华师大版初中七年级数学知识点汇总
- 格式:doc
- 大小:27.00 KB
- 文档页数:8
华师大版初中数学知识点总结It was last revised on January 2, 2021数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+12,,258等大于0的数(“+”通常不写)叫正数。
像-5,,等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+12,,258等大于0的数(“+”通常不写)叫正数。
像-5,,等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
6.绝对值(1)在数轴上表示数a的点离开原点的距离,叫做数a 的绝对值。
七年级数学所有知识点1.有理数的分类:(注意0和非正整数)2.规定了原点、正方向和单位长度的直线叫做数轴;在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于负数只有符号不同的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.0的相反数是0.一个数的相反数就是在它前面添“--”号在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥03.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数. 灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
4、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.几个:不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.5.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.6. 有理数除法则:除以一个数等于乘上这个数的倒数.注意:0不能作除数.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.7、乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
七年级华师大数学知识点华师大数学,作为一所学科实力强劲的大学,对于数学教育的质量也格外关注。
随着我国教育质量的不断提高,华师大数学教育也日益充实,七年级数学知识点更是被重点关注。
一、基础知识1.1 数的认识整数、有理数、实数等基本概念的介绍。
数轴、坐标系等基本工具的使用。
了解数的四则运算和初等代数(代数式、方程)的概念和方法等。
1.2 等式与不等式区别等式和不等式的概念。
对不等式有形式推导和对数直观感受。
通过练习无法确定变量的不等式(如x+2<0)的解法等方法。
1.3 向量与坐标向量:认识向量的表示方式、平移性质、相等与方向相反、加法、数乘等基本概念和性质。
向量的坐标表示与坐标的相互联系。
二、几何知识2.1 点、线、面的认识点、线、面的名称、表示方法及基本性质等。
2.2 基本画图法和基本制图符号绘制与数表达有关的图形,了解基本制图符号(如角度、直线、圆)的使用。
2.3 三角形、四边形、圆的基本性质三角形的内角和定理、外角和定理、直角三角形和勾股定理等。
四边形的内角和定理等。
圆与圆心角、弧、弦、切线等基本概念和性质。
三、函数知识3.1 函数及函数的图像和性质了解函数的基本定义和基本概念等,掌握一元一次函数y=kx+b、一元二次函数y=ax²+bx+c的图像和性质。
对于解题时运用函数概念有较好的认识。
3.2 实际问题与函数通过实际问题,引导学生认识函数在生活、经济等方面的应用。
同时,训练学生解决实际问题的方法和能力。
四、统计学知识4.1 数据收集与整理初步了解数据收集的方法和整理的基本概念。
学习频数和频率的计数方法。
4.2 数据分析初步了解数据展示与数据分析的基本方法。
如:条形图、折线图、饼图等图表的绘制和分析。
综上所述,七年级华师大数学知识点涉及基础知识、几何知识、函数知识和统计学知识等多个方面。
学生需要全面掌握这些知识,并在实际运用中通过解决问题,提高数学的应用能力。
华师大版七年级数学主要包括整数、分数、小数、代数、平面几何、统计与概率等内容。
下面是对每个知识点的简要概述。
一、整数1.自然数及其扩展:自然数、非负整数、绝对值等概念的引入。
2.正负数及其相反数:正数、负数、相反数的概念及性质。
3.整数的加法与减法:同号相加、异号相减、有运算律等基本操作法则。
4.整数的乘法:同号相乘得正、异号相乘得负、乘法运算法则。
5.整数的除法:除法运算规则、余数、商的概念及规律。
二、分数1.分数与整数的关系:分数的定义及分数与整数之间的关系。
2.分数的大小比较:通分比较、化简比较、带分数比较等方法。
3.分数的加法与减法:同分母相加减、异分母相加减、化简等操作法则。
三、小数1.有限小数与无限小数:有限小数、循环小数、无限不循环小数的区分与性质。
2.小数的大小比较:相同小数位比较、小数与分数比较等方法。
3.小数的加法与减法:按位对齐相加减、借位压位等运算法则。
四、代数1.字母代数式:字母及常数用数字代替,字母代表一类数、代数式的加减运算等。
2.一元一次方程:方程的定义、等式的性质、解方程的基本方法。
3.一元一次方程组:方程组的定义、解方程组的基本方法。
五、平面几何1.图形的分类:点、线、面等几何基本概念。
2.线段与角度:线段的长度、角度的度量、角度的分类等。
3.三角形与四边形:三角形的分类、四边形的分类及性质。
4.相似与全等:相似图形、全等图形的定义及判定方法。
5.平行线与垂直线:平行线的判定、平行线性质、垂直线的判定等。
六、统计与概率1.统计图与统计量:条形图、折线图、统计量的计算等。
2.概率的概念:基本概率、事件概率、互斥事件、相对频率等。
初一数学知识点华师大版(精选五篇)第一篇:初一数学知识点华师大版学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。
任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。
下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学知识点三角形1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)②a-b3、第三边取值范围:a-b4、对应周长取值范围若两边分别为a,b则周长的取值范围是2a如两边分别为5和7则周长的取值范围是145、三角形中三角的关系(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n-2)(2)、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
6、三角形的三条重要线段(1)、三角形的角平分线:1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。
(内心) (2)、三角形的中线:1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。
