初一数学下册知识点汇总
- 格式:doc
- 大小:93.00 KB
- 文档页数:6
七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线及其判定平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。
七年级数学下册知识点归纳一、图形的认识1. 点、线、面的定义和特征2. 线段、直线、射线的区别和特征3. 角的定义和特征4. 图形的种类和特点:三角形、四边形、多边形等5. 同种图形的分类和比较二、平面图形的性质研究1. 三角形的内角和外角关系2. 三角形的分类及其性质3. 三角形内切圆和外接圆的应用4. 平行四边形的性质及其判定5. 长方形、正方形、菱形和矩形的性质及其判定三、图形的相似与全等1. 图形相似的概念和判定条件2. 相似三角形的性质及其判定3. 图形全等的概念和应用4. 证明图形全等的方法和步骤四、直角三角形的研究1. 直角三角形的定义和性质2. 勾股定理的应用3. 余弦定理和正弦定理的应用五、多边形的面积和周长1. 一般多边形的周长计算2. 三角形的面积计算和性质3. 四边形的面积计算和性质4. 多边形的面积计算和性质六、圆的研究1. 圆的定义和性质2. 圆的元素:圆心、半径、直径、弧长等的概念和关系3. 圆内角和弧度的关系及其应用4. 弧长、扇形面积和圆的面积计算七、线性方程的解法1. 一元一次方程的解方法2. 解一元一次方程的应用3. 解一元一次方程组的方法和步骤4. 一次函数及其应用八、比例与相似1. 比和比例的概念及其应用2. 相似三角形的比例关系3. 解直角三角形的比例问题4. 解平行四边形的比例问题九、数据的收集和处理1. 数据收集的方法和意义2. 数据的整理和描述3. 数据图形的绘制和解读4. 统计与概率的基本知识十、考试技巧与思维方法1. 解题方法和思维技巧的培养2. 数学解题策略与问题解决能力的提升3. 拓展数学的应用能力和创新思维。
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
初一数学下册基本知识点总结(优秀5篇)新人教版初一下册数学知识点总结归纳篇一平行线与相交线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余。
性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。
性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。
对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。
(相邻且互补)二、三线八角:两直线被第三条直线所截①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定①同位角相等②内错角相等两直线平行③同旁内角互补四、平行线的性质①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
五、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段。
②作一个角等于已知角。
生活中的轴对称一、轴对称图形与轴对称①一个图形沿其中一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。
这条直线叫做对称轴。
②两个图形沿其中一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等。
∵∠1=∠2PB⊥OBPA⊥OA∴PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵OA=OBCD⊥AB∴PA=PB四、等腰三角形性质:(有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形;(一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合;(三线合一)③等腰三角形的两个底角相等。
初一下册数学必考知识点归纳整理一、几何图形概念:从实物中抽象出来的各种图形,分为立体图形和平面图形。
1、立体图形:几何图形的各个部分没有都在同一平面内。
2、平面图形:几何图形的各个部分都在同一平面内。
二、点、线、面、体1、组成几何图形点:线和线相交的地方就是点,是几何图形中最基本的图形。
线:面和面相交的地方就是线,包括直线和曲线。
面:包围着体的就是面,包括平面和曲面。
体:几何体简称为体。
2、点动成线,线动成面,面动成体。
三、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,每个面都是长方形。
