化学键、晶体类型0
- 格式:doc
- 大小:77.50 KB
- 文档页数:2
化学键的形成及其类型化学键是指由原子之间的相互作用而形成的连接力,是构成分子和晶体结构的基础。
化学键的形成是由于原子间的电荷分布不均,导致原子之间产生了吸引和排斥的力。
本文将详细介绍化学键的形成过程以及常见的化学键类型。
一、离子键离子键是由正负离子之间的吸引力而形成的化学键。
当一个或多个电子从一个原子转移到另一个原子时,形成了带正电荷的阳离子和带负电荷的阴离子,它们之间的电荷吸引力就形成了离子键。
离子键通常是由金属和非金属元素之间的化学结合形成的。
例如,氯化钠中,钠原子失去一个电子成为正离子,氯原子获得一个电子成为负离子,它们之间的电荷吸引力就形成了离子键。
二、共价键共价键是由两个或更多原子共享电子而形成的化学键。
共价键主要存在于非金属之间,这是由于非金属元素具有较高的电负性,它们更倾向于从其他原子中获得电子而不是失去电子。
共价键的形成可以通过原子间的电子云重叠来实现,形成共享电子对。
共价键又可分为单键、双键和三键,取决于原子间共享的电子对的数量。
例如,氧气中的氧分子由两个氧原子共享两对电子而形成双键。
三、金属键金属键是由金属原子之间的电子云形成的化学键。
金属元素的化学键是通过电子从金属中的原子释放出来并形成共享电子海来实现的。
在金属中,金属原子失去了部分或全部外层电子,形成带正电荷的离子或离子团,这些离子或离子团被自由移动的电子云包围,并形成了金属键。
金属键的一个显著特点是它们能够传导热和电。
四、氢键氢键是由氢原子与高电负性原子间的吸引力而形成的化学键。
氢键通常存在于氢原子与氮、氧或氟原子之间。
在氢键中,氢原子成为一个带正电荷的离子,能够被邻近原子中的非成键电子对吸引,形成氢键。
氢键的存在使得分子间的相互作用更加稳定,起到了重要的作用。
例如,水分子中的氢键使其能够展现出许多特殊的性质,如高沸点和表面张力。
总结:化学键的形成及类型多种多样,其中包括离子键、共价键、金属键和氢键。
离子键由正负离子之间的电荷吸引力形成,共价键通过共享电子形成,金属键由金属原子之间的电子云形成,氢键由氢原子与高电负性原子之间的吸引力形成。
晶体第五课化学键及晶格类型
晶体第五课:化学键及晶格类型
化学键及晶格类型
晶体中的原子之间的相互作用主要有以下几种情况:
.化学键:包括离子键、共价键和金属键。
.非化学性作用:范德华力(分子键)
一般来说,一种晶体通常以一种化学键为主,其物理性质也是由这种占主导地位的化学键决定,因此,我们根据晶体内占主导地位的化学键类型来划分晶体的晶格类型,对应于离子键、共价键、金属键、分子键,就有离子晶格、原子晶格、金属晶格、分子晶格。
但是,晶体中的原子往往不是由单纯一种键型相互作用而构成,大多数情况下,在形成的晶体中各种键型都有存在,只是程度不同而已。
极化、电子离域、轨道重叠等因素相互作用,产生不同程度的键型变异。
这就是由著名化学家唐有祺教授1963年提出的键型变异原理。
键型递变是化学中常见的现象,可以用键型四面体直观表示。
由于分子间的作用力很弱,分子键所形成的分子晶格类型的晶体大多透明、不导电、硬度很小、有较低的熔、沸点,、易挥发,许多物质在常温下呈气态或液态。
有些分子晶体,如H2O、NH3、CH3CH2OH等除了范德华力外还有氢键的作用,它们的熔沸点较高。
第八讲化学键与晶体类型考试大纲要求1.理解离子键、共价键的涵义,了解键的极性。
2.了解几种晶体类型(离子晶体、原子晶体、分子晶体)及其性质。
知识规律总结一、化学键与分子间作用力二、化学键的分类表4-2离子键、共价键和金属键的比较三、共价键的类型表4-3非极性键和极性键的比较四、分子的极性1.非极性分子和极性分子表4-4 非极性分子和极性分子的比较2.常见分子的类型与形状表4-5常见分子的类型与形状比较3.分子极性的判断(1)只含有非极性键的单质分子是非极性分子。
