19.1.1-变量与函数(第2课时)--优质课(人教版教学设计精品)(最新整理)
- 格式:pdf
- 大小:233.58 KB
- 文档页数:7
19.1.1变量与函数(2)教学目标:1.进一步体会运动变化过程中的数量变化;2.从典型实例中抽象概括出函数的概念,了解函数的概念.教学重点:概括并理解函数概念中的单值对应关系,用式子表示变量间的关系教学难点:用含有一个变量的式子表示另一个变量教学过程一、预习检测:什么是变量?什么是常量?二、合作交流:问题1 下面变化过程中的变量之间有什么联系?(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km;60180204240540问题2 下面变化过程中的变量之间有什么联系?(2)每张电影票的售价为10 元,设某场电影售出x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为r ,面积为S ;(4)用10 m 长的绳子围一个矩形,当矩形的一边长为x,它的邻边长为y.三释疑解惑:函数的定义:一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.如果当x =a 时,对应的y =b,那么b 叫做当自变量的值为a 时的函数值.四、随堂练习:课本P74页-75页练习五、总结归纳:1.函数概念包含:(1)两个变量;(2)两个变量之间的对应关系.2.函数关系三种表示方法:(1)解析法;(2)列表法;(3)图象法.六、布置作业1.已知2x-3y=1,若把y用x表示为___________.其中变量是_____、•_____,常量是________.2.等腰△ABC中,AB=AC,则顶角y与底角x之间的函数关系式为_____________.其中变量是_______、•_______,常量是________.3.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,•则油箱内剩余油量Q升与行驶时间t小时的关系是_____________.其中变量是_______、_______,常量是________4.写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系.(2)直角三角形中一个锐角α与另一个锐角β之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y(吨)5.买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.6.个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.。
19.1.1 变量与函数(第2课时)教学分析函数是描述运动变化规律的重要数学模型,是联系方程和不等式及数与形的纽带。
函数概念是中学数学的核心概念,是刻画某一变化过程中两变量间的对应关系的重要模型,也是继续学习一次函数、二次函数、反比例等函数的基础。
学生在小学学过正比、反比关系,知道两个量,一个量随着另一个量的变化而变化。
在初一字母表示数中,字母取值变化,式子的值也变化,都感受到生活中两个量的依存关系。
尽管有这些学习和生活经验可以助于理解函数的概念,但学习中还是碰到较大的困难,主要难于发现和形成“一个变量的值的确定导致另一个变量的取值唯一确定”的概括,那怕,最后体会到了这对应关系,也只是容易认为这“唯一确定”指的是可以通过公式求出唯一的值,对不能用公式求出的值的“单值对应关系”难以理解。
因此,本教学设计中采取两个措施来突破:一是先让学生预习,并课堂上提出疑问,做到更有针对性;二是“分步概括”,先抓住学生注意力集中的时间段,由课本上几个有规律的实例抽象出函数概念,并初步巩固概念,再把课本中没规律的两个问题(表和图象)反映的“单值对应关系”以练习题的形式呈现,来达到完善函数概念的目的。
这样使课堂的时间安排更合理,也易于学生掌握和竖立学习信心。
教学目标1、结合具体的实例了解函数及自变量的概念2、会判断一个变量是否是另一个变量的函数和了解函数的呈现方式3、在函数概念的形成过程中体会运动变化与对应思想、模型思想和数形结合思想。
重难点:理解函数概念中两变量的对应关系教法:先学后教、分步概括、具体到抽象教学过程教学环节教师学生设计意图预设板书把握运动变化规律探知解疑问题1:请回顾上节课中问题(1)----(4),每个问题中各有几个变量?同一个问题中的变量之间有什么联系?追问1:当t的取值发生变化时,s的值是否也发生变化?能用具体的数值加以说明吗?追问2:当t取定一个值时,s有几个值与之对应?追问3:以上例子,变量间的关系有什么共同特点?小组合作探究让学生发现四个问题中的共同特点:(1)两个变量,(2)并且当其中一个取定一个值时,另一个有唯一确定的值与之对应(单值对应关系)1)有两个变量:t和s当t取定一个值时,s有唯一确定的值与之对应t123 4.5s?S=60t2)......3)......4)......巩固应用练习1 下列问题中,哪些量是自变量?哪些量是自变量的函数?请说明理由.独立思考回答巩固概念教学环节教师学生设计意图预设板书于时间取定一个值时,温度有唯一确定的值与之对应吗?你能根据图象说出某一时刻的气温吗?练习4:你能举出一个函数的实例吗?变量的值,突出函数的本质属性,剥离“用公式表示变量关系”这一非本质属性;同时了也为后面总结两变量关系的表示方法——画图法,作辅垫。
1第2课时 函 数1.了解函数的概念,弄清自变量与函数之间的关系;(重点)2.确定函数中自变量的取值范围.(难点)一、情境导入如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量.当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?从今天开始,我们就研究和此有关的问题——函数.二、合作探究探究点一:函数【类型一】函数的定义下列变量间的关系不是函数关系的是( )A .长方形的宽一定,其长与面积B .正方形的周长与面积C .等腰三角形的底边长与面积D .圆的周长与半径解析:A 中,长方形的宽一定.它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;B 中,面积=(周长4)2,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;C 中,面积=12×底边上的高×底边长,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;D 中,周长=2π×半径,圆的周长与其半径是函数关系.故选C.方法总结:判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系. 确定实际问题中函数解析式以及自变量下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10kg 的物体,它的原长为10cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1kg 物体,弹簧伸长0.5cm ;(2)设一长方体盒子高为30cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解析:(1)根据弹簧的长度等于原长加上伸长的长度,列式即可;(2)根据长方体的体积公式列出函数式.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数;(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.方法总结:函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.探究点二:自变量的值与函数值 【类型一】根据解析式求函数值根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值为( )A.32B.25C.425D.254解析:∵x =52时,在2≤x ≤4之间,∴将x=52代入函数y =1x ,得y =25.故选B. 方法总结:根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【类型二】 根据实际问题求函数值2小强想给爷爷买双鞋,爷爷说他的脚长25.5cm ,若用x (单位:cm)表示脚长,用y (单位:码)表示鞋码,则有2x -y =10,根据上述关系式,小强应给爷爷买________码的鞋.解析:∵用x 表示脚长,用y 表示鞋码,则有2x -y =10,而x =25.5,则51-y =10,解得y =41.方法总结:当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.探究点三:确定自变量的取值范围【类型一】 确定函数解析式中自变量的取值范围写出下列函数中自变量x 的取值范围:(1)y =2x -3;(2)y =31-x;(3)y =4-x ;(4)y =x -1x -2. 解析:当表达式的分母不含有自变量时,自变量取全体实数;当表达式的分母中含有自变量时,自变量取值要使分母不为零;当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.解:(1)全体实数;(2)分母1-x ≠0,即x ≠1; (3)被开方数4-x ≥0,即x ≤4;(4)由题意得⎩⎪⎨⎪⎧x -1≥0,x -2≠0,解得x ≥1且x ≠2.方法总结:本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.【类型二】确定实际问题中函数解析式的取值范围水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水? (3)几点几分水箱内的水恰好放完?解析:(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25(分钟),将t =25分钟代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y =200-2t .∵y ≥0,∴200-2t ≥0,解得t ≤100,∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100);(2)∵7:55-7:30=25(分钟),∴当t =25分钟时,y =200-2t =200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y =0时,200-2t =0,解得t =100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.三、板书设计1.函数的概念2.函数自变量的取值范围使函数有意义的自变量取值的全体,叫做函数自变量的取值范围.3.函数值在教学过程中,注意通过对以前学过的“常量与变量”的回顾与思考,提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解.。
