TOTAL PHOSPHORUS RELEASE FROM BOTTOM SEDIMENTS IN FLOWING WATER
- 格式:pdf
- 大小:309.90 KB
- 文档页数:6
长江中下游地区浅水湖泊生源要素的生物地球化学循环一、本文概述Overview of this article本文旨在深入探讨长江中下游地区浅水湖泊生源要素的生物地球化学循环。
长江中下游地区作为中国的重要经济和文化中心,其浅水湖泊生态系统对于区域生态环境和经济发展具有至关重要的影响。
本文将对这一区域内浅水湖泊中的生源要素(如碳、氮、磷等)的生物地球化学循环过程进行系统的阐述和分析。
This article aims to explore in depth the biogeochemical cycles of biogenic elements in shallow lakes in the middle and lower reaches of the Yangtze River. As an important economic and cultural center of China, the shallow lake ecosystem in the middle and lower reaches of the Yangtze River has a crucial impact on the regional ecological environment and economic development. This article will systematically elaborate and analyze the biogeochemical cycling process of biogenic elements (such as carbon, nitrogen, phosphorus, etc.) inshallow lakes in this region.我们将概述长江中下游地区浅水湖泊的基本特征,包括湖泊的水文条件、生态环境和生源要素的分布状况。
在此基础上,我们将深入探讨这些湖泊中生源要素的生物地球化学循环过程,包括生源要素的输入、转化、输出和积累等关键环节。
Nutrient removal in an A2O-MBR reactor with sludgereductionABSTRACTIn the present study, an advanced sewage treatment process has been developed by incorporating excess sludge reduction and phosphorous recovery in an A2O-MBR process. The A2O-MBR reactor was operated at a flux of 77 LMH over a period of 270 days. The designed flux was increased stepwise over a period of two weeks. The reactor was operated at two different MLSS range. Thermo chemical digestion of sludge was carried out at a fixed pH (11)and temperature (75℃) for 25% COD solubilisation. The released pbospborous was recovered by precipitation process and the organics was sent back to anoxic tank. The sludge digestion did not have any impact on COD and TP removal efficiency of the reactor. During the 270 days of reactor operation, the MBR maintained relatively constant transmembrane pressure. The results based on the study indicated that the proposed process configuration has potential to reduce the excess sludge production as well as it didn't detonated the treated water quality.Keywords: A2O reactor; MBR; Nutrient removal; TMP1. IntroductionExcess sludge reduction and nutrients removal are the two important problems associated with wastewater treatment plant. MBR process has been known as a process with relatively high decay rate and less sludge production due to much longer sludge age in the reactor (Wenet al., 2004). Sludge production in MBR is reduced by 28-68%, depending on the sludge age used (Xia et al.,2008). However, minimizing the sludge production by increasing sludge age is limited due to the potential adverse effect of high MLSS concentrations on membrane (Yoon et al., 2004). This problem can be solved by introducing sludge disintegration technique in MBR (Young et al., 2007). Sludge disintegration techniques have been reported to enhance the biodegradability of excess sludge (Vlyssides and Karlis, 2004). In overall, the basis for sludge reduction processes is effective combination of the methods for sludge disintegration and biodegradation of treated sludge. Advances in sludge disintegration techniques offer a few promising options including ultrasound (Guo et al., 2008), pulse power (Choi et al.,2006), ozone (Weemaes et al., 2000), thermal (Kim et al., 2003), alkaline (Li et al., 2008) acid (Kim et al., 2003) and thermo chemical(Vlyssides and Karlis, 2004). Among the various disintegration techniques, thermo chemical was reported to be simple and cost effective (Weemaes and Verstraete, 1998). In thermal-chemical hydrolysis, alkali sodium hydroxide was found to be the most effective agent in inducing cell lysis (Rocker et al., 1999). Conventionally, the nutrient removal was carried out in an A2O process. It has advantage of achieving, nutrient removal along with organic compound oxidation in a single sludge configuration using linked reactors in series (Tchobanoglous et al., 2003). The phosphoroes removal happens by subjecting phosphorous accumulating organisms (PAO) bacteria under aerobic and anaerobic conditions (Akin and Ugurlu, 2004). These operating procedures enhance predominance PAO, which are able to uptake phosphorous in excess. During the sludge pretreatment processes the bound phosphorous was solubilised and it increases the phosphorousconcentration in the effluent stream (Nishimura, 2001).So, it is necessary to remove the solubilised phosphorus before it enters into main stream. Besides, there is a growing demand for the sustainable phosphorous resources in the industrialized world. In many developed countries, researches are currently underway to recover the phosphoroes bound in the sludge's of enhanced biological phosphorus removal system (EBPR). The released phosphorous can be recovered in usable products