正方形是特殊的长方形,正方体是特殊的长方体。
棱柱:上下两个面是棱柱的底面,别的面是侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各个面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面,侧面是曲面,两个底面是半径相等的圆。
圆柱的表面展开图是两个相同的圆形和一个长方形组成。
圆锥:有一个底面和一个侧面,侧面展开图是扇形,底面是圆。
球:由一个面围成的几何体,这个面是曲面。
四、棱柱棱:在棱柱中,任何相邻两个面的交线叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,一共是(n+2)个面,3n条棱,n 条侧棱,2n个顶点。
五、正方体的平面展开图:有11种六、平面截几何体1、用平面去截正方体,截出来的面可能是三角形,四边形,五边形,六边形。
注意:正方体只有六个面,所以截面最多有六条边,截面边数最多的图形是六边形。
长方体、棱柱的截面与正方体的截面有相似的地方。
2、用平面截圆锥,可以截出圆和三角形两种截面。
3、用平面截球体,只能出现圆的截面。
七年级下册数学知识点超全七年级下册数学知识点
七年级下册数学知识点主要涉及到有理数、比例、几何图形等方面的知识,以下是相关知识点介绍。
一、有理数
1.有理数的定义:有理数是整数和分数的集合,用Q表示。
2.有理数的分类:正数、负数、零。
3.有理数的加减法:同号相加减,异号相加减。
4.有理数的乘除法:同号得正,异号得负;除法可以转换成乘法。
5.有理数的绝对值:一个数的绝对值是它与0的距离,用符号| |表示。
二、比例
1.比例及其应用:比例是两个量之间的比值,用a:b或a/b表示。
2.比例的性质:比例中,有理数的乘除法对比例的值没有影响;比例可以转换成分数和百分数等。
3.比例的分配定理:如果a:b=c:d,那么a:c=b:d。
4.比例的合并定理:如果a:b=q:r,b:c=s:t,那么a:c=q:s,
b:d=r:t。
三、几何图形
1.线段和角度度量:线段是由两个端点所确定的一段线段,用AB表示;角度用度来度量,用°表示。
2.三角形及其分类:三角形是由三条线段所围成的图形,根据
三边的长短和三角形的角的大小不同,可以将三角形分为等边三
角形、等腰三角形、直角三角形、钝角三角形和锐角三角形。
3.直线和角:直线是无数个点所组成的一条线,用AB表示;
角是由两个线段所夹成的图形,用∠ABC表示。
4.相似和全等:两个图形如果形状相似,则它们的对应角相等,对应边成比例;如果两个图形完全相同,则它们全等。
以上是七年级下册数学知识点的介绍,希望对大家有所帮助。
初一下册数学重点知识总结归纳初一下册数学重点学问1.等式的性质(1)等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进展变形,使方程的形式向x=a的形式转化.应用时要留意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.2.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.3.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,敏捷应用,各种步骤都是为使方程渐渐向x=a形式转化.(2)解一元一次方程时先视察方程的形式和特点,假设有分母一般先去分母;假设既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于ax+bx=c的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程渐渐转化为ax=b的最简形式表达化归思想.将ax=b系数化为1时,要精确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要精确判定符号,a、b 同号x为正,a、b异号x为负.4.一元一次方程的应用(一)、一元一次方程解应用题的类型有:(1)探究规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价x101%);(4)工程问题(①工作量=人均效率x人数x时间;②假如一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度x时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)安排问题;(9)竞赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)、利用方程解决实际问题的根本思路如下:首先审题找出题中的未知量和全部的确定量,干脆设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:细致审题,确定确定量和未知量,找出它们之间的等量关系.2.设:设未知数(x),依据实际状况,可设干脆未知数(问什么设什么),也可设间接未知数.3.列:依据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.初一数学学习复习打算建议上课前,同学们可以提前预习数学课本,把课本例题中自己的不会的点都记录下来,便利大家上课的时候运用。