19.1.1变量与函数一、内容与内容解析1、内容函数的概念和自变量的取值范围。
2、内容解析函数是中学数学中最重要的概念之一,它是描述现实世界运动变化规律地重要数学模型。
理解函数概念,学会用函数的观点解决数学问题和现实问题,是中学阶段最重要的学习任务之一。
初中阶段强调用函数描述一个变化过程。
例如,在匀速运动中,路程随时间的变化而变化,路程是时间的函数;商品单价为a,总价S随商品数量n的变化而变化,S是n的函数;等等。
其本质是:函数是两个变量之间的一种特殊的对应关系。
函数概念所反映的基本思想是变化与对应的思想。
函数的概念和表示方法是后续学习正比例函数、一次函数、二次函数、反比例函数等具体函数的基础。
本节课结合具体实例概括函数的概念过程中,经历从具体到抽象的认知过程,发展学生的抽象概括能力。
基于以上分析,确定本节课的教学重点为:了解函数概念的内涵。
二、教学目标1、知识目标:①理解函数的概念以及自变量的含义,感受变化与对应的函数思想,能根据题目所给条件写出函数解析式。
②会根据函数解析式和实际意义确定自变量的取值范围。
2、能力目标:经历从实际问题中抽象函数概念的过程,培养学生的抽象概括能力。
通过让学生课堂发言,提高学生语言表达和信息交流、归纳总结的能力。
3、情感目标:培养学生积极参与、大胆探索的精神,体验探究的乐趣,感受成功的快乐,增强学生学习数学的兴趣。
三、教学重点、难点根据学生现有水平及新课标的要求,确立本节课的重点和难点如下:教学重点:体会函数是描述两个变量之间的对应关系的重要模型,正确理解函数概念。
教学难点:函数概念的理解;根据函数解析式和实际意义确定自变量的取值范围。
四、学情分析学生已经学习了常量和变量的概念,能够在简单的实际问题中找出常量和变量,能凭借生活经验,分析一些典型实际问题中的数量关系,并能列关系式表示变量之间的关系。
学生对函数概念中的唯一确定的理解有困难,教学中应突出函数概念的本质和建构过程,选择典型、丰富的实例,使学生在分析、归纳概括实例共同本质属性的基础上,感悟函数概念及其蕴含的思想方法。
第十九章函数.站所s就.3.已知函数y=2x2-1.(1)求出当x=2时y的值;(2)求出当y=3时x的值.判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,方法总结求函数值,直接把自变量的值带入函数关系式中计算即可;求自变量的值,需把函数值带入函数关系式中,得到关于自变量的方程,然后解方程.探究点2:自变量的取值范围问题3:请用含自变量的式子表示下列问题中的函数关系: (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t (单位:h ),行驶的路程为 s (单位:km );(2)多边形的边数为 n ,内角和的度数为 y .问题4:问题3(1)中,t 取-2 有实际意义吗?(2)中,n 取2 有意义吗?例3.下列函数中自变量x 的取值范围是什么? (1)y=3x+1;(2)12y x =+;(3)y =4)y =.A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数 2.下列各表达式不是表示y 是x 的函数的是( )3.设路程为s ,时间为t ,速度为v ,当v=60时,路程和时间的关系式为 ,这个关系式中, 是常量, 是变量, 是 的函数.4.油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Q (kg )与流出时间t (min )之间的函数关系式是 ,自变量t 的取值范围是. 5.求下列函数中自变量x 的取值范围:2(1)2y x x =--;3(2)48y x =+;(3)y =;1(4)1y x -.6. 我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里,一律收费8元;超过3公里时,超过3公里的部分,每公里加收1.8元;设乘坐出租车的里程为x (公里)(x 为整数),相对应的收费为y (元).(1)请分别写出当0<x ≤3和x >3时,表示y 与x 的关系式,并直接写出当x=2和x=6时对应的y 值;(2)当0<x ≤3和x >3时,y 都是x 的函数吗?为什么?。
人教版义务教育课程标准实验教科书八年级下册
19.1.1变量与函数(第2课时)教学设计
一、教材分析
1、地位作用:作为函数的起始章节,教材第一次给出了函数的一般概念以及自变
量、函数值等概念。
既是“一次函数”中函数的基本概念,也是初中阶段学习代数函数的基础,即八年级下学期学习第19章“一次函数”,九年级上学期学习第22章“二次函数”,九年级下学期学习第26章“反比例函数”。
本节是全章的基础部分,结合简单的实际问题,对事物的运动变化进行数量化讨论,先引出常量和变量的意义,再从描述变量之间对应关系的角度刻画了一般函数的基本特征,从而初步建立函数的概念,并给出函数的解析式的意义,对后续学习函数其他内容很重要.
2、教学目标:
1.经过练习,观察,认识变量中的自变量与函数。
会写出函数关系式,会求函数值,会确定自变量取值范围.
2. 通过观察、讨论、归纳等活动,体会函数的模型思想.
3、教学重、难点
教学重点:①会写出函数关系式,能分清自变量与函数;②初步确定自变量的取
值范围.
教学难点:认识函数、领会函数的意义.
突破难点的方法:分析变化─探索交流─归纳总结
二、教学准备:多媒体课件、导学案
三、教学过程
学会确定自
、自变量、函数及函数值都有两个变量。
人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。
学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。
本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。
但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。
因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。
三. 教学目标1.理解变量的概念,掌握常量与变量的区别。
2.理解函数的定义,掌握函数的表示方法。
3.能够运用变量和函数的知识解决实际问题。
四. 教学重难点1.重点:变量、函数的概念及其表示方法。
2.难点:函数概念的理解,函数表示方法的应用。
五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。
2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。
3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。
2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。
通过观察、讨论,让学生初步理解变量概念。
2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。
接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。
3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。
变量与函数(课题)变量与函数教学目标(一)知识与技能:掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制(二)数学思考:掌握根据函数自变量的值求对应的函数值(三)问题解决:联系求代数式的值的知识,探索求函数值的方法(四)情感态度:使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识教学重点:函数关系式直观得到自变量取值范围教学难点:函数自变量的值求对应的函数值教具准备:多媒体课件教学时数:2课时教学过程:第 2 课时一、基本训练激趣导入创设情境问题1 填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x 表示,纵向的加数用y 表示,试写出y 与x 的函数关系式.解 如图能发现涂黑的格子成一条直线.函数关系式:y =10-x .二、提出目标 指导自学问题2 试写出等腰三角形中顶角的度数y 与底角的度数x 之间的函数关系式.解 y 与x 的函数关系式:y =180-2x .问题3 如图,等腰直角△ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分面积y cm 2与MA 长度x cm 之间的函数关系式.解 y 与x 的函数关系式:221x y.三、合作学习 引导发现探究归纳思考 (1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析 问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°,所以等腰三角形的底角的度数x 不可能大于或等于90°. 