(重心)3、三角形的中线把这个三角形分成面积相等的两个三角形(3)、三角形的高线:1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
七年级上 有理数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数 分数 负有理数负分数 负分数 【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数. (2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义) (3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。
七年级数学知识点第一章走进数学世界第二章有理数1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
第三章整式的加减一、整式的有关概念1、单项式:数与字母乘积,这样的代数式叫单项式。
单独的一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式:几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。
特别注意,多项式的次数不是组成多项式的所有字母指数和!!!6、整式:单项式与多项式统称整式。
(分母含有字母的代数式不是整式)二、整式的运算(一)整式的加减法基本步骤:去括号,合并同类项。
(二)整式的乘法1、同底数的幂相乘法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:___ (其中m、n为正整数)2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
数学符号表示:_______ (其中m、n为正整数)3、积的乘方法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。
(即等于积中各因式乘方的积。
数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+12,,258等大于0的数(“+”通常不写)叫正数。
像-5,,等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
6.绝对值(1)在数轴上表示数a的点离开原点的距离,叫做数a的绝对值。
数学知识点总结七年级上第二章有理数1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
6.绝对值(1)在数轴上表示数a的点离开原点的距离,叫做数a 的绝对值。
华师版七年级数学知识点数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。
下面是小编给大家整理的一些七年级数学的知识点,希望对大家有所帮助。
初一下册数学知识点概念知识1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
1.有理数的分类:(注意0和非正整数)2.规定了原点、正方向和单位长度的直线叫做数轴;在数轴上表示的两个数,右侧的数总比左侧的数大 .正数都大于零,负数都小于零,正数大于负数只有符号不一样的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.0的相反数是0.一个数的相反数就是在它前方添“--”号在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值老是非负数,即|a|≥0有理数的加法法例:同号两数相加,取同样的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.灵巧运用运算律,使用运算简化,往常有以下规律:①互为相反的两个数,能够先相加;②符号同样的数,能够先相加;③分母同样的数,能够先相加;④几个数相加能获得整数,能够先相加。
4、有理数乘法法例:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.几个:不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.乘法分派律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac. 有理数除法例:除以一个数等于乘上这个数的倒数.注意:0不可以作除数.两数相除,同号得正,异号得负,并把绝对值相除 .0 除以任何一个不等于0的数,都得0.7、乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得 1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,第一要确立幂的符号,而后再计算幂的绝对值。
华师大版初中数学知识点总结
一、基本运算
1.加减乘除的计算
2.带分数与假分数的计算
3.整数的加减乘除
二、数表达式与代数运算
1.代数式的基本概念
2.同类项与合并同类项
3.一元一次方程及其解法
4.一元一次不等式及其解法
5.一元一次方程组及其解法
三、平面图形
1.点、线、面的基本概念
2.四边形的性质与分类
3.三角形的性质与分类
4.直角三角形及其性质
5.平面直角坐标系
6.圆的性质与相关计算
四、空间图形
1.立体图形的基本概念
2.立体图形的展开图与图形变换
3.直角坐标系中点与向量的运算
4.空间图形的投影与相关计算
五、数据与统计
1.数据的收集与整理
2.数据的图表表示与分析
3.概率与统计
六、函数与方程
1.函数的概念与性质
2.一元一次函数与相关计算
3.一元二次函数与相关计算
4.一元一次不等式与一元二次不等式的解法
七、数的综合应用
1.数字运用与推理
2.运算的应用问题
3.算数平方根与应用
4.核数问题
5.等速变化问题
以上是华师大版初中数学的主要知识点总结。
华师大版初中数学注重培养学生的数学思维和解决实际问题的能力,并通过各种实例和题目来帮助学生理解和应用知识。
掌握了这些知识点,学生将能够更好地应对数学考试,并能够应用数学知识解决实际生活中的问题。
华师版初一数学知识点梳理七年级下册数学复习资料相似变换※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;平移变换(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行且相等(或在同一直线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离决定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移初一数学方法技巧1.请概括的说一下学习的方法曰:“像做其他事一样,学习数学要研究方法。
我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
2.请谈谈超前学习的好处曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。
经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。