一、整式的加减1. 同底数幂的乘法:底数不变,指数相加。
2. 同底数幂的除法:底数不变,指数相减。
3. 幂的乘方:底数不变,指数相乘。
4. 积的乘方:等于各因式分别乘方后的积。
5. 单项式与单项式的和:系数相加,字母部分不变。
6. 单项式与单项式的差:系数相减,字母部分不变。
7. 单项式与单项式的积:系数相乘,字母部分合并。
8. 单项式与多项式的积:用单项式去乘多项式的每一项,再把所得的积相加。
9. 多项式与多项式的和:同类项的系数相加,字母部分不变。
10. 多项式与多项式的差:同类项的系数相减,字母部分不变。
11. 多项式与多项式的积:用一个多项式去乘另一个多项式的每一项,再把所得的积相加。
二、方程与不等式1. 一元一次方程:含有一个未知数,且未知数的最高次数为1的方程。
2. 一元一次不等式:含有一个未知数,且未知数的最高次数为1的不等式。
3. 一元一次方程的解法:移项、合并同类项、化系数为1。
4. 一元一次不等式的解法:移项、合并同类项、化系数为1。
5. 二元一次方程组:含有两个未知数,且未知数的最高次数为1的方程组。
6. 二元一次不等式组:含有两个未知数,且未知数的最高次数为1的不等式组。
7. 二元一次方程组的解法:消元法、代入法。
8. 二元一次不等式组的解法:消元法、代入法。
9. 分式方程:含有分母的方程。
10. 分式方程的解法:去分母、化系数为1、检验。
11. 分式不等式:含有分母的不等式。
12. 分式不等式的解法:去分母、化系数为1、检验。
三、几何图形1. 点、线、面的概念。
2. 直线的性质:无端点、无限延伸、不可度量长度。
3. 射线的性质:有一个端点、无限延伸、不可度量长度。
4. 线段的性质:有两个端点、有限长度、可度量长度。
5. 角的概念:两条射线从同一点出发所形成的图形。
6. 角的分类:锐角、直角、钝角、平角、周角。
7. 角的性质:度数大小关系、补角和余角、角的和差。
8. 三角形的概念:由三条边和三个内角组成的封闭图形。
初一下册数学知识点总结第一章 二元一次方程1、二元一次方程的概念2、二元一次方程组的概念3、解二元一次方程组⎪⎩⎪⎨⎧程组)引入解复杂二元一次方换元法(书本上没有,加减消元法代入法.3.2.1 4、二元一次方程的实际应用⎩⎨⎧;分配类何图形的体积面积变化题型:时间路程类;几、解、验、答解题步骤:审、设、列.2.1 5、三元一次方程和三元一次方程组概念6、姐三元一次方程组:方法和解二元一次方程组的一样第二章 整式乘法1、同底数幂的乘法:n m n m n m n m x x x x x x -+=÷=⨯;2、幂的乘方:()mn nm x x =3、单项式乘单项式:11++=⨯m n n m y x y x xy ;11842++=⨯n m n m y x y x xy4、单项式乘多项式:1221)(+++=+n m n m y x y x xy y x xy5、多项式乘多项式:()()ny y mx y ny x mx x ny mx y x ∙+∙+∙+∙=++6、乘法公式:平方差公式()()()()()()2222323232)()(y x y x y x nb ma nb ma nb ma -=-+-=-+,例如 完全平方公式()()()()()b a b a b a nb ma nb ma nb ma 32232322)()(222222-∙∙+-+=-∙∙++=+例如第三章 因式分解1、因式分解的概念:把一个多项式变成若干个多项式的乘积的形式。
例如()()32652++=++x x x x ,()()b a b a b a -+=-22,()22321294-=-+a a a 2、提公因式法:()()1,248442222322++=++++=++x x xy xy y x y x c b a c b a 3、十字相乘法:能把某些二次三项式分解因式。
要务必注意各项系数的符号。
方法是:交叉相乘,水平书写。
七年级下册数学所有知识点
1. 平行线与一般位置的直线的夹角
2. 相交直线的夹角
3. 圆周角和弧度制
4. 三角形和其特殊线段(中线、角平分线、垂线、高线、边中线)
5. 对称性和相似性
6. 直角三角形的性质
7. 三角形的内角和定理
8. 合同三角形的性质
9. 同位角和内错角
10. 三角形的全等条件
11. 平行四边形和矩形的性质