问题3,开始时A 点与M 点重合,MA 长度为0cm ,随着△ABC 不断向右运动过程中,MA 长度逐渐增长,最后A 点与N 点重合时,MA 长度达到10cm .解 (1)问题1,自变量x 的取值范围是:1≤x ≤9;问题2,自变量x 的取值范围是:0<x <90;问题3,自变量x 的取值范围是:0≤x ≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是 y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.四、反馈调节 变式训练例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)21+=x y ; (4)2-=x y .分析 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x 取任意实数,3x -1与2x 2+7都有意义;而在(3)中,x =-2时,21+x 没有意义;在(4)中,x <2时,2-x 没有意义.解 (1)x 取值范围是任意实数;(2)x 取值范围是任意实数;(3)x 的取值范围是x ≠-2;(4)x 的取值范围是x ≥2.归纳 四个小题代表三类题型.(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是分母中只含有一个自变量的式子;(4)题给出的是只含有一个自变量的二次根式.例2 分别写出下列各问题中的函数关系式及自变量的取值范围:(1)某市民用电费标准为每度0.50元,求电费y (元)关于用电度数x 的函数关系式;(2)已知等腰三角形的面积为20cm 2,设它的底边长为x (cm),求底边上的高y (cm)关于x 的函数关系式;(3)在一个半径为10 cm 的圆形纸片中剪去一个半径为r (cm)的同心圆,得到一个圆环.设圆环的面积为S (cm 2),求S 关于r 的函数关系式.解 (1) y =0.50x ,x 可取任意正数; (2)xy 40=,x 可取任意正数; (3)S =100π-πr 2,r 的取值范围是0<r <10.例3 在上面的问题(3)中,当MA =1 cm 时,重叠部分的面积是多少?解 设重叠部分面积为y cm 2,MA 长为x cm , y 与x 之间的函数关系式为 221x y =当x =1时,211212=⨯=y 所以当MA =1 cm 时,重叠部分的面积是21cm 2.例4 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2;(3)12-=x y ; (4)x y -=2.分析 函数值就是y 的值,因此求函数值就是求代数式的值.解 (1)当x = 2时,y = 2×2-5 =-1; (2)当x = 2时,y =-3×22 =-12;(3)当x = 2时,y =122-= 2; (4)当x = 2时,y =22-= 0.五、分层测试 效果回授1.分别写出下列各问题中的函数关系式,并指出式中的自变量与函数以及自变量的取值范围:(1)一个正方形的边长为3 cm ,它的各边长减少x cm 后,得到的新正方形周长为y cm .求y 和x 间的关系式;(2)寄一封重量在20克以内的市内平信,需邮资0.60元,求寄n 封这样的信所需邮资y (元)与n 间的函数关系式;(3)矩形的周长为12 cm ,求它的面积S (cm 2)与它的一边长x (cm)间的关系式,并求出当一边长为2 cm 时这个矩形的面积.2.求下列函数中自变量x 的取值范围:(1)y =-2x -5x 2; (3) y =x (x +3); (3)36+=x x y ; (4)12-=x y .3.一架雪橇沿一斜坡滑下,它在时间t (秒)滑下的距离s (米)由下式给出:s =10t +2t 2.假如滑到坡底的时间为8秒,试问坡长为多少?4.当x =2及x =-3时,分别求出下列函数的函数值:(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)12-+=x x y .教学反思:。
19.1.1变量与函数-----第二课时函数学习目标1.能够说出函数的概念,函数解析式的概念2.能够写出函数自变量的取值范围和函数值教学重难点重点:函数的概念,函数解析式的求法以及自变量的取值范围.难点:函数概念的理解教学过程一.情境引入:我们以前学习过正数,负数,有理数,实数,那么函数到底是一种什么样的数了,通过我们今天的学习,我们就能解决这一问题.(同时展示本节课的教学目标)二.新知探究,合作交流(自学研讨后以小组学习的方式进行)回顾上一节课所学习的四个问题之中,S = 60t y = 10x S = πr2 y = 5-x 中,逐一讲解,分析其中的变量个数和一个变量随着另一个变量的变化而变化.同时分析用图像和表格也来表示函数.学生阅读P73思考(1)第一个是体检时的心电图.其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x 的每一个确定的值,y都有唯一确定的对应值吗?(2)第二个是我国人口数统计表中,年份与人口数,可以记作两个变量x与y,•对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?通过以上的三类问题引导学生得出函数的概念:在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与其对应,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.老师特别强调函数概念中所要注意的问题:(1)变量的个数 -----两个.(2)变量之间的关系-----对于x的每一个确定的值,y都有唯一确定的值与其对应. (3)特别强调:“确定”,“唯一”的含义.老师在已讲解的实例中以行驶问题S = 60t为例讲解函数值,当t =1时,s=60,60就叫做当自变量为1时的函数值.当t =2时,s=120, 120就叫做当自变量为2时的函数值. 三.例题讲解例1. 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子.(2)指出自变量x的取值范围.(3)汽车行驶300 km时,油箱中还有多少油?分析:(1)引导学生找到问题中的等量关系:剩油量=原有油量-耗油量 . 然后根据这一个关系式列出函数关系式: y = 50-0.1x.通过此函数关系式引出一个新的概念------函数解析式.像= 50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数常用的方法,这种式子叫做函数的解析式(2)给学生强调:自变量的取值范围不仅仅要满足代数式本身要有意义,而且还要使实际问题有意义.代数式有意义注意三项:(1)关系式是整式时,取任意实数.有分母,分母不能为零.(2) 开偶数次方,被开方数是非负数. (3)零次幂,底数不能为零.根据自变量有意义可解决第二个问题.由x≥0及50-0.1x ≥0 得0 ≤ x ≤ 400 ∴自变量的取值范围是: 0 ≤ x ≤ 500(3)引导学生在实际问题中找自变量所对应的函数值:当 x = 300时,函数 y 的值为:y=40-0.1×300=10,因此,当汽车行驶300 km时,油箱中还有油10L.四.巩固练习1.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出函数解析式(1)改变正方形的边长x,正方形的面积s 随之改变(2)每分钟向一水池注水0.1m3,注y水量(单位:m3)随注水时间(单位:min)的变化而变化学生先做,然后小组讨论后以小组形式回答:(1)解:S=x²,S是x的函数,x是自变量;(2)解:y=0.1x,y是x的函数,x是自变量;五.总结拓展1.课堂小结:学生讨论交流回答下面的四个问题问题1:在一个变化过程中,对于变量x和y而言,满足什么对应关系时,y才是x的函数?两个变量满足“一对多”的关系是函数吗?问题2:自变量的取值范围如何确定?受哪些因素的限制?问题3:在解决什么问题时,往往需要建立函数模型?根据什么建立函数模型?建立函数模型最常见的方式是什么?问题4:如何确定函数值?2.拓展延伸我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里,一律收费8元;超过3公里时,超过3公里的部分,每公里加收1.8元;设乘坐出租车的里程为x(公里)(x 为整数),相对应的收费为y(元). (1)请分别写出当0<x≤3和x>3时,表示y与x 的关系式,并直接写出当x=2和x=6时对应的y值;(2)当0<x≤3和x>3时,y都是x的函数吗?为什么?学生回答:解:(1)当0<x≤3时,y=8;当x>3时,y=8+1.8(x-3)=1.8x+2.6.当x=2时,y=8;x=6时,y=1.8×6+2.6=13.4.(2)当0<x≤3和x>3时,y都是x的函数,因为对于x的每一个确定的值,y都有唯一确定的值与其对应.3.作业布置教材P81---P82页习题1,2,3,4,5题.六.课堂效果测评1.下列关系中,y不是x函数的是()2.写出下列各问题中的关系式,并指出其中的自变量与函数.(1)正方形的面积S 随边长 x 的变化;(2)秀水村的耕地面积是106m2,这个村人均耕地面积y随着人数x的变化而变化;(3)长方形的周长是18 ,它的长是m,宽是n .七.评价与反思(引导学生自己总结)1.你今天学习了什么?学到了什么?还有什么疑惑?有什么感受?在学生回答的基础上,教师点评并板书2.教学反思本节课是以学生熟悉的生活为例来引入函数的概念,让学生自己去发现去体会,这样能充分调动学生学习的积极性,同时也会让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识.。
人教版数学八年级下册19.1.1《变量与函数》教学设计教师版一. 教材分析人教版数学八年级下册19.1.1《变量与函数》是学生在学习了初中阶段函数知识的基础上,进一步深入研究函数的概念、性质和应用。
本节内容主要包括函数的定义、函数的性质和函数的图像等方面的内容。
本节内容对于学生掌握函数知识,理解数学的内涵和外延,培养学生的数学思维能力都具有重要意义。
