应用多元统计分析习题解答典型相关分析Word版
- 格式:doc
- 大小:581.00 KB
- 文档页数:5
应用多元统计分析之典型相关分析(doc 6页)联系与区别。
答:一组变量的典型变量和其主成分都是经过线性变换计算矩阵特征值与特征向量得出的。
主成分分析只涉及一组变量的相互依赖关系而典型相关则扩展到两组变量之间的相互依赖关系之中,度量了这两组变量之间联系的强度。
9.4 简述典型相关分析中载荷分析的内容及作用。
答:作用:进行典型载荷分析有助于更好解释分析已提取的p 对典型变量。
分析原始变量与典型变量之间相关性。
内容: 令(1)(2)*()p ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦a a A a (1)(2)*()p ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦b b B b 12p U U U ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦U 12p V V V ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦V*(1)*(2)==U A X V B X其中*A ,*B 为p 对典型变量系数向量组成的矩阵,U 和V 为p 对典型变量组成的向量。
则(1)*(1)(1)*11(,)(,)Cov Cov ==U X A X X A Σ(1)(1)(1)(1)1/2(1)(1)(,)()()(,)()i k i ki k i ki kk k k Corr U X D U D X Cov U X D X σ-===这里()1iD U =,(1)1/2()k kkD X σ=。
记1/211V -为对角元素是1/2kkσ-的对角阵,所以有(1)(1)1/2(1)11,*(1)1/2(1)*1/2111111(,)(,)(,)U X Corr Cov Cov ---====R U X U V X A X VX A ΣV类似可得: (2)*1/22222,V X -=R B ΣV (2)*1/21222,U X-=RA ΣV(1)*1/22111,V X -=R B ΣV对于经过标准化处理后得到的典型变量有:(1)*11,Z U Z =R A R ;(2)*22,Z V Z =R B R(2)*12,Z U Z =R A R ;(1)*21,Z V Z=RB R对于样本典型相关分析,上述结果中的数量关系同样成立。
主成分分析6.1 试述主成分分析的基本思想。
答:我们处理的问题多是多指标变量问题,由于多个变量之间往往存在着一定程度的相关性,人们希望能通过线性组合的方式从这些指标中尽可能快的提取信息。
当第一个组合不能提取止。
这就是主成分分析的基本思想。
6.2 主成分分析的作用体现在何处?答:一般说来,在主成分分析适用的场合,用较少的主成分就可以得到较多的信息量。
以各个主成分为分量,就得到一个更低维的随机向量;主成分分析的作用就是在降低数据“维数”6.3 简述主成分分析中累积贡献率的具体含义。
答:主成分分析把p 个原始变量12,,,p X X X 的总方差()tr Σ分解成了p 个相互独立的变量p 个主成分的,忽略一些带有较小方差的主成分将不会给总方差带来太大的影响。
这里我们()m p <个主成分,则称11pmm kkk k ψλλ===∑∑ 为主成分1,,m Y Y 的累计贡献率,累计贡献率表明1,,m Y Y 综合12,,,p X X X 的能力。
通常取m ,使得累计贡献率达到一个较高的百分数(如85%以上)。
答:这个说法是正确的。
即原变量方差之和等于新的变量的方差之和6.5 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。
答:从相关阵求得的主成分与协差阵求得的主成分一般情况是不相同的。
从协方差矩阵出发的,其结果受变量单位的影响。
主成分倾向于多归纳方差大的变量的信息,对于方差小的变量就可能体现得不够,也存在“大数吃小数”的问题。
实际表明,这种差异有时很大。
我6.6 已知X =()’的协差阵为 试进行主成分分析。
解:=0计算得当时,同理,计算得时,易知相互正交单位化向量得,,综上所述,第一主成分为第二主成分为第三主成分为6.7 设X=()’的协方差阵(p为, 0<p<1证明:为最大特征根,其对应的主成分为。
证明:==,为最大特征根当时,=所以,6.8利用主成分分析法,综合评价六个工业行业的经济效益指标。
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
1.多元分析研究的是多个随机变量及其相互关系的统计总体。
2.多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相关系数。
3.协方差和相关系数仅仅是变量间离散程度的一种度量,并不能刻画变量间可能存在的关联程度。
4.人们通过各种实践,发现变量之间的相互关系可以分成相关和不相关两种类型。