(2)含有极性键的双原子化合物分子都是极性分子。
(3)含有极性键的多原子分子,空间结构对称的是非极性分子;空间结构不对称的为极性分子。
注意:判断AB n型分子可参考使用以下经验规律:①若中心原子A的化合价的绝对值等于该元素所在的主族序数,则为非极性分子,若不等则为极性分子;②若中心原子有孤对电子(未参与成键的电子对)则为极性分子,若无孤对电子则为非极性分子。
五、晶体类型1.分类表4-6各种晶体类型的比较2极性溶剂,熔化时能够导电,溶沸点高多数溶剂,导电性差,熔沸点很高液能够导电,溶沸点低电和热的良导体,熔沸点高或低实例食盐晶体金刚石氨、氯化氢镁、铝2.物质溶沸点的比较(1)不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体(2)同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。
①离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。
②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
③原子晶体:键长越小、键能越大,则熔沸点越高。
(3)常温常压下状态①熔点:固态物质>液态物质②沸点:液态物质>气态物质3.“相似相溶”规律极性分子组成的溶质易溶于由极性分子组成的溶剂;非极性分子组成的溶质易溶于由非极性分子组成的溶剂。
思维技巧点拨一、化学键及分子极性的判断【例1】下列叙述正确的是A.P4和NO2都是共价化合物l4和NH3都是以极性键结合的极性分子C.在CaO和SiO2晶体中,都不存在单个小分子D.甲烷的结构式:是对称的平面结构,所以是非极性分子【解析】P4和NO2分子中都含有共价键,但P4是单质,故选项A错误。
化学键的类型与性质化学键是化学物质中原子之间的连接方式,是构成物质的基本单位。
化学键的类型与性质对于理解物质的性质和化学反应机制具有重要意义。
本文将介绍化学键的类型与性质,帮助读者更好地理解化学键在化学世界中的作用。
一、离子键离子键是由金属与非金属元素之间的电子转移而形成的化学键。
在离子键中,金属元素失去电子成为正离子,非金属元素获得电子成为负离子,它们之间通过静电力相互吸引而形成化学键。
离子键通常在金属与非金属元素之间形成,如氯化钠(NaCl)中的钠离子和氯离子之间的化学键。
离子键的性质:1. 离子键通常具有很高的熔点和沸点,因为需要克服离子之间的强静电力才能使其分离。
2. 离子键的化合物通常为晶体结构,具有良好的晶体形态和结构。
3. 离子键的化合物通常易溶于水,因为水分子能够与离子键中的离子发生作用,使其溶解。
二、共价键共价键是由非金属元素之间共享电子而形成的化学键。
在共价键中,原子之间通过共享电子对来实现稳定的化学键。
共价键通常在非金属元素之间形成,如氧气(O2)中氧原子之间的化学键。
共价键的性质:1. 共价键通常具有较低的熔点和沸点,因为共价键中的原子之间的结合力较弱。
2. 共价键的化合物通常为分子结构,具有不规则的分子形态。
3. 共价键的化合物通常不溶于水,因为共价键中的原子之间没有离子,无法与水分子发生作用。
三、金属键金属键是由金属元素之间的电子海而形成的化学键。
在金属键中,金属元素中的自由电子形成电子海,所有金属原子共享这些自由电子,从而形成金属键。
金属键通常在金属元素之间形成,如铜(Cu)中金属原子之间的化学键。
金属键的性质:1. 金属键通常具有较高的熔点和沸点,因为金属键中的金属原子之间的结合力较强。
2. 金属键的化合物通常为金属晶体结构,具有紧密排列的金属原子结构。
3. 金属键的化合物通常具有良好的导电性和热导性,因为金属键中的自由电子能够自由传导电荷和热量。