二. 学情分析学生在学习本节内容之前,已经学习了初中阶段函数的基本知识,对于函数的概念、图像和性质有一定的了解。
但是,对于函数的定义和细节方面可能还存在一些疑惑,需要通过本节课的学习进一步深化理解。
同时,学生需要通过本节课的学习,掌握函数知识的应用,提高解决实际问题的能力。
三. 教学目标1.理解函数的定义,掌握函数的性质,了解函数图像的基本特征;2.学会如何求解函数的值,能够运用函数知识解决实际问题;3.培养学生的数学思维能力,提高学生的数学素养。
四. 教学重难点1.函数的定义和性质;2.函数图像的特征;3.函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、小组合作探究法等教学方法,通过引导学生自主探究、合作交流,让学生在实际问题中感受函数的意义,理解函数的定义和性质,掌握函数图像的基本特征,提高解决实际问题的能力。
六. 教学准备1.教学PPT;2.教学素材(实际问题、函数图像等);3.教学用具(黑板、粉笔等);4.学生分组合作探究材料。
七. 教学过程导入(5分钟)1.引入新课:通过一个实际问题引入函数的概念,让学生感受函数的意义;2.引导学生思考:如何定义函数?如何表示函数?呈现(15分钟)1.讲解函数的定义:函数是一种数学关系,其中每个输入值都对应唯一的输出值;2.介绍函数的性质:函数的单调性、奇偶性、周期性等;3.呈现函数图像:直线、曲线等。
操练(15分钟)1.让学生自主探究:如何求解函数的值?如何根据函数的性质解决问题?2.案例教学:通过一些实际问题,让学生运用函数知识解决问题。
第2课时函数理解函数的概念,准确写出函数的关系式.重点函数的概念,函数解析式的求法.难点函数概念的理解.一、创设情境,引入新课师:上一节课中的每个问题都涉及两个变量,这两个变量之间有什么联系呢?当其中一个变量确定一个值时,另一个变量是否也随之确定呢?这将是我们这节课要研究的内容.二、讲授新课师:观察问题(1)中的表格,时间t和路程s是两个变量,但当t取定一个值时,s也随之确定一个值.t/时 1 2 3 4 5s/千米60 120 180 240 300生:是的,当t时,s=300.师:问题(2)也是一样的,当早场x=150时,收入y=1500;当午场x=205时,y=2050;当晚场x=310时,y=3100.也就是说售票张数x与票房收入y是两个变量,但当x取定一个值时,票房收入y也就确定一个值.师:问题(3)中,当圆的半径r=10 cm时,S=100πcm2,当r=20 cm时,S=400πcm2等,也就是说…生:也就是说当圆的半径r取定一个值时,面积S也随之确定,并且S=πr2.师:问题(4)中,当长为4 m时,面积为4 m2;当长为3 m时,面积S为6 m2;当长x 为2.5 m时,面积S为6.25 m2,也就是说…生:也就是说当长x取定一个值时,面积S也就随之确定一个值.师:当长取定为x m时,面积S等于多少呢?生:S=x·(5-x)=5x-x2.师:像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数.前面的几个问题中,哪个是自变量,哪个是函数呢?它们之间的关系如何用式子表示?生1:问题(1)中,时间t是自变量,路程s是t的函数,s=60t.生2:问题(2)中,售票数量x是自变量,收入y是x的函数,y=10x.生3:问题(3)中,圆的半径r是自变量,面积S是r的函数,S=πr2.生4:问题(4)中,长方形的长x是自变量,面积S是x的函数,S=x(5-x).师:其实,现实生活中某些函数关系是用图表的形式给出的,比如说:心脏部位的生物电流,y是x的函数吗?生:y是x的函数,因为在心电图里,对于x的每一个确定的值,y都有唯一确定的值和它对应.师:很好!再比如说下面是我国的人口统计表,人口数量y是年份x的函数吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.522010 13.71教师总结:(再一次叙述函数的定义)像这样,在一个变化过程中,如果有两个变量x 与y ,并且对于x 每一个确定的值,y 都有唯一确定的值与其对应,我们就说x 是自变量,y 是x 的函数.如果当x =a 时,y =b ,那么b 叫做当自变量x =a 时的函数值,例如在问题(1)中当t =1时的函数值s =60,当t =2时的函数值s =120.在人口统计表中当x =1999时,函数值y =12.52亿.【例】教材第73页例1师:关于自变量的取值范围我们再来看两个题目.求下列函数中自变量x 的取值范围:y =2x 2-5;y =1x +4; y =x +3.生1:对于y =2x 2-5,x 没有任何限制,x 可取任意实数.生2:对于y =1x +4,(x +4)必须不等于0式子才有意义,因此x≠-4. 生3:对于y =x +3,由于二次根式的被开方数大于等于0,因此x≥-3.三、巩固练习下列问题中,哪些是自变量?哪些是自变量的函数?写出用自变量表示函数的式子.1.改变正方形的边长x ,正方形的面积S 随之改变.【答案】S =x 2,x 是自变量,S 是因变量.2.秀水村的耕地面积为106 m 2,这个村人均占有耕地面积y 随这个村人数n 的变化而变化.【答案】y =106n,n 是自变量,y 是因变量.四、课堂小结本节课我们通过对问题的思考、讨论,认识了自变量、函数及函数值的概念,并通过两个活动,加深了对函数意义的理解,学会了确定函数关系式以及求自变量取值范围的方法,从而提高了运用函数知识解决实际问题的能力.本节课引入新课所设计的一些问题都来自于学生生活,函数的概念也是在教师引导下学生自主发现的,这样做能充分调动学生学习的积极性,同时能让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识。
《19.1.1变量与函数》本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律. 1.了解变量与常量的意义;2.体会运动变化过程中的数量变化.3.进一步体会运动变化过程中的数量变化;4.从典型实例中抽象概括出函数的概念,了解函数的概念.5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;6.能确定简单实际问题中函数的自变量取值范围;7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.1. 了解变量与常量的意义,充分体会运动变化过程中量的变化.2. 概括并理解函数概念中的对应关系.3. 用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围. 多媒体:PPT 课件、电子白板第一课时一、初步感知统领全章:1.观察图片,体会变化:【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,云图随时间变化而变化,汽车行驶的路程随时间变化而变化……在你的周围的事物中,这种一个量随另一个量的变化而变化的现象大量存在.为了研究这些运动变化现象中变量间的依赖关系,数学中逐渐形成了函数概念.人们通过研究函数及其性质,更深入地认识现实世界中许多运动变化的规律.本章中,我们将从初步认识变量和函数开始,重点学习一类最基本的函数——一次函数.2.如图,小球在斜坡上滚动,请观察这一运动变化过程,你注意到了什么变化?变化的量有哪些?不变的量有哪些?变换的量:小球在斜坡上滚动的路程s;小球离起点的水平距离x;小球离水平面的高度y;小球滚动的时间t.不变的量:斜坡的高度,斜坡的长度,斜坡的水平长度等.二、细心体会感受新知:1.先请思考下面几个问题:(1)汽车以60km/h的速度匀速行驶,行驶的时间是t h,行驶的路程为s km,填写下表,s的值随t的值得变化而变化吗?(2)每张电影票的售价为10 元,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元?设一场电影售出x 张票,票房收入为y 元,y的值随x的值的变化而变化吗?(3)你见过水中涟漪吗?如图,圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的变化而变化吗?(4)用10 m长的用10 m长的绳子围一个矩形,当矩形的一边长 x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y 分别为多少?y的值随x的值的变化而变化吗?2.变量和常量:这些问题反映了不同事物的变化过程,其中有些量的数值是变化的,有些量的数值是始终不变的.变量:在一个变化过程中,数值发生变化的量为变量;常量:在一个变化过程中,数值始终不变的量为常量.三、运用新知解决问题1.练习:指出下列变化过程中的变量和常量:(1)汽油的价格是7.4元/升,加油x L,车主加油付油费y 元;(2)小明看一本200 页的小说,看完这本小说需要t 天,平均每天所看的页数为n;(3)用长为40 cm 的绳子围矩形,围成的矩形一边长为x cm,其面积为S cm2.解:(1)常量为汽油的价格7.4,变量为加油量L和油费y;(2)常量为这本书的总页数200,变量为平均每天所看的页数n和阅读天数t;(3)常量为矩形的周长40,变量为矩形的一边长x和面积S.2. 你能举出一个变化过程的例子,并说出其中的变量和常量吗?试一试!想一想:你能确定下列变化过程中的变量吗?(1)小敏长高了;(2)在汤中加水,汤变淡了;(3)小狗越来越可爱了.四、巩固训练形成能力:1. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中变量是( )A.物体B.速度C.时间和速度D.重量和空气2.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是常量3.在△ABC中,它的底边是a,底边上的高是h,则三角形面积S=12ah,当a为定长时,在此式中()A.S,h是变量,12,a是常量B.S,h,a是变量,12,是常量C.S,h是变量,12,S是常量D.S是变量,12,a,h是常量4. 