12. 等周问题
13. 图形的面积和体积计算
14. 圆的性质
15. 圆锥和棱锥的性质
16. 线段和面的投影
17. 二次函数和其图像
18. 简单方程和方程转化
19. 笛卡尔坐标系和对称轴
20. 整式的加减和乘除
21. 一元一次方程的解
22. 正数、负数和零
23. 比例和比例的性质
24. 百分数和百分率
25. 一次函数和直线的性质
26. 线性方程组和其解法
27. 数据的整理和图表的绘制
28. 测量单位换算
29. 简单利益、满意度和邮费计算
30. 二次根式和简单根式的运算。
七下数学知识点归纳
七年级下册数学知识点归纳如下:
1. 整式的加减运算:整式的相加、相减
2. 乘法的定义与性质:乘法的交换律、结合律、分配律
3. 乘法的进一步应用:算术平方根、算术平方根的算术性质、开平方、开平方运算的
规律
4. 分式:分式及其约简、分式和整式之间的换算、分式的加减运算、乘除运算法则
5. 二次根式:二次根式的定义和简化、二次根式的性质、二次根式的加减乘除运算、
二次根式的整数次方
6. 实数的认识和比较:绝对值、绝对值的性质、大于、小于、大于等于、小于等于的
判断和比较
7. 分布率定理:分布率定理、集合的交、并、差运算、集合的相等、包含关系、子集、空集等概念
8. 平方根:平方根的定义和性质、判断和比较平方根、平方根的加减乘除运算、平方
根的化简
9. 数据的整理与分析:相关系数、相关性研究、数据的处理和分析
10. 图的认识:图的基本概念、图的分类、图的应用、图的绘制和分析
11. 几何和图形的认识:多边形、三角形、四边形、平行四边形、各类矩形、正方形、菱形、圆的相关知识
12. 空间与图形的认识:图形的投影、空间的点、线、面、多面体的认识、几何体的展开与拼装
这些是七年级下册数学的主要知识点归纳,可以根据具体教材和课程要求进行详细学习。
初一下册数学要点一、数与代数1.1 整数初一下册的数与代数部分主要包括整数的概念、运算与计算等内容。
1.1.1 整数的概念整数是由正整数、负整数和0组成的集合。
它们可以用于表示数轴上的点和做数与数之间的运算。
1.1.2 整数的加减法整数的加法和减法涉及到正数、负数和0之间的运算关系。
需要注意的是减法可以转化为加法:a - b = a + (-b)。
1.1.3 整数的乘法整数的乘法遵循交换律、结合律和分配律。
同时,需要注意正数与正数、负数与负数以及正数与负数相乘的结果。
1.1.4 整数的除法整数的除法遵循除法的基本原则,即被除数除以非零的除数得到商。
需要注意除法运算中的整除与带余除法。
1.2 分数与小数1.2.1 分数的概念分数由一个整数表示为几个相等部分之和的形式。
分数可以是带分数,也可以是假分数。
分数在数轴上的位置可以通过比大小确定。
1.2.2 分数与小数的转换分数可以转换为小数,也可以将小数转换为分数。
转换的方法包括除法和乘法等。
1.2.3 分数的运算分数的加减法、乘法和除法都可以通过分数的数学定义和运算规则进行计算。
需要注意分数的通分与约分。
二、图形与几何2.1 平面图形初一下册的图形与几何部分主要包括平面图形的认识、性质及其计算等内容。
2.1.1 点、线、面的认识点、线、面是平面图形的基本要素,通过这三个要素可以构成不同的平面图形。
正方形是具有四条相等边和四个直角的四边形。
正方形有自身的性质和计算公式。
2.1.3 长方形长方形是具有两对相等边和四个直角的四边形。
长方形有自身的性质和计算公式。
2.1.4 平行四边形平行四边形是具有两对平行边和四个内角为补角的四边形。
平行四边形有自身的性质和计算公式。
2.2 空间图形2.2.1 立体图形的认识立体图形是由平面图形沿着一条给定的曲线移动所形成的图形。
常见的立体图形有圆柱体、四棱锥和正方体等。
2.2.2 圆柱体圆柱体是具有两个底面和一个侧面的立体图形。
初一下册数学知识点总结第六章实数【知识点一】实数的分类1、按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.____平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.____立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用(1≤<10,n为整数)的形式记数的方法叫科学记数法.初一下册数学知识点总结(二)多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
七年级数学下册重要知识点数学是一门需要一步步打基础的学科,因此对于初中生而言,需要仔细学习每个知识点,扎实掌握每种方法。
下面是七年级数学下册的重点知识点:
一、代数基础知识
1.1 代数式及其运算
1.2 代数方程及其解法
1.3 代数不等式及其解法
二、几何与图形
2.1 各类角的认识和测量
