图象可知,图象与两坐标轴的交点坐标为(0,3),(2,0),设函数的解析式为y=kx+b(k≠0),把(0,3),(2,0)代入得,,解得b=3,k=﹣;故答案为3,﹣.17.解:观察图象可知:一次函数过原点,所以设函数解析式为y=kx,将(﹣7,2)代入得,﹣7k=2,k=﹣,所以一次函数解析式为y=﹣x.故答案为y=﹣x.18.解:∵点A坐标为(6,0),∴OA=6,∵AB=4,∴OB===2,∴b=OB=2,∴直线的解析式为y=x+2,令y=0,则x=﹣2,∴C(﹣2,0),∴OC=2,故答案为2.19.解:∵一次函数y=kx+b的图象经过A(﹣2,﹣2),B(1,4)两点,∴,解得,∴一次函数的解析式为y=2x+2,设一次函数与y轴的交点为D∴D(0,2),∴S△AOB=S△AOD+S△BOD=+=3,故答案为3.20.解:∵当x=0时,y=x+1=1,∴点A1的坐标是(0,1),∵四边形A1B1C1A2是正方形,∴点C1的纵坐标是1,∵当x=1时,y=x+1=2,点A2的坐标是(1,2),∵四边形A2B2C2A3是正方形,∴点C2的纵坐标是2,同理,点A3的坐标是(3,4),点C3的纵坐标是4,∴点∁n的纵坐标是2n﹣1,∴点C2020的纵坐标是22019,故答案为:22019.三.解答题21.解:列表:x03y﹣20作图:因为当x=0时,y=﹣2,所以截距是﹣2.22.解:画点A(2,2),点B(﹣4,0),作直线AB,设直线AB的解析式为y=kx+b,把A(2,2),B(﹣4,0)分别代入得:,解得,∴直线AB的解析式为y=x+;当x=0时,y=x+=,∴C点坐标为(0,).23.解:(1)根据图形可得函数过点(3,0)和(0,2),将这两点代入得:,解得:k=﹣,b=2.(2)由(1)得函数解析式为:y=﹣x+2,∴当x=30时,y=﹣×30+2=﹣18;(3)当y=30时,则30=﹣x+2,解得x=﹣42.故答案为:2,﹣;﹣18;﹣42.24.解:(1)∵直线AB:y=kx+b(k≠0)过点A(1,0)和B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S△ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).25.解:(1)一次函数y=﹣2x﹣4与x轴、y轴分别相交于A、B两点,令y=0,则﹣2x﹣4=0,解得x=﹣2,令x=0,则y=﹣4,∴A(﹣2,0),B(0,﹣4);(2)∵A(﹣2,0),B(0,﹣4),∴OA=2,OB=4,∴S△OAB=×2×4=4,∵S△POA=S△AOB,∴S△POA=2.即OA•|y P|=|y P|=2,∴|y P|=2,即点P的纵坐标为±2.当点P的纵坐标为2时,有﹣2x﹣4=2,解得x=﹣3,此时点P的坐标为(﹣3,2);当点P的纵坐标为﹣2时,有﹣2x﹣4=﹣2,解得x=﹣1,此时点P的坐标为(﹣1,﹣2);∴点P的坐标为(﹣3,2)或(﹣1,﹣2).26.解:(1)设一次函数解析式为y=kx+b(k≠0),将(0,5),(2,﹣5)代入y=kx+b,得,解得:,∴这个函数的解析式为y=﹣5x+5.(2)当x=3时,y=﹣5×3+5=﹣10≠﹣5,∴点P(3,﹣5)不在该直线上.27.解:(1)将A(2,0)代入直线y=2x+b中,得2×2+b=0解得b=﹣4;(2)∵S△AOC=4,点A(2,0),∴OA=2,∴•OA•y C=4,解得y C=4,把y=4代入y=2x﹣4得2x﹣4=4,解得x=4,∴C(4,4).28.解:(1)画出函数图象,如图所示;(2)当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4);当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);(3)S△AOB=OA•OB=×2×4=4;(4)观察函数图象,可知:当y≤0时,x≥2.。