用20 cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系式是___,其中常量是___,变量是____.5.地壳的厚度约为8~40千米.地表以下不太深的地方,温度可按y=35x+t 计算,其中x(千米)是深度, t(℃)是地球表面温度,y(℃)是地表下x千米处的温度.(1)在这个关系式中,哪些量是变量,哪些量是常量?(2)若地球的表面温度是t=35℃, 当x=30千米时,求y的值.五、课堂小结:(1)什么叫变量?什么叫常量?(2)举一个运动变化的例子并指出其变量和常量.(3)你认为变化过程中的变量之间会有联系吗?第二课时一、观察思考分析变化:问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系?(1)汽车以60km/h 的速度匀速行驶,行驶的时间为th,行驶的路程为skm;(2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ;(4)用10m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y.[活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同.建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系.【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应.二、观察思考再次概括:问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系.(1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数 y 吗?(2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗?问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义:一般地,在一个变化过程中,如果有两个变量 x 与y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值.三、初步应用巩固知识:练习1 下列问题中,一个变量是否是另一个变量的函数?请说明理由.(1)向一水池每分钟注水0.1m3,注水量 y(单位:m3)随注水时间 x(单位:min)的变化而变化;(2)改变正方形的边长 x,正方形的面积 S 随之变化;(3)秀水村的耕地面积是106m2,这个村人均占有耕地面积 y(单位:m2)随这个村人数 n 的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 随 x 的变化而变化.练习2 下面的我国人口数统计表中,人口数y 是年份x 的函数吗?为什么?练习3 下图是一只蚂蚁在竖直的墙面上的爬行图,请问:蚂蚁离地高度 h 是离起点的水平距离 t 的函数吗?为什么?【追问】蚂蚁离起点的水平距离 t 是离地高度 h 的函数吗?为什么?练习4 你能举出一个函数的实例吗?四、课堂小结:第三课时一、问题重现加深认识:1.函数解析式和自变量的取值范围.问题1 回顾函数定义,用含有自变量的式子表示下列函数关系,并确定自变量的取值范围.(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km;(2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元;(3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ;(4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y.解:(1)s=60t(t>0);(2)y=10x(x≥0且x为整数);(3)S=πr²(r>0);(4)y=5-x(0<x<5).[归纳](1)用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的解析式.(2)在实际问题中,函数的自变量取值范围往往是有限制的,在限制的范围内,函数才有实际意义;超出这个范围,函数没有实际意义,我们把这种自变量可以取的数值范围叫函数的自变量取值范围.练习:求下列函数中自变量x的取值范围:(1)y=3x-1;(2)y=2x2+7;(3)y=1x+2;(4)y=x-2.[解析] 用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x取任意实数,3x-1与2x2+7都有意义;而在(3)中,x=-2时,1x+2没有意义;在(4)中,x<2时,x-2没有意义.解:(1)x的取值范围是任意实数;(2)x的取值范围是任意实数;(3)x的取值范围是x≠-2;(4)x的取值范围是x≥2.2.列表法和图像法表示函数问题 2 下面两个例子中,函数关系还能用解析式表示吗?它们分别是用什么形式表示函数关系的?(1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数 y ;(2)如图是北京某天的气温变化图,对于每一个时刻,都有唯一确定的气温与之对应,【归纳】有的函数关系并不能用解析式表示出来,还有两种表示函数关系的方法:列表法和图像法.二、例题探究问题深入:例1 [教材P73例1] 汽车油箱中有汽油50 L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1 L/km.(1)写出表示y与x的函数关系的式子;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油箱中还有多少汽油?解:(1)y与x的函数关系式为y=50-0.1x.(2)因油量y>0,故0.1x≤50,∴自变量x的取值范围是0≤x≤500.(3)把x=200代入y=50-0.1x,得y=50-0.1×200=30.汽车行驶200km时,油箱中还有30L汽油.练习:如图19-1-:搭1条小鱼需要8根火柴,每多搭1条小鱼就要增加6根火柴,随着小鱼条数的增加,火柴的根数也随着增加.搭小鱼所需火柴的根数S、所搭小鱼的条数n,如果是请写出S与n的函数关系式,并写出自变量n的取值范围;如果不是,请说明理由.三、当堂练习:1.下列问题中,一个变量是否是另一个变量的函数?请说明理由.(1)向一水池每分钟注水0.1 m3,注水量y(单位:m3)随注水时间x(单位:min)的变化而变化;(2)改变正方形的边长x,正方形的面积S随之变化;(3)某村的耕地面积是106 m2,这个村人均占有耕地面积y(单位:m2)随这个村人数n的变化而变化;(4)P是数轴上的一个动点,它到原点的距离记为x,它的坐标记为y,y随x的变化而变化.2.你能用含自变量的式子表示下列函数,并说出自变量的取值范围吗?(1)等腰三角形的面积为12,底边长为x,底边上的高为y,y随着x的变化而变化;(2)把边长为10 cm的正方形纸板的四个角都截去一个边长为x的小正方形,做成一个无盖的长方体,该长方体的体积V(单位:cm3)随x(单位:cm)的变化而变化.3.下面的我国人口数统计表中,人口数y是年份x的函数吗?为什么?四、课堂小结:略。
人教版数学八年级下册19.1.1《变量与函数》教学设计一. 教材分析《变量与函数》是初中数学的重要内容,人教版八年级下册19.1.1节主要介绍了变量的概念以及函数的定义。
通过本节课的学习,学生能够理解变量、常量的概念,了解函数的定义及表示方法,为后续学习函数的性质、图象等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等。
但他们对变量的概念及函数的定义还较为模糊,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对函数的表示方法感到陌生,需要通过教师的引导和学生的实践来逐步熟悉。
三. 教学目标1.知识与技能:使学生理解变量、常量的概念,掌握函数的定义及表示方法。
2.过程与方法:通过实例分析,让学生体会变量之间的依赖关系,学会用函数表示实际问题中的变量关系。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:变量、常量的概念,函数的定义及表示方法。
2.难点:函数概念的理解,函数表示方法的运用。
五. 教学方法1.情境教学法:通过生活实例引入变量、常量概念,让学生在具体情境中感受数学与生活的联系。
2.引导发现法:教师引导学生发现变量之间的依赖关系,自主探究函数的定义及表示方法。
3.实践操作法:让学生通过实际操作,加深对函数概念的理解,提高运用函数解决实际问题的能力。
六. 教学准备1.教学课件:制作涵盖实例、练习、拓展等环节的课件,以便于引导学生逐步深入学习。
2.教学素材:收集与生活相关的函数实例,如温度、身高、体重等,用于导入和巩固环节。
3.练习题库:准备不同难度的练习题,以便于针对性地进行操练和巩固。
七. 教学过程1.导入(5分钟)教师通过展示生活中常见的变量关系,如气温随时间的变化、身高与年龄的关系等,引导学生关注变量之间的依赖关系。
在此基础上,提出问题:“你们认为什么是变量?什么是常量?”让学生发表自己的见解。
《19.1.1变量与函数》
本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律.
1.了解变量与常量的意义;
2.体会运动变化过程中的数量变化.
3.进一步体会运动变化过程中的数量变化;
4.从典型实例中抽象概括出函数的概念,了解函数的概念.
5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;
6.能确定简单实际问题中函数的自变量取值范围;
7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.
1.了解变量与常量的意义,充分体会运动变化过程中量的变化.
2.概括并理解函数概念中的对应关系.
3.用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围.