using calcium salts precipitation method. Keeping this fact in mind, in the present study, a new advanced wastewater treatment process is developed by integrating three processes, which are: (a) thermo chemical pretreatment in MBR for excess sludge reduction (b) A2O process for biological nutrient removal (c) P recovery through calcium salt precipitation. The experimental data obtained were then used to evaluate the performance of this integrated system.2. Methods2.1. WastewaterThe synthetic domestic wastewater was used as the experimental influent. It was basically composed of a mixed carbon source, macro nutrients (N and P), an alkalinity control (NaHCO3) and a microelement solution. The composition contained (/L) 210 mg glucose, 200 mg NH4C1, 220 mg NaHCO3, 22一34 mg KH2PO4, microelement solution (0.19 mg MnCl2 4H20, 0.0018 mg ZnCl22H2O,0.022 mg CuCl22H2O, 5.6 mg MgSO47H2O, 0.88 mg FeCl36H2O,1.3 mg CaCl2·2H2O). The synthetic wastewater was prepared three times a week with concentrations of 210±1.5 mg/L chemical oxygen demand (COD), 40±1 mg/L total nitrogen (TN) and 5.5 mg/L total phosphorus (TP).2.2. A2O-MBRThe working volume of the A2O-MBR was 83.4 L. A baffle was placed inside the reactor to divide it into anaerobic (8.4 L) anoxic (25 L) and aerobic basin (50 L). The synthetic wastewater was feed into the reactor at a flow rate of 8.4 L/h (Q) using a feed pump. A liquid level sensor, planted in aerobic basin of A2O-MBR controlled the flow of influent. The HRT of anaerobic, anoxic and aerobic basins were 1, 3 and 6 h, respectively. In order to facilitate nutrient removal, the reactor was provided with two internal recycle (1R). IRl (Q= 1)connects anoxic and anaerobic and IR 2 (Q=3) was between aerobic and anoxic. Anaerobic and anoxic basins were provided with low speed mixer to keep the mixed liquid suspended solids (MLSS) in suspension. In the aerobic zone, diffusers were used to generate air bubbles for oxidation of organics and ammonia. Dissolved oxygen (DO) concentration in the aerobic basin was maintained at 3.5 mg/1 and was monitored continuously through online DO meter. The solid liquid separation happens inaerobic basin with the help of five flat sheet membranes having a pore size of 0.23 pm. The area of each membrane was 0.1 m2. They were connected together by a common tube. A peristaltic pumpwas connected in the common tube to generate suction pressure. In the common tube provision was made to accommodate pressure gauge to measure transmembrane pressure (TMP) during suction. The suction pump was operated in sequence of timing, which consists of 10 min switch on, and 2 min switch off.2.3. Thermo chemical digestion of sludgeMixed liquor from aerobic basin of MBR was withdrawn at the ratio of 1.5% of Q/day and subjected to thermo chemical digestion. Thermo chemical digestion was carried out at a fixed pH of 11(NaOH) and temperature of 75℃for 3 h. After thermo chemical digestion the supernatant and sludge were separated. The thermo-chemicallydigested sludge was amenable to further anaerobic bio-degradation (Vlyssides and Karlis, 2004), so it was sent to theanaerobic basin of the MBR2.4. Phosphorus recoveryLime was used as a precipitant to recover the phosphorous in the supernatant. After the recovery of precipitant the content was sent back to anoxic tank as a carbon source and alkalinity supelement for denitrification.2.5. Chemical analysisCOD, MLSS, TP, TN of the raw and treated wastewater were analyzed following methods detailed in (APHA, 2003). The influent and effluent ammonia concentration was measured using an ion-selective electrode (Thereto Orion, Model: 95一12). Nitrate in the sample was analyzed using cadmium reduction method (APHA, 2003).3. Results and discussionFig. 1 presents data of MLSS and yield observed during the operational period of the reactor. One of the advantages of MBR reactor was it can be operated in high MLSS concentration. The reactor was seeded with EBPR sludge from the Kiheung, sewage treatment plant, Korea. The reactor was startup with the MLSS concentration of 5700 mg/L. It starts to increase steadily with increase in period of reactor operation and reached a value of 8100 mg/L on day 38. From then onwards, MLSS concentration was maintained in the range of 7500 mg/L by withdrawing excess sludge produced and called run I. The observed yields (Yobs) for experiments without sludge digestion (run I) and with sludge digestion were calculated and given in Fig. 1. The Yobs for run I was found to be 0.12 gMLSS/g COD. It was comparatively lower than a value of 0.4 gMLSS/g CODreported for the conventional activated sludge processes (Tchoba-noglous et al., 2003). The difference in observed yield of these two