(完整版)2018年福州质检数学试题及答案
- 格式:doc
- 大小:777.01 KB
- 文档页数:13
2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分)(1)的绝对值是( ).3-A .B .C .D .33131-3-(2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ).A .44×108 B .4.4×109C .4.4×108D .4.4×1010(4)如图,数轴上M ,N ,P ,Q 四点中,能表示的点是( ).3A .M B .NC .PD .Q(5)下列计算正确的是( ).A .B .C .D .88=-a a 44)(a a =-623a a a =⋅222)(b a b a -=- (6)下列几何图形不是中心对称图形的是( ).A .平行四边B .正方形C .正五边形D .正六边形(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD则图中阴影部分的面积是( ).A .6B .12C .18D .24ππππ(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度,A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向左平移n 个单位长度,得到线段A’B’,连接AA’,BB’,若四C DB AADC BOor s o边形AA’B’B 是正方形,则m+n 的值是( ).A .3B .4C .5D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ).A .2B .4C .2D .253二、填空题:(每小题4分,共24分)(11) =________.12-(12)若∠a =40°,则∠a 的补角是________.(13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则的值是________.ABAD(16)如图,直线y 1=与双曲线y 2=交于A 、B 两点,点C 在x 轴上,连x 34-xk接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________.三、解答题:(共86分)(17)( 8分)先化简,再求值: ,其中x =+1112)121(2++-÷+-x x x x 2(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DF 求证:AB=DE .ABABCEF(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是,请你根据图2所⎩⎨⎧=+=+34116104y x y x 示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB ,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是-3.5≤x≤4,下表是y 与x 的几组对应值:x -3.5-3-2-101234y4210.670.52.033.133.784请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与ABCD图1图2s i n t h ei r 性质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号函数图象特征函数变化规律示例1在y 轴右侧,函数图象呈上升状态当0<x ≤4 ,y 随x 的增大而增大示例2函数图象经过点(-2,1)当时x =-2时,y=1(i)函数图象的最低点是(0,0.5)(ii)在y 轴左侧,函数图象呈下降状态(3)当a <x≤4时,y 的取值范围为0.5≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题:xy(1)完成右表中(i)、(ⅱ)的数据:(2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F .(1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF ,求tan ∠BDG 的值.(25)( 14分)如图,抛物线交x 轴于O 、A 两点,顶点为B .)0,0(2<>+=b a bx ax y (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示);(2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E 公交线路线20路66路平均数34(i )乘车时间统计量中位数(ii)30A BCD EF图1A BCD EF图2ABCDEF G图3连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,≤k≤时,233求的取值范国.CEAB。
2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=- (6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四C DB A从正面看ADCBO边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分)(11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则ABAD的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=x k 交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DFABABDFABCOxyAC求证:AB=DE .(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB ,求证:PC 是⊙O 的切线.ABCD图1图2(22)( 10分)已知y是x的函数,自变量x的取值范围是-3.5≤x≤4,下表是y与x的几组对应值:x -3.5 -3 -2 -1 0 1 2 3 4y 4 2 1 0.67 0.5 2.03 3.13 3.78 4请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号函数图象特征函数变化规律示例1 在y轴右侧,函数图象呈上升状态当0<x≤4 ,y随x的增大而增大示例2 函数图象经过点(-2,1) 当时x=-2时,y=1(i)函数图象的最低点是(0,0.5)(ii)在y轴左侧,函数图象呈下降状态(3)当a<x≤4时,y的取值范围为0.5≤y≤4,则a的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:次数20路公交车66路公交车请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示);ABCDEF图1ABCDEF图2 ABCDEFG图3(2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3求CEAB 的取值范国.。
2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A. x =-1aB. x =-2aC. x =1a D . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A. ∠A B. ∠B C. ∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查图1ED C BAC.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A. p -1B. p -85C. p -967D. 8584 p6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A. 2.4 B. 3.0 C. 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A. B 是线段AC 的中点 B. B 是线段AD 的中点 C. C 是线段BD 的中点 D. C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学,可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本 D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A. 因为a >b +c ,所以a >b ,c <0B. 因为a >b +c ,c <0,所以a >bC. 因为a >b ,a >b +c ,所以c <0 D . 因为a >b ,c <0,所以a >b +c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):图2ABC(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·l a 2-a 1+l .则上述公式中,d 表示的是A.QA 的长B. AC 的长C.MN 的长D.QC 的长二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D处,图4B图3泊水平线设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l 经过第一、二、四象限, 点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE =AB ,连接AE ,BD ,证明AE =BD .l图6图7EABCD图5FEA BC D21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;图8OAB CDE(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD , 求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。