”其次,够消除对新知识的“隐患”。
超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。
相反地,若直接听别人说。
似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。
当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。
最后,超前学习能提高听课质量。
超前学习以后,我们发现新知识中的多数自己完全可以理解。
七年级上册数学知识点归纳华师大七年级数学知识点归纳数学是一门需要不断积累和理解的学科,尤其在初中阶段,数学知识点的数量和难度都会逐渐增加。
为了帮助同学们更好地掌握七年级数学知识点,本文将对七年级上册数学知识点进行整理和归纳。
一、实数的认识实数是指包括有理数和无理数的所有数的集合。
有理数包括整数、分数和小数,而无理数包括根号2、根号3等无法用分数表示的数。
在学习实数的过程中,同学们需掌握实数的概念、实数与数轴的关系以及实数之间的大小比较等重要知识点。
二、整式的认识和运算整式是指由常数、未知数及其乘积组成的代数式,例如2x+3、x²-4x+5等。
在整式的运算中,同学们需要掌握加减乘除、合并同类项、提取公因式等基本操作,还需要了解如何使用整式求值、解方程等应用问题。
三、分式的认识和运算分式是指由分子、分母及其乘积组成的代数式,例如(x+2)/3、1/x²等。
分式的运算包括加减乘除、分式化简、分式方程的解法等,同学们需要通过大量的练习提高掌握这些技巧。
四、代数式的计算与应用代数式是指由数字、字母或其组合符号所组成的代数表达式,例如2x²+3x+1、a²-b²等。
在代数式的计算中,同学们需要掌握基本的运算规律和技巧,例如指数运算、括号展开、因式分解等。
同时,代数式在学习中也应用广泛,涉及到面积、周长等问题,同学们需要善于将代数式与实际应用相结合,提高理论与实践的联系。
五、几何基本概念的认识几何是研究空间图形以及它们之间的关系的数学分支,几何基本概念是几何学习的基石。
同学们需要掌握诸如点、直线、线段、角、三角形、四边形等基本几何概念,同时还需要了解几何图形之间的关系,例如相似、全等、垂直、平行等。
六、计算器的使用及其相关知识计算器在数学学习中是一个非常重要的工具。
同学们需要掌握基本的计算器操作技能,例如四则运算、开根、幂次的计算等。
同时,同学们还需要注意计算器使用时的注意事项,例如正确输入公式、选择合适的计算器型号等。
七年级上第二章 有理数正分数负分数正整数0负整数1.相反意义的量 xx 和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1)按有理数的定义分类2)按正负分类正整数正整数整数0正有理数有理数负整数有理数正分数正分数0负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位xx的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位xx缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负;如果是偶数个,则结果为正。
可简写为“奇负偶正”。
七年级上第二章 有理数正分数负分数正整数0负整数1.相反意义的量 向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+21,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
像-5,-2.8,-43等在正数前面加“—”(读负)的数叫负数。
【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1) 按有理数的定义分类 2)按正负分类正整数 正整数 整数 0 正有理数有理数 负整数 有理数 正分数 正分数 0 负整数分数 负有理数 负分数 负分数【注】有限循环小数叫做分数。
(3)数集 把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小 ﻫ1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义) (3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a 的相反数是—a 。
(6)多重符号化简多重符号化简的结果是由“-”号的个数决定的。
如果“-”号是奇数个,则结果为负; 如果是偶数个,则结果为正。
吉大教育辅导学校初中数学知识点总结(华师)七年级上第二章有理数加法减法正整数0 整数负整数交换律分配律有理数有理数的运算结合律正分数分数负分数点与数的对应乘法乘方数轴除法比较大小1.相反意义的量向东和向西,零上和零下,收入和支出,升高和下降,买进和卖出。
2.正数和负数像+1,+12,1.3,258等大于0的数(“+”通常不写)叫正数。
2像-5,-2.8,-3等在正数前面加“—”(读负)的数叫负数。
4【注】0既不是正数也不是负数。
3.有理数(1)整数:正整数、零和负整数统称为整数。
分数:正分数和负分数统称为分数。
有理数:整数和分数统称为有理数。
(2)有理数分类1) 按有理数的定义分类2)按正负分类正整数正整数整数0 正有理数有理数负整数有理数正分数正分数0 负整数分数负有理数负分数负分数【注】有限循环小数叫做分数。
(3)数集把一些数组合在一起,就组成了一个数的集合,简称数集。
所有的有理数组成的数集叫做有理数集,1初中数学知识点总结(华师)类似的,有整数集,正数集,负数集,所有的正整数和零组成的数集叫做自然数集或叫做非负整数集,所有负数和零组成的数集叫做非负数集。
4.数轴(1)规定了原点、正方向和单位长度的直线叫做数轴。
【注】1)数轴的三要素:原点、正方向、单位长度缺一不可。
2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.(2)在数轴上比较有理数的大小1)在数轴上表示的两个数,右边的数总比左边的数大。
2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
5.相反数(1)只有符号不同的两个数称互为相反数,如-5与5互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
(几何意义)(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
(5)数a的相反数是—a。
七年级数学所有知识点1.有理数的分类:(注意0和非正整数)2.规定了原点、正方向和单位长度的直线叫做数轴 ;在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于负数只有符号不同的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.0的相反数是0.一个数的相反数就是在它前面添“--”号在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a| ※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥03.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数. 灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
