(江西人教)数学中考复习方案【第4课时】二次根式(26页)
- 格式:ppt
- 大小:2.22 MB
- 文档页数:26
二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。
2.会根据公式2)(a=a(a≥0)∣a∣进行计算。
3.熟练进行二次根式的乘除法运算。
4.了解最简二次根式的定义,能运用相关性质化简二次根式。
复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。
复习难点:正确依据二次根式相关性质计算和化简。
复习过程:一.知识结构:三个概念:二次根式最简二次根式同类二次根式三个性质:二次根式的双重非负性2(a=a(a≥∣a∣)四种运算:加.减.乘.除二.复习过程1.二次根式的概念(1).二次根式的定义:形如a(a≥0)的式子叫做二次根式2.二次根式的识别:(1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质(1).双重非负性:a ≥0(a ≥0) (2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x -3有意义。
(2).求下列二次根式中字母的取值范围x 315x --+ 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除 (1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2( 例2.计算 721)1(⋅ 15253)2(⋅)521(154)3(-⋅-xyx 11010)4(-⋅(2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。
621)6())(()5(75.0)4()3()2(50)1(2222b a b a y x bc a -++6.化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。
【复习目标】1.了解算术平方根、平方根、立方根的概念;2.了解二次根式、最简二次根式的概念,理解二次根式(a≥0)的双重非负性,能熟练化简二次根式.3.了解二次根式(根号下仅限于数)的加、减、乘、除运算法则,会运用它们进行有关的简单四则运算.【知识梳理】一、平方根、算术平方根、立方根1.若x2=a(a0),则x叫做a的,记作±;叫做算数平方根,记作。
2.平方根有以下性质:①正数有两个平方根,他们互为;②0的平方根是0;③负数没有平方根。
3.如果x3=a,那么x叫做a的立方根,记作。
二、二次根式1.二次根式:一般地,我们把形如_______的式子叫做二次根式.2.最简二次根式:满足下面两个条件的二次根式是最简二次根式:(1)被开方数中不含_______的因数或因式;(2)被开方数的因数是_______,因式是________.3.同类二次根式化成最简二次根式后,被开方数几个二次根式,叫做同类二次根式.4.二次根式的性质:(1)二次根式 (a≥0)是一个_______数.(2)=_______(a≥0).(3)5.二次根式的乘除:(1)乘法法则:.=_______ (a≥0,b≥0).(2)除法法则:=_______(a≥0,b>0).6.二次根式的加减:先把各个二次根式化成_______,再把_______相同的二次根式进行合并.7.二次根式的混合运算的顺序与_______运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).(注:二次根式的运算结果一定要化成)【反馈练习】1.如果代数式有意义,那么x的取值范围是 ( )A.x≠3 B.x<3 C.x>3 D.x≥32.下列等式一定成立的是 ( )A.B.C.=±3 D.-=93.计算的结果为 ( )A.B.5 C.D.4.使式子有意义的最小整数m是_______.5.计算:(1)________;(2) ________.6.计算的结果是_______.7.实数a、b在数轴上的位置如图所示,则的化简结果为________.8.计算:.9.先化简,再求值:,其中.。
初三复习教案课 题:二次根式 教案设计教学目标:使学生掌握二次根式的有关概念、性质及根式的化简.教学重点:二次根式的化简与计算.教学难点:二次根式的化简与计算.教学过程:一、知识要点:1.平方根:若x 2=a(a>0),则x 叫a 做的平方根,记为a ±.注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2.算术平方根:一个数的正的平方根叫做算术平方根;3.立方根:若x 3=a(a>0),则x 叫a 做的立方根,记为3a .4.同类二次根式: 化简后被开方数相同的二次根式.5.二次根式的性质: ①)0(≥a a 是一个非负数; ②)0()(2≥=a a a ③⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||)(2a a a a a a a ④)0,0(>≥=b a ba b a ⑤)0,0(≥≥⋅=b a b a ab6.二次根式的运算:(1)加、减;(2)乘、除二、例题分析:例1.下列二次根式27,121,211,12,其中与3是同类二次根式的个数是( ) (A)1 (B)2 (C)3 (D)4例2.若最简二次根式2431212-+-a a 与是同类二次根式,求a 的值。
例3.化简: (1)2)23(-; (2)当a≤|12|441,212-++-a a a 化简时(3)已知a 为实数,化简a a a 13---, (4)化简二次根式a 21aa +-, 例4.(1)若633-=a ,求36122+-x x 的值。
(2)已知:x=53-,求962++x x 的值。
(3) 已知:a=321+,求01222)1()211(12a a a a a a a a ++----+-- 例4:把根号外的因式移到根号内: (1)aa 1; (2)11)1(---x x ; (3)x x 1-; (4) 21)2(--x x 例5.观察下列各式及其验证过程 232232+=.验证:2322122)12(2122)22(3222233+=-+-=-+-= 3833133)13(3133)33(83833:..8338322233+=-+-=-+-==+=验证 (1) 根据上述两个等式及其验证过程的基本思路,猜想4154的变形结果并进行验证.(2) 针对上述各式反映的规律,写出用n(n 为任意自然数,且n≥2)表示的等式,并给出证明.例6.计算: ①()5.043()4483181--- ②2392393322-++++++xx x x x x (0<x<3) ③)23(6)13()26(+÷--⋅+④)2131(15+÷ ⑤y x xyy x y x xyx --+-++2三、小 结:师生共同归纳解题思路与方法四、同步练习:1. 已知.a<0,化简22)1(4)1(4aa a a -+-+-= 2.化简二次根式22a a a +-的结果是( ) A .2--a B.2---a C.2-a D.2--a 32,则a 的取值范围是( )A .a ≥4B .a ≤2C .2≤a ≤4D .a =2或a =44.化简并求值:22111a a a a a ----+,其中a = 5. 已知01132=--++b b a ,求a 3+b 3和a 2-ab+b 2的值.6.已知x=23+,求(23212+---x x x x )÷211x -的值. 7.已知:x>0,y>0,且x-xy -2y=0,求y xy x yxy x --++值. 8.若a=4+3,b=4-3,求ab a a--ab a b+的值.9. 已知x 、y 为实数,若规定x *y=4xy,(1)求2*4; (2)若x *x+2*x-2*4=0,求x 的值;(3)若不论x 是什么实数,总有a *x=x,求a 的值.10.已知:571-=x ,571+=y 求x 3+x 2y+xy 2+y 3的值。