2.2 直线与角等基础概念
2.3 平面图形和空间图形的认识
三、数与测量
3.1 分数与小数的认识及其互化3.2 百分数和比的应用
3.3 计算器的使用方法
四、函数初步
4.1 函数及其概念
4.2 函数的图象
4.3 线性函数的应用
五、统计与概率
5.1 统计中的集合
5.2 数据的整理和表示方法
5.3 概率初步应用
以上是七年级数学下册的重点知识点,每一项知识点都是非常
重要的基础知识。
掌握这些知识点,才能更好地为高中数学学习
打下坚实的基础。
同时,在学习数学的过程中,需要注重计算方法的掌握和数学
思维的培养。
一方面需要严谨的计算规律、正确的公式推导方法;另一方面需要锻炼自己的数学感觉,增强自己的逻辑推理能力。
这些知识点的学习不光是为了数学考试,更是为了将来面对生
活和社会问题时,能够运用科学的方法处理和解决问题。
希望各
位同学能够认识到数学的重要性,并刻苦钻研,努力掌握这些知
识点。
七年级下册数学全本知识点一、整数
1.整数的概念和表示方法
2.整数的加法和减法
3.整数的绝对值及其基本性质
4.相反数和倒数
5.小数的概念及表示方法
二、分数
1.分数的概念及其基本性质
2.练习分数的加法和减法
3.分数的乘法和除法
4.分数的化简和与整数的互化
5.分数的比较大小
三、代数式
1.代数式的概念
2.字母的含义及常见字母的代表的含义
3.运算符号的含义及代数式的运算
4.含有代数式的计算题的解法
四、方程式
1.方程式的概念和种类
2.如何列方程
3.进行方程式的解法
4.方程式的应用问题
五、图形
1.二维图形的分类
2.相似和全等,特别是图形的判定
3.平面直角坐标系和点的坐标
4.坐标轴上点的坐标
六、数据的收集和分析
1.数据的整理和汇总
2.数据的分析
3.统计图和图表
4.概率和预测
七、几何变换
1.对称与轴
2.平移和旋转
3.三角形的内部和外部
4.数轴上的对称变换和平移。
初一数学下册全部知识点归纳第一章:整式的运算一、单项式1.代数式中由数字和字母的乘积构成的式子叫做单项式。
2.单项式中数字因子叫做系数,字母的指数和叫做次数。
3.单独一个数或一个字母也是单项式。
4.只含有字母因式的单项式的系数是1或-1.5.单独的一个数字是单项式,它的系数是它本身。
6.单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
7.单项式的系数包括它前面的符号。
8.单项式的系数是带分数时,应化成假分数。
9.单项式的系数是1或-1时,通常省略数字“1”。
10.单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1.由多个单项式相加(或相减)构成的式子叫做多项式。
2.多项式中的每一个单项式叫做多项式的项。
3.多项式中不含字母的项叫做常数项。
4.多项式的项数决定了它的次数。
5.多项式的每一项都包括项前面的符号。
6.多项式没有系数的概念,但有次数的概念。
7.多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1.单项式和多项式统称为整式。
2.单项式或多项式都是整式。
3.整式不一定是单项式。
4.整式不一定是多项式。
5.分母中含有字母的代数式不是整式,而是分式。
四、整式的加减1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2.几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3.几个整式相加减的一般步骤:1) 列出代数式:用括号把每个整式括起来,再用加减号连接。
2) 按去括号法则去括号。
3) 合并同类项。
4.代数式求值的一般步骤:1) 代数式化简。
2) 代入计算。
3) 对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法1.n个相同因式(或因数)a相乘,记作a^n,读作a的n 次方(幂),其中a为底数,n为指数,a的结果叫做幂。
2.底数相同的幂叫做同底数幂。
1、单项式与多项式相乘,把单项式的系数与多项式中每一项的系数分别相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