2018年福建省高三毕业班质量检查测试理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合21{|log 0},33xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A .{|11}x x -<<B .{|01}x x <<C .{|0}x x >D .R1.【答案】B【考查意图】本小题以集合为载体,考查指数函数、对数函数的图象与性质,集合的运算等基础知识;考查运算求解能力,考查数形结合思想等.【答题分析】只要掌握指、对数函数的图象与性质,集合的运算等,便可解决问题.解:2log 0x <等价于22log log 1x <,解得01x <<,所以(0,1)A =;133x⎛⎫< ⎪⎝⎭等价于11133x-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,解得1x >-,所以(1,)B =-+∞,从而(0,1)A B =I . 2.将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称B .()f x 的最小正周期为2π C .()y f x =的图象关于点,02π⎛⎫⎪⎝⎭对称 D .()f x 在,36ππ⎛⎫-⎪⎝⎭单调递增 2.【答案】D【考查意图】本小题以三角函数为载体,考查函数的图象变换及三角函数的图象与性质等基础知识,考查推理论证能力,考查数形结合思想、特殊与一般思想等.【答题分析】只要掌握函数图象变换知识、三角函数的图象与性质,便可解决问题. 解:由题意得,()sin f x x =.sin y x =的图象对称轴为直线,2x k k Z ππ=+∈,所以选项A 错误;sin y x =的最小正周期为2T π=,所以选项B 错误; sin y x =的图象对称中心为(,0),k k Z π∈,所以选项C 错误;sin y x =的一个单调递增区间为,22ππ⎛⎫- ⎪⎝⎭,,,3622ππππ⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确.3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系;在如图所示的正五角星中,以,,,,A B C D E 为顶点的多边形为正五边形,且51PT AT -=.下列关系中正确的是( ) A .512BP TS RS -=u u u r u u r u uu r B .512CQ TP TS +=u u u r u u r u ur C .512ES AP BQ -=u u u r u u u r u u ur D .512AT BQ CR +=u u u r u u u r u u ur ABCDEP QR S T【考察意图】本小题以正五角星为载体,考查平面向量的概念及运算等基础知识,考查推理论证能力,考查转化与化归思想等.【答题分析】只要掌握平面向量的概念,平面向量的加法、减法及数乘运算的几何意义,便可解决问题.解:由题意得,51BP TS TE TS SE RS +-=-==u u u r u u r u u r u u r u u r u uu r ,所以选项A 正确. 512CQ TP PA TP TA ST +=+==u u u r u u r u u u r u u r u u r u u u r ,所以选项B 错误;512ES AP RC QC RQ QB -=-==u u u r u u u r u u u r u u u r u u u r u u u r ,所以选项C 错误;51,2AT BQ SD RD CR RS RD SD +=+==-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,若512AT BQ CR +=u u u r u u u r u u u r ,则0SD =u u u r r,不合题意,所以选项D 错误.故选A .4.已知5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,则024a a a ++=( ) A .123 B .91 C .120- D .152- 4.【答案】D【考查意图】本小题以代数恒等式为载体,考查二项式定理等基础知识,考查运算求解能力、抽象概括能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握二项式定理,会合理赋值,便可解决问题.解法一:由5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,取1x =得:01234563a a a a a a a ++++++=, ①取1x =-得:0123456243a a a a a a a -+-+-+=-, ②+①②,得0246120a a a a +++=-,又561232a =⨯=,所以024152a a a ++=-.解法二:因为5(21)x -的展开式的第1r +项515(2)(1),0,1,2,3,4,5r r r r T C x r -+=-=, 所以5054143230525522(1)2,12(1)22(1)70a C a C C =⨯-=-=⨯-+⨯-=-, 23214145512(1)22(1)80a C C =⨯-+⨯-=-,所以024152a a a ++=-,故选D .5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( ) A .120 B .84 C .56 D .28【答案】B【考查意图】本小题以数学文化为载体,考查程序框图等基础知识,考查运算求解能力、应用意识. 【答题分析】只要按程序框图逐步执行,便可解决问题. 解:按步骤执行程序框图中的循环体,具体如下:1,1,12,3,43,6,104,10,20i n S i n S i n S i n S ===→===→===→===; 5,15,356,21,567,28,84i n S i n S i n S ===→===→===.所以输出84S =.故选B .6.已知函数22()22x f x x x =-+.命题1:()p y f x =的图象关于点(1,1)对称;命题2:p 若2a b <<,则()()f a f b <.则在命题112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨和 412:()q p p ∧⌝中,真命题是( )A .13,q qB .14,q qC .23,q qD .24,q q【答案】B【考察意图】本小题以分式函数为载体,考查函数的图象与性质、导数及其应用、逻辑联结词的含义等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握逻辑联结词的含义、函数图象的对称性,会利用导数研究函数的单调性,会判断含逻辑联结词的命题的真假,便可解决问题.解法一:因为2222(2)44(2)(2)2(2)222x x x f x x x x x --+-==---+-+, 所以22244()(2)222x x x f x f x x x -+++-==-+,故()f x 的图象关于点(1,1)对称,故命题1p 为真命题; 因为2(2),(0)05f f -==,所以(2)0f ->,故命题2p 为假命题. 所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .解法二:因为2222(1)()122(1)1x x f x x x x -==+-+-+,所以函数()y f x =的图象可由22()1xg x x =+的图象向右平移1个单位,再向上平移1个单位后得到.因为()()g x g x -=-,所以()g x 是奇函数,()g x 的图象关于原点对称,从而()y f x =的图象关于点(1,1)对称,故命题1p 为真命题.因为22224()(22)x xf x x x -+'=-+,令()0f x '>,得02x <<,所以()f x 的单调递增区间为(0,2);令()0f x '<,得0x <或2x >,所以()f x 的单调递减区间为(,0)-∞,(2,)+∞; 故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B . 解法三:同解法一可得,命题1p 为真命题.因为当0x ≠时,2221()2211122x f x x x x x ==-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,设2()221h t t t =-+,1t x =,则1t x=在(,0)-∞单调递减,当(,0)x ∈-∞时,(,0)t ∈-∞,又因为 2()221h t t t =-+在(,0)-∞单调递减,当(,0)t ∈-∞时,()(1,)h t ∈+∞,所以211122y x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在(,0)-∞单调递增,又因为1y x =在(1,)+∞单调递减,所以()f x 在(,0)-∞单调递减,故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .7.如图,在平面直角坐标系xOy 中,质点,M N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的运算圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( ) A .37.5分钟 B .40.5分钟 C .49.5分钟 D .52.5分钟O Py【答案】A【考查意图】本小题以匀速圆周运动为背景,考查任意角三角函数的定义、三角函数的图象与性质等基础知识,考查抽象概括能力、推理论证能力、运算求解能力、应用意识及创新意识,考查函数与方程思想、数形结合思想等.【答题分析】只要掌握任意角三角函数的定义、三角函数的图象与性质等,或结合平面几何知识直观判断,便可解决问题.解法一:设点N 出发后的运动的时间为t 分钟,圆O 的半径为1,由三角函数的定义,得sin cos 266N y t t πππ⎛⎫=-+=- ⎪⎝⎭,因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,所以sin sin 2626M y t t ππππ⎛⎫=-++= ⎪⎝⎭,所以sincos26664M N y y t t t ππππ⎛⎫-=+=+ ⎪⎝⎭, 当2,642t k k Z ππππ+=+∈,即312,2t k k Z =+∈时, M N y y -取得最大值,故当3k =时,M N y y -第4次取得最大值,此时37.5t =,故选A .解法二:因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,当M N y y -取得最大值时,MN x ⊥轴,且4PON π∠=,O PyNM当M N y y -第一次取得最大值时,N 运动的时间为4 1.56ππ=分钟;又质点N 运动一周的时间为2126ππ=分钟,当M N y y -第4次取得最大值时,N 运动的时间为1.512337.5+⨯=分钟.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( ) A .32643π-B .648π-C .16643π-D .8643π-【答案】C【考查意图】本小题以空间几何体为载体,考查三视图,正方体,圆柱,圆锥的体积等基础知识;考查空间想象能力,运算求解能力.【答题分析】只要掌握三视图及正方体、圆柱、圆锥的体积计算公式,便可解决问题. 解:由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得的几何体,且圆锥的底面半径为2,高为4;圆柱的底面半径为2,高为4,如图. 