4、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.几个:不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.5.乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac.6. 有理数除法则:除以一个数等于乘上这个数的倒数.注意:0不能作除数.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.7、乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
8、把一个大于10的数记成a×n10的形式,其中1≤a<10,n=原数的整数位数-1,这种记数法叫做科学记数法.9. 有理数混合运算的运算顺序规定如下:先算乘方,再算乘除,最后算加减;同级运算,按照从左至右的顺序进行;如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
10.从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字用科学计数法表示的数精确到乘号前最后一个数字在原数的位数,它的有效数字为乘号前的所有数字11、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
12.代数式的书写格式:①代数式中出现乘号,通常省略不写,②数字与字母相乘时,数字应写在字母前面,③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位写在式子的后面,13 .单项式的系数:单项式中的数字中的数字因数叫做代数式的系数......。
注意:①字母因数的系数是1或-1时1省略不写。
14.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个单项式是否是同类项有两个条件:①所含字母相同;.②相同字母的指数也相同。
③同类项与系数无关,与字母的排列顺序无关;④几个常数项也是同类项。
15.①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;16.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;17.n棱柱有(n+2)个面,n个侧面为长方形,2个底面为n边形,2n个顶点3n条棱18.从n边形的一个顶点出发的对角线有(n-3)条;可把n边形分成(n-2)个三角形;这个n边形共有n (n −3) /2条对角线。
(也可以反过来用公式计算边数)19.直线公理:经过两点有一条直线,并且只有一条直线. 线段公理:两点之间线段最短。
20.角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边.※角也可以看成是由一条射线绕着它的端点旋转而成的。
※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角..。
※终边继续旋转,当它又和始边重合时,所成的角叫做周角..。
21、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
22、在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
直线外一点到直线上所有各点连结的线段中,垂线段最短,垂线段的长度叫做点到直线的距离。
23、经过直线外一点,有且只有一条直线与这条直线平行。
※如果两条直线都与第三条直线平行,那么这两条直线互相平行。
24、平行线的识别(或判定)方法:同位角相等,两直线平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
垂直于同一条直线的两条直线互相平行。
如果两条直线都与第三条直线平行,那么这两条直线互相平行。
25、平行线的性质:两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
※.等于本身的数汇总:相反数等于本身的数:0。
倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0平方等于本身的数:0,1 立方等于本身的数:0,1,-1.几何图题解题思路第一步:首先逐个分析已知条件,每次一个条件,思考可以得出什么结论;第二步:把已知条件可以得到结论,进行汇总分析;第三步:从问题入手,倒着推理,寻找可以得出结论的所有条件;第四步:将推理思路,倒着书写,即是该题的解题过程。
求角的方法:(1)利用角的和差计算(2)角平分线(3)三角形内角和为180度(4)同角(或等角)的余角(或补交)相等(5)平行线的性质(6)对顶角和邻补角判定平行方法:主要是运用平行线的判定这五种方法,(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)如果两条直线都与第三条直线平行,那么这两条直线互相平行。
(5)垂直于同一条直线的两条直线互相平行,仔细分析看用哪种最简单,然后用角的方法找相等关系。
判定垂直方法:求出夹角等于90度。
判定角平分线方法:(1)分成的两个小角相等(2)任意小角是大角一半(3)大角是任意小角的2倍判定线段中点方法:(1)分成的两段相等(2)任意一段是总长一半(3)总长是任意一段的2倍小学数学图形计算公式1 、正方形:周长=边长×4 C=4a 面积=边长×边长 S=a22 、正方体:表面积=棱长×棱长×6 S表=6 a2体积=棱长×棱长×棱长 V=a33 、长方形周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab4 、长方体(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形面积=1/2底×高 s=1/2 ah6、平行四边形面积=底×高 s=ah7 梯形面积=(上底+下底)×高÷2 s=1/2 (a+b) h8.圆直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2 圆的周长=圆周率×直径公式:c=πd =2πr 圆的面积=半径×半径×π公式:S=πrr9.圆柱:圆柱的侧面积=底面的周长×高。
公式:S=ch=πdh=2πrh 圆柱的总体积=底面积×高。
公式:V=Sh圆柱的表面积=底面的周长×高+两头的圆的面积。
公式:S=ch+2s=ch+2πr210 圆锥圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh数量关系:相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追击问题:追及距离=速度差×追击时间追击时间=追击距离÷速度差速度差=追击距离÷追及时间流水问题:顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-税率)。