多媒体:PPT课件、电子白板
第一课时
一、初步感知统领全章:
1.观察图片,体会变化:
【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,。
陕西省安康市石泉县池河镇八年级数学下册第19章一次函数19.1.1 变量与函数(2)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇八年级数学下册第19章一次函数19.1.1 变量与函数(2)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇八年级数学下册第19章一次函数19.1.1 变量与函数(2)教案(新版)新人教版的全部内容。
变量与函数课题 19.1。
1变量与函数(2)授课类型新授课标依据探索简单实例中的数量关系和变化规律,了解常量、变量的意义;结合对函数关系的分析,能对变量的变化情况进行初步讨论。
教学目标知识与技能1。
了解函数的概念,知道函数是刻画变量之间对应关系的数学模型.2.能列出函数解析式表示两个变量之间的关系.3.能根据函数解析式求函数自变量的取值范围.4。
能根据问题的实际意义求函数自变量的取值范围。
过程与方法经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力。
情感态度与价值观引导学生探索实际问题中的数量关系,培养学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.教学重点难点教学重点列函数解析式、求函数自变量的取值范围的依据.教学难点函数的概念的理解,根据问题的实际意义求函数自变量的取值范围.教学媒体选择分析表知识点学习目标媒体教学使用所得结论占用媒体来源类型作用方式时间介绍知识目标图片B G建立表象2分钟自制讲解过程与方法PPT A E帮助理解5分钟自制讲解过程与方法PPT A E得出结论10分钟自制①媒体在教学中的作用分为:A。
第十九章 函数19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 . 3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ; (2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.四、我的疑惑____________________________________________________________ ____________________________________________________________一、要点探究探究点1:常量与变量问题1:一辆汽车以60千米/时的速度匀速行驶,行驶里程为s 千米.行驶时间为t 小时. (1)请同学们根据题意填写下表:(2)试用含t 的式子表示s,则s= ;(3)在以上这个过程中,变化的量有 ,不变化的量有__________.问题2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元. (1)请同学们根据题意填写:早场电影的票房收入为 元; 日场电影的票房收入为 元; 晚场电影的票房收入为 元;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________.(3)试用含x 的式子表示y,则y= ;这个问题反映了票房收入____随售票张数_____的变化过程.问题3:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S 分别为多少? (1)填空:当圆的半径为10cm 时,圆的面积为 cm 2; 当圆的半径为20cm 时,圆的面积为 cm 2; 当圆的半径为30cm 时,圆的面积为 cm 2; 当圆的半径为r 时,圆的面积S= ;(2)在以上这个过程中,变化的量是_____________,不变化的量是__________. 要点归纳:在一个变化过程中,数值发生变化的量为 ,数值始终不变的量为 .典例精析例1 指出下列事件过程中的常量与变量 (1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是________,变量是________; (2)周长C 与圆的半径r 之间的关系式是C =r 2π,其中常量是________,变量是________; (3)三角形的一边长5cm ,它的面积S(cm 2)与这边上的高h(cm)的关系式52y h =中,其中常量是________,变量是________. 变式题阅读并完成下面一段叙述:(1)某人持续以a 米/分的速度用t 分钟时间跑了s 米,其中常量是________,变量是________. (2)s 米的路程不同的人以不同的速度a 米/分各需跑的时间为t 分,其中常量是________,变量是________.t/小时 1 2 3 4 5S/千米课堂探究(3)根据上面的叙述,写出一句关于常量与变量的结论:_________________________.方法总结:区分常量与变量,就是看在某个变化过程中,该量的值是否可以改变,即是否可以取不同的值.探究点2:确定两个变量之间的关系 例2.弹簧的长度与所挂重物有关.如果弹簧原长为10cm ,每1kg 重物使弹簧伸长0.5cm ,试填下表: 怎样用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)?变式题:如果弹簧原长为12cm ,每1kg 重物使弹簧压缩0.5cm ,则用含重物质量m (kg )的式子表示受力后的弹簧长度 L(cm)为________. . 写出下列问题中的关系式,并指出变量和常量:(1)某市的自来水价为4元/吨.现要抽取若干户居民调查水费支出情况,记某户月用水量为x 吨,月应交水费为y 元.(2)某地手机通话费为0.2元/分.李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分钟,话费卡中的余额为w 元.(3)水中涟漪(圆形水波)不断扩大,记它的半径为r ,圆周长为C ,圆周率(圆周长与直径的比)为π.(4)把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本.1.若球体体积为V,半径为R,则343V Rπ=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价a(元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是________,其中的常量是________,变量是________.4.表格列出了一项实验的统计数据,表示小球从高度x(单位:m)落下时弹跳高度y(单位:m)与下落高的关系,据表可以写出的一个关系式是.5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的关系式.完成上表,并写出瓶子总数y 与层数x之间的关系式.50 80 100 15025 40 50 75x 123…ny…教学备注配套PPT讲授5.当堂检测(见幻灯片19-21)第十九章 函数) 2.下列式子中:y 是x 的函数的有 .(填序号)①y=|x|;②x+1=|y|;③y=x 2-2;④3.已知函数y=2x2-1.(1)求出当x=2时y的值;(2)求出当y=3时x的值.四、我的疑惑___________________________________________________________________________ ___________________________________________________________________________二、要点探究探究点1:函数的概念问题1:填表并回答问题:x14916y=+2x(1)对于x的每一个值,y都有唯一的值与之对应吗?(2)y是x的函数吗?为什么?问题2:如何判断两个变量间具有函数关系?典例精析例1.下列关于变量x ,y 的关系式:y =2x+3;y =x2+3;y =2|x|;④y=x±;⑤y2-3x=10,其中表示y 是x 的函数关系的是.方法总结:判断一个变量是否是另一个变量的函数,关键是看当一个变量确定时,另一个变量有唯一确定的值与它对应.例2.已知函数421xyx-=+.(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0. 课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片4-14)1.下列说法中,不正确的是()A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数2.下列各表达式不是表示y是x的函数的是( )3.设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为,这个关系式中,是常量,是变量,是的函数.4.油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min)之间的函数关系式是,自变量t的取值范围是 .5.求下列函数中自变量x的取值范围:2(1)2y x x=--;3(2)48yx=+;(3)3y x=+;1(4)11y xx+-.6. 我市白天乘坐出租车收费标准如下:乘坐里程不超过3公里,一律收费8元;超过3公里时,超过3公里的部分,每公里加收1.8元;设乘坐出租车的里程为x(公里)(x为整数),相对应的收费为y(元). (1)请分别写出当0<x≤3和x>3时,表示y与x的关系式,并直接写出当x=2和x=6时对应的y值;(2)当0<x≤3和x>3时,y都是x的函数吗?为什么?八年级数学下册期中综合检测卷一、选择题(每小题3分,共30分)1.3x-x的取值范围是()A.x≥3B.x≤3C.x>3D.x<32.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,12C.6,8,11D.5,12,233.