所以该几何体的体积为311164444464433πππ⎛⎫-⨯⨯⨯+⨯⨯=- ⎪⎝⎭.故选C .9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( ) A .3200元 B .3400元 C .3500元 D .3600元 【答案】C【考查意图】本小题以故障机器问题为载体,考查计数原理、排列与组合、随机变量的分布列与数学期望等基础知识,考查抽象概括能力、运算求解能力及应用意识,考查统计与概率思想、分类与整合思想等. 【答题分析】只要能列出随机变量的所有取值并应用计数原理及排列组合知识计算对应的概率,理解数学期望的意义,便可解决问题.解法一:设检测机器的台数为ξ,则ξ的所有可能取值为2,3,4.1123223232235513133(2),(3),(4)1101010105C C A A A P P P A A ξξξ+========--=, 所以133234 3.510105E ξ=⨯+⨯+⨯=,故所需检测费用的均值为10003500E ξ⨯=元. 解法二:设检测费为η元,则η的所有可能取值为2000,3000,4000.1123223232235513133(2000),(3000),(4000)1101010105C C A A A P P P A A ηηη+========--=所以133200030004000350010105E η=⨯+⨯+⨯=,故所需检测费用的均值为3500元. 10.已知抛物线2:2(0)E y px p =>的焦点为F ,过F 且斜率为1的直线交E 于,A B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =【答案】C【考查意图】本小题以抛物线为载体,考查抛物线的标准方程及其简单几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想等.【答题分析】只要掌握抛物线的标准方程及其简单几何性质,直线与抛物线的位置关系,并根据题意准确作//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,则1212221212122122AB y y y y pk y y x x y y p p--====-+- 所以122y y p +=,所以0y p =,作MK x ⊥轴于K ,则MK p =,因为AB 的斜率为1, 所以FMK △为等腰直角三角形,故FK KC p ==,所以32MN OK OF FK p ==+=,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =. 解法二:由题意,得,02p F ⎛⎫⎪⎝⎭,直线AB 的方程为2p y x =-,四边形CNMF 为梯形,且//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,由222p y x y px ⎧=-⎪⎨⎪=⎩,得2220y py p --=,则122y y p +=,所以0y p =,故(0,)N p ,由于2p y x =-,令0y p =,得032x p =, 所以3,2M p p ⎛⎫⎪⎝⎭,因为MC AB ⊥,所以1MC AB k k ⋅=-,故1MC k =-,从而直线MC 的方程为52y x p =-+,令0y =,得52C x p =,故5,02p C ⎛⎫⎪⎝⎭,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =.11.已知,,,A B C D 四点均在以点1O 为球心的球面上,且25AB AC AD ===,42,8BC BD CD ===.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .8【答案】D【考查意图】本小题以球为载体,考查空间几何体,球的性质等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想等.【答题分析】只要通过长度关系,认清以,,,A B C D 四点为顶点的三棱锥的图形特征,正确判断球心1O 的位置,借助方程求出球1O 的半径,直观判断球2O 的位置,便可解决问题.解法一:取CD 的中点O ,连结,AO BO ,如图,因为42BC BD ==8CD =,所以222BD BC CD +=,所以BC BD ⊥,故O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面BCD ,所以1O 在直线AO 上,连结1O D ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.解法二:将Rt BCD △补形成正方形ECBD ,如图,易知四棱锥A BCED -为正四棱锥,正方形BDEC 的中心为O ,BO CD ⊥.连结,AO BO ,则O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,又因为4,4OD BO ==,所以222AO BO AB +=,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面CBDE ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.1O 2O A BC DO 1O 2O A BCDO E12.已知函数3()()3(0)f x x a x a a =--+>在[1,]b -上的值域为[22,0]a --,则b 的取值范围是( ) A .[0,3]B .[0,2]C .[2,3]D .(1,3]-【答案】A【考查意图】本题以三次函数为载体,考查导数及其应用等基础知识,考查运算求解能力、推理论证能力及创新意识,考查函数与方程思想、分类与整合思想、数形结合思想、化归与转化思想等. 【答题分析】只要将函数3()()3()2f x x a x a a =----的图象作平移变换得到3()3g x x x =-,将条件转化为“当[1,]x a b a ∈---时,()g x 的值域为[2,2]a -”,注意到()g x 的极小值与它在[1,]a b a ---上的最小值相等,再结合函数图象,由()g x 的值域为[2,2]a -直观判断b a -的取值范围;或直接研究函数()f x 的图象与性质,通过分类讨论确定a 的值,进而根据图象直观判断出b 的取值范围. 解法一:将函数33()()3()3()2f x x a x a x a x a a =--+=----的图象向左平移a 个单位,再向上平移2a 个单位,得到3()3g x x x =-的图象,故条件等价于3()3g x x x =-在[1,]a b a ---的值域为[2,2]a -.2()333(1)(1)g x x x x '=-=+-,所以当(,1)x ∈-∞-或(1,)x ∈+∞时,()0g x '>,故()g x 的单调递增区间为(,1),(1,)-∞-+∞;当(1,1)x ∈-时,()0g x '<,故()g x 的单调递减区间为(1,1)-.又(1)2,(1)2g g -==-,令()2g x =,得3320x x -+=,即2(1)(2)0x x -+=,得2x =-或1x =,因为0a >,所以11a --<-,由图象得12a ---≥,故01a <≤.①当1a =时,3()3g x x x =-在[2,1]b --的值域为[2,2]-,因为(1)(2)2g a g --=-=-,令()2g x =,得3320x x --=,即2(1)(2)0x x +-=,解得:1x =-或2x =,故由图象得112b --≤≤,解得03b ≤≤;②当01a <<时,211,022a a -<--<-<<,所以1b a -<-,又()g x 在(1,)a b a ---上单调递增,所以()(1)2g x g a -->-≥,此时与题意矛盾. 综上,可知03b ≤≤,故选A .解法二:因为3()()3f x x a x a =--+,所以2()3()3f x x a '=--,令()0f x '=得:1x a =+或1x a =-,又(1)22,(1)22f a a f a a +=---=-+,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)a -∞-1a -(1,1)a a -+1a +(1,)a ++∞()f x ' ()0f x '>()0f x '<()0f x '>()f x单调递增22a -+ 单调递减22a --单调递增① 若(1)22f a -=--,则32340a a +-=,整理得,2(1)(2)0a a -+=,解得:1a =或2a =-(舍去),此时3()(1)31f x x x =--+,令()4f x =-,解得1x =-或2x =;令()0f x =,解得0x =或3x =,因为()f x 在[1,]b -的值域为[4,0]-,故由图象可得03b ≤≤. ②若(1)22f a ->--,因为0a >,所以11a ->-,要使()f x 在[1,]b -上的值域为[22,0]a --,则1a b +≤,所以1[1,]a b -∈-,所以(1)22(1)0f a f a ->--⎧⎨-⎩≤, 即3(1)322220a a a a ⎧--++>--⎨-⎩≤,即2(1)(2)01a a a ⎧-+<⎨⎩≥,无解. 综上,可得03b ≤≤,故选A .二、填空题:本大题共4小题,每小题5分,共20分。
2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108B .×109C .×108D .×1010(4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形 (7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 边形AA ’B ’B 是正方形,则m+n 的值是( ).A .3B .4C .5D .6C DB AADC BOAB(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分) (11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 若F 恰好是CD 的中点,则ABAD 的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB∥DE,AC∥DF,且AC=DF 求证:AB=DE .(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)A BCEABCDEFABCD(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的 点,画出该函数的图象;图1图2Axy(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:(3)当a <x≤4时,y 的取值范围为≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题: (1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE⊥x 轴于点E ,连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3求CEAB 的取值范国.ABCDEF图1ABCDEF图2 ABCDEFG图3。
