复杂网络及其在国内研究进展的综述
- 格式:pdf
- 大小:364.25 KB
- 文档页数:7
复杂网络理论的发展与应用随着人们对社会、生态、交通、生物等各类复杂系统的深入研究,人们开始逐渐认识到,很多系统都可以看做是由许多相互关联的个体组成的复杂网络。
复杂网络是由许多节点和链接组成的图形结构,每个节点代表一个个体,链接代表节点之间的相互作用关系。
复杂网络理论是研究复杂网络结构、动力学、统计力学等方面的一门交叉学科,旨在探究节点间的关系给整个系统的性质和行为带来的影响,为人类社会的可持续发展提供理论指导和应用基础。
1. 复杂网络理论的发展复杂网络理论的起源可以追溯到20世纪50年代,当时研究人员就开始探索图形结构的特性和性质,尤其注意到某些网络的规模很大,但是节点之间的链接相对较少,因而不同于传统网络。
这些节点间链接关系的非均匀性,给传统图形结构考虑网络规模和复杂性带来了新的挑战。
直到1998年,Barabasi和Albert两位研究员发现图形结构中的一种重要模型——无标度网络模型,成为复杂网络理论中的里程碑,引起了学术界和产业界的广泛关注。
随着科学技术和社会经济的发展,复杂网络理论逐渐发展成为一个跨学科领域。
不少领域都通过复杂网络理论研究了相应系统的不同特点和规律。
例如,社交网络研究发现,人际关系的网络结构呈现集聚性、反射性和对称性,个体行为和信息传播受限于物理距离和社会影响,而不同类型的人际关系可通过构建多重网络结构分别加以考虑。
生态学家们应用复杂网络理论分析生态系统的物种相互作用关系,发现生态系统中某些物种之间存在紧密依赖的关系,而这些生命共同存在的元素共同构成了稳定的生态系统。
另外,复杂网络理论还在流行病学、金融市场、交通运输、能源系统等诸多领域被广泛应用。
2. 复杂网络的特点复杂网络之所以被称为复杂,是因为它们表现出了许多非平凡的行为和性质。
复杂网络的特点可以描述为:1)无标度:复杂网络在节点度数分布上呈现出幂律分布,少数节点拥有极高的度数,而大多数节点的度数相对较低。
2)小世界:复杂网络中相邻节点之间的平均长度比较短,可以用“六度分离”和“小世界效应”来描述,即“任何两个人之间的距离最多只隔着五个人”。
第17卷第4期2009年10月系统科学学报JOURNAL OF SYSTEMS SCIENCEVo1.17No.4oct ,2009复杂网络及其在国内研究进展的综述刘建香(华东理工大学商学院上海200237)摘要:从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内关于复杂网络理论及其应用的研究现状从两方面进行综述:一是对国外复杂网络理论及应用研究的介绍,包括复杂网络理论研究进展的总体概括、复杂网络动力学行为以及基于复杂网络理论的应用研究介绍;二是国内根植于本土的复杂网络的研究,包括复杂网络的演化模型,复杂网络拓扑性质、动力学行为,以及复杂网络理论的应用研究等。
并结合复杂网络的主要研究内容,对今后的研究重点进行了分析。
关键词:复杂网络;演化;拓扑;动力学行为中图分类号:N941文献标识码:A文章编号:1005-6408(2009)04-0031-07收稿日期:2009-01-05作者简介:刘建香(1974—),女,华东理工大学商学院讲师,研究方向:系统工程。
E-mail :jxliu@0引言系统是由相互作用和相互依赖的若干组成部分结合的具有特定功能的有机整体[1]。
而网络是由节点和连线所组成的。
如果用节点表示系统的各个组成部分即系统的元素,两节点之间的连线表示系统元素之间的相互作用,那么网络就为研究系统提供了一种新的描述方式[2、3]。
复杂网络作为大量真实复杂系统的高度抽象[4、5],近年来成为国际学术界一个新兴的研究热点,随着复杂网络逐渐引起国内学术界的关注,国内已有学者开始这方面的研究,其中有学者对国外的研究进展情况给出了有价值的文献综述,而方锦清[6]也从局域小世界模型、含权网络与交通流驱动的机制、混合择优模型、动力学行为的同步与控制、广义的同步等方面对国内的研究进展进行了简要概括,但是到目前为止还没有系统介绍国内关于复杂网络理论及应用研究现状的综述文献。
本文从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内研究现状进行综述,希望对国内关于复杂网络的研究起到进一步的推动作用。
复杂网络理论及其研究现状复杂网络理论及其研究现状【摘要】简单介绍了蓬勃发展的复杂网络研究新领域,特别是其中最具代表性的是随机网络、小世界网络和无尺度网络模型;从复杂网络的统计特性、复杂网络的演化模型及复杂网络在社会关系研究中的应用三个方面对其研究现状进行了阐述。
【关键词】复杂网络无标度小世界统计特性演化模型一、引言20世纪末,以互联网为代表的信息技术的迅速发展使人类社会步入了网络时代。
从大型的电力网络到全球交通网络,从Internet 到WWW,从人类大脑神经到各种新陈代谢网络,从科研合作网络到国际贸易网络等,可以说,人类生活在一个充满着各种各样的复杂网络世界中。
在现实社会中,许多真实的系统都可以用网络的来表示。