5.总离差平方和可以分解为回归离差平方和和剩余离差平方和两个部分,各自的自由度为p 和n-p-1,其中回归离差平方和在总离差平方和中所占比重越大,则线性回归效果越显著。
7.偏相关系数是指多元回归分析中,当其他变量固定后,给定的两个变量之间的的相关系数。
8.Spss中回归方程的建模方法有一元线形回归、多元线形回归、岭回归、多对多线形回归等。
9.主成分分析是通过适当的变量替换,使新变量成为原变量的综合变量,并寻求相关性的一种方法。
10.主成分分析的基本思想是:设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。
11.主成分的协方差矩阵为对角矩阵。
12.主成分表达式的系数向量是相关系数矩阵的特征向量。
13.原始变量协方差矩阵的特征根的统计含义是原始数据的相关系数。
14.原始数据经过标准化处理,转化为均值为0 ,方差为1 的标准值,且其协方差矩阵与相关系数矩阵相等。
15.样本主成分的总方差等于1 。
16.变量按相关程度为,在相关性很强程度下,主成分分析的效果较好。
17.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为方差贡献度。
19.因子分析是把每个原始变量分解为两部分因素,一部分是公共因子,另一部分为特殊因子。
20.变量共同度是指因子载荷矩阵中第i行元素的平方和。
21.公共因子方差与特殊因子方差之和为 1 。
22.聚类分析是建立一种分类方法,它将一批样哂或变量按照它们在性质上的亲疏程度进行科学的分类。
23.Q型聚类法是按样品进行聚类,R型聚类法是按变量进行聚类。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
多元统计分析习题与答案多元统计分析是一种在社会科学研究中广泛应用的方法,它通过同时考虑多个变量之间的关系,帮助研究者更全面地理解和解释现象。
在本文中,我将分享一些多元统计分析的习题和答案,希望能够帮助读者更好地掌握这一方法。
习题一:相关分析假设你正在研究一个学生的学习成绩和他们每天花在学习上的时间之间的关系。
你收集了100个学生的数据,学习成绩用分数表示,学习时间用小时表示。
以下是你的数据:学习成绩(X):75, 80, 85, 90, 95, 70, 65, 60, 55, 50学习时间(Y):5, 6, 7, 8, 9, 4, 3, 2, 1, 0请计算学习成绩和学习时间之间的相关系数,并解释其含义。
答案一:首先,我们需要计算学习成绩和学习时间之间的协方差和标准差。
根据公式,协方差可以通过以下公式计算:协方差= Σ((X - X平均) * (Y - Y平均)) / (n - 1)其中,X和Y分别表示学习成绩和学习时间,X平均和Y平均表示它们的平均值,n表示样本数量。
标准差可以通过以下公式计算:标准差= √(Σ(X - X平均)² / (n - 1))根据以上公式,我们可以得出学习成绩和学习时间之间的协方差为-22.5,标准差分别为18.03和2.87。
然后,我们可以通过以下公式计算相关系数:相关系数 = 协方差 / (X标准差 * Y标准差)根据以上公式,我们可以得出相关系数为-0.93。
由于相关系数接近于-1,可以得出结论:学习成绩和学习时间之间存在强烈的负相关关系,即学习时间越长,学习成绩越低。
习题二:多元线性回归假设你正在研究一个人的身高(X1)、体重(X2)和年龄(X3)对其收入(Y)的影响。
你收集了50个人的数据,以下是你的数据:身高(X1):160, 165, 170, 175, 180, 185, 190, 195, 200, 205体重(X2):50, 55, 60, 65, 70, 75, 80, 85, 90, 95年龄(X3):20, 25, 30, 35, 40, 45, 50, 55, 60, 65收入(Y):5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500请利用多元线性回归分析,建立一个预测人的收入的模型,并解释模型的结果。
2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
一、填空题:1、多元统计剖析是运用数理统计方法来研究解决多指标问题的理论和方法 .2、回归参数明显性查验是查验解说变量对被解说变量的影响能否著.3、聚类剖析就是剖析怎样对样品(或变量)进行量化分类的问题。
往常聚类分析分为Q型聚类和R型聚类。
4、相应剖析的主要目的是追求列联表行要素A和列要素B的基本剖析特点和它们的最优联立表示。
5、因子剖析把每个原始变量分解为两部分要素:一部分为公共因子,另一部分为特别因子。
6、若x( ): N P( ,),=1,2,3 .n且互相独立,则样本均值向量x 听从的散布为 _ x ~N(μ,Σ /n)_。
二、简答1、简述典型变量与典型有关系数的观点,并说明典型有关剖析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间拥有最大的有关系数。