数学七年级下册知识点归纳一、整数与分数1. 整数- 整数的加法与减法- 整数的乘法与除法- 整数的性质与比较大小- 正整数、负整数和零- 整数的四则混合运算2. 分数- 分数的定义与表示- 分数的加法与减法- 分数的乘法与除法- 分数的化简与简化- 分数与整数的互化- 真分数与假分数二、小数与百分数1. 小数- 小数的表示与读法- 小数的加法与减法- 小数的乘法与除法- 小数的四则混合运算- 小数点的移动与小数大小的关系2. 百分数- 百分数的意义与表示- 百分数与小数、分数的互化- 百分数的实际应用(如利率、折扣等)三、比例与比例关系1. 比例- 比例的概念与表示- 比例的性质- 比例的计算2. 比例关系- 直接比例与反比例- 比例关系的应用问题- 比例尺与地图、图纸的比例关系四、代数初步1. 代数表达式- 字母表示数- 单项式与多项式- 代数式的基本运算2. 一元一次方程- 方程的概念与解法- 方程的解的检验- 方程在实际问题中的应用五、几何图形1. 平面图形- 点、线、面的基本性质- 角的概念与分类- 三角形的基本性质与分类- 四边形的基本性质与分类2. 圆的基本性质- 圆的定义与性质- 圆的周长与面积公式- 扇形与弧长六、数据的收集与处理1. 统计- 数据的收集方法- 频数与频率- 统计表与统计图2. 概率- 随机事件与概率的初步概念- 简单事件的概率计算七、解题技巧与策略1. 审题与分析- 如何准确理解题目要求- 分析问题,寻找解题思路2. 常见解题方法- 列举法- 逆推法- 画图法- 假设法请注意,以上内容是一个基本的框架,具体的教学内容和深度可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应根据实际情况进行调整和补充。
初一数学下册基本知识点总结(通用8篇)新人教版初一下册数学知识点总结归纳篇一一元一次方程一、几个概念1、一元一次方程:2、方程的解:使方程的未知数的值叫方程的解。
5、移项:叫做移项。
(切记:移项必须)。
二、解一元一次方程的一般步骤:①去分母,方程两边同乘各分母的(注意:去分母不漏乘,对分子添括号)②,③,④,⑤三、列方程(组)解应用题的一般步骤①。
设,②。
列,③。
解,④。
检,⑤。
答第七章二元一次方程组一、几个概念1、二元一次方程:2、二元一次方程组:3、二元一次方程组的解:使二元一次方程组的的两个未知数的值。
二、二元一次方程组的解法:1、代入消元的条件:将一个方程化为的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2、加减消元的条件:两个方程中,其中一未知数的系数或。
(当两个方程中,其中一未知数系数成倍数关系时,最适合)。
三、解三元一次方程组的一般步骤:①。
先用代入法或加减法消去系数较简单的一个未知数,转化为;②。
然后再解,得到两个未知数的值;③。
最后将上步所得两个未知数的值代回前边其中一方程,求出另一未知数的值。
第八章一元一次不等式一、几个概念1、不等式:叫做不等式。
2、不等式的解:叫做不等式的解。
3、不等式的解集:5、一元一次不等式:6、一元一次不等式组:7、一元一次不等式组的解集:二、一元一次不等式(组)的解法:1、解一元一次不等式的一般步骤:①。
,②。
,③。
,④。
,⑤。
2、怎样在数轴上表示不等式的解集:①先定起点:有等号时用点;无等号时用点。
②再画范围:小于号向画;大于号向画。
3、一元一次不等式组的解法:先分别求;再求4、注意:①。
在不等式两边同时乘或除以负数时,不等号必须②。
求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:同大取,同小取;“大小,小大”取,“大大,小小”则第九章多边形一、几个概念1、三角形的有关概念:①三角形:是由三条不在同一直线上的组成的平面图形,这三条就是三角形的边。
初一数学(下)应知应会的知识点
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解). 4.二元一次方程组的解法: (1)代入消元法;(2)加减消元法; (3)注意:判断如何解简单是关键. ※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”; (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; 不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变; 不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集. 4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b >0或ax+b <0 ,(a ≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:
在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔
0b a
>⇔ ⎩⎨⎧>>0b 0a 或⎩
⎨⎧<<0b 0a ; ab <0 ⇔
0b a
< ⇔ ⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0
a ; ab=0 ⇔ a=0或b=0; ⎩
⎨⎧≤≥m a m