如万维网(WWW网路)可以看作是网页之间通过超级链接构成的网络;网络可以看成由不同的PC通过光缆或双绞线连接构成的网络;基因调控网络可以看作是不同的基因通过调控与被调控关系构成的网络;科学家合作网络可以看成是由不同科学家的合作关系构成的网络。
复杂网络研究正渗透到数理科学、生物科学和工程科学等不同的领域,对复杂网络的定性与定量特征的科学理解,已成为网络时代研究中一个极其重要的挑战性课题,甚至被称为“网络的新科学”。
二、复杂网络的研究现状复杂网络是近年来国内外学者研究的一个热点问题。
传统的对网络的研究最早可以追溯到18世纪伟大数学家欧拉提出的著名的“Konigsberg七桥问题”。
随后两百多年中,各国的数学家们一直致力于对简单的规则网络和随机网络进行抽象的数学研究。
规则网络过于理想化而无法表示现实中网络的复杂性,在20世纪60年代由Erdos和Renyi(1960)提出了随机网络。
进入20世纪90年代,人们发现现实世界中绝大多数的网络既不是完全规则,也不是完全随机的,于是提出了一些更符合实际的网络模型。
此时,国际上有两项开创性工作掀起了一股不小的研究复杂网络的热潮,一是Wats和Strogata[2]在Nature杂志上发表文章,提出的小世界模型(WS 模型)。
复杂网络理论研究及其应用本文旨在探讨复杂网络理论的发展及其在各个领域中的应用。
复杂网络理论的研究对于理解系统中各要素之间的关系以及整个系统的行为具有重要意义,并在计算机科学、信息理论、生物医学等领域发挥着重要作用。
在认识复杂网络理论之前,我们需要了解它的前置知识——图论。
图论是研究图形结构、性质及其应用的数学学科。
在图论中,图是由顶点(节点)和边(连接两个节点的路径)组成的集合。
而复杂网络理论可以看作是图论的一个延伸和扩展,主要研究复杂系统的拓扑结构和动力学行为。
复杂网络理论的基本概念包括网络、节点和边。
网络是由许多节点和边构成的集合,节点和边可以是有序的也可以是无序的。
在网络中,节点可以表示系统中的个体,而边则表示个体之间的或相互作用。
复杂网络理论的研究范围广泛,包括网络的形态、结构、功能和演化等方面。
复杂网络理论的研究方法主要包括图论、统计物理、非线性科学等领域的理论和工具。
随着科学技术的发展,一些新的研究方法和技术也被应用于复杂网络理论的研究,如图像处理、深度学习等。
这些方法和技术对于处理大规模、高维度的网络数据以及挖掘网络中的深层次结构和模式具有重要作用。
复杂网络理论在各个领域都有广泛的应用。
在计算机科学中,复杂网络理论被用于研究互联网、社交网络、蛋白质相互作用网络等;在信息理论中,复杂网络理论可以应用于信息传播、知识扩散等领域;在生物医学中,复杂网络理论可用于研究细胞代谢网络、神经网络、流行病传播网络等。
复杂网络理论的研究已经取得了显著的进展,但仍有许多问题需要进一步探讨。
未来,复杂网络理论的研究可能会朝着更复杂的网络结构、更精确的网络模型以及更高效的网络算法方向发展。
同时,随着跨学科研究的深入,复杂网络理论有望与其他领域形成更加紧密的合作关系,共同推动人类对于复杂系统的认识和理解。
随着大数据和云计算等技术的快速发展,复杂网络理论在实际应用中将面临更多的机遇和挑战。
例如,在大数据分析中,如何有效处理海量、高维度的网络数据,挖掘出有价值的信息和知识,是复杂网络理论需要解决的重要问题。
复杂网络演化博弈理论研究综述一、本文概述Overview of this article随着信息技术的飞速发展,复杂网络作为一种描述现实世界中各种复杂系统的有效工具,已经引起了广泛关注。
而在复杂网络中,演化博弈理论则为我们提供了一种深入理解和分析网络动态行为的重要视角。
本文旨在全面综述复杂网络演化博弈理论的研究现状和发展趋势,以期能为相关领域的学者和研究人员提供有益的参考和启示。
With the rapid development of information technology, complex networks have attracted widespread attention as an effective tool for describing various complex systems in the real world. In complex networks, evolutionary game theory provides us with an important perspective to deeply understand and analyze the dynamic behavior of networks. This article aims to comprehensively review the research status and development trends of complex network evolutionary game theory, in order to provide useful reference and inspiration for scholars and researchers in related fields.本文首先回顾了复杂网络和演化博弈理论的基本概念和研究背景,阐述了两者结合的必要性和重要性。