综上所述,化学键的类型与性质对于理解化学物质的性质和化学反应机制具有重要意义。
化学键的四种基本类型化学键是化学中非常重要的概念,它是原子之间的相互作用力,决定了物质的性质和化学反应的进行。
根据原子之间的结合方式和电子的共享情况,化学键可以分为四种基本类型:离子键、共价键、金属键和氢键。
离子键是指由金属和非金属元素之间的电子转移形成的化学键。
在离子键中,金属元素失去电子成为正离子,非金属元素获得电子成为负离子,两者之间通过静电力相互吸引而结合在一起。
典型的离子化合物包括氯化钠(NaCl)、氧化镁(MgO)等。
离子键通常具有高熔点和良好的溶解性,是晶体化合物的主要化学键类型。
共价键是指由非金属元素之间的电子共享形成的化学键。
在共价键中,原子间的电子对通过共享而形成化学键,使得原子周围的电子数达到稳定的惰性气体结构。
共价键可以是单键、双键或三键,取决于共享的电子对数目。
典型的共价化合物包括水(H2O)、甲烷(CH4)等。
共价键通常具有较低的熔点和沸点,是有机物和许多无机物的主要化学键类型。
金属键是指由金属元素之间的电子海形成的化学键。
在金属键中,金属原子失去外层电子形成正离子核,而这些失去的电子在整个金属晶体中自由移动形成电子海,使得金属晶体具有良好的导电性和热导性。
金属键的特点是金属原子之间没有固定的共价键或离子键,而是通过电子海的共享而相互结合。
氢键是一种特殊的非共价键,通常发生在含有氢原子的分子中。
在氢键中,氢原子与较电负的原子(如氧、氮、氟等)形成部分共价键,使得氢原子带有部分正电荷,与其他分子中的带有部分负电荷的原子形成静电吸引力。
氢键在生物体系中起着重要作用,如DNA双螺旋结构中的碱基配对就是通过氢键相互连接而成。
综上所述,化学键的四种基本类型分别是离子键、共价键、金属键和氢键。
不同类型的化学键在物质的性质和化学反应中发挥着不同的作用,深入理解化学键的特点对于理解物质的结构和性质具有重要意义。
化学键分子结构与晶体结构化学键是指化学元素之间的相互作用力,包括共价键、离子键和金属键。
化学键的不同类型决定了分子或晶体的性质和结构。
共价键是两个原子之间的电子共享。
当两个原子都需要电子来达到稳定的电子壳结构时,它们可以共享一对电子形成一个共价键。
共价键的形成使得原子在空间上非常接近,形成分子。
分子中的化学键可以是单一、双重或三重共价键,取决于共享的电子对数目。
离子键是由于正离子和负离子之间的静电力而形成的。
在离子化合物中,金属元素向非金属元素转移电子,从而形成正离子和负离子。
正离子和负离子之间的相互吸引力引发了离子键的形成。
离子晶体的结构通常由正负离子的周期排列所组成。
金属键是金属元素之间电子共享的结果。
金属元素通常有多个价电子,这些价电子可以自由地在金属中移动。
金属键的形成使得金属元素形成具有特定结晶结构的金属。
金属的物质性质通常是导电、导热和可塑性。
分子结构是由共价键连接的原子所组成的。
分子结构的确定需要知道各个原子之间的连接方式和空间排列。
分子结构的性质直接影响着分子的性质,如化学反应的活性、分子的极性和分子间作用力。
晶体结构是由许多原子、离子或分子按照一定的排列顺序在晶格中组成的。
晶体结构具有高度有序性,可以通过晶体学方法来研究和描述。
晶体结构的种类多种多样,包括离子晶体、共价晶体和分子晶体等。
晶体的结构决定了其物理、化学和光学性质,如晶体的硬度、折射率和热膨胀系数等。
总之,化学键是不同原子之间的相互作用力,可以分为共价键、离子键和金属键。
分子结构是由共价键连接的原子所组成的。
晶体结构是离子、原子或分子按照一定顺序在晶格中排列的结构。
化学键、分子结构和晶体结构共同决定了分子和晶体的性质和行为。
晶体的分类,是按照晶体中质点间作用力的的差别,分为金属晶体,离子晶体,分子晶体和原子晶体(至少我的高中课本是这样分的,大学普化好像还不太一样)。