systems is attributed to their working MLSS concentration. At high MLSS concentration the yield observed was found to be low (Visva-nathan et al., 2000). As a result of that MBR generated less sludge.The presently used MLSS ranges (7.5一10.5 g/L) are selected on the basis of the recommendation by Rosenberger et al. (2002). In their study, they reported that the general trend of MLSS increase on fouling in municipal applications seems to result in no impact at medium MLSS concentrations (7一12 g/L).It is evident from the data that the COD removal efficiency of A2O system remains unaffected before and after the introduction of sludge digestion practices. A test analysis showed that the differences between the period without sludge digestion (run I) and with sludge digestion (run II and III) are not statistically significant.However, it has been reported that, in wastewater treatment processes including disintegration-induced sludge degradation, the effluent water quality is slightly detonated due to the release of nondegradable substances such as soluble microbial products (Ya-sui and Shibata, 1994; Salcai et al., 1997; Yoon et al., 2004). During the study period, COD concentration in the aerobic basin of MBR was in the range of 18-38 mg/L and corresponding organic concentration in the effluent was varied from 4 to 12 mg/L. From this data it can be concluded that the membrane separation played an important role in providing the excellent and stable effluent quality.Phosphorus is the primary nutrient responsible for algal bloom and it is necessary to reduce the concentration of phosphorus in treated wastewater to prevent the algal bloom. Fortunately its growth can be inhibited at the levels of TP well below 1 mg/L (Mer-vat and Logan, 1996).Fig. 2 depicts TP removal efficiency of the A2O-MBR system during the period of study. It is clearly evident from the figure that the TP removal efficiency of A/O system was remains unaffected after the introduction of sludge reduction. In the present study, the solubilised phosphorous was recovered in the form of calcium phosphate before it enters into main stream. So, the possibility of phosphorus increase in the effluent due to sludge reduction practices has been eliminated. The influent TP concentration was in the range of 5.5 mg/L. During thefirst four weeks of operation the TP removal efficiency of the system was not efficient as the TP concentration in the effluent exceeds over 2.5 mg/L. The lower TP removal efficiency during the initial period was due to the slow growing nature of PAO organisms and other operational factors such as anaerobic condition and internal recycling. After the initial period, the TP removal efficiency in the effluent starts to increase with increase in period of operation. TP removal in A2O process is mainly through PAO organisms. These organisms are slow growing in nature and susceptible to various physicochemical factors (Carlos et al., 2008). During the study period TP removal efficiency of the system remains unaffected and was in the range of 74-82%.。
1 23 4 5 678 91011 12 1314151617 18192021 22 23242554HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use TEFLARO safely and effectively. See full prescribing information for TEFLARO®.TEFLARO® (ceftaroline fosamil) injection for intravenous (IV) use Initial U.S. Approval: 2010To reduce the development of drug-resistant bacteria and maintain theeffectiveness of Teflaro and other antibacterial drugs, Teflaro should be used onlyto treat infections that are proven or strongly suspected to be caused by bacteria.-----------------------RECENT MAJOR CHANGES------------------------------------ Dosage and Administration (2.3) XX/2012 --------------------------INDICATIONS AND USAGE--------------------------------Teflaro ® is a cephalosporin antibacterial indicated for the treatment of the following infections caused by designated susceptible bacteria:• Acute bacterial skin and skin structure infections (ABSSSI)(1.1) • Community-acquired bacterial pneumonia (CABP) (1.2) ------------------------DOSAGE AND ADMINISTRATION-------------------------• 600 mg every 12 hours by IV infusion administered over 1 hour in adults ≥ 18 years of age (2.1) • Dosage adjustment in patients with renal impairment (2.2)Estimated CreatinineClearance # (mL/min) Teflaro Dosage Regimen > 50 No dosage adjustment necessary > 30 to ≤ 50 400 mg IV (over 1 hour) every 12 hours ≥ 15 to ≤ 30 300 mg IV (over 1 hour) every 12 hours End-stage renal disease (ESRD), including hemodialysis200 mg IV (over 1 hour) every 12 hours#As calculated using the Cockcroft-Gault formula -----------------------DOSAGE FORMS AND STRENGTHS -----------------------600 mg or 400 mg of sterile Teflaro powder in single-use 20 mL vials. (3) 26--------------------------CONTRAINDICATIONS---------------------------- 27 ∙Known serious hypersensitivity to ceftaroline or other members of28 the cephalosporin class. (4)29 -----------------------WARNINGS AND PRECAUTIONS----------------- 30 ∙Serious hypersensitivity (anaphylactic) reactions have been31 reported with beta-lactam antibiotics, including ceftaroline. 