接着,文章从网络结构、博弈规则、动态演化等多个方面对复杂网络演化博弈理论进行了深入的分析和讨论。
复杂网络和网络科学研究的进展随着互联网的日益发展,网络科学成为一个备受关注的领域。
网络被越来越多地应用在社交、销售、金融等不同领域中。
因此,复杂网络理论对于人们对网络的理解和应用至关重要。
在这篇文章中,我们将探讨复杂网络的相关概念以及复杂网络理论的新进展。
什么是复杂网络复杂网络是一类由多个节点和边缘组成的网络结构。
通常每个节点代表一个实体(例如个人、公司、物品等),而边缘则代表节点之间的关系(例如联系、合作、交流等)。
这些关系可以使节点之间传递信息,共同完成某些任务。
复杂网络的研究意义复杂网络的研究可以帮助人们更好地理解社会网络、生态系统、交通网络、物流网络以及其他许多网络。
通过了解节点之间的关系以及它们的动态演变,人们可以更好地预测网络行为、改进网络效率、提高网络安全等等。
复杂网络分析在分析复杂网络时,我们可以使用各种技术。
下面是几个常见的技术:1.度分布节点度数指的是与该节点连接的边的数目。
度分布研究的是这些度数之间的关系。
比如,政治家之间的关系可以使用度分布的方法来研究。
2.社区检测社区指的是网络中的一些节点,它们之间有一个或多个共同的特征。
社区检测的目标是将网络中的所有节点按照它们的共同特征分类。
这可以帮助人们更好地了解网络的结构,以及在某个区域中节点之间的协作方式。
3.中心度中心度研究的是某个节点对整个网络的影响。
度中心性就是某个节点的度数,而紧密中心性则是研究节点之间的最短路径,可以显示出网络的效率和可靠性。
介数中心性研究的是节点之间的关系,以及在某个节点到其他节点之间的最短路径上的距离。
网络科学的新进展随着时间的推移,网络科学不断发展和壮大。
以下是几个网络科学研究的新进展:1.复杂网络数据的分析复杂网络中的数据非常庞大而复杂。
为了更好地应用复杂网络,人们需要一种新的方法来管理这些数据。
人们已经研究出一些方法,例如网络拓扑分析(NTA)和基于机器学习的方法,这些方法可以帮助人们更好地理解复杂网络的行为。
复杂网络研究概述复杂网络研究是一门涉及多学科的研究领域,主要关注网络结构和动态过程之间的相互关系。
复杂网络理论的出现极大地推动了计算机科学、物理学、生物学、社会学等领域的发展,提供了区分传统网络和复杂网络的新框架和视角。
本文将对复杂网络研究的概念、背景以及应用进行概述。
复杂网络研究的出现主要受到两方面的驱动。
首先,随着互联网的发展和智能设备的普及,人们更加关注网络中的大规模协同行为和信息传播过程。
其次,各种复杂系统的研究表明,许多复杂现象可以通过网络的连接方式和结构来描述和解释。
因此,复杂网络研究旨在揭示网络的基本原理和动态机制,以及网络结构对系统行为和演化的影响。
复杂网络研究的核心问题之一是网络拓扑结构的分析。
研究人员通过研究网络中节点的度分布、聚类系数、平均路径长度和网络中心性等指标,揭示了复杂网络的小世界性、无标度性和社团结构等特征。
例如,小世界网络是一种介于规则网络和随机网络之间的拓扑结构,具有高聚集性和短平均路径长度。
无标度网络则是一种具有混合分布的节点度分布,表明网络中存在少数高度连接的枢纽节点。
社团结构是指网络中存在内部紧密连接但相对较弱连接的节点群体。
这些拓扑结构揭示了网络中的模块化特征,对于理解网络的复杂性和功能至关重要。
除了拓扑结构的分析,复杂网络研究还关注网络的动态过程。
网络动态过程包括信息传播、社群演化、网络形成和崩溃等。
例如,信息传播过程是指在网络中消息和影响的传播路径和速度。
社群演化研究则关注网络中社群的形成和演化过程。
研究人员通过建模和仿真等方法,揭示了网络中信息传播和社群演化的基本规律和机制,以及这些动态过程对网络结构的反馈作用。
复杂网络研究在实际应用中具有重要的价值。
例如,在社交网络中,复杂网络研究可以帮助人们理解社交关系的形成和演化机制,预测和控制信息传播的路径和速度。
在生物学中,复杂网络研究可以帮助人们理解蛋白质相互作用、基因调控网络和神经网络等生物网络的运作机制,从而为疾病治疗和药物设计提供理论基础。
复杂网络及其在国内研究进展的综述一、本文概述随着信息技术的飞速发展,复杂网络作为一种描述现实世界中复杂系统的有效工具,正逐渐受到学术界的广泛关注。
复杂网络广泛存在于我们的生活中,包括社交网络、生物网络、互联网、交通网络等,它们以复杂而多样的方式连接着世界的各个角落。
因此,对复杂网络的研究不仅具有理论价值,也具有深远的现实意义。
本文旨在全面综述复杂网络的基本理论、研究方法以及在国内的研究进展。
我们将对复杂网络的基本概念和特性进行介绍,包括网络的拓扑结构、节点间的连接关系、网络的动态演化等。
然后,我们将重点介绍复杂网络研究中的一些重要理论和方法,如网络模型、网络动力学、网络演化、网络同步等。
在此基础上,我们将对国内复杂网络研究的现状进行梳理和评价,包括研究成果、研究热点、存在问题以及未来发展趋势等。