请注意,是质点“间”的作用力。
水和二氧化碳虽然有你说的差别,但是那是内部差别,而因为它们都是分子形式,分子间是通过分子间作用力聚集的,所以同属分子晶体。
晶体的区分在高中阶段还比较容易。
所有含有离子键的,比如盐,就是离子晶体。
正负离子间以静电力结合。
有分子形式的,以分子间作用力结合的是分子晶体。
金属是金属晶体。
原子和原子(注意是原子)间以共价键结合,像金刚石那样的,就是原子晶体。
至于键和物质那个问题,一样的原子间就是非极性键,不一样就是极性。
物质的判断,记住一点,正负电荷的重心重合的就是非极性分子,不重合就是极性分子。
离子晶体:一般由活泼金属和活泼非金属元素组成,大多的盐(除ALCL3外,它是分子晶体),强碱,(碱)金属氧化物。
特例:NH4CL(氯化铵)是有非金属组成的离子晶体,你看是铵根,有金字旁,所以把铵根看做是金属根(也许这样说不是很准确,大概就是这个意思)原子晶体:高中阶段记住有单质硅,碳化硅,金刚石,石英。
最好要晓得B硼,会在元素的对角线法则里出题,你知道一下就行了。
分子晶体:由共价键组成,非金属或不活泼(非)金属形成(HCL,ALCL3)。
主要包括气态氢化物,含氧酸,非金属氧化物。
有三种键:非极性共价键(同种原子),极性共价键(不同种原子),配位键(提供电子对,要知道NH4-)金属晶体:金属单质。
由金属阳离子与自由移动的电子组成。
晶体有三个特征:(1)晶体有一定的几何外形;(2)晶体有固定的熔点;(3)晶体有各向异性的特点。
离子键[1]是由正负离子之间通过静电引力吸引而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
共价键有不同的分类方法。
(1)按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、叁键(C≡C)等。
典型晶体结构类型晶体结构是指晶体中原子、离子或分子的排列方式。
根据晶体中化学键和原子排列的性质,可以将晶体结构分为许多不同的类型。
下面将介绍一些典型的晶体结构类型。
1.离子晶体结构:离子晶体是由离子通过静电力相互作用形成的晶体。
其中,阳离子和阴离子通过离子键连接。
离子晶体的典型例子包括氯化钠(NaCl)和氧化铝(Al2O3)。
在这些晶体中,正离子在晶体中形成一个晶格,负离子在晶体中形成另一个晶格。
离子晶体结构稳定,具有高熔点和良好的电导性。
2.共价晶体结构:共价晶体是由共价键连接的原子或分子形成的晶体。
在共价晶体中,原子通过共用电子形成稳定的化学键。
典型的共价晶体结构包括金刚石、石英和硅晶体。
这些晶体具有高硬度、高熔点和良好的热导性。
3.金属晶体结构:金属晶体是由金属元素形成的晶体。
金属晶体的特点是原子间有大量自由电子可以运动,因此具有良好的导电性和导热性。
金属晶体结构可以分为紧密堆积结构和体心立方结构。
紧密堆积结构中,原子排列紧密,如铜和铝。
体心立方结构中,原子在晶格的每个球站的中心和每个面心站位的中心分别占据一个位置,如铁和钨。
4.分子晶体结构:分子晶体是由分子通过范德华力连接形成的晶体。
在分子晶体中,分子通过互相排列并通过弱范德华力相互作用形成3D晶体结构。
分子晶体具有较低的熔点和较弱的化学键。
典型的分子晶体包括蓝绿宝石和冰。
5.共价网络晶体结构:共价网络晶体是由每个原子通过共价键连接形成的大的晶体结构。
共价网络晶体具有非常高的熔点和硬度。
典型的共价网络晶体包括石墨和二硫化碳。
除了这些典型的晶体结构类型,还有许多其他类型的晶体结构,例如层状晶体、孔隙晶体和液晶体等。
每种晶体结构具有独特的性质和应用。
了解不同类型的晶体结构有助于我们理解晶体的性质,并在材料科学和工程中应用晶体材料。
高中化学知识点总结:化学键和晶体结构1.化学键:相邻原子间强烈的相互作用叫作化学键。