选用和最先精选的这对线性组合不有关的线性组合,使其配对,并选用有关系数最大的一对,这样下去直到两组之间的有关性被提取完成为止。
被选出的线性组合配对称为典型变量,它们的有关系数称为典型有关系数。
2、简述相应剖析的基本思想。
相应剖析,是指对两个定性变量的多种水平进行剖析。
设有两组要素A和B,此中要素 A 包括 r 个水平,要素 B 包括 c 个水平。
对这两组要素作随机抽样检查,获得一个 rc 的二维列联表,记为。
要追求列联表列要素 A 和行要素 B 的基本剖析特点和最优列联表示。
相应剖析即是经过列联表的变换,使得要素 A和要素 B 拥有平等性,进而用同样的因子轴同时描绘两个要素各个水平的情况。
把两个要素的各个水平的情况同时反应到拥有同样坐标轴的因子平面上,进而获得要素 A 、 B 的联系。
3、简述费希尔鉴别法的基本思想。
从 k 个整体中抽取拥有 p 个指标的样品观察数据,借助方差剖析的思想结构一个线性鉴别函数系数:确立的原则是使得整体之间差别最大,而使每个整体内部的离差最小。
将新样 品的 p 个指标值代入线性鉴别函数式中求出 值,而后依据鉴别必定的规则,就能够鉴别新的样品属于哪个整体。
(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
1.已知n=4,p=3的一个样本数据阵143X =626,X S 833534ρ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算,,v,2.已知23514241130010322X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,用最短、最长、中间距离法聚类,并画出聚类树形图3.已知52=22⎡⎤∑⎢⎥⎣⎦,要求: ①求特征根12λλ, ②求特征向量12μμ,③构造主成分12,F F④计算1F 的方差Var(F 1)和2F 的方差Var(F 2)⑤计算()()()()11122122,,,,;;;F X F X F X F X ρρρρ4.设有12,G G 两个总体,从中分别抽取容量为3的样品如下:要求:(1)样本的均值向量()()12,XX 及离差阵12,S S(2)假定()()12==∑∑∑,用12,S S 联合估计∑(3)已知待判样品(27)X T=,分别用距离判别法、Fisher 判别法、Bayes 判别法判定X 的归属。
5.设111=n 个和122=n 个的观测值分别取自两个随机变量1X 和2X 。
假定这两个变量服从二元正态分布,且有相同的协方差阵。
样本均值向量和联合协方差阵为:⎥⎦⎤⎢⎣⎡--=111X ,⎥⎦⎤⎢⎣⎡=122X ,⎥⎦⎤⎢⎣⎡--=∑8.41.11.13.7。
新样品⎥⎦⎤⎢⎣⎡=21X ,要求用Bayes 法和Fisher 进行判别分析。
6.已知2变量协方差阵⎥⎦⎤⎢⎣⎡=∑3224,要求:(1)求∑的特征根及其对应的单位特征向量;(2)组建主成分1F 、2F ;(3)验证j j F Var λ=)(;(4)计算11x F ρ、21x F ρ。
7、试分析某海运学院100名新生的性别与来自的区域有无相关关系。
(20.05(1) 3.84χ=)8、已知4个样品3个数据的数据如下:44068644363X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,试求均值向量X 、协方差阵∑、相关阵R 。
9、已知随机向量X=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ,具有均值向量826X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦和协方差阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411161113。
第九章 典型相关分析9.1 什么是典型相关分析?简述其基本思想。
答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
用于揭示两组变量之间的内在联系。
典型相关分析的目的是识别并量化两组变量之间的联系。
将两组变量相关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系。
基本思想:(1)在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
即: 若设(1)(1)(1)(1)12(,,,)p X X X =X、(2)(2)(2)(2)12(,,,)q X X X =X 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量Ui 、Vi ,使是原变量的线性组合。
在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大。
(2)选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对。