2018年福建省普通高中毕业班质量检查理科数学 第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}21log 0,()33xA x xB x ⎧⎫=<=<⎨⎬⎩⎭,则AB =( )A .{}11x x -<<B .{}01x x <<C .{}0x x >D .R2.将函数sin 2y x =的图像上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y f x =的图像,则( )A .()y f x =的图像关于直线8x π=对称B .()f x 的最小正周期为2πC .()y f x =的图像关于点(,0)2π对称 D .()f x 在(,)36ππ-单调递增 3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征,正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且12PT AT =,下列关系中正确的是( )A .51BP TS RS +-=B .51CQ TP TS ++=C .51ES AP BQ --=D .51AT BQ CR -+=4.已知()()5234560123456221x x a a x a x a x a x a x a x +-=++++++,则024a a a ++=( )A .123B .91C .120-D .152-5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作,它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜,日本及东南亚地区,对推动汉字文化圈的数学发展起了重要作用.卷八中第33问是:“仅有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图,执行该程序框图,求得该垛果子的总数S 为( )A .120B .84C .56D .286.已知函数()2222x f x x x =-+.命题1p :()y f x =的图象关于点()1,1对称;命题2p :若2a b <<,则()()f a f b <.则在命题112:q p p ∨,()()212:q p p ⌝∧⌝,()312:q p p ⌝∨和()412:q p p ∧⌝中,真命题是( )A .13,q qB .14,q qC .23,q qD .24,q q7.如图,在平面直角坐标系xOy 中,质点M N 、间隔3分钟先后从P 点出发,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( )A .32643π-B .648π-C .16643π-D .8643π-9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止,若检测一台机器的费用为1000元,则所需的检测费用的均值为( )A .3200元B .3400元C .3500元D .3600元 10.已知抛物线()2:20E y px p =>的焦点为F ,过F 且斜率为1的直线交E 于,A B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N ,若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =11.已知四点A ,B ,C ,D 均在以点1O 为球心的球面上,且AB AC AD ===,BC BD ==8CD =.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .812.已知函数3()()3(0)f x x a x a a =--+>在[]1,b -上的值域为[]22,0a --,则b 的取值范围为( )A .[]0,3B .[]0,2C .[]2,3D .(]1,3-第Ⅱ卷本卷包括必考题和选考题两个部分,第13题—第21题为必考题,每个考生都必须作答,第22题—第23题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上. 13.已知复数z 满足()12z i z +=-,则=2z.14.若x ,y 满足的约束条件402400x y x y x y +-≥⎧⎪--≤⎨⎪-≥⎩,则2z x y =+的最小值为.15.已知双曲线2222:1x y C a b-=(0,0)a b >>的右焦点为F ,左顶点为A ,以F 为圆心,FA 为半径的圆交C 的右支于,P Q 两点,APQ ∆的一个内角为60︒,则C 的离心率为.16.在平面四边形ABCD 中,1AB =,AC =BD BC ⊥,2BD BC =,则AD 的最小值是______.三、解答题:本大题共6小题,满分70分,解答应写出文字说明.证明过程或演算步骤. 17.各项为正数的数列{}n a 的首项11a λ=,前n 项和为n S ,且211n n n S S a λ+++=.(1)求{}n a 的通项公式;(2)若数列{}n b 满足n n n b a λ=,求{}n b 的前n 项和n T .18.如图1,在矩形ABCD 中,AB BC ==E 在线段DC 上,且DE =现将AED ∆沿AE 折到AED '∆的位置,连接,CD BD '',如图2.(1)若点P 在线段BC 上,且2BP =,证明:AE D P '⊥. (2)记平面AD E '与平面BCD '的交线为l ,若二面角B AE D '--为23π,求l 与面D CE '所成角的正弦值.19.如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/平方米)的散点图.(图中四月份代码1-13分别对应2017年1月~2018年1月)根据散点图选择y a =+ln y c d x =+两个模型进行拟合,经过数据处理得到两个回归方程分别为ˆ0.9369y=+ˆ0.95540.0306ln y x =+,并得到以下一些统计量的值:(1)请利用相关指数2R 判断哪个模型的拟合效果更好;(2)某位购房者拟于2018年6月份购买这个小区m ()70160m ≤≤平方米的二手房(欲购房为某家庭首套房).若购房时该小区所有住房的房产证均已满2年但未满5年,请你利用(1)中拟合效 果更好的模型解决以下问题:(i )估计该购房者应支付的购房金额.(购房金额=房款+税费;房屋均价精确到0.001万元/平方米)(ii )该购房者拟用不超过100万元的资金购买该小区一套二手房,试估计其可购买的最大面积.(精确到1平方米)附注:根据有关规定,二手房交易需要缴纳若干项税费,税费是按房屋的计税价格进行征收.(计税价格=房款)参考数据:ln 20.69≈,ln3 1.10≈,ln17 2.83≈,ln19 2.94≈,1.41≈ 1.73≈ 4.12≈ 4.36≈.参考公式:相关指数()()22121ˆ1nii nii y yR y y ==-=--∑∑.20.椭圆2222:1(0)x y E a b a b+=>>的右顶点为A ,右焦点为F ,上、下顶点分别是,B C ,AB =,直线CF 交线段AB 于点D ,且2BD DA =.(1)求椭圆E 的标准方程;(2)是否存在直线l ,使得l 交E 于,M N 两点,且F 恰是BMN ∆的垂心?若存在求出l 的方程;若不存在说明理由.21.已知函数()()2212x f x ax ax e =++-. (1)讨论()f x 的单调区间; (2)若17a <-,求证:当0x ≥时,()0f x <.请考生在第(22).(23)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.(本小题满分10分)选修4-4坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+⎧⎨=+⎩,(ϕ为参数),21,l l 为过点O 的两条直线,1l 交M 于B A ,两点,2l 交M 于D C ,两点,且1l 的倾斜角为α,6AOC π∠=.(1)求1l 和M 的极坐标方程; (2)当(0,]6πα∈时,求点O 到D C B A ,,,四点的距离之和的最大值.23.(本小题满分10分)选修4-5不等式选讲 已知函数()2f x x =-,()1g x a x =-.(1)若不等式(3)3g x -≥-的解集为[]2,4,求a 的值; (2)当x ∈R 时,()()f x g x ≥,求a 的取值范围.。
福建省福州市 2018 届高三上学期期末质检数学试题(文)第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1. 已知集合 A. 【答案】C 【解析】因为 所以 2. 若复数 A. 【答案】A 【解析】复数 为纯虚数,所以 B. ,故选 C. 为纯虚数,则实数 C. 1 D. 2 ( ) , , B. C. , D. ,则 ( ),故选 A.3. 已知 A. 【答案】B 【解析】 4. B., C.,则 D.(), ( ),故选 B.A.B.C. 1D.【答案】D 【解析】 ,故选 D.5. 已知双曲线 的两个焦点 且 ,都在 轴上, 对称中心为原点, 离心率为 ,则 的方程为( ).若点在 上,到原点的距离为A. 【答案】C 【解析】B.C.D.由直角三角形的性质可得,又,的方程为,故选 C.6. 已知圆柱的高为 2,底面半径为 这个球的表面积等于( A. 【答案】D 【解析】设球半径为 B. C. ) D.,若该圆柱的两个底面的圆周都在同一个球面上,则该圆柱的两个底面的圆周都在同一个球面上, ,故选 D.可得,球的表面积为7. 如图的程序框图的算法思路源于我国古代著名的 .图中的 《孙子剩余定理》 示正整数 于( ) 除以正整数 后的余数为 ,例如表.执行该程序框图,则输出的 等A. 23B. 38C. 44D. 58【答案】A 【解析】本题框图计算过程要求找出一个数除以 3 余数为 2;除以 5 余数为 3;除以 7 余数 为 2,那么这个数首先是 23,故选 8. 将函数 A. C. 【答案】D 【解析】 得到 函数 的周期为 函数 向右平移 个周期后, B. D. 的图象向右平移 个周期后,所得图象对应的函数为( ),故选 D.9. 如图,网格纸上小正方形的边长为 1,粗线画出的是某多面体的三视图,则该多面体的表 面积为( )A. 【答案】A 【解析】B.C.D.由三视图可知,该多面体是如图所示的三棱锥,其中三棱锥的高为 ,底面为等腰直角三角形,直角边长为 ,表面积为 ,故选 A.10. 已知函数若,则()A. 【答案】A 【解析】 若B. 3C.或3D.或3, 得, 若,不合题意,,故选 A.11. 