包括离子键和共价键(金属键)。
2.离子建(1)定义:使阴阳离子结合成化合物的静电作用叫离子键。
(2)成键元素:活泼金属(或NH4+)与活泼的非金属(或酸根,OH-)(3)静电作用:指静电吸引和静电排斥的平衡。
3.共价键(1)定义:原子间通过共用电子对所形成的相互作用叫作共价键。
(2)成键元素:一般来说同种非金属元素的原子或不同种非金属元素的原子间形成共用电子对达到稳定结构。
(3)共价键分类:①非极性键:由同种元素的原子间的原子间形成的共价键(共用电子对不偏移)。
如在某些非金属单质(H2、Cl2、O2、P4…)共价化合物(H2O2、多碳化合物)、离子化合物(Na2O2、CaC2)中存在。
②极性键:由不同元素的原子间形成的共价键(共用电子对偏向吸引电子能力强的一方)。
如在共价化合物(HCl、H2O、CO2、NH3、H2SO4、SiO2)某些离子化合物(NaOH、Na2SO4、NH4Cl)中存在。
4.非极性分子和极性分子(1)非极性分子中整个分子电荷分布是均匀的、对称的。
极性分子中整个分子的电荷分布不均匀,不对称。
(2)判断依据:键的极性和分子的空间构型两方面因素决定。
双原子分子极性键→极性分子,如:HCl、NO、CO。
非极性键→非极性分子,如:H2、Cl2、N2、O2。
多原子分子,都是非极性键→非极性分子,如P4、S8。
有极性键几何结构对称→非极性分子,如:CO2、CS2、CH4、Cl4。
几何结构不对称→极性分子,如H2O2、NH3、H2O。
5.分之间作用力和氢键(1)分子间作用力把分子聚集在一起的作用力叫作分子间作用力。
又称范德华力。
①分子间作用力比化学键弱得多,它对物质的熔点、沸点等有影响。
②一般的对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔点、沸点也越高。
(2)氢键某些物质的分子间H核与非金属强的原子的静电吸引作用。
化学中四种典型晶体的判断
在化学中,晶体是一种具有高度有序排列的结构,其中原子、分子或离子按照特定的规律排列成固体。
常见的晶体有四种类型,分别为离子晶体、共价晶体、分子晶体和金属晶体。
如何判断这四种晶体的类型呢?
一、离子晶体
离子晶体的特点是由阳离子和阴离子通过离子键结合而成。
在晶体中,阳离子和阴离子的比例是固定的,且通常具有高熔点和硬度。
判断离子晶体的方法是观察其化学组成:如果晶体中含有金属和非金属元素,一般可以判断为离子晶体。
二、共价晶体
共价晶体的特点是共用电子对将原子或分子结合在一起。
在共价晶体中,原子或分子的排列方式受到共用电子对的影响,具有高熔点和硬度。
判断共价晶体的方法是观察其化学键类型:如果晶体中含有共价键,一般可以判断为共价晶体。
三、分子晶体
分子晶体的特点是由分子通过范德华力或氢键结合而成。
在晶体中,分子的排列方式是无序的,通常具有较低的熔点和硬度。
判断分子晶体的方法是观察其分子结构:如果晶体中含有分子,一般可以判断为分子晶体。
四、金属晶体
金属晶体的特点是由金属离子通过金属键结合而成。
在晶体中,
金属离子的排列方式是无序的,通常具有高电导率和良好的延展性。
判断金属晶体的方法是观察其化学组成:如果晶体中含有金属元素,一般可以判断为金属晶体。
总之,四种典型晶体的类型可以通过观察其化学组成、化学键类型和分子结构来进行判断。
熟练掌握这些方法,可以更好地理解和应用化学知识。
化学键和晶体类型【知识要点】一、化学键:1.概念:化学键:相邻的原子之间强烈的相互作用.离子键:存在于离子化合物中——强碱、绝大多数盐(PbCl 2、Pb(CH 3COO)2等例外)强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。