32 Exercise caution in patients with known hypersensitivity to beta33 lactam antibiotics. (5.1) 34 ∙Clostridium difficile -associated diarrhea (CDAD) has been35 reported with nearly all systemic antibacterial agents, including36 Teflaro. Evaluate if diarrhea occurs. (5.2)37 ∙Direct Coombs’ test seroconversion has been reported with38 Teflaro. If anemia develops during or after therapy, a diagnostic 39 workup for drug-induced hemolytic anemia should be performed 40 and consideration given to discontinuation of Teflaro. (5.3) 41 -----------------------------ADVERSE REACTIONS------------------------42 The most common adverse reactions occurring in >2 % of patients are 43 diarrhea, nausea, and rash. (6.3) 44 45 To report SUSPECTED ADVERSE REACTIONS, contact Forest46 Pharmaceuticals, Inc., at 1-800-678-1605 or FDA at 1-800-FDA47 1088 or /medwatch. 48 ---------------------------USE IN SPECIFIC POPULATIONS-------------49 ∙Dosage adjustment is required in patients with moderate or severe50 renal impairment and in ESRD patients, including patients on51 hemodialysis.(2.2, 12.3) 52 53See 17 for PATIENT COUNSELING INFORMATIONRevised:XX/2012 5556 FULL PRESCRIBING INFORMATION: CONTENTS* 84 8.4 Pediatric Use85 8.5 Geriatric Use 57 1 INDICATIONS AND USAGE86 8.6 Patients with Renal Impairment58 1.1 Acute Bacterial Skin and Skin Structure 87 10 OVERDOSAGE59 Infections 88 11 DESCRIPTION 60 1.2 Community-Acquired Bacterial Pneumonia 89 12 CLINICAL PHARMACOLOGY61 1.3 Usage90 12.1 Mechanism of Action62 2 DOSAGE ANDADMINISTRATION 91 12.2 Pharmacodynamics 63 2.1 Recommended Dosage 92 12.3 Pharmacokinetics64 2.2 Patients with Renal Impairment 93 12.4 Microbiology65 2.3 Preparation of Solutions 94 13 NONCLINICAL TOXICOLOGY66 3 DOSAGE FORMS AND STRENGTHS 95 13.1 Carcinogenesis,Mutagenesis, Impairment of 67 4 CONTRAINDICATIONS 96 Fertility 68 5 WARNINGS AND PRECAUTIONS 97 14 CLINICAL TRIALS69 5.1 Hypersensitivity Reactions 98 14.1 Acute Bacterial Skin and Skin Structure70 5.2 Clostridium difficile -associated Diarrhea 99 Infections71 5.3 Direct Coombs’ Test Seroconversion 100 14.2 Community-Acquired Bacterial Pneumonia72 5.4 Development of Drug-Resistant Bacteria 101 15 REFERENCES 73 6 ADVERSE REACTIONS 102 16 HOW SUPPLIED/STORAGE AND HANDLING 74 6.1 Adverse Reactions from Clinical Trials 103 17 PATIENT COUNSELING INFORMATION 75 6.2 Serious Adverse Events and Adverse 10476 Events Leading to Discontinuation 77 6.3 Most Common Adverse Reactions 10578 6.4 Other Adverse Reactions Observed During 106 *Sections or subsections omitted from the full prescribing information79 Clinical Trials of Teflaro107 are not listed.80 7 DRUGINTERACTIONS 81 8 USE IN SPECIFIC POPULATIONS82 8.1 Pregnancy83 8.3 Nursing MothersPage 1 of 13108 FULL PRESCRIBING INFORMATION 109 1. INDICATIONS AND USAGE110 Teflaro® (ceftaroline fosamil) is indicated for the treatment of patients with the following infections caused by susceptible isolates of the designated 111 microorganisms. 112 1.1Acute Bacterial Skin and Skin Structure Infections113 Teflaro is indicated for the treatment of acute bacterial skin and skin structure infections (ABSSSI) caused by susceptible isolates of the following Gram114 positive and Gram-negative microorganisms:Staphylococcus aureus (including methicillin-susceptible and -resistant isolates), Streptococcus pyogenes ,115 Streptococcus agalactiae , Escherichia coli , Klebsiella pneumoniae, and Klebsiella oxytoca. 116 1.2Community-Acquired Bacterial Pneumonia117 Teflaro is indicated for the treatment of community-acquired bacterial pneumonia (CABP) caused by susceptible isolates of the following Gram-positive118 and Gram-negative microorganisms: Streptococcus pneumoniae (including cases with concurrent bacteremia),Staphylococcus aureus (methicillin119 susceptible isolates only), Haemophilus influenzae, Klebsiella pneumoniae, Klebsiella oxytoca, and Escherichia coli. 120 1.3 Usage121 To reduce the development of drug-resistant bacteria and maintain the effectiveness of Teflaro and other antibacterial drugs, Teflaro should be used to 122 treat only ABSSSI or CABP that are proven or strongly suspected to be caused by susceptible bacteria. Appropriate specimens for microbiological123 examination should be obtained in order to isolate and identify the causative pathogens and to determine their susceptibility to ceftaroline. When culture124 and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local125 epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. 