通过对复杂网络及其在国内研究进展的综述,我们希望能够为相关领域的研究者提供一个全面的参考,推动复杂网络研究的深入发展,同时也为我国在该领域的创新研究提供有益的借鉴和启示。
二、复杂网络的基本理论复杂网络,作为一种描述现实世界中各种复杂系统的有力工具,其基本理论涵盖了图论、统计物理、非线性科学等多个学科。
其基本构成元素包括节点(Node)和边(Edge),节点通常代表系统中的个体,而边则代表个体之间的联系或相互作用。
网络中的节点和边的组合方式以及它们所承载的信息,决定了网络的复杂性和多样性。
在复杂网络理论中,有几个核心的概念和度量指标。
首先是网络的度分布(Degree Distribution),它描述了网络中节点连接数的分布情况,对于理解网络的拓扑结构和动力学行为至关重要。
其次是网络的聚类系数(Clustering Coefficient),它反映了网络中节点的聚集程度,即一个节点的邻居节点之间也成为邻居的可能性。
网络的路径长度(Path Length)和介数中心性(Betweenness Centrality)等也是重要的度量指标,它们分别描述了网络中信息传播的效率和节点在网络中的影响力。
复杂网络理论及其应用研究概述一、本文概述随着信息技术的飞速发展,复杂网络理论及其应用研究已成为当今科学研究的热点之一。
复杂网络无处不在,从社交网络到生物网络,从互联网到交通网络,它们构成了我们现代社会的基础架构。
复杂网络理论不仅关注网络的结构和性质,还致力于探索网络的行为和演化规律,以及如何利用网络进行优化和控制。
本文旨在全面概述复杂网络理论的基本概念、主要研究方法及其在各领域的应用实践,以期为读者提供一个清晰、系统的复杂网络研究视角。
在本文中,我们首先介绍复杂网络理论的基本概念,包括网络的定义、分类和性质。
然后,我们将重点介绍复杂网络的主要研究方法,包括网络建模、网络分析、网络演化等。
在此基础上,我们将探讨复杂网络理论在各领域的应用实践,包括社交网络分析、生物网络研究、互联网拓扑结构分析、交通网络优化等。
我们将对复杂网络理论的发展趋势和未来挑战进行展望,以期为读者提供一个全面了解复杂网络理论及其应用研究的框架。
二、复杂网络理论基础知识复杂网络理论作为图论和统计物理学的交叉学科,旨在揭示现实世界中复杂系统的结构和动力学行为。
其理论基础主要源自图论、统计物理、非线性科学以及计算机科学等多个学科。
图论为复杂网络提供了基本的数学语言和描述工具。
在网络中,节点代表系统中的个体,边则代表个体之间的关系或交互。
基于图论,可以定义诸如度、路径、聚类系数、平均路径长度等关键的网络参数,从而量化网络的拓扑结构和性质。
统计物理学的概念和方法为复杂网络提供了深入分析大规模网络结构的工具。
例如,通过引入概率分布来描述网络中的节点度、路径长度等属性,可以揭示网络的全局统计特性。
网络中的相变、自组织临界性等现象也为复杂网络理论带来了新的视角和思考。
非线性科学则为复杂网络的动力学行为提供了理论支撑。
在网络中,节点之间的相互作用和演化往往是非线性的,这导致网络的动力学行为表现出复杂的时空特征。
通过研究网络的稳定性、同步性、演化机制等,可以深入理解复杂系统的动力学行为。
复杂网络理论及应用研究网络是现代社会中不可或缺的一部分。
复杂网络理论和应用研究的发展是近年来网络领域中的热点之一。
本文将探讨复杂网络理论的基础知识、应用研究与发展趋势。
一、复杂网络理论的基础知识复杂网络是指由大量节点和连接线交织在一起的网络。
这些网络可以是社交媒体、电力网、生物网络、物流系统等。
复杂网络的结构复杂多样,但通常具有以下特点:1.小世界性:即网络上的任意两个节点间的距离较短,也就是任意两个人之间可能存在一个较短的路径。
2.无标度性:即网络中大部分节点的度数很低,但少数几个节点的度数极高,这些节点被称为“超级节点”。
例如,Facebook和Twitter中的明星用户。
3.聚集性:即节点之间往往呈现出一定的集群现象,即同一社群内的节点之间联系紧密。
例如,朋友之间形成的社交圈子。
复杂网络理论主要研究网络的结构、特征,以及节点之间的相互作用规律。
其中,最常用的方法是网络拓扑结构研究。
这种方法可以显示节点之间的关联方式,例如,节点的度数、聚集系数等。
二、复杂网络的应用研究复杂网络理论在众多领域中都有着广泛的应用。
下面列举一些具体的应用研究。
1.社交网络中的信息传播社交网络是复杂网络应用的重要领域之一。
在社交网络中,如果一个节点发布了某种内容,那么它可以通过与之相连的其他节点将信息传递给更广泛的人群。
因此,社交网络可以被用来研究信息传播的速度、路径和影响力。
2.网络犯罪的预测和预防网络犯罪是一个与日俱增的全球问题。
复杂网络理论可以分析网络犯罪的结构和特点,以及预测犯罪所需要的技术和资源。
例如,可以使用聚类算法对不同的犯罪事件进行聚类,以便了解不同犯罪之间的关系,或者预测未来的犯罪趋势。
3.交通系统的优化在城市交通系统中,复杂网络理论可以应用于分析城市交通网络的结构和稳定性,以及优化交通流和减少拥堵。
例如,可以通过分析不同交通节点的连接方式,以便预测交通拥堵的范围和程度。