过椭圆的右焦点作 轴的垂线, 交 于两点, 直线 过 的左焦点和上顶点.若以 A. 【答案】A B.为直径的圆与 存在公共点,则 的离心率的取值范围是( C. D.)【解析】直线 的方程为,圆心坐标为,半径为与圆有公共点,,可得,,,故选 A.12. 已知函数 最小值为( A. 1 B. ) C.,若关于 的不等式恰有 3 个整数解,则实数 的D.【答案】C 【解析】 数解,即 有 个整数解, , 当 ,等价于 , 时, 由 , , ,即 恰有 个整 时, 递减, ,不等 , ,时,不等式无解, 可得 在 时, 时, 的最小值为不等式只有一个整数解 , 排除选项 由 式无解; 不等式无解; 故 故选 C. 可得 在 , 递增, 合题意,合题意, 合题意,当时, 有且只有 个整数解, 又第Ⅱ卷(共 90 分) 二.填空题(每题 5 分,满分 20 分) 13. 某商店随机将三幅分别印有福州三宝(脱胎漆器、角梳、纸伞)的宣传画并排贴在同一 面墙上,则角梳与纸伞的宣传画相邻的概率是__________. 【答案】【解析】福州三宝的全排列共有种排法,角梳与纸伞相邻的排法,有种排法,根据古典概型概率公式可得,角梳与纸伞的宣传画相邻的概率是,故答案为 .14. 曲线 【答案】 【解析】由 切点坐标为 15. 的内角在处的切线方程为__________.,得 ,由点斜式得切线方程为 的对边分别为 ,已知 ,即,所以切线斜率为 , ,故答案为 .,则 的大小为__________. 【答案】 【解析】由 ,根据正弦定理得 ,即,,又,,故答案为.16. 某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.已知生产一把椅子需要木工 4 个工作时,漆工 2 个工作时;生产一张桌子需要木工 8 个工作时,漆工 1 个工作时.生产一 把椅子的利润为 1500 元, 生产一张桌子的利润为 2000 元.该厂每个月木工最多完成 8000 个 工作时、漆工最多完成 1300 个工作时.根据以上条件,该厂安排生产每个月所能获得的最大 利润是__________元. 【答案】2100000 【解析】三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知数列 (1)证明数列 (2)设 解: (1)当 当 所以 所以数列 时, , 是以 为首项,以 2 为公比的等比数列. , , (1) (2) (1)-(2)得: 前 项和为 ,且 .是等比数列; ,求数列 时, 的前 项和 ,所以 , . ,(2)由(1)知, 所以 所以, 所以 .18. 随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现.某运营公司为 了了解某地区用户对其所提供的服务的满意度,随机调查了 40 个用户,得到用户的满意度 评分如下:用系统抽样法从 40 名用户中抽取容量为 10 的样本, 且在第一分段里随机抽到的评分数据为 92. (1)请你列出抽到的 10 个样本的评分数据; (2)计算所抽到的 10 个样本的均值 和方差 ; (3)在(2)条件下,若用户的满意度评分在 之间,则满意度等级为“ 级”.试应用样本估计总体的思想,估计该地区满意度等级为“ 级”的用户所占的百分比是多少?(精 确到 ) .参考数据:解: (1)由题意得,通过系统抽样分别抽取编号为 4,8,12,16,20,24,28,32,36,40 的评分数据为 样本,则样本的评分数据为 92,84,86,78,89,74,83,78,77,89. (2) 由 (1) 中的样本评分数据可得 ,则有(3)由题意知评分在 由(1)中容量为 10 的样本评分在 的用户所占的百分比约为之间,即之间,之间有 5 人,则该地区满意度等级为“ 级” .另解:由题意知评分在 数据中在 . 19. 如图,在四棱锥 中点. 中,,即之间, ,从调查的 40 名用户评分共有 21 人,则该地区满意度等级为“ 级”的用户所占的百分比约为,,点 为棱的(1)证明: (2)若 (1)证明:取 因为点 为棱 所以 因为 所以 所以四边形 且 且 且平面; ,求三棱锥 的体积.的中点 的中点,,连接., , , 为平行四边形,所以 因为 所以, 平面 平面 . , 平面 ,(2)解:因为 所以 因为 所以 因为 所以 平面 , , . 的中点,且 的距离为 2. 平面 . ,所以,,,平面,因为点 为棱 所以点 到平面,.三棱锥的体积.20. 抛物线 (1)若点与两坐标轴有三个交点,其中与 轴的交点为 . 在 上,求直线 斜率的取值范围;(2)证明:经过这三个交点的圆 过定点. (1)解:由题意得 .故 (2)证明:由(1)知,点 坐标为 .令,解得,故.故可设圆的圆心为,由得,,解得,则圆的半径为. 所以圆的方程为,所以圆的一般方程为,即.由得或,故都过定点.21. 已知函数.(1)讨论的单调性;(2)当时,证明:.解:(1),①若,则,在上为増函数;②若,则当时,;当时,故在上,为増函数;在上,为减函数.(2)因为,所以只需证,由(1)知,当时,在上为增函数,在上为减函数,所以.记,则,所以,当时,,为减函数;当时,,为增函数,所以.所以当时,,即,即.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,曲线(为参数,).在以为极点,轴正半轴为极轴的极坐标系中,直线.(1)若与曲线没有公共点,求的取值范围;(2)若曲线上存在点到距离的最大值为,求的值.解:(1)因为直线的极坐标方程为,即,所以直线的直角坐标方程为;因为(参数,)所以曲线的普通方程为,由消去得,,所以,解得,故的取值范围为.(2)由(1)知直线的直角坐标方程为,故曲线上的点到的距离,故的最大值为由题设得,解得.又因为,所以.23. 选修4-5:不等式选讲设函数.(1)求不等式的解集;(2)已知关于的不等式的解集为,若,求实数的取值范围.解:(1)因为,所以,,或或解得或或,所以,故不等式的解集为.(2)因为,所以当时,恒成立,而,因为,所以,即,由题意,知对于恒成立,所以,故实数的取值范围.。
福州市2018年高中毕业班质量检查数学试卷(文科)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题),共4页,全卷满分150分,考试时间120分钟.注意事项:①答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.②第Ⅰ卷第每小题选出答案后,用2B铅笔把答题卡上对应题目睥答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率P n(k)=C k n p k(1-p)n-k.球的表面积公式S=4πR2,其中R表示球的半径球的体积公式V=43πR3,其中R表示球的半径第Ⅰ卷(选择题,共60分)一、选择题:本小题共有12个小题,每小题5分;在每小题给出的四个项选项中,只有一项是符合题目要求的.1.设集合I={0,1,2,3},A={1},B={0,2},则A∪(1B)A.{1}B.{1,3}C.{0,3}D.{0,1,3}2.等差数列{a n} ,若a2+a8=16,a4=6,则公差d的值是A.1 B.2 C.-1 D.-23. 条件p:a≤2,条件q:a(a-2)≤0,则p是q的A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分又不必要条件4.若一个球的表面积为16π,一个平面与球心的距离为1,则这个平面截球所得的圆面面积为A.πB. C.3ππ复数3443ii-++等于A.i B.-i C.5i D.-5i5. 已知a=(t,-1),b=(1,1),且2a与b的夹角是锐角,则实数t的取值范围是A.(1,+∞)B.[1,+∞]C.(-∞,1)D.(-∞,-1)6.P是双曲线22145x y-=右支上一点,F是该双曲线的右焦点,PF=8,则点P到双曲线左准线的距离为A.403 B.323 C.16 D.87.以下给出的函数中,以π为周期的偶函数是A.y=cos 2x-sin 2x B.y=tanx C.y=sinxcosx D.y=cos x26.函数f(x)=1xx --1的反函数为f (x),若f -1(x)<0,则x 的取值范围是A.(-∞,0)B.(-1,1)C.(1,+ ∞)D.(-∞,-1)8.点M 、N 在圆x 2+y 2+kx+2y-4=0上,且点M 、N 关于直线x-y+1=0对称,则该圆的半径等于 A .C.1D.3 9.对于直线m 、n 和平面α,下面命题中的真命题是 A .如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n ∥α B .如果m ⊂α,n ∥α,n 与α相交,那么m 、n 异面直线 C.如果m ⊂α,n ∥α,m 、α共面,那么m ∥n D .如果m ∥α,n ∥α,m 、n 共面,那么m ∥n10.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有A.6种B.8种C.12种D.16种11.已知函数f(x)=x ,g(x)是定义在R 上的偶函数,当x >0时g(x)=lg x ,则函数y=f(x)·g(x)的大致图象为12.设x 1、x 2是函数f(x)=e x定义域内的两个变量,x 1<x 2,若α=121(),2x x +那么下列不等式恒成立的是A .|f(a)-f(x 1)| >|f(x 2)-f(a)| B.|f(a)-f(x 1)|<|f(x 2)-f(a)|C.|f(a)-f(x 1)|=|f(x 2)-f(a)|D.f(x 1)f(x 2)>f 2(a)第Ⅱ卷(非选择题 满分90分)二、填空题:本大题共4小题;每小题4分,满分16分.请把答案填表在下面横线上13.不等式1x <1解集为_______14.已知(1-2x)7=a 0+a 1x+a 2x 2+…+a 7x 7,则a 0+a 1+a 2+…+a 7=_______.15.若原点和点(0,1)在直线x+y-a=0的两侧,则实数a 的取值范围是______. 16.一只电子蚂蚁在如图2所示 的网络线上由原点(0,0)出发,沿和上或向右方向爬至点(m,n)(m,n ∈N),记可能的爬行方法总数为f(m,n), 下列有4逐步形成结论: ①f(2,1)=f(1,2)=3; ②f(2,2)=6; ③f(3,3)=21;④f(n,n)= 2(2)!,(!)n n其中所有下确结论的序号是___三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边的长,且sin(B+)sin()44B ππ--=(1)求角B 的大小;(2)若a 、b 、c 成等比数列,试判断△ABC 的形状. 18.(本小题满分12分)狗年春节联欢晚会上,中央电视台为赠送台湾的一对熊猫举办了选乳名的观众投票活动.某家庭有6人在观看春节联欢晚会,他们每人参加投票活动的概率都为0.5,且各个人是否参加投票互不影响,问这个家庭中(1)恰好2人参加投票活动的概率是多少? (2)至少有4人参加投票活动的概率是多少? 19.(本小题满分12分)如图3,在四棱锥P-AB CD中,底面ABCD是正方形,侧棱PD⊥面ABCD,PD=DC.