126 2. DOSAGE AND ADMINISTRATION 127 2.1Recommended Dosage128 The recommended dosage of Teflaro is 600 mg administered every 12 hours by intravenous (IV) infusion over 1 hour in patients ≥ 18 years of age. The129 duration of therapy should be guided by the severity and site of infection and the patient’s clinical and bacteriological progress. 130 The recommended dosage and administration by infection is described in Table 1.131Table 1: Dosage of Teflaro by InfectionInfection Dosage FrequencyInfusion Time(hours)RecommendedDuration ofTotal Antimicrobial TreatmentAcute Bacterial Skin and Skin Structure Infection(ABSSSI) 600 mg Every 12 hours 1 5-14 days Community-Acquired Bacterial Pneumonia (CABP)600 mg Every 12 hours 1 5-7 days 132133 2.2 Patients with Renal Impairment 134Table 2: Dosage of Teflaro in Patients with Renal Impairment 135 136 137 138 139 140 141Estimated CrCl a (mL/min) Recommended Dosage Regimen for Teflaro> 50No dosage adjustment necessary > 30 to ≤ 50 400 mg IV (over 1 hour) every 12 hours ≥ 15 to ≤ 30 300 mg IV (over 1 hour) every 12 hours End-stage renal disease,including hemodialysis b 200 mg IV (over 1 hour) every 12 hours c ab End-stage renal disease is defined as CrCl < 15 mL/min.cTeflaro is hemodialyzable; thus Teflaro should be administered after hemodialysis on hemodialysis days.2.3 Preparation of SolutionsAseptic technique must be followed in preparing the infusion solution. The contents of Teflaro vial should be constituted with 20 mL Sterile Water forInjection, USP; or 0.9% of sodium chloride injection (normal saline); or 5% of dextrose injection; or lactated ringer’s injection . The preparation of Teflaro solutions is summarized in Table 3.143 Table 3: Preparation of Teflaro for Intravenous UseDosage Strength(mg) Volume of Diluent To BeAdded(mL)Approximate Ceftarolinefosamil Concentration(mg/mL)Amount to Be Withdrawn400 20 20 Total Volume600 20 30 Total Volume144145 The constituted solution must be further diluted in 250 mL before infusion. Use the same diluent for this further dilution, unless sterile water for 146 injection was used earlier. If sterile water for injection was used earlier, then appropriate infusion solutions include: 0.9% Sodium Chloride 147 Injection, USP (normal saline); 5% Dextrose Injection, USP; 2.5% Dextrose Injection, USP, and 0.45% Sodium Chloride Injection, USP; or Lactated 148 Ringer’s Injection, USP. The resulting solution should be administered over approximately 1 hour.149 Constitution time is less than 2 minutes. Mix gently to constitute and check to see that the contents have dissolved completely. Parenteral drug products 150 should be inspected visually for particulate matter prior to administration.151 The color of Teflaro infusion solutions ranges from clear, light to dark yellow depending on the concentration and storage conditions. When stored as 152 recommended, the product potency is not affected.153 Studies have shown that the constituted solution in the infusion bag should be used within 6 hours when stored at room temperature or within 24 hours 154 when stored under refrigeration at 2 to 8º C (36 to 46º F).155 The compatibility of Teflaro with other drugs has not been established. Teflaro should not be mixed with or physically added to solutions containing other 156 drugs.157 3. DOSAGE FORMS AND STRENGTHS158 Teflaro is supplied in single-use, clear glass vials containing either 600 mg or 400 mg of sterile ceftaroline fosamil powder.159 4. CONTRAINDICATIONS160 Teflaro is contraindicated in patients with known serious hypersensitivity to ceftaroline or other members of the cephalosporin class. Anaphylaxis and 161 anaphylactoid reactions have been reported with ceftaroline.162 5. WARNINGS AND PRECAUTIONS163 5.1 Hypersensitivity Reactions164 Serious and occasionally fatal hypersensitivity (anaphylactic) reactions and serious skin reactions have been reported in patients receiving beta-lactam 165 antibacterials. Before therapy with Teflaro is instituted, careful inquiry about previous hypersensitivity reactions to other cephalosporins, penicillins, or 166 carbapenems should be made. If this product is to be given to a penicillin- or other beta-lactam-allergic patient, caution should be exercised because cross 167 sensitivity among beta-lactam antibacterial agents has been clearly established.168 If an allergic reaction to Teflaro occurs, the drug should be discontinued. Serious acute hypersensitivity (anaphylactic) reactions require emergency 169 treatment with epinephrine and other