(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此。
9.2 什么是典型变量?它具有哪些性质?答:在典型相关分析中,在一定条件下选取系列线性组合以反映两组变量之间的线性关系,这被选出的线性组合配对被称为典型变量。
具体来说,()(1)()(1)()(1)()(1)1122i i i i i P PU a X a X a X '=+++a X()(2)()(2)()(2)()(2)1122i i i i i q qV b X b X b X '=+++b X在(1)(1)(1)(2)()()1D D ''==a X b X 的条件下,使得(1)(1)(1)(2)(,)ρ''a X b X 达到最大,则称(1)(1)'a X 、(1)(2)'b X 是(1)X 、(2)X 的第一对典型相关变量。
典型变量性质:典型相关量化了两组变量之间的联系,反映了两组变量的相关程度。
1. ()1,()1(1,2,,)k k D U D V k r ===(,)0,(,)0()i j i j Cov U U Cov V V i j ==≠2. 0(,1,2,,)(,)0()0()i i j i j i r Cov U V i j j r λ≠==⎧⎪=≠⎨⎪>⎩9.3 试分析一组变量的典型变量与其主成分的联系与区别。
答:一组变量的典型变量和其主成分都是经过线性变换计算矩阵特征值与特征向量得出的。
主成分分析只涉及一组变量的相互依赖关系而典型相关则扩展到两组变量之间的相互依赖关系之中()(1)()(1)()(1)()(1)1122i i i i i P P U a X a X a X '=+++a X ()(2)()(2)()(2)()(2)1122i i i i iq q V b X b X b X '=+++b X (1)(1)(1)(1)12(,,,)pX X X =X 、(2)(2)(2)(2)12(,,,)qX X X =X,度量了这两组变量之间联系的强度。
9.4 简述典型相关分析中载荷分析的内容及作用。
答:作用:进行典型载荷分析有助于更好解释分析已提取的p 对典型变量。
分析原始变量与典型变量之间相关性。
内容:令 (1)(2)*()p ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦a a A a (1)(2)*()p ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦b b B b 12p U U U ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦U 12p V V V ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦V *(1)*(2)==U A X V B X其中*A ,*B 为p 对典型变量系数向量组成的矩阵,U 和V 为p 对典型变量组成的向量。
则(1)*(1)(1)*11(,)(,)Cov Cov ==U X A X X A Σ(1)(1)(1)1/2(1)(,)(,)i ki kk k Corr U X Cov U X σ-===这里()1i D U =,1/2kk σ=。
记1/211V -为对角元素是1/2kk σ-的对角阵,所以有(1)(1)1/2(1)11,*(1)1/2(1)*1/2111111(,)(,)(,)U X Corr Cov Cov ---====R U X U V X A X V X A ΣV类似可得:(2)*1/22222,V X -=R B ΣV (2)*1/21222,U X -=R A ΣV (1)*1/22111,V X -=R B ΣV 对于经过标准化处理后得到的典型变量有:(1)*11,Z U Z =R A R ; (2)*22,Z V Z =R B R (2)*12,Z U Z =R A R ;(1)*21,Z V Z =R B R对于样本典型相关分析,上述结果中的数量关系同样成立。
9.5 简述典型相关分析中冗余分析的内容及作用。
答:典型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比例,从而定量测度典型变量所包含的原始信息量。
第一组变量样本的总方差为11()tr p =R ,第二组变量样本的总方差为22()tr q =R 。
*ˆz A 和*ˆz B 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量,*(1)ˆˆz =U A Z ,*(2)ˆˆz=VB Z 。