a ⇔ a=m .
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集. 8.一元一次不等式组的解集的四种类型:设 a >b
9.几个重要的判断:
是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭
⎬⎫
><+, 异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+ .y x 0xy 0y x 异号且负数绝对值大、⇔⎭
⎬⎫
<<+
整式的乘除
1.同底数幂的乘法:a m ·a n =a m+n ,底数不变,指数相加.
2.幂的乘方与积的乘方:(a m )n =a mn ,底数不变,指数相乘; (ab)n =a n b n ,积的乘方等于各因式乘方的积. 3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.
4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.
5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加. 6.乘法公式:
(1)平方差公式:(a+b)(a-b)= a 2-b 2,两个数的和与这两个数的差的积等于这两个数的平方差; (2)完全平方公式:
① (a+b)2=a 2+2ab+b 2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍; ② (a-b)2=a 2-2ab+b 2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍; ※ ③ (a+b-c)2=a 2+b 2+c 2+2ab-2ac-2bc ,略. 7.配方:
(1)若二次三项式x 2+px+q 是完全平方式,则有关系式:q 2p 2
=⎪⎭
⎫
⎝⎛;
※ (2)二次三项式ax 2+bx+c 经过配方,总可以变为a(x-h)2+k 的形式,利用a(x-h)2+k ①可以判断ax 2+bx+c 值的符号; ②当x=h 时,可求出ax 2+bx+c 的最大(或最小)值k. ※(3)注意:2x 1x x 1
x 2
22
-⎪⎭⎫ ⎝
⎛
+=+.
8.同底数幂的除法:a m ÷a n =a m-n ,底数不变,指数相减. 9.零指数与负指数公式: (1)a 0=1 (a ≠0); a -n =
n
a
1,(a ≠0). 注意:00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .
10.单项式除以单项式: 系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式. 11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式. 13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内. 线段、角、相交线与平行线
几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明)
几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.
二定理:
1.直线公理:过两点有且只有一条直线.
2.线段公理:两点之间线段最短.
3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短. 4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
三 公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.
四 常识:
1.定义有双向性,定理没有.
2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.
3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论. 4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解. 5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析. 7.方向角:
(1) (2)
8.比例尺:比例尺1:m 中,1表示图上距离,m 表示实际距离,若图上1厘米,表示实际距离m 厘米. 9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.
北偏西30°
南偏东60°
30°
60°
北
南
东
西东北
东南
西北
西南。