下列各式是最简二次根式的是()97200.34.下列运算正确的是()532149138222(25)-=255.方程|4x-8|x y m--当y>0时,m的取值范围是()A.0<m<1 B.m≥2 C.m≤2 D.m<26.若一个三角形的三边长为6,8,x ,则此三角形是直角三角形时,x 的值是( ) A.8 B.10 C.27 D.10或277.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A.可能是锐角三角形 B.不可能是直角三角形 C.仍然是直角三角形 D.可能是钝角三角形8.能判定四边形ABCD 为平行四边形的题设是( ) A.AB ∥CD ,AD=BC B.AB=CD ,AD=BC C.∠A=∠B ,∠C=∠D D.AB=AD ,CB=CD9.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC ⊥BD 时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当AC=BD 时,它是正方形第9题图 第10题图 第13题图 第15题图10.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4) S △AOB =S 四边形DEOF 中正确的有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.43a b +126b a b +-+可以合并,则ab = .12.若直角三角形的两直角边长为a 、b 269a a -+|b -4|=0,则该直角三角形的斜边长为 .13.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S 1=258π,S 2=2π,则S 3= .14.四边形ABCD 的对角线AC ,BD 相交于点O ,AC ⊥BD,且OB=OD,请你添加一个适当的条件 ,使四边形ABCD 成为菱形(只需添加一个即可).15.如图,△ABC 在正方形网格中,若小方格边长为1,则△ABC 的形状是 .16.已知菱形ABCD中,对角线AC与BD相交于点O,∠BAD=120°,AC=4,则该菱形的面积是.17.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是.18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标.三、解答题(共66分)19.(8分)计算下列各题:(1)(48-418)-(313-20.5);(2)(2-3)2015·(2+3)2016-2×|-3|-(-3)0.20.(8分)如图是一块地,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,且CD⊥AD,求这块地的面积.21.(8分)已知9+11与9-11的小数部分分别为a,b,试求ab-3a+4b-7的值.22.(10分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D 点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.23.(10分)如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.24.(10分)如图,四边形ABCD是一个菱形绿地,其周长为402 m,∠ABC=120°,在其内部有一个四边形花坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)25.(12分)(1)如图①,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹) (2)如图②,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE和CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.八年级数学下期末综合检测卷一、选择题(每小题3分,共30分)1.二次根式0.5、27、30、2x +、240x 、22a b +中,最简二次根式有( ) A.1个 B.2个 C.3个 D.4个2.若式子43x x --有意义,则x 的取值范围为( ) A.x ≥4 B.x ≠3 C.x ≥4或x ≠3 D.x ≥4且x ≠3 3.下列计算正确的是( )A.4×6=46B.4+6=10C.40÷5=22D.2(15)-=-154.在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,则点C 到AB 的距离是( ) A.365 B.1225 C.94D.335.平行四边形ABCD 中,∠B=4∠A,则∠C=( ) A.18° B.36° C.72° D.144°6.如图,菱形ABCD 的两条对角线相交于O,菱形的周长是20 cm ,AC ∶BD=4∶3,则菱形的面积是( )A.12 cm 2B.24 cm 2C.48 cm 2D.96 cm 2第6题图 第8题图 第10题图7.若方程组 的解是 .则直线y =-2x +b 与y =x -a的交点坐标是()A.(-1,3)B.(1,-3)C.(3,-1)D.(3,1)8.甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多9.在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,410.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为()A.54B.52C.53D.65二、填空题(每小题3分,共24分)11.当x= 时,二次根式x+1有最小值,最小值为.12.已知a,b,c是△ABC的三边长,且满足关系式222c a b--+|a-b|=0,则△ABC的形状为.13.平行四边形ABCD的两条对角线AC、BD相交于点O,AB=13,AC=10,DB=24,则四边形ABCD的周长为.14.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为.第14题图第16题图第18题图15.在数据-1,0,3,5,8中插入一个数据x,使得该组数据的中位数为3,则x的值为.16.如图,□ABCD中,E、F分别在CD和BC的延长线上,∠ECF=60°,AE∥BD,EF ⊥BC,EF=23,则AB的长是.17.(山东临沂中考)某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是小时.18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF,②∠AEB=75°,③BE+DF=EF,④S正方形ABCD=3其中正确的序号是.(把你认为正确的都填上)三、解答题(共66分)19.(8分)计算下列各题:(1)2-3|-212-⎛⎫-⎪⎝⎭18(2)先化简,再求值:a ba+÷(-a-22ab ba+),其中a3+1,b3-1.20.(8分)如图,折叠矩形的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10cm,AB=8 cm.求EF的长.21.(9分)已知一次函数的图象经过点A(2,2)和点B(-2,-4).(1)求直线AB的解析式;(2)求图象与x轴的交点C的坐标;(3)如果点M(a,-12)和点N(-4,b)在直线AB上,求a,b的值.22.(9分)(湖北黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户?23.(10分)(山东德州中考)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?24.(10分)如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.25.(12分)如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B 两点,且△ABO的面积为12.(1)求k的值;(2)若点P为直线AB上的一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形?求出此时点P的坐标;(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗?如果是,试说明理由;如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.更多全套优质教学课件、教案、习题、试卷,请关注本人主页!教学备注 1.情景引入 配套PPT 讲授 5.当堂检测 (见幻灯片。
y 的变化趋势是什么?
二、自主学习 感受新知:阅读教材P72内容,思考并回答下问题
(1)s=60t ,当t=1,则s= 60 ;当t=2,则s=120;……发现:当 t 取定一个值时, s 就
有唯一确定的值。
(2)y=10x ,当x=150,则y=1500 ;当x=205,则y=2050;……发现:当 x 取定一个值时, y 就有唯一确定的值。
(3)2r S π=,当r=10,则S=π100;当r=20,则s= π400 发现:当 取定一个值
时, 就有唯一确定的值。
【归纳总结】上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量 与其对应。
一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有 唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的 函数 .如果当x=a 时y=b ,那么b 叫做当自变量的值为a 时的 函数值。
三、自主交流 探究新知 如图3所示,两副图都能表示变量y 是x 的函数吗?为什么 解析:左图不是函数,右图是函数。