emergency measures, that may include airway management, oxygen, intravenous fluids, antihistamines, 170 corticosteroids, and vasopressors as clinically indicated.171 5.2 Clostridium difficile-associated Diarrhea172 Clostridium difficile-associated diarrhea (CDAD) has been reported for nearly all systemic antibacterial agents, including Teflaro, and may range in 173 severity from mild diarrhea to fatal colitis.174 Treatment with antibacterial agents alters the normal flora of the colon and may permit overgrowth of C. difficile.175 C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin-producing strains of C. difficile cause increased 176 morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all 177 patients who present with diarrhea following antibiotic use. Careful medical history is necessary because CDAD has been reported to occur more than 2 178 months after the administration of antibacterial agents.179 If CDAD is suspected or confirmed, antibacterials not directed against C. difficile should be discontinued, if possible. Appropriate fluid and electrolyte 180 management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated [see Adverse 181 Reactions (6.3)].182 5.3 Direct Coombs’ Test Seroconversion183 Seroconversion from a negative to a positive direct Coombs’ test result occurred in 120/1114 (10.8%) of patients receiving Teflaro and 49/1116 (4.4%) of 184 patients receiving comparator drugs in the four pooled Phase 3 trials.185 In the pooled Phase 3 CABP trials, 51/520 (9.8%) of Teflaro-treated patients compared to 24/534 (4.5%) of ceftriaxone-treated patients seroconverted 186 from a negative to a positive direct Coombs’ test result. No adverse reactions representing hemolytic anemia were reported in any treatment group.187 If anemia develops during or after treatment with Teflaro, drug-induced hemolytic anemia should be considered. Diagnostic studies including a direct 188 Coombs’ test, should be performed. If drug-induced hemolytic anemia is suspected, discontinuation of Teflaro should be considered and supportive care 189 should be administered to the patient (i.e. transfusion) if clinically indicated.191192 5.4 Development of Drug-Resistant Bacteria193 Prescribing Teflaro in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk 194 of the development of drug-resistant bacteria.195 6. ADVERSEREACTIONS196 The following serious events are described in greater detail in the Warnings and Precautions section197 ∙Hypersensitivity reactions [see Warnings and Precautions (5.1)]198 ∙Clostridium difficile-associated diarrhea [see Warnings and Precautions (5.2)]199 ∙Direct Coombs’ test seroconversion [see Warnings and Precautions (5.3)]200 6.1 Adverse Reactions from Clinical Trials201 Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be compared 202 directly to rates from clinical trials of another drug and may not reflect rates observed in practice.203 Teflaro was evaluated in four controlled comparative Phase 3 clinical trials (two in ABSSSI and two in CABP) which included 1300 adult patients treated 204 with Teflaro (600 mg administered by IV over 1 hour every 12h) and 1297 patients treated with comparator (vancomycin plus aztreonam or ceftriaxone) 205 for a treatment period up to 21 days. The median age of patients treated with Teflaro was 54 years, ranging between 18 and 99 years old. Patients treated 206 with Teflaro were predominantly male (63%) and Caucasian (82%).207 6.2 Serious Adverse Events and Adverse Events Leading to Discontinuation208 In the four pooled Phase 3 clinical trials, serious adverse events occurred in 98/1300 (7.5%) of patients receiving Teflaro and 100/1297 (7.7%) of patients 209 receiving comparator drugs. The most common SAEs in both the Teflaro and comparator treatment groups were in the respiratory and infection system 210 organ classes (SOC). Treatment discontinuation due to adverse events occurred in 35/1300 (2.7%) of patients receiving Teflaro and 48/1297 (3.7%) of 211 patients receiving comparator drugs with the most common adverse events leading to discontinuation being hypersensitivity for both treatment groups at a 212 rate of 0.3% in the Teflaro group and 0.5% in comparator group.213 6.3 Most Common Adverse Reactions214 No adverse reactions occurred in greater than 5% of patients receiving Teflaro. The most common adverse reactions occurring in > 2% of patients 215 receiving Teflaro in the pooled phase 3 clinical trials were diarrhea, nausea, and rash.216 Table 4 lists adverse reactions occurring in ≥ 2% of patients receiving Teflaro in the pooled Phase 3 clinical trials.217 Table 4: Adverse Reactions Occurring in ≥ 2% of Patients Receiving Teflaro in the Pooled Phase 3 Clinical TrialsSystem Organ Class/ Preferred TermPooled Phase 3 Clinical Trials(four trials, two in ABSSSI and two in CABP)Teflaro(N=1300)Pooled Comparators a(N=1297) Gastrointestinal disordersDiarrhea 5 % 3 %Nausea 4 % 4 %Constipation 2 % 2 %Vomiting 2 % 2 %InvestigationsIncreased transaminases 2% 3 %Metabolism and nutrition disordersHypokalemia 2 % 3 %Skin and subcutaneous tissue disordersRash 3%2%Vascular disordersPhlebitis 2%1% 218 a219 IV every 24h in the Phase 3 CABP trials.220221222 6.4 Other Adverse Reactions Observed During Clinical Trials of Teflaro223 Following is a list of additional adverse reactions reported by the 1740 patients who received Teflaro in any clinical trial with incidences less than 2%. 