第八章分式小结与思考PPT教学课件
- 格式:ppt
- 大小:344.00 KB
- 文档页数:15
分式适用年级八年级所需时间课内八课时主题单元学习概述1。
本章是继整式之后对代数式的进一步的研究。
2。
分式是对分数的进一步抽象-—--—-字母的意义3。
分数的讨论框架的继承————--小学时分数都研究哪些性质?4。
从实际意义或者问题解决上,分式也是分数的实际意义的抽象——---—列方程解应用题5.需要了解学生对于小学分数的了解情况,特别是是否还记得分数的性质框架6.分式的基础是分数、整式的四则运算、多项式的因式分解、一元一次方程等知识。
同时它是今后进一步学习函数、一元二次方程的基础。
主题单元规划思维导图主题单元学习目标知识与技能:1。
了解分式的概念,明确分式和整式的区别;2.掌握分式的基本性质和分式的约分;3.分式的乘除运算法则;4.经历探索分式加减运算法则,理解其算理;5.异分母分式加减法的法则及分式的通分;6。
通过对实际问题的分析,感受分式方程是刻画现实世界的有效模型,归纳分式方程的概念;7.经历探索分式方程解法的过程,会解可化为一元一次方程的分式方程,会检验根的合理性;8。
用分式方程的数学模型反映现实情境中的实际问题。
过程与方法:1.体会分式的意义,进一步发展符号感,掌握分式的符号法则;2。
会进行简单的分式的乘除法运算;3.会进行简单分式的加减运算,具有一定的代数化归能力;4.经历异分母分式的加减运算和通分的过程,训练学生的分式运算能力,培养学习学习中转化未知问题为已知问题的能力;5.经历“求解-解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识;6。
用分式方程来解决现实情境中的问题.情感态度与价值观:1。
经历分式探索,体会并掌握有效的数学转化思想;2。
能解决一些简单的实际问题,进一步体会分式的模型思想;3。
在学生已有数学经验的基础上,探求新知,从而获得成功的快乐,提高学生“用数学"意识;4。
在活动中培养学生乐于探究合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值;5。
八年级分式知识点总结ppt 分式是初中数学中的一大重点,它在高一乃至高二的学习中经常出现。
分式的概念、性质、化简方法,以及在各种题型中的运用都需要我们重点关注。
一、分式的基本概念1.分式的定义:分式就是分数形式,它是指两个整数之商的形式,其中分母不为零。
2.分式的结构:分式由分子、分母和分数线组成,如:$\frac{a}{b}$。
3.分式的值及其意义:分式的值是一个实数,其意义是表示将分子a等分成分母b份后的每一份的大小。
二、分式的性质1.分式的基本性质:①如果分子和分母同时乘以同一个非零数,那么这个分式的值不变。
②如果两个分式的分母相同,那么它们的和(差)的分子就是原来两个分式的分子的和(差),分数线不变。
③如果两个分式的分母互为相反数,那么它们的和为0。
④相邻两项交换、增减的分式必须化为相同的分母,然后才能运算。
2.分式的约分和通分①约分:将分子、分母同除以它们的最大公约数,使分式的值不变。
②通分:将两个(或多个)分式的分母相同,化成相等分式。
③通分的方法: ⑴因数分解法;⑵公因法;⑶通分的公式。
三、分式的化简1.基本方法(1)因式分解法(2)通分法(3)求幂法(4)约分法(5)借公式法(6)分子分母同时乘上或除去同一个量等。
2.注意事项(1)多项式除以单项式的分式,一般要把多项式按照单项式的因式进行分解后再约分。
(2)多项式分式的化简,要先分解因式,然后按照约分的原则进行化简。
四、分式方程1.基本概念:含有分式的方程叫做分式方程。
2.分式方程化简的步骤(1)分子分母同时乘以分母的最小公倍数。
(2)两侧约通分母。
(3)把含有变量的式子化为通分后的分式。
(4)把分式两侧同时乘以分母,得到一个整式方程。
(5)解出这个整式方程。
五、分式的应用1.分式数值的大小比较(1)同分母分式比较大小时,比较分子大小即可。
(2)异分母分式比较大小时,先通分,再比较分子大小即可。
2.分式在解题中的应用(1)求实际问题中两个或两个以上量之间的比值时。