过BD 作与PA 平行的平面,交侧棱PC 于点E ,又作DF ⊥B ,交PB 于点F.1. 证明:点E 是PC 的中点; 2. 证明:PB ⊥平面EFD ; 3. 求二面角C-PB-D 的大小.20.(本小题满分12分)设各项均为正数的数列{a n }满足:lga1+32lg lg lg ().23n a a a n n N n *+++=∈(1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为 s n ,证明:不存在正整数K ,使得S n-k ·S n+k =S 2n21.(本小题满分14分)设A(x 1,y 1),B(x 2,y 0)是椭圆22221y x a b +=(a >b >0)上的两点,满足1122(,)(,)0,x y x y b a b a ⋅=椭圆的离心率短轴长为2,O 为坐标原点.(1) 求椭圆的方程; (2) 若直线AB 过椭圆的焦点F(0,C)(C 为半焦距),求直线AB 的斜率K 的值; (3) 试问:三角形AOB 的面积是否为定值?如果是,请写出推理过程;如果不是,请说明理由.22.(本小题满分14分)已知函数f(x)=x 3+bx 2+cx+1在区间(,2]-∞-上单调递增,在区间[-2,2]上单调递减,且b ≥0.(1) 求f(x)的表达式; (2) 设0<m ≤2,若对任意的x ′、x ″[2,],|()()|m m f x f x '''∈--不等式≤m 恒成立,求实数m 的最小值.福洲市2018年高中毕业班质量检查数学试卷(理科)参考答案及评分标准一、选择题1.B 2.C 3.B 4.C 5.A 6.D 7.A 8.D 9.C 10.C 11.C 12.B 二、填空题13.{x|x<0或x>-3 14.-1 15.0<a<1 16.①、②、④三、解答题t17.(1)sin()sin()44B Bππ+--=,sin coscos sinsin coscos sin4444B B B B ππππ∴+++=1cos ,01802B B B =∴=<∠< °,∴∠B=60°;(2)∵a 、b 成等比数列,∴b 2=ac, ∵b 2=a 2+c 2-2acosB=a 2+c 2-ac,∴ac=a 2+c 2-ac, ∴a 2+c 2-2ac=0,∴(a-c)2=0,∴a=c, ∵∠B=60°, ∴△ABC 是等边三角形. 18.(本小题满分12分)(1)设M 为事件“恰有2人参加投票活动”. 则P (M )=C 26446(0.5)(0.5)-=15;64(2)设A 为事件“有6人参加投票活动”,B 为事件“有5人参加投票活动”,C 为事件“有4人参加投票活动”,则“至少有4人参加投票活动”这一事件为A+B+C ,且A 、B 、C 互斥. 因此,至少有4人参加投票活动的概率为: P (A+B+C )=P (A )+P (B )+P (C )=C665646666161511(0.5)(0.5)(0.5)0.2343756432C C ++++===.答:略. x19.方法一:)证明:连结AC,交BD 于0,连结EO.∵PA ∥平面BDE,平面PAC ∩平面BDE=OE,∴PA ∥OE. ∵底面ABCD 是正方形,∴点O 是AC 的中点, ∴点E 是PC 的中点;(2)证明:∵PD ⊥底面ABCD 且DC ⊂底面ABCD,∴PD ⊥DC,△PDC 是等要直角三角形,而DE 是斜边PC 的中线,∴DE ⊥PC ① 又由PD ⊥平面ABCD,得PD ⊥BC.∵底面ABCD 是正方形,CD ⊥BC,∴BC ⊥平面PDC. 而DE ⊂平面PDC,∴BC ⊥DE. ②由①和②推得DE ⊥平南PBC.面PB ⊂平面PBC, ∴DE ⊥PB,又DF ⊥PB 且DE ∩DF=D , 所以PB ⊥平面EFD ;(3)解:由(2)知PB ⊥EF ,已知PB ⊥DF ,故∠ EFD 是二面角C —PB-D 的平面,由(2)知,DE ⊥EF ,PD ⊥DB.设正方形ABCD 的边长为a,则1,,.2PC DE PC =====在Rt △中,DF=.PD BD PB ⋅==在Rt △EFD 中,sinEFD=DE DF ==∴∠EFD=3π.所以,二面角C-PB-D 的大小为3π.方法二:(1)同方法一;(2)证明:如图所示建立空间直角坐标系, D 为坐标原点,设DC=a.依题意得P(0,0,a)B(a,a,0),(,,),(0,,),22a a PB a a a DE =-= 又 2200,,22a a PB DE PB DE ⋅=+-=∴⊥由已知DF ⊥PB,且DF ∩DE=D,所以PB ⊥平面EFD;(,,),(,0,0),(,,0),PB a a a CB a DB a a =-==设平面PBC 法同量为n =(x,y,z),由n ·0PB = 及0m DB ⋅=得 0,.0,x y z x ++=⎧⎨=⎩ 取x=1,y=-1,z=0,则m=(1,-1,0) cos<n ,m>=1,2||||n m n m ⋅==-二面角C-PB-D 为锐角,所以其大小为.3π20.(1)当n=1时,lga 1=1,∴a 1=10.∵lga 1+32lg lg lg ,23n a a a n n +++= ①当n ≥2时,lga 1+312lg lg lg 1,231n a a a n n -+++=-- ②①-②得lg 1,lg ,10,n nn n a a n a n =∴=∴=综上知,对于n ∈N *,a n =10n;(2)∵S n =*1(1)10(110)10(101)(),11109n n n a q n N q ⋅---==∈--∴若存在正整数k ,使得S n-k ·S n+k =S 2,n则2101010(101)(101)[(101)]999n k n k n -+-⋅-=-,即(10n-k-1)·(10n+k-1)=(10n-1)2,整理得10n-k +10n+k =2×10n,两边同除以10n-k ,得1+118k =2×10k,∵k 为正整数,∴1+118k =2×10k左边为奇数,右边为偶数,显然不成立. ∴不存在k 值,使得S n-k ·S n+k =S 2.n21.(1)由已知,2b=2,b=1,e=,,c cc aa a∴==代入a2=b2+c2,解得1, b=∴椭圆方程为221; 4yx+=(2)焦点F(0AB方程为(k2+4)x2∴Δ>0且x1+x21221,4 x xk=-+y1y2=(kx12 kx+=k2x1x212()3x x++=k2(-21)(34k+++=224(3),4kk-+∵(1122121222,)()0,0, x y x y x x y yb a b a b a⋅⋅=∴+=∴x1x2+120, 4y y=∴-2222130,2,44kk k k k-+==∴= ++解得∴直线AB的斜率k为22.(1)f(x)=x3+bx2+cx+1,f′(x)=3x2+2bx+c.∵f(x)在区间(-∞,-2)上单调递增,在区间[-2,2]上单调递减,∴方程f′(x)=3x2+2bx+c=0有两个不等实根x1、x2,且x1=-2,x2≥2,∵x1+x2=-122,, 33 b cx x=∴x2=-222,20, 33b b+∴-+≥∴b≤0,已知b≥0,∴b=0,∴x2=2,c=-12,∴f(x)=x3-12x+1(2)对任意的x′、x″∈[m,-2,m],不等式|f(x′)-f(x″)|≤16 m恒成立,等价于在区间[m,-2,m]上,[f(x)]min-[f(x)]min≤16 m.f(x)=x3-12x+f,f′(x)=3x2-12.由f′(x)=3x2-12<0解得-2<x<2.∴f(x)的减区间为[-2,2].∵0<m≤2,∴[m-2,m]⊂[-2,2].∴f(x)在区间[m-2,m]上单调递减,在区间[m-2,m]上,[f(x)]max=f(m-2)=(m-2)3-12(m-2)+1,[f(x)]min=f(m)= m3-12m+1,[f(x)]max-f(x)]min=[(m-2)3-12(m-2)+1]-(m3-12m+1)=-6m2+12m+16,∵[f(x)]max-f(x)]min≤16m,∴-6m2+12m+16≤16m,3m2+2m-8≥0,解得m≤-2,或m≥min4 02,m.3 m<≤∴=。
福建省福州市2018届⾼三上学期期末质检数学理考试福建省福州市2018届⾼三上学期期末质检数学理考试————————————————————————————————作者:————————————————————————————————⽇期:福建省福州市2018届⾼三上学期期末质检试题理科数学第Ⅰ卷(共60分)⼀、选择题:本⼤题共12个⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知集合()(){}310A x x x =-+<,{}10B x x =->,则A B ?=() A .()1,3 B .()1,-+∞ C .()1,+∞ D .()(),11,-∞-?+∞2.若复数1ai+的模为22,则实数a =()A .1B .1-C .1±D .2± 3.下列函数为偶函数的是()A .tan 4y x π??=+ ??B .2xy x e =+ C .cos y x x = D .ln sin y x x =-4.若2sin cos 12x x π??+-=,则cos2x =()A .89-B .79-C .79D .725-5.已知圆锥的⾼为3,它的底⾯半径为3,若该圆锥的顶点与底⾯的圆周都在同⼀个球⾯上,则这个球的体积等于()A .83πB .323π C .16π D .32π6.已知函数()22,0,11,0,x x x f x x x-≤=?+>??则函数()3y f x x =+的零点个数是()A .0B .1C .2D .37.如图的程序框图的算法思路源于我国古代著名的“孙⼦剩余定理”,图中的(),Mod N m n =表⽰正整数N 除以正整数m 后的余数为n ,例如()10,31Mod =.执⾏该程序框图,则输出的i 等于()A .23B .38C .44D .588.如图,⽹格纸上⼩正⽅形的边长为1,粗线画出的是某多⾯体的三视图,则该多⾯体的表⾯积为()A .14B .1042+C .21422+ D .213422++ 9.已知圆()221:582C x y ?-+-=,抛物线()2:20E x py p =>上两点()12,A y -与()24,B y ,若存在与直线AB 平⾏的⼀条直线和C 与E 都相切,则E 的标准⽅程为()A .12x =-B .1y =-C .12y =- D .1x =-10.不等式组1,22x y x y -≥??+≤?的解集记为D .有下列四个命题:()1:,,22p x y D x y ?∈-≥ ()2:,,23p x y D x y ?∈-≥()32:,,23p x y D x y ?∈-≥()4:,,22p x y D x y ?∈-≤- 其中真命题的是()A .23,p pB .14,p pC .12,p pD .13,p p11.已知双曲线()2222:10,0a x y E a bb >->=的左、右焦点分别为12,F F ,点,M N 在E 上,12122//,5MN F F MN F F =,线段2F M 交E 于点Q ,且2F Q QM =u u u u r u u u u r ,则E 的离⼼率为() A .5 B .15 C .23 D .1012.