因为确定的x 值只能得到唯一的y 值 【归纳】判断两个变量是否是函数关系的依据是(1)一个变化过程。
(2)两个变量。
(3)确定的x 值只能得到唯一的y 值。
四、自主应用 当堂检测
一辆汽车油箱现有汽油50L ,如果不再加油,那么油箱中的油量y (L )随行驶里程x (km )
的增加而减少,平均耗油量为0.1L/km .
(1).写出表示y 与x 的函数关系式.
(2).指出自变量x 的取值范围.
(3).汽车行驶200km 时,油桶中还有多少汽油
x。
19.1.1 变量与函数(第2课时)一、内容和内容解析1.内容函数的概念.2.内容解析函数是描述运动变化规律的重要数学模型,是联系方程和不等式相关知识及数与形的纽带.函数概念是中学数学的核心概念,它刻画了变化过程中两个变量之间的对应关系,是继续学习一次函数、二次函数、反比例函数等内容的基础.本章内容包括函数的概念和表示法、正比例函数、一次函数.一次函数是函数值变化量与自变量变化量的比值固定不变的简单函数模型.研究一次函数可以获得初中函数研究的一般步骤(下定义——画图象——观察图象——概括性质)和基本思想(模型思想、数形结合的思想、运动变化和对应思想),发展数学观察、表征、抽象概括和推理能力.函数概念学习过程中蕴含的核心数学认知活动是数学抽象概括活动.变量y要成为变量x的函数,需满足两个条件:(1)在同一个变化过程中,有两个变量x 和y,一个变量y随着另一个变量x的变化而变化;(2)变量y的值是由变量x的取值唯一确定的.“单值对应”是函数概念的关键词,是函数概念的核心所在.综上所述,本课教学的重点:概括并理解函数概念中的单值对应关系.二、目标和目标解析1.目标(1)了解函数的概念.(2)能结合具体实例概括函数的概念.(3)在函数概念形成过程中体会运动变化与对应的思想.2.目标解析目标(1)的要求:能在具体实例(包括解析式、表格、图象呈现)中辨别变量之间的关系是否是函数关系,能举出函数的实例.目标(2)的要求:能观察运动变化的具体实例,分析变量之间的对应关系并发现其单值对应的特征,通过归纳实例中变量之间的单值对应特征概括函数的概念.目标(3)的要求:在函数概念的形成过程中,初步体会变量之间的联系,感受变化与对应的思想.三、教学问题诊断分析学生在小学阶段学习过正比例关系和反比例关系,知道具有正(反)比例关系的两个量中,一个量随着另一个量的增大而增大(减小);在字母表示数中接触过当字母取值变化时,代数式的值随之变化.学生在生活中也具有对两个量之间存在依存关系的体验,如气温随时间的变化而变化、单价固定时总价随着数量的变化而变化.尽管这些学习经验和生活经验可以帮助学生理解函数的含义,但初次接触函数的概念,学习中还是会遇到较大困难.主要困难在于难以形成“一个变量的值的确定导致另一个变量取值的唯一确定”的概括,当一个变量的值取定时,另一个变量怎样才算“唯一确定”.学生容易认为,函数关系中的“唯一确定”指的是可以通过公式求出的唯一的值,对不能用公式求出值的“单值对应关系”难以理解.因此,本节的难点是对函数概念中的“对应”含义的理解.四、教学过程设计 (一)创设情境,提出问题引言:通过前面的学习,我们体会到万物皆变,在运动变化过程中往往蕴含着量的变化,研究变量之间的关系,是把握变化规律的关键.设计意图:通过引言教学复习上一节课所学内容,提出本课需要研究的问题,引起合理的选择性注意,起先行组织者作用.(二)合作探究,形成概念1.观察思考,分析变化让我们从下列熟悉的变化过程开始研究其变化之间的变量关系.问题1 下面各题的变化过程中,各有几个变量?其中一个变量的变化是怎样影响另一个量的变化的?(1)如图1,汽车以60 km/h 的速度匀速行驶,行驶的时间为t h ,行驶的里程为s km .(2)每张电影票的售价为10元,设某场电影售出x 张票,票房收入为y 元.(3)如图2,圆形水波慢慢地扩大,在这一过程中,圆的半径为r ,面积为S .(4)如图3,用10 m 长的绳子围一个矩形,矩形的一边长为x ,它的邻边长为y .师生活动:教师与学生一起分析变化过程(1)中变量之间的关系.在变化过程(1)的分析图2设计意图:追问1: s 师生活动:教师引导学生取定t 的一些值,计算对应s 的值并列表:行驶时间t /h 12345行驶里程s /h60120180240300当t 的数值取定后,s 的值有一个且只有一个.也就是说,当t 取定一个值时,s 的值由t 的值完全确定,而且唯一确定.师生活动:引导学生对变化过程(2)(3)(4)进行类似于变化过程(1)的变量关系分析,并得到如下结论:设计意图:通过师生共同讨论,分析问题1(1)中一个变量的变化对另一个变量变化的影响,在此基础上,学生独立进行问题1(2)(3)(4)变量之间对应关系的分析,为发现这些对应关系的共同特征,实现函数概念的第一次概括提供归纳的样例.2.归纳共性,初步概括问题2 能用自己的语言说说这些问题中变量之间关系的共同特点吗?试一试!师生活动:教师引导学生归纳,在一个变化过程中有两个变量,当一个变量取定一个值时,另一个变量有唯一确定的值与之对应.如由s=60 t,当t=1,2,3时能分别求出唯一的s的值.设计意图:对能用解析式表示的变量之间的对应关系的共同特征进行初步概括.3.观察思考,再次概括问题3 下面是我国体育代表团在第23~30届夏季奥运会上获得的金牌数统计表,把x y x届数和金牌数分别记作两个变量和,对于表中的每一个确定的届数,都对应着一个确y定的金牌数吗?届数x/届2324252627282930金牌数y /枚155161628325138引导学生说出年份与人口数的对应关系,体会用表格也可以由一个变量的值确定出另一个相关变量的值.设计意图:让学生感受到当一个变量取定一个值时,可以通过查表唯一确定出另一个变量的值,突出函数的本质属性,剥离“用公式表示变量关系”这一无关属性.问题4如图4,是北京某天的气温变化图,你能说出9:00,10:00,13:00的气温吗?图4师生活动:教师在网上打开天气预报页面,引导学生阅读气温变化图,体会根据时温图可以确定气温数值,体会这也是变量之间的单值对应关系.追问1:一天中,当时间确定时,气温的数值是否也是唯一确定的?设计意图:让学生体会到,当一个变量取定一个值时,通过图象也可以唯一确定另一个变量的值,剥离“用公式表示变量关系”这一无关属性.问题5 上述实际问题中,两个变量之间的关系,当一个变量取定一个值时,既有通过公式确定另一个变量的唯一的值,又有通过对应表格确定另一变量唯一的值,还可以通过图象确定另一个变量的唯一的值.综合这些现象,你能归纳出上面所有实例中的变量之间关系的共同特点吗?请家互相讨论.师生活动:学生分组讨论,归纳出如下结论:在一个变化过程中,有两个变量,当一个变量取定一个值时,另一个变量有唯一确定的值与之对应.教师与学生一起概括出函数概念:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y 都有唯一确定的值与之对应,那么我们就说x是自变量,y是x的函数.追问:请结合问题1(2)说说函数定义中“变化”“对应”“唯一确定”的含义.师生活动:学生交流,教师引导学生进行点评,并顺势带出“函数值”的概念.如果当x=a时,对应的y=b,那么b叫做当自变量的值为a时的函数值.设计意图:在前面分步概括的基础上,概括出三类不同表现形式的变量对应关系的共同特征,形成函数概念.(三)初步辨析,了解概念1.下面是我国大陆地区人口若干年份的人口统计表,表中的人口数y是年份x的函数吗?年份x人口数y/亿198410.34198911.06199411.76199912.52201013.712.下列问题中哪些是自变量?哪些是自变量的函数?试写出用自变量表示函数的式子:(1)向一水池每分注水0.1 m3,注水量y(单位:m3)随注水时间x(单位:min)的变化而变化.(2)改变正方形的边长x,正方形的面积S随之变化.(3)某汽车油箱中有油40 L,它在高速公路上行驶,耗油量为0.07 L/km,汽车行驶的里程为x km,油箱中剩下的汽油量为y L.设计意图:形成函数概念后,及时进行概念辨析.(四)综合应用,深化理解1.P是数轴上的一个动点,它所表示的实数是m,P点到坐标原点的距离为S.(1)s是m的函数吗?为什么?(2)m是s的函数吗?为什么?2.图5是一只蚂蚁在竖直的墙面上爬行的路线图,请问:(1)蚂蚁离地的高度h是离起点的水平距离t的函数吗?为什么?(2) t是h的函数吗?为什么?离起点水平距离t/cm图53.请举出一个函数的实例.师生活动:学生独立完成,教师个别指导,并引导学生进行自我评价和相互评价.设计意图:通过正反两方面的例子进一步进行函数概念辨析,深化对函数概念的理解.(五)回顾总结,反思提升通过本课学习,你对函数有什么认识?(1)请举例说明什么是函数.(2)请结合实例说说你对函数定义中“对于变量x每一个确定的值,y都有唯一确定的值与之对应”的认识.设计意图:问题(1)引导学生回顾函数概念,问题(2)引导学生再次理解函数概念中的单值对应关系及确定对应关系方法(式子、表格、图象).布置作业:教科书第81页第1~4题;举一个函数的实例.六、目标检测1.判断下列哪些变化过程中的变量之间关系是否为函数关系,如果是,指出其中的自变量和函数.(1)某超市中鸡蛋价格是9元/ kg,鸡蛋的销售收入y(单位:元)随着销售量x(单位:kg)的变化而变化;(2)把边长为10 cm的正方形纸板的四角都截去一个边长为x的小正方形,做成一个无盖的长方体,该长方体的体积V(单位:cm3)随x(单位:cm)的变化而变化;(3)如图,小球沿着弯管往下滚,小球所在位置的横坐标为x(单位:m),纵坐标为h(单位:m),h随着x的变化而变化.设计意图:考查函数的概念.2.用关系式表示1(1)(2)中的函数,并求1(1)(2)中当自变量的值分别为1,2,3时的函数值.设计意图:考查对函数值意义的了解,是否会根据函数式求函数值.3.请举一个函数的实例.参考答案:1.(1)自变量为x,y是x的函数;(2)自变量为截去的小正方形边长x,长方体体积V 是x的函数;(3)h不是x的函数,因为当x取某些值时,对应h的值不止一个.2.(1) y=9x,当x的值分别为1,2,3时,对应的函数值y分别为9,18,27;(2)V=x(10-2x)2,当x的值分别为1,2,3时,对应的函数值分别为64,72,48.3.略.。