Measureandintegral
- 格式:pdf
- 大小:47.42 KB
- 文档页数:2
AnalysisIInstructor:RussellBrown
MWF2-2:50pmOffice:POT741
CB347Phone:8592573951
Spring2007**************
Officehours:M3–4,Mathskeller
WF11–12,POT741
andbyappointment.
Text:Measureandintegral,R.WheedenandA.Zygmund.
ThiscoursewillintroducestudentstoLebesgueintegration.Thecontentofthis
coursewillbeexaminedintherealanalysisportionoftheanalysispreliminary
examination.
Homework:Youshouldendeavortowriteoutyourhomeworkclearly.Use
completesentences.Givespecificreferencestofactsfromlectureorthetext.Itwill
notbeacceptabletogiveareferencesuchas“IheardthatNickKirbysaiditwas
true.”Notethathomeworkisasubstantialfractionofyourgrade.
Thehomeworkwillbeoftwotypes.Exerciseswhicharemoreroutineandwill
generallynotbecollected.Problemswillbemoreinterestingandwillbecollected
andgraded.
Wewillscheduletworecitationsectionswherehomeworkexerciseswillbediscussed.
Beawarethatyourinstructorisoldandcranky.Latehomeworkwillnotbe
accepted.Youmayonlywriteononesideofeachsheetofpaper.Leavegenerous
margins.Imayusethemarginsandthebackofeachsheetforcomments.Iprefer
thatyoursolutionsbehandwritten.
Lecturenotes:Studentswillbeaskedtopreparelecturenotesfortheclass.Each
studentwillbeaskedtopreparelecturenotesforreviewbymeandthen
distributiontotheclass.Wewillrotatethroughtheclassalphabetically.Students
areencouragedtotakenotesforeverylecture.
Grading:Yourgradewillbedeterminedasfollows.Lecturenotes53
Participationinrecitation47
Homework197
Exam206
Final297
Total800
Exams:Therewillbeonemidtermexamandafinal.Thefinalwillbe
cumulative.Thefinalexamisat3:30-5:30pmonWednesday,May2,2007,
Anumberofothertextbookscoverthematerialofthiscourse.Three1ofmy
favoritesare:
1Thisremindsmeofajoke:Therearethreekindsofmathematicians,thosewhoknowhowtocountandthosewhodon’t.•LebesgueintegrationonEuclideanspaces,BFJones.
•RealAnalysis,H.Royden
•RealandComplexAnalysis,W.Rudin.
•Inequalities,Hardy,LittlewoodandPolya.
•Realanalysis,measuretheoryandHilbertspaces,E.M.SteinandRami
Shakarchi.
•Analysis,E.LiebandM.Loss.
Schedule:IhopetocoverChapters1to7ofWheedenandZygmund.Belowisa
tentativeschedule.Itwillbeamusingtoseeifwecanfollowit.ChapterTopicsDates
1Preliminaries1/8–1/14
2FunctionsofboundedvariationandtheRiemann–
Stieltjesintegral1/16–2/4
3Lebesguemeasureandoutermeasure2/6–2/20
Exam2/23(tentative)
4Measurablefunctions2/25–3/8
5TheLebesgueintegral3/18–4/1
6Repeatedintegration4/3–4/17
7Differentiation4/19–4/27.
January9,2007