2.分类: 共价键: ①非金属单质的分子中(除稀有气体外):如O 2/F 2/H 2/C 60②非金属形成的化合物中,如SO 2/CO 2/CH 4/H 2O 2/CS 2③部分离子化合物中,如Na 2SO 4中的SO 42-中存在共价键,NaOH 的OH -中存在 共价键,NH 4Cl 中的NH 4+存在共价键金属键:存在于金属中 3.化学键强弱的比较:(1)离子键:离子键强弱的影响因素有离子半径的大小的离子所带电荷的多少,既离子半径越小,所带电荷越多,离子键就越强。
离子键的强弱影响物质的熔沸点、溶解性,其中离子键越强,熔沸点越高。
如:离子化合物AlCl 3与NaCl 比较,r(Al 3+)<r (Na +),而阴离子都是Cl -,所以AlCl 3中离子键比NaCl 中离子键强。
(2)共价键:影响共价键强弱的因素有成键原子半径和成键原子共用电子对数,成键原子半径越小,共用电子对数目越多,共价键越稳定、越牢固。
例如:r(H)<r(Cl),所以H 2比Cl 2稳定,N 2中含有N≡N 共价三键,则N 2更稳定。
二、晶体类型及性质比较C HHH 三、化学键与分子间作用力的比较四、比较晶体的硬度大小、熔沸点高低等物理性质的依据五、非极性分子和极性分子分子空间构型对称,正负电荷重心重合的分子叫非极性分子。
分子空间构型不对称,正负电荷重心不重合的分子叫极性分子。
【典型例题】1.各组物质的晶体中,化学键类型相同、晶体类型也相同的是 ( )A .SO 2和SiO 2B .CO 2和H 2C .NaCl 和HClD .CCl 4和KCl2.关于化学键的下列叙述中,正确的是 ( )A .离子化合物可能含共价键B .共价化合物可能含离子键C .离子化合物中只含离子键D .共价化合物中不含离子键3.下列叙述正确的是 ( )A .P 4和NO 2都是共价化合物B .CCl 4和NH 3都是以极性键结合的极性分子 C .在CaO 和SiO 2晶体中,都不存在单个小分子D .甲烷的结构式: ,是对称的平面结构,所以是非极性分子4.下列各组物质中,按熔点由低到高排列正确的是 ( )A .O 2、I 2、HgB .CO 2、KCl 、SiO 2C .Na 、K 、RbD .SiC 、NaCl 、SO 25.碳化硅(SiC)的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的。
第六章化学键和晶体结构一、知识框架和要求知识框架路易斯理论价键理论共价键现代共价理论杂化轨道理论化学键离子键互斥理论金属键化学键和晶体结构分子轨道理论分子晶体离子晶体晶体结构原子晶体金属晶体分子的极性分子间力取向力、诱导力、色散力对物质物理性质的影响学习要求1.掌握离子键的形成条件及其特征;2.掌握共价键的形成条件和本质及现代价键理论的基本要点,理解共价键的类型,了解键能、键长及键角等参数;3.掌握杂化轨道的概念、杂化轨道的基本类型及其空间构型的关系;4.了解分子轨道理论的基本要点,并能用其解释第一、二周期同核双原子分子的结构和性质;5.理解价层电子互斥理论的基本要点,并能用其解释多原子分子或离子的空间构型;6.理解分子间作用力和氢键对物质某些性质的影响;7.了解金属键的形成、特性和金属键理论的要点;8.掌握晶体的基本类型、性质和特点;了解极化对晶体性质的影响。
二、重点及难点解析1. 离子键、共价键和金属键的比较 化学键类型 离子键 共价键 金属键概念 阴、阳离子间通过静电作用所形成的化学键 原子间通过共用电子对所形成的化学键 金属阳离子与自由电子通过相互作用而形成的化学键 成键微粒阴阳离子 原子 金属阳离子和自由电子 成键性质静电作用 共用电子对 电性作用 形成条件活泼金属与活泼的非金属元素 非金属与非金属元素 金属内部 实例 NaCl 、MgO HCl 、H 2SO 4 Fe 、Mg小问答1:下列关于化学键的说法,正确的是( )A. 构成单质分子的粒子一定含共价键。