前r 对典型变量对样本总方差的贡献为(1)(1)(1)(2)(2)()()2ˆ,11ˆˆˆˆˆˆ()ik pr r r z zz zz zz U i k tr r =='''+++=∑∑aa a a aa (2)(1)(1)(2)(2)()()2ˆ,11ˆˆˆˆˆˆ()iKq rr r z z z zz z z Vi k tr r =='''+++=∑∑b b b b b b 则第一组样本方差由前r 个典型变量解释的比例为(1)(1)2ˆ,11ˆ|ikpr z Ui k z U rd p===∑∑R第二组样本方差由前r 个典型变量解释的比例为(2)(2)2ˆ,11ˆ|ik qrz V i k z V rd q===∑∑R9.6 设X 和Y 分别是p 维和q 维随机向量,且存在二阶距,设p ≤q 。
它们的第i 对典型变量分别为()i a X '、()i b Y ',典型相关系数为i λ,(1,,)i p =。
令*X CX l =+,*Y DY m =+,其中C 、D 分别为,p p q q ⨯⨯阶非奇异阵,l 、m 分别为p 维、q 维随机向量,试证明⑴ **X Y 、的第i 对典型变量为1()*i C a X -'、1()*i D b Y -'。
⑵ 1()*i C a X -'与1()*i D b Y -'的典型相关系数为i λ。
9.7 对140名学生进行了阅读速度1x 、阅读能力2x 、运算速度1y 和运算能力2y 的四种测验,所得成绩的相关系数阵为10.030.240.590.0310.060.07R 0.240.0610.240.590.070.241⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦= 试对阅读本领与运算本领之间进行典型相关分析。
解:根据已知可得== == 计算得的特征值为提取第一典型变量为其中,分别为原始变量标准化后的结果。
按照常识,不应该有负数系数啊?不知道怎么回事。
9.8 某年级学生的期末考试中,有的课程闭卷考试,有的课程开卷考试。
44名学生的成绩如下表:闭卷 开卷 闭卷 开卷 力学 物理 代数分析统计力学 物理 代数分析统计1X 2X3X4X5X1X 2X3X4X5X77 82 67 67 81 63 78 80 70 81 75 73 71 66 81 55 72 63 70 68 63 63 65 70 63 53 61 72 64 73 51 67 65 65 68 59 70 68 62 56 62 60 58 62 70 64 72 60 62 45 52 64 60 63 54 55 67 59 62 44 50 50 64 55 63 65 63 58 56 37 31 55 60 57 76 60 64 56 54 40 44 69 53 53 53 42 69 61 55 45 62 46 61 57 45 31 49 62 63 62 44 61 52 62 45 49 41 61 49 64 12 58 61 63 67 49 53 49 62 47 54 49 56 47 53 54 53 46 59 44 44 56 55 61 36 18 44 50 57 81 46 52 65 50 35 32 45 49 57 64 30 69 50 52 45 46 49 53 59 37 40 27 54 61 61 31 42 48 54 68 36 59 51 45 51 56 40 56 54 5 46 56 57 49 32 45 42 55 56 40 42 60 54 49 33 40 63 53 54 25 23 55 59 53 44 48 48 49 51 37 41634946344652534140试对闭卷(1X ,2X )和开卷(3X ,4X ,5X )两组变量进行典型相关分析。
9.9 邓讷姆(Dunham )在研究职业满意度与职业特性的相关程度时,对从一大型零售公司各分公司挑出的784位行政人员测量了5个职业特性变量:用户反馈、任务重要性、任务多样性、任务特性及自主性,7个职业满意度变量:主管满意度、事业前景满意度、财政满意度、工作强度满意度、公司地位满意度、工种满意度及总体满意度。
两组变量的样本相关矩阵为:11 1.000.49 1.00ˆ0.530.57 1.000.490.460.48 1.000.510.530.570.57 1.00R ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦22 1.000.43 1.000.270.33 1.00ˆ0.240.260.25 1.000.340.540.460.28 1.000.370.320.290.300.35 1.000.400.580.450.270.590.31 1.00R ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦12210.330.320.200.190.300.370.210.300.210.160.080.270.350.20ˆˆ0.310.230.140.070.240.370.180.240.220.120.190.210.290.160.380.320.170.230.320.360.27R R ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦试对职业满意度与职业特性进行典型相关分析。