三、复杂网络理论的发展趋势随着大数据技术的不断发展,复杂网络理论已经成为了一个蓬勃发展的领域。
复杂系统研究的最新进展及其应用复杂系统是指由大量相互关联、相互作用的个体或组件所构成的非线性系统。
这种系统具有多元复杂性和动态复杂性。
其性质和行为难以通过简单的数学模型来描述和解释。
近年来,随着科学技术的不断进步,复杂系统研究取得了很多新的突破和进展,同时也被广泛应用于许多领域,如社会系统、经济系统、生态系统等。
一、复杂系统的研究进展1. 计算机模拟技术计算机模拟技术是研究复杂系统的重要工具之一。
通过建立计算机模型,可以对复杂系统进行模拟,从而进一步了解其行为和性质。
近年来,计算机模拟技术得到了巨大的发展,不断提高了模型的精度和可靠性,从而为复杂系统研究提供了更多的数据和实验支持。
2. 网络科学网络科学是研究网络结构、性质和行为的一门学科。
在复杂系统研究中,网络科学被广泛运用于描述和分析各种复杂网络的结构和行为,如社交网络、通讯网络、交通网络等。
通过网络科学的研究,可以更深刻地理解复杂系统中各个元素之间的关联和相互作用,从而为复杂系统的建模和仿真提供了更为科学的基础。
3. 超大规模数据分析随着信息技术的迅速发展,现代社会产生了海量的数据。
这些数据中包含着有关复杂系统的丰富信息,但又具有数据量大、复杂性高、时空跨度大等特点,难以直接进行分析和处理。
超大规模数据分析技术的应用,可以有效地挖掘和提取隐藏在数据中的有价值信息,从而更好地理解和研究复杂系统。
二、复杂系统的应用1. 社会系统社会系统是由人类组成的复杂系统,其中包括政治、经济、文化等多元要素。
在社会系统研究中,复杂系统理论被广泛应用于社会结构分析、人群行为预测、社会网络研究等方面。
例如,研究社交网络中人际关系的复杂性和动态性,可以让我们更好地理解社交现象的本质,也有助于政府和企业等做出更为有效的决策。
2. 经济系统经济系统是由商品生产和交换等经济活动组成的复杂系统。
在经济系统研究中,复杂系统理论被广泛应用于市场预测、风险评估、投资策略等方面。
同步现象广泛存在于自然、社会、物理和生物等系统中,人们已观测到的同步现象包括夏日夜晚青蛙的齐鸣、萤火虫的同步发光,心肌细胞和大脑神经网络的同步[24-26],剧场中观众鼓掌频率的逐渐同步[27],等等。
在以前的研究中,人们忽略了网络的拓扑性质,在研究同步问题时,自然地选择了最容易模拟和分析的规则网络或随机网络,但近年的研究发现真实的网络不能单纯地用规则或随机性描述而是兼具小世界效应和无标度性质,因此研究网络结构对动力系统同步规律的影响不仅具有理论意义更有实际价值。
1998年和1999年小世界和无标度网络模型相继被提出后,科学家们迅速研究了这两种网络结构对同步规律的影响。
2000年Gade和胡进锟对动力学网络的同步稳定性进行分析,提出平均每个节点的长程边数对网络的同步能力起主要影响[51];同年,Lago-Fernández等人发现小世界网络的同步能力远远强于规则的耦合格子[55];2002年汪小帆等人也发现同耦合格子相比无标度网络具有很强的同步能力[36];也在这一年,Hong和Kim研究了WS型小世界网络上的相同步问题,他们发现只要重连概率达到50%时,小世界网络的整体运动的规律程度就接近重联概率为100%的水平[48];祁丰、侯中怀和辛厚文在规则的最近邻耦合网络上随机地加入捷径,发现捷径的加入有利于网络整体处于规则的运动状态[54]。
在研究复杂网络在同步方面照比规则的耦合格子的优势的同时,Pecora和汪小帆等人分别研究了同步的稳定性问题。
Pecora和Carroll研究了动力系统同步区域有界情况下动力学网络实现同步的条件,提出了主稳定性函数判断网络同步的稳定性的方法[28];2002年汪小帆和陈关荣提出了一个判断动力系统同步区域无界情况下网络同步稳定性的定理[37]。
前面的两种分析方法在使用过程中都要计算耦合矩阵的特征值,当网络规模比较大时,只能采用近似计算的方法,为解决这一问题,2003年,Chen、Rangarajan和丁明洲将主稳定性函数方法与Gershgörin 圆盘理论结合,为网络结构对混沌耦合振子系统同步稳定性的影响给出了更精确的分析方法[38]。
复杂网络理论及其在中医学研究中的应用摘要:复杂网络理论是一种全新的研究分支,它研究的是包含大量元素和相互作用的网络系统。
这篇论文主要介绍了复杂网络理论的基本原理和应用,并结合中医学研究,探讨了复杂网络理论在中医学研究中的应用。
论文内容:1. 复杂网络理论的基本原理复杂网络理论是一种新兴的研究分支,它主要研究的是包含大量节点和相互作用的网络系统。
在复杂网络中,每个节点都代表一个元素或一个系统的组成部分,节点之间的连边代表它们之间的相互作用关系。
复杂网络通常具有以下特点:节点数目非常大,节点之间的连边非常复杂,网络的拓扑结构通常是非规则的、复杂的。
复杂网络的基本原理包括以下几个方面:(1)度分布度是一个节点所拥有的连边数目,度分布是指整个网络中各个节点度数的分布情况。
在复杂网络中,大多数节点的度数非常小,只有少数节点的度数非常大,这种现象被称为“无标度特性”。
(2)小世界现象复杂网络中常常存在着短路径现象和聚类现象。