224 Events are categorized by System Organ Class.225 Blood and lymphatic system disorders - Anemia, Eosinophilia, Neutropenia, Thrombocytopenia226 Cardiac disorders - Bradycardia, Palpitations227 Gastrointestinal disorders -Abdominal pain228 General disorders and administration site conditions - Pyrexia229 Hepatobiliary disorders - Hepatitis230 Immune system disorders - Hypersensitivity, Anaphylaxis231 Infections and infestations -Clostridium difficile colitis232 Metabolism and nutrition disorders - Hyperglycemia, Hyperkalemia233 Nervous system disorders -Dizziness, Convulsion234 Renal and urinary disorders - Renal failure235 Skin and subcutaneous tissue disorders - Urticaria236 7. DRUGINTERACTIONS237 No clinical drug-drug interaction studies have been conducted with Teflaro. There is minimal potential for drug-drug interactions between Teflaro and 238 CYP450 substrates, inhibitors, or inducers; drugs known to undergo active renal secretion; and drugs that may alter renal blood flow [see Clinical 239 Pharmacology (12.3)].240 8. USE IN SPECIFIC POPULATIONS241 8.1 Pregnancy242 Category B243 Developmental toxicity studies performed with ceftaroline fosamil in rats at IV doses up to 300 mg/kg demonstrated no maternal toxicity and no effects 244 on the fetus. A separate toxicokinetic study showed that ceftaroline exposure in rats (based on AUC) at this dose level was approximately 8 times the 245 exposure in humans given 600 mg every 12 hours. There were no drug-induced malformations in the offspring of rabbits given IV doses of 25, 50, and 246 100 mg/kg, despite maternal toxicity. Signs of maternal toxicity appeared secondary to the sensitivity of the rabbit gastrointestinal system to broad247 spectrum antibacterials and included changes in fecal output in all groups and dose-related reductions in body weight gain and food consumption at > 50 248 mg/kg; these were associated with an increase in spontaneous abortion at 50 and 100 mg/kg. The highest dose was also associated with maternal 249 moribundity and mortality. An increased incidence of a common rabbit skeletal variation, angulated hyoid alae, was also observed at the maternally toxic 250 doses of 50 and 100 mg/kg. A separate toxicokinetic study showed that ceftaroline exposure in rabbits (based on AUC) was approximately 0.8 times the 251 exposure in humans given 600 mg every 12 hours at 25 mg/kg and 1.5 times the human exposure at 50 mg/kg.252 Ceftaroline fosamil did not affect the postnatal development or reproductive performance of the offspring of rats given IV doses up to 450 mg/kg/day. 253 Results from a toxicokinetic study conducted in pregnant rats with doses up to 300 mg/kg suggest that exposure was ≥ 8 times the exposure in humans 254 given 600 mg every 12 hours.255 There are no adequate and well-controlled trials in pregnant women. Teflaro should be used during pregnancy only if the potential benefit justifies the 256 potential risk to the fetus.257 8.3 Nursing Mothers258 It is not known whether ceftaroline is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when Teflaro 259 is administered to a nursing woman.260 8.4 Pediatric Use261 Safety and effectiveness in pediatric patients have not been established.262 8.5 Geriatric Use263 Of the 1300 patients treated with Teflaro in the Phase 3 ABSSSI and CABP trials, 397 (30.5%) were ≥65 years of age. The clinical cure rates in the 264 Teflaro group (Clinically Evaluable [CE] Population) were similar in patients ≥65 years of age compared with patients < 65 years of age in both the 265 ABSSSI and CABP trials.266 The adverse event profiles in patients ≥ 65 years of age and in patients < 65 years of age were similar. The percentage of patients in the Teflaro group who 267 had at least one adverse event was 52.4% in patients ≥ 65 years of age and 42.8% in patients < 65 years of age for the two indications combined.268 Ceftaroline is excreted primarily by the kidney, and the risk of adverse reactions may be greater in patients with impaired renal