设数列{}n a 的前n 项和为n S ,121n n a a n ++=+,且1350n S =.若22a <,则n 的最⼤值为() A .51 B .52 C .53 D .54第Ⅱ卷(共90分)⼆、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知单位向量,a b r r 满⾜()22a a b ?-=r r r,则,a b r r 的夹⾓为.14.设n 为正整数,32nx x ?-展开式中仅有第5项的⼆项式系数最⼤,则展开式中的常数项为.15.将函数2sin cos y x x =+的图象向右平移?个单位长度,得到函数2sin cos y x x =-的图象,则sin ?的值为.16.如图,已知⼀块半径为1的残缺的半圆形材料MNQ ,O 为半圆的圆⼼,85MN =.现要在这块材料上裁出⼀个直⾓三⾓形.若该三⾓形⼀条边在MN 上,则裁出三⾓形⾯积的最⼤值为.三、解答题(本⼤题共6⼩题,共70分.解答应写出⽂字说明、证明过程或演算步骤.)17.已知数列{}n a 中,()*12111,2,322,n n n a a a a a n n N +-===-≥∈.设1n n n b a a +=-. (1)证明:数列{}n b 是等⽐数列;(2)设()2 412nn nb c n =-,求数列{}n c 的前n 项的和n S .18.已知菱形ABCD 的边长为2,60DAB ∠=?.E 是边BC 上⼀点,线段DE 交AC 于点F . (1)若CDE ?的⾯积为32,求DE 的长;(2)若74CF DF =,求sin DFC ∠.19.如图,在四棱锥E ABCD -中,//,90,224AB CD ABC CD AB CE ∠=?===,120,25BCE DE ∠=?=.(1)证明:平⾯BCE ⊥平⾯CDE ;(2)若4BC =,求⼆⾯⾓E AD B --的余弦值.20.已知F 为椭圆22:143x y C +=的右焦点,M 为C 上的任意⼀点.(1)求MF 的取值范围;(2),P N 是C 上异于M 的两点,若直线PM 与直线PN 的斜率之积为34-,证明:,M N 两点的横坐标之和为常数.21.已知函数()()221ln f x x a x ax a R =-+-∈. (1)讨论函数()f x 的单调性;(2)若0a =且()0,1x ∈,求证:()211xf x x e x+-<. 请考⽣在22、23两题中任选⼀题作答,如果多做,则按所做的第⼀题记分.22.选修4-4:坐标系与参数⽅程在直⾓坐标系xOy 中,曲线cos ,:sin x t C y αα=??=?(α为参数,0t >).在以O 为极点,x 轴正半轴为极轴的极坐标系中,直线:cos 24l πρθ?-=.(1)若l 与曲线C 没有公共点,求t 的取值范围;(2)若曲线C 上存在点到l 距离的最⼤值为1622+,求t 的值. 23.选修4-5:不等式选讲设函数()1,f x x x R =-∈.(1)求不等式()()31f x f x≤--的解集;(2)已知关于x的不等式()()1f x f x x a≤+--的解集为M,若31,2M,求实数a的取值范围.试卷答案⼀、选择题1-5: BCBCB 6-10: CADCA 11、12:BA⼆、填空题13. 120? 14. 112 15.4516.338三、解答题17.解:(1)证明:因为()*11322,n n n a a a n n N +-=-≥∈,1n n n b a a +=-,所以()111211132n n n n n n n n n n n a a a b a a b a a a a +++++++---==--()1122n n n na a a a ++-=-,⼜因为121211b a a =-=-=,所以数列{}n b 是以1为⾸项,以2为公⽐的等⽐数列. (2)由(1)知11122n n n b --=?=,因为()2 412nn nb c n =-,所以()2412nn nb c n=-()()11112212142121n n n n ??==- ?+--+??,所以12111111143352121n n S c c c n n ??=+++=-+-++- ?-+??L L111421n ??=- ?+??42n+. 18.解:解法⼀:(1)依题意,得60BCD DAB ∠=∠=?,因为CDE ?的⾯积32 S =,所以13sin 22CD CE BCD ??∠=,所以132sin 6022CE =,解得1CE =,根据余弦定理,得222cos DE CD CE CD CE BCD =+-?∠ 2212122132=+-=. (2)依题意,得3060ACD BDC ∠=?∠=?,,设CDE θ∠=,则060θ?<在CDE ?中,由正弦定理得sin sin CF DFACDθ=∠,因为74CF DF =,所以2sin 27CF DF θ==,所以3cos 7θ=所以()1332321sin sin 30221477DFC θ∠=?+=?+?=. 解法⼆:(1)同解法⼀.(2)依题意,得3060ACD BDC ∠=?∠=?,,设CDE θ∠=,则060θ?<,或233x =. ⼜因为132CF AC ≤=,所以34x ≤,所以239x =,所以2219DF =,在CDF ?中,由正弦定理,得sin sin CD DFCFD ACD=∠∠,得2sin30321sin 14. 19.解:(1)证明:因为//,90AB CD ABC ∠=?,所以CD BC ⊥.因为42,25CD CE DE ===,,所以222 C D CE DE +=,所以CD CE ⊥,因为BC CE C ?=,所以CD ⊥平⾯BCE . 因为CD ?平⾯CDE ,所以平⾯BCE ⊥平⾯CDE .(2)由(1)知,CD⊥平⾯BCE,故以点C为坐标原点,分别以CB CDu u u r u u u r、的⽅向为x轴、z轴的正⽅向,建⽴如图所⽰的空间直⾓坐标系C xyz-.所以()()()()4,0,2,400,1,3,0,0,0,4A B E D-,,,所以()()4,0,2,5,3,2AD AE=-=--u u u r u u u r,设平⾯ADE的法向量为(),,n x y z=r,则AD nAE n==4205320x zx y z-+=-+-=,取1x=,则()1,33,2n=r,⼜因为平⾯ABD的⼀个法向量为() 0,1,0m=u r,所以()23336cos,811334n m==++r u r,所以⼆⾯⾓E AD B--的余弦值为368.20.解:解法⼀:(1)依题意得2,3a b==,所221c a b=-=,所以C的右焦点F坐标为()1,0,设C上的任意⼀点M的坐标为(),M Mx y,则22143M Mx y+=,。
2018年福州市初中毕业班质量检测数学试题一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .31 B .31- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).A .88=-a aB .44)(a a =- C .623a a a =⋅ D .222)(b a b a -=-(6)下列几何图形不.是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).A .6πB .12πC .18πD .24π(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四 C DB A从正面看ADCBO边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).A .a 、bB .a 、b +2C .a +2、bD .a +2、b +2(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2二、填空题:(每小题4分,共24分)(11) 12-=________.(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则ABAD的值是________. (16)如图,直线y 1=x 34-与双曲线y 2=xk交于A 、B 两点,点C 在x 轴上,连接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)(17)( 8分)先化简,再求值: 112)121(2++-÷+-x x x x ,其中x =2+1(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DF 求证:AB=DE .ABABDFABCOxyABCDEF(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩⎨⎧=+=+34116104y x y x ,请你根据图2所示的算筹图,列出方程组,并求解.(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB=2∠PCB ,求证:PC 是⊙O 的切线.(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是-3.5≤x≤4,下表是y 与x 的几组对应值:请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性A BCD图1图2质进行探究.(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:序号 函数图象特征函数变化规律示例1 在y 轴右侧,函数图象呈上升状态 当0<x ≤4 ,y 随x 的增大而增大 示例2 函数图象经过点(-2,1) 当时x =-2时,y=1 (i) 函数图象的最低点是(0,0.5) (ii)在y 轴左侧,函数图象呈下降状态(3)当a <x≤4时,y 的取值范围为0.5≤y≤4,则a 的取值范围为__________.(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:请根据以上信息,解答下列问题:xy(1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.(25)( 14分)如图,抛物线)0,0(2<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B .(1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点DABCDEF图1ABCDEF图2 ABCDEFG图3与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E , 连接AB 、CE ,求证:CE ∥AB ;(3)在(2)的条件下,连接OB ,当∠OBA=120°,23≤k≤3时, 求CEAB的取值范国.。
2018年福州市初中毕业班质量检测数学试题
一、选择题:(每小题4分,共40分) (1)3-的绝对值是( ). A .