短路径现象是指一个节点到任何另一个节点的最短路径长度只有几步,聚类现象是指处于同一子图的节点之间存在着高度的连接度。
(3)同步现象在某些复杂网络中,各个节点之间会呈现出同步现象,即它们的状态会呈现出高度的相似性。
2. 复杂网络理论在中医学研究中的应用中医学是一门古老而深奥的学科,它包含着大量的理论和实践经验。
中医学的研究往往需要考虑到多个因素之间的相互作用关系,因此可以运用复杂网络理论来解决一些中医学领域的问题。
(1)中药网络中药是中医学的主要治疗手段之一,各种中药之间存在着复杂的相互作用关系。
通过将中药看作网络的节点,将中药之间的相互作用关系看作连边,可以构建出一张中药网络。
通过分析这张网络的拓扑结构和特性,可以对中药之间的相互关系进行研究和分析。
(2)证候网络证候是中医诊断学中的重要概念,它是指一组具有相似症状和体征的疾病或病因。
通过将证候看作网络的节点,将证候之间的相似性看作连边,可以构建出一张证候网络。
复杂网络理论及其在中医学研究中的应用1. 引言复杂网络理论是网络科学的重要分支,它研究的是由大量节点和连接构成的复杂网络的性质和行为。
中医学作为一门古老而又复杂的医学体系,近年来也开始应用复杂网络理论来研究中医学中的一些重要问题。
本文将探讨复杂网络理论在中医学研究中的应用,并分析其在中医学领域中所取得的成果和发展前景。
2.复杂网络理论概述2.1复杂网络基本概念2.1.1节点和连接在复杂网络中,节点代表实体,连接代表实体之间的关系。
节点和连接是构成复杂网络的基本元素。
2.1.2度与度分布度是指一个节点连接的其他节点数量。
度分布描述了网络中节点连接数量的分布情况,反映了网络的拓扑结构。
2.1.3聚类系数与平均路径长度聚类系数是描述网络中节点邻居节点之间连接紧密程度的指标。
平均路径长度是指网络中任意两个节点之间平均最短路径的长度。
2.1.4 小世界性质与无标度性质小世界性质指的是网络中节点之间的距离较短,即网络具有较高的集聚性。
无标度性质指的是网络中节点的度分布呈现出幂律分布特征,即少数节点具有较高的度,大部分节点具有较低的度。
2.2复杂网络的应用领域复杂网络理论在许多领域都有广泛应用,如社交网络分析、生物网络研究、互联网结构研究等。
3.中医理论与复杂网络理论结合初探3.1中医证候与节点之间关系分析中医证候是中医诊断疾病的关键概念,通过分析中医证候与节点之间的关系,可以揭示中医证候在复杂网络中的地位和作用。
3.2中医药物组方与连接之间关系研究中医药物组方是中医治疗疾病的主要手段,研究中医药物组方与连接之间的关系,有助于理解中医药物作用的机制。
4. 中药药效物质基础构建及其在复杂网络分析中应用4.1 中药药效物质基础构建方法综述中药药效物质基础是中药发挥作用的基础,构建中药药效物质基础的方法包括文献调研、实验验证等。
4.2基于药效物质构建的复杂网络模型基于药效物质构建的复杂网络模型可以揭示中药成分之间的相互作用和中药作用机制。
复杂网络的特性与应用研究复杂网络是指由大量节点和边组成的非线性网络。
在复杂网络中,节点之间相互连接形成了复杂的拓扑结构,这种结构使得网络的行为表现出多样性和非线性,产生了许多有趣的特性。
本文将介绍一些复杂网络的特性和应用研究。
一、小世界网络小世界网络是指在网络中,节点之间的连接呈现出高度的局部聚集性和短路径的全局连通性。
这种结构是由于存在一些“枢纽节点”,这些节点具有极高的度数,连接了大量的节点。
小世界网络在现实世界中广泛存在,例如社交网络、互联网等。
小世界网络的特点是具有高度的效率和鲁棒性。
在网络中引入大量的短程边可以加速信息传播的速度,而且在攻击或随机故障的情况下,小世界网络仍然可以维持连通性和稳定性。
二、无标度网络无标度网络是指节点的度分布呈现出幂律分布的网络。
换句话说,少数节点具有极高的度数,而绝大多数节点的度数较低。
无标度网络可以模拟许多现实世界中的现象,如互联网中的超链接结构、社交网络中的社区结构等。
无标度网络的特点是具有高度的鲁棒性和易受攻击性。
因为少数的高度连接节点对于整个网络的连通性至关重要,所以在攻击或随机故障的情况下,无标度网络的稳定性会受到很大的影响。
三、复杂网络的应用研究复杂网络的应用研究具有广泛的领域,包括社交网络、生物网络、金融网络、交通运输网络等。
在社交网络中,复杂网络可以用来研究人际关系的网络结构和信息传播的机制。
在生物网络中,复杂网络可以应用于研究基因相互作用网络、蛋白质相互作用网络等生物信息学问题。
在金融网络中,复杂网络可以用于分析金融市场的稳定性和研究风险管理策略。
在交通运输网络中,复杂网络可以应用于交通拥堵的模拟和路网优化问题等。
总之,复杂网络是现代科学研究中不可缺少的工具之一。
通过对其特性和应用研究的深入探索,我们可以更好地理解和应对现实中面临的各种问题。