B. 由非金属元素组成的化合物不一定是共价化合物。
C. 非极性键只存在于双原子单质分子里。
D. 不同元素组成的多原子分子里的化学键一定是极性键。
解析:列举法。
A 错,因稀有气体构成的单原子分子中不含共价键。
B 对,例如、 等铵盐是非金属元素组成的离子化合物。
C 错,例如在、等物质中键是非极性键。
D 错,例如中键,中键是非极性键。
化学键与晶体类型基础知识归纳一、晶体类型1、离子晶体:阴、阳离子以一定的数目比、并按照一定的方式依靠离子键结合而成的晶体。
如“NaCl、CsCl 构成晶体的微粒:阴、阳离子;微粒间相互作用:离子键;物理性质:熔点较高、沸点高,较硬而脆,固体不导电,熔化或溶于水导电。
2、原子晶体:晶体内相临原子间以共价键相结合形成的空间网状结构。
如:金刚石、晶体硅、碳化硅、二氧化硅构成晶体的微粒:原子;微粒间相互作用:共价键;物理性质:熔沸点高,高硬度,导电性差。
3、分子晶体:通过分子间作用力互相结合形成的晶体。
如:所有的非金属氢化物,大多数的非金属氧化物,绝大多数的共价化合物,少数盐(如AlCl3)。
构成晶体的微粒:分子;微粒间相互作用:范德华力;物理性质:熔沸点低,硬度小,导电性差。
4、金属晶体(包括合金):由失去价电子的金属阳离子和自由电子间强烈的作用形成的。
构成晶体的微粒:金属阳离子和自由电子;微粒间相互作用:金属键;物理性质:熔沸点一般较高部分低,硬度一般较高部分低,导电性良好。
二、化学键1、离子键:使阴、阳离子结合成化合物的静电作用。
离子键存在于离子化合物中,活泼的金属与活泼的非金属形成离子键。
2、金属键:在金属晶体中,金属阳离子与自由电子间的强烈相互作用。
金属键存在于金属和合金中。
3、共价键:分子中或原子晶体、原子团中,相邻的两个或多个原子通过共用电子对所形成的相互作用。
(1)非极性共价键:由同种元素的原子间通过共用电子对形成的共价键,又称为非极性键。
存在于非金属单质中。
某些共价化合物分子中也有非极性键,如:H2O2中的O-O键,C2H6中的C-C键等。
少数离子化合物中也有非极性键,如:Na2O2中的O-O键,CaC2中的碳碳三键等。
(2)极性共价键:不同种元素的原子形成分子时共用电子对偏向吸引电子能力强的原子而形成的共价键,又称为极性键。
所有的共价化合物分子中都存在极性键,离子化合物的原子团中也存在极性键。
化学键与晶体类型教学目标1.理解离子键、共价键的涵义,理解极性键和非极性键。
2.了解极性分子和非极性分子,了解分子间作用力,能用有关原理解释一些实际问题。
3.了解几种晶体类型(离子晶体、原子晶体、分子晶体和金属晶体)及其性质,了解各类晶体内部微粒间的相互作用,能够根据晶体的性质判断晶体类型等。
4.能对原子、分子、化学键等微观结构进行三维空间想像,重视理论联系实际、用物质结构理论解释一些具体问题。
教学内容化学键一、化学键1、概念:相邻的原子之间的强烈的相互作用叫做化学键关键词:相邻、强烈、相互作用(与结合力的区别)2、形成化学键后:(1)原子形成稳定结构(2)原子间存在强烈的相互作用(3)体系能量降低3、化学反应的本质:4、化学键的分类:化学键:二、离子键1. 概念使阴、阳离子结合成化合物的静电作用叫做离子键。
(1)成键粒子:(2)成键条件:活泼的金属元素(IA,IIA)与活泼的非金属元素(VIA,VIIA)①活泼金属元素:Na、K、Ca、Mg……活泼非金属元素:O、S、F、Cl……②活泼的金属元素和酸根阴离子(SO42-,NO3-)及OH-③铵根阳离子和酸根阴离子(或活泼非金属元素)④很活泼的金属与氢气反应生成的氢化物如Na、K、Ca与H。
(3)成键的本质阴阳离子间的静电作用(静电引力和斥力)2、成键的主要原因活泼的原子通过得失电子,形成阴、阳离子,它们之间通过静电引力和斥力达到平衡,从而形成稳定的结构,使体系的能量降低。