31 B .3
1
- C .3- D .3 (2)如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).
(3)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将4 400 000 000科学记数法表示,其结果是( ). A .44×108 B .4.4×109 C .4.4×108 D .4.4×1010 (4)如图,数轴上M ,N ,P ,Q 四点中,能表示3的点是( ). A .M B .N C .P D .Q (5)下列计算正确的是( ).
A .88=-a a
B .4
4
)(a a =- C .6
23a a a =⋅ D .2
2
2
)(b a b a -=-
(6)下列几何图形不.
是中心对称图形的是( ). A .平行四边 B .正方形 C .正五边形 D .正六边形
(7)如图,AD 是半圆O 的直径,AD=12,B 、C 是半圆O 上两点,若,AB=BC=CD 则图中阴影部分的面积是( ).
A .6π
B .12π
C .18π
D .24π
(8)如图,正方形网格中,每个小正方形的边长均为1个单位长度, A 、B 在格点上,现将线段AB 向下平移m 个单位长度,再向 左平移n 个单位长度,得到线段A ’B ’,连接AA ’,BB ’,若四
C D
B A
从正面看
A
D
C
B
O
边形AA ’B ’B 是正方形,则m+n 的值是( ). A .3 B .4 C .5 D .6
(9)若数据x 1:x 2,…,x n 的众数为a ,方差为b ,则数据 x 1+2,x 2+2,…,x n +2的众数,方差分别是( ).
A .a 、b
B .a 、b +2
C .a +2、b
D .a +2、b +2
(10)在平面直角坐标系xOy 中,A(0,2),B(m ,m-2),则AB+OB 的最小值是( ). A .25 B .4 C .23 D .2
二、填空题:(每小题4分,共24分)
(11) 12-=________.
(12)若∠a =40°,则∠a 的补角是________. (13)不等式2x +1≥3的解集是________.
(14)一个不透明的袋子中有3个白球和2个黑球,这些球除颜色外完全相同 从袋子中随机摸出1个球,这个球是白球的概率是________.
(15)如图,矩形ABCD 中,E 是BC 上一点,将△ABE 沿AE 折叠,得到△AFE 中点,则
AB
AD
的值是________. (16)如图,直线y 1=x 3
4
-与双曲线y 2=x k 交于A 、B 两点,点C 在x 轴上,连
接AC 、BC .若∠ACB=90°,△ABC 的面积为10,则k 的值是________. 三、解答题:(共86分)
(17)( 8分)先化简,再求值: 1
12)121(2++-÷+-x x x x ,其中x =2+1
(18)( 8分)C ,E 在一条直线上,AB ∥DE ,AC ∥DF ,且AC=DF 求证:AB=DE .
A
B
A
B
D
F
A
B
C
O
x
y
A
B
C
D
E
F
(19) (8分)如图,在Rt △ABC 中,∠C=900,∠B=540,AD 是△ABC 的角 平分线.求作AB 的垂直平分线MN 交AD 于点E ,连接BE ;并证明 DE=DB .(要求:尺规作图,保留作图痕迹,不写作法)
(20)( 8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x 、y 的系数与应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是⎩
⎨⎧=+=+3411610
4y x y x ,请你根据图2所
示的算筹图,列出方程组,并求解.
(21)( 8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若
∠COB=2∠PCB ,求证:PC 是⊙O 的切线.
(22)( 10分)已知y 是x 的函数,自变量x 的取值范围是-3.5≤x≤4,下表是y 与x 的几组对应值:
请你根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性
A B
C
D
图1
图2
质进行探究.
(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的
点,画出该函数的图象;
(2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
序号 函数图象特征
函数变化规律
示例1 在y 轴右侧,函数图象呈上升状态 当0<x ≤4 ,y 随x 的增大而增大 示例2 函数图象经过点(-2,1) 当时x =-2时,y=1 (i) 函数图象的最低点是(0,0.5) (ii)
在y 轴左侧,函数图象呈下降状态
(3)当a <x≤4时,y 的取值范围为0.5≤y≤4,则a 的取值范围为__________.
(23)( 10分) 李先生从家到公司上班,可以乘坐20路或66路公交车.他在乘坐这两路车时,对所需时间分别做了20次统计,并绘制如下统计图:
请根据以上信息,解答下列问题:
x
y
(1)完成右表中(i)、(ⅱ)的数据: (2)李先生从家到公司,除乘车时间外 另需10分钟(含等车、步行等).该 公司规定每天8点上班,16点下班.
(i)某日李先生7点20分从家里出发,乘坐哪路车合适?并说明理由.
(ii)公司出于人文关怀,充许每个员工每个月迟到两次,若李先生每天同一时刻从家里出发,则每天最迟几点出发合适?并说明理由.(每月的上班天数按22天计)
(24)( 12分)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F . (1) 如图1,当E 是BC 中点时,求证:AF=2EF ;
(2)如图2,连接CF ,若AB=5,BD=8,当△CEF 为直角三角形时,求BE 的长;
(3)如图3,当∠ABC=90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE=BF , 求tan ∠BDG 的值.
(25)( 14分)如图,抛物线)0,0(2
<>+=b a bx ax y 交x 轴于O 、A 两点,顶点为B . (1)直接写出A ,B 两点的坐标(用含ab 的代数式表示); (2)直线y=kx +m (k>0)过点B ,且与抛物线交于另一点D(点D 与点A 不重合),交y 轴于点C .过点D 作DE ⊥x 轴于点E
A
B
C
D
E
F
图1
A
B
C
D
E
F
图2 A
B
C
D
E
F
G
图3
连接AB 、CE ,求证:CE ∥AB ;
(3)在(2)的条件下,连接OB ,当∠OBA=120°,2
3
≤k≤3时, 求CE
AB
的取值范国.。