第17卷第4期2009年10月系统科学学报JOURNAL OF SYSTEMS SCIENCEVo1.17No.4oct ,2009复杂网络及其在国内研究进展的综述刘建香(华东理工大学商学院上海200237)摘要:从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内关于复杂网络理论及其应用的研究现状从两方面进行综述:一是对国外复杂网络理论及应用研究的介绍,包括复杂网络理论研究进展的总体概括、复杂网络动力学行为以及基于复杂网络理论的应用研究介绍;二是国内根植于本土的复杂网络的研究,包括复杂网络的演化模型,复杂网络拓扑性质、动力学行为,以及复杂网络理论的应用研究等。
并结合复杂网络的主要研究内容,对今后的研究重点进行了分析。
关键词:复杂网络;演化;拓扑;动力学行为中图分类号:N941文献标识码:A文章编号:1005-6408(2009)04-0031-07收稿日期:2009-01-05作者简介:刘建香(1974—),女,华东理工大学商学院讲师,研究方向:系统工程。
E-mail :jxliu@0引言系统是由相互作用和相互依赖的若干组成部分结合的具有特定功能的有机整体[1]。
而网络是由节点和连线所组成的。
如果用节点表示系统的各个组成部分即系统的元素,两节点之间的连线表示系统元素之间的相互作用,那么网络就为研究系统提供了一种新的描述方式[2、3]。
复杂网络作为大量真实复杂系统的高度抽象[4、5],近年来成为国际学术界一个新兴的研究热点,随着复杂网络逐渐引起国内学术界的关注,国内已有学者开始这方面的研究,其中有学者对国外的研究进展情况给出了有价值的文献综述,而方锦清[6]也从局域小世界模型、含权网络与交通流驱动的机制、混合择优模型、动力学行为的同步与控制、广义的同步等方面对国内的研究进展进行了简要概括,但是到目前为止还没有系统介绍国内关于复杂网络理论及应用研究现状的综述文献。
本文从复杂网络模型的演化入手,在简要介绍复杂网络统计特征的基础上,对国内研究现状进行综述,希望对国内关于复杂网络的研究起到进一步的推动作用。
1.复杂网络模型的发展演化网络的一种最简单的情况就是规则网络[7],它是指系统各元素之间的关系可以用一些规则的结构来表示,也就是说网络中任意两个节点之间的联系遵循既定的规则。
但是对于大规模网络而言由于其复杂性并不能完全用规则网络来表示。
20世纪50年代末,Erdos 和Renyi 提出了一种完全随机的网络模型———随机网络(ER 随机网络),它指在由N 个节点构成的图中以概率p 随机连接任意两个节点而成的网络,即两个节点之间连边与否不再是确定的事,而是由概率p 决定。
或简单地说,在由N 个节点构成的图中,可以存在条边,从中随机连接M 条边所构成的网络就叫随机网络。
如果选择M =p ,这两种构造随机网络模型的方法就可以联系起来。
规则网络和随机网络是两种极端的情况,对于大量真实的网络系统而言,它们既不是规则网络也不是随机网络,而是介于两者之间。
1998年,Watts 和Strogatz [8]提出了WS 网络模型,通过以概率p 切断规则网络中原始的边并选择新的端点重新连接31--构造出一种介于规则网络和随机网络之间的网络———小世界网络(‘small-world’networks)。
显然,当p=0时,相当于各边未动,还是规则网络;当p=1时就成了随机网络。
小世界网络模型的理论分析表明,其节点的度分布(degree distribution)服从指数分布,而实证结果表明,大多数大规模真实网络的节点度用幂律(power-law)分布来描述更加精确。
1999年,Barabasi和Albert[9]提出了BA网络模型,在网络的构造中引入了增长性和择优连接性:增长性指网络中不断有新的节点加入进来;择优连接性则指新的节点进来后优先选择网络中度数大的节点进行连接。
BA网络是无标度网络(scale-free networks)模型,其节点度服从幂律分布。
除了经典的小世界网络模型和无标度网络模型之外,也有学者提出了一些其他的网络模型来描述真实的网络系统。
如Barabasi, A.建立的确定性无标度网络模型[10],Francesc Comellas和Michael Sampels建立的确定性小世界网络模型[11]以及Fan等考虑某些现实网络具有局域特性而建立的多局域世界演化网络模型[12]等等。
2.复杂网络的统计特征2.1平均路径长度L在网络中,两点之间的距离为连接两点的最短路径上所包含的边的数目。
网络的平均路径长度指网络中所有节点对的平均距离,它表明网络中节点间的分离程度,反映了网络的全局特性。
不同的网络结构可赋予L不同的含义。
如在疾病传播模型中L可定义为疾病传播时间,交通网络模型中L可定义为站点之间的距离[13]等。
2.2聚集系数C在网络中,节点的聚集系数是指与该节点相邻的所有节点之间连边的数目占这些相邻节点之间最大可能连边数目的比例。
而网络的聚集系数则是指网络中所有节点聚集系数的平均值,它表明网络中节点的聚集情况即网络的聚集性,也就是说同一个节点的两个相邻节点仍然是相邻节点的概率有多大,它反映了网络的局部特性。
2.3度及度分布在网络中,节点的度是指与该节点相邻的节点的数目,即连接该节点的边的数目。
而网络的度<k>指网络中所有节点度的平均值。
度分布P(k)指网络中一个任意选择的节点,它的度恰好为k的概率。
2.4介数包括节点介数和边介数。