IA、IIA和VIA、VIIA 大多数盐离子键的存在所有强碱活泼金属氧化物3. 离子化合物(1)概念:由阴、阳离子相互作用而构成的化合物(含离子键)。
(2)常见的离子化合物强碱、大多数盐、活泼金属氧化物特例:全由非金属元素组成的离子化合物:如NH4NO3(3)含离子键的化合物一定是离子化合物。
4、离子键强弱的判断(了解)离子半径越小,阴阳离子间的作用力越强,离子键越强例:KCl NaCl MgCl2NaCl离子间强弱与性质的关系离子键越强,化合物的熔沸点越高例:KCl NaCl MgO CaO【练练】1、下列说法正确的是:A. 离子键就是使阴、阳离子结合成化合物的静电引力B. 所有金属与所有非金属原子之间都能形成离子键C. 在化合物CaCl2中,两个氯离子之间也存在离子键D. 钠原子与氯原子结合成氯化钠后体系能量降低2、下列各数值表示有关元素的原子序数,其所表示的各原子组中能以离子键相互结合成稳定化合物的是:A. 10与12B.8与17C. 11与17D.6与143. 离子化合物溶于水或熔化时离子键是否发生变化?转化成自由移动的离子,离子键即被破坏。
“化学键、晶体类型”高考选择题锦集
1.(90)下列各组物质气化或熔化时,所克服的微粒间的作用(力),属同种类型的是AD A.碘和干冰的升华B.二氧化硅和生石灰的熔化
C.氯化钠和铁的熔化D.苯和已烷的蒸发
2.(91)碳化硅(SiC)的一种晶体具有类似金刚石的结构,其中碳原子和硅原子的位置是交替的.在下列三种晶体①金刚石、②晶体硅、③碳化硅中,它们的熔点从高到低的顺序是A A.①③②B.②③①C.③①②D.②①③
3.(91)下列说法中正确的是 D A.分子中键能越大,键越长,则分子越稳定
B.失电子难的原子获得电子的能力一定强
C.在化学反应中,某元素由化合态变为游离态,该元素被还原
D.电子层结构相同的不同离子,其半径随核电荷数增多而减小
4.(92)下列分子中,属于含有极性键的非极性分子的是 D A.H2O B.Cl2C.NH3D.CCl4
5.(92)下列晶体中,不属于原子晶体的是 A A.干冰B.水晶C.晶体硅D.金刚石
6.(93)下列各组物质的晶体中,化学键类型相同、晶体类型也相同的是 B A.SO2和Si B.CO2和H2O C.NaCl和HCl D.CCl4和KCl
7.(96)关于化学键的下列叙述中,正确的是AD A.离子化合物可能含共价键B.共价化合物可能含离子键
C.离子化合物中只含离子键D.共价化合物中不含离子键
8.(98)下列叙述正确的是BC A.同主族金属的原子半径越大熔点越高
B.稀有气体原子序数越大沸点越高
C.分子间作用力越弱分子晶体的熔点越低
D.同周期元素的原子半径越小越易失去电子
9.(99)关于晶体的下列说法正确的是 A A.在晶体中只要有阴离子就一定有阳离子
B.在晶体中只要有阳离子就一定有阴离子
C.原子晶体的熔点一定比金属晶体的高
D.分子晶体的熔点一定比金属晶体的低
10.(2000)下列每组物质发生状态变化所克服的微粒间的相互作用属于同类型的是C A.食盐和蔗糖熔化B.钠和硫熔化
C.碘和干冰升华D.二氧化硅和氧化钠熔化
11.(2004上海)有关晶体的下列说法中正确的是AB A.晶体中分子间作用力越大,分子越稳定
B .原子晶体中共价键越强,熔点越高
C .冰熔化时水分子中共价键发生断裂
D .氯化钠熔化时离子键未被破坏
12.(2004老课程理综)下列分子含有的电子数目与HF 相同,且只有两个极性共价键的是
C
A .CO 2
B .N 2O
C .H 2O
D .CH 4
*13.(2007年高考海南化学卷,晶体结构)NaCl 的晶胞如图,每个NaCl 晶胞中含有的Na
+离子和Cl -离子的数目分别是( )
,1
(C)4,4 (D)6,6
[答案]C 。