function. Because elderly 269 patients are more likely to have decreased renal function, care should be taken in dose selection in this age group and it may be useful to monitor renal 270 function. Elderly subjects had greater ceftaroline exposure relative to non-elderly subjects when administered the same single dose of Teflaro. However, 271 higher exposure in elderly subjects was mainly attributed to age-related changes in renal function. Dosage adjustment for elderly patients should be based 272 on renal function [see Dosage and Administration (2.2) and Clinical Pharmacology (12.3)].275 8.6 Patients with Renal Impairment276 Dosage adjustment is required in patients with moderate (CrCl > 30 to ≤50 mL/min) or severe (CrCl ≥ 15 to ≤30 mL/min) renal impairment and in 277 patients with end-stage renal disease (ESRD – defined as CrCl < 15 mL/min), including patients on hemodialysis (HD) [see Dosage and Administration 278 (2.2) and Clinical Pharmacology (12.3)].279 10. OVERDOSAGE280 In the event of overdose, Teflaro should be discontinued and general supportive treatment given.281 Ceftaroline can be removed by hemodialysis. In subjects with ESRD administered 400 mg of Teflaro, the mean total recovery of ceftaroline in the 282 dialysate following a 4-hour hemodialysis session started 4 hours after dosing was 76.5 mg (21.6% of the dose). However, no information is available on 283 the use of hemodialysis to treat overdosage [see Clinical Pharmacology (12.3)].284 11. DESCRIPTION285 Teflaro is a sterile, semi-synthetic, broad-spectrum, prodrug antibacterial of cephalosporin class of beta-lactams (β-lactams). Chemically, the prodrug, 286 ceftaroline fosamil monoacetate monohydrate is (6R,7R)-7-{(2Z)-2-(ethoxyimino)-2-[5-(phosphonoamino)-1,2,4-thiadiazol-3-yl]acetamido}-3-{[4-(1287 methylpyridin-1-ium-4-yl)-1,3-thiazol-2-yl]sulfanyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate monoacetate monohydrate. Its molecular 288 weight is 762.75. The empirical formula is C22H21N8O8PS4.C2H4O2.H2O.289 Figure 1: Chemical structure of ceftaroline fosamil290291292293294295296297298299300 301 302 Teflaro vials contain either 600 mg or 400 mg of anhydrous ceftaroline fosamil. The powder for injection is formulated from ceftaroline fosamil monoacetate monohydrate, a pale yellowish-white to light yellow sterile powder. All references to ceftaroline activity are expressed in terms of the prodrug, ceftaroline fosamil. The powder is constituted for IV injection [see Dosage and Administration (2.3)].303 Each vial of Teflaro contains ceftaroline fosamil and L-arginine, which results in a constituted solution at pH 4.8 to 6.5. 304 12. CLINICAL PHARMACOLOGY305 Ceftaroline fosamil is the water-soluble prodrug of the bioactive ceftaroline [see Clinical Pharmacology (12.3)]. 306 12.1 Mechanism of Action307 Ceftaroline is an antibacterial drug [see Clinical Pharmacology (12.4)].308 12.2 Pharmacodynamics309 310 311 As with other beta-lactam antimicrobial agents, the time that unbound plasma concentration of ceftaroline exceeds the minimum inhibitory concentration (MIC) of the infecting organism has been shown to best correlate with efficacy in a neutropenic murine thigh infection model with S. aureus and S. pneumoniae.312 313 314 Exposure-response analysis of Phase 2/3 ABSSSI trials supports the recommended dosage regimen of Teflaro 600 mg every 12 hours by IV infusion over 1 hour. For Phase 3 CABP trials, an exposure-response relationship could not be identified due to the limited range of ceftaroline exposures in the majority of patients.315 Cardiac Electrophysiology316 317 318 In a randomized, positive- and placebo-controlled crossover thorough QTc study, 54 healthy subjects were each administered a single dose of Teflaro 1500 mg, placebo, and a positive control by IV infusion over 1 hour. At the 1500 mg dose of Teflaro, no significant effect on QTc interval was detected at peak plasma concentration or at any other time.319 12.3 Pharmacokinetics320 321 322 The mean pharmacokinetic parameters of ceftaroline in healthy adults (n=6) with normal renal function after single and multiple 1-hour IV infusions of 600 mg ceftaroline fosamil administered every 12 hours are summarized in Table 5. Pharmacokinetic parameters were similar for single and multiple dose administration.323326 Table 5: Mean (Standard Deviation) Pharmacokinetic Parameters of Ceftaroline IV in Healthy AdultsParameter Single 600 mg Dose Administered asa 1-Hour Infusion(n=6)Multiple 600 mg Doses Administered Every12 Hours as 1-Hour Infusions for 14Days(n=6)C max (mcg/mL) 19.0 (0.71) 21.3 (4.10)T max (h)a 1.00 (0.92-1.25) 0.92 (0.92-1.08)AUC (mcg h/mL) b 56.8 (9.31) 56.3 (8.90)T1/2 (h) 1.60 (0.38) 2.66 (0.40)CL