节点介数指网络中所有最短路径中经过该节点的数量比例,边介数则指网络中所有最短路径中经过该边的数量比例。
介数反映了相应的节点或边在整个网络中的作用和影响力。
2.5小世界效应复杂网络的小世界效应是指尽管网络的规模很大(网络节点数目N很大),但是两个节点之间的距离比我们想象的要小得多。
也就是网络的平均路径长度L随网络的规模呈对数增长,即L~lnN。
大量的实证研究表明,真实网络几乎都具有小世界效应。
2.6无标度特性对于随机网络和规则网络,度分布区间非常狭窄,大多数节点都集中在节点度均值<k>的附近,说明节点具有同质性,因此<k>可以被看作是节点度的一个特征标度。
而在节点度服从幂律分布的网络中,大多数节点的度都很小,而少数节点的度很大,说明节点具有异质性,这时特征标度消失。
这种节点度的幂律分布为网络的无标度特性。
3.国内对复杂网络理论及应用研究现状的概括性介绍3.1复杂网络理论研究进展的介绍国内学者对国外复杂网络理论研究的介绍最早始于汪小帆(2002)发表在国外杂志上的一篇文章[14],文中回顾了近年来国外复杂网络研究所取得的重要成果,其中包括平均路径长度、聚集系数、度分布等网络度量,Internet、WWW和科学合作网络等现实系统,规则网络、随机网络、小世界网络、无标度网络等网络模型,以及复杂网络上的同步等。
而在国内刊物上对国外复杂网络理论研究的介绍可追溯到朱涵(2003)[15]在《物理》杂志上发表的“网络‘建筑学’”,文章以小世界、集团化和无标度等概念为中心,介绍了复杂网络的研究进展。
之后,吴金闪等[16]从统计物理学的角度总结了复杂网络的主要研究结果,对无向网络、有向网络和加权网络等三种不同网络统计性质研究的现状分别作了综述,对规则网络、完全随机网络、小世界网络和无标度网络等网络机制模型进行了总结,并对网络演化的统计规律、网络上的动力学性质的研究进行了概括。
周涛等(2005)围绕小世界效应和无标度特性等复杂网络的统计特征及复杂网络上的物理过程等问题,概述了复杂网络的研究进展。
刘涛等[17]从平均路径长度、聚集系数、度分布等复杂网络的统计性质,小世界网络和无标度网络等网络模型等层面简述了复杂网络领域的相关研究。
史定华[18]从对32 --网络节点度和度分布的理解入手,对网络分类、网络的演化机理和模型及结构涌现等方面取得的进展进行了总结。
总的来说,这些介绍都突出了对复杂网络上的统计性质、复杂网络经典模型的阐释和描述,对复杂网络理论在国外研究进展的介绍试图全面但却较为笼统。
3.2复杂网络动力学行为研究的介绍一般将建立在网络上的系统动态性质称为网络上的动力学行为。
研究复杂网络的拓扑结构也是为了理解和解释发生在网络上的动力学行为或过程。
赵明等[19]总结了近年来复杂网络上动力学系统同步的研究进展,主要包括复杂网络同步的稳定性分析,复杂网络上动力学系统同步的特点,网络的几何特征量对同步稳定性的影响等。
另外,由于复杂网络中的社区发现成为近几年复杂网络领域的一个研究热点,王林(2005)等全面综述了社区结构的性质以及社区发现的若干算法等。
鲁棒性作为复杂系统的一种属性,已经成为人们关注的一个热点。
接婧[20]对鲁棒性在国际学术界的研究状况进行了介绍,包括鲁棒性的定义、鲁棒性的特点、鲁棒性的研究方向及鲁棒性的应用等。
在对复杂网络展开的研究中,有一类应用性很强的网络行为日益引起人们的关注,如计算机病毒在计算机网络的传播、传染病在人群中的流行、信息或谣言在社会中的扩散等等,实际上它们都表现为一种网络上的传播。
周涛等[21]对复杂网络上传播动力学的研究进行了综述,讨论了小世界网络和无标度网络的传播特性以及相应的网络免疫技术。
复杂网络上的动力学行为涉及面非常广泛,如渗流、传播、网络搜索、相变等等,而与网络拓扑结构的研究相比,这些领域的研究进展相对缓慢,因此国内关于这些领域研究的介绍也就相对较少。
3.3基于复杂网络理论应用研究的介绍近几年由于随着复杂网络理论的迅速发展,其理论方法在真实网络的研究也得到广泛的应用。
生物学的研究表明,大多数生物功能都是由许多细胞分子相互作用共同完成的。
因此,对多种分子的相互作用网络进行分析,理解细胞内复杂的网络结构和动力学,对研究生物的功能具有重要作用。
王冰等[22]介绍了国外应用复杂网络理论研究代谢网络的进展情况,主要包括代谢网络的小世界和无标度特性,以及网络的子集团和功能。
互联网是一个典型的复杂网络,由于计算机病毒在互联网上的传播,其安全性问题正日益受到关注,而网络的拓扑结构对于病毒的传播行为有着十分重要的影响,不同的网络拓扑结构中传播行为呈现出不同的特性。
许丹等[23]围绕计算机病毒在互联网上的传播,对已有的研究成果进行了回顾。
介绍了包括流行病学模型、电子邮件病毒传播模型、随机常数传播模型和间隔模型等在内的计算机病毒传播模型,计算机病毒在不同网络中的传播所表现出的不同性质,以及病毒传播机制对网络拓扑结构的影响等。
复杂网络理论在现实系统中应用的范围非常广泛,涉及到社会、生物、技术、经济等许多领域,如演员合作网、科研合作网、代谢网、电话网、Internet、WWW、商业网络[7、24-26]等等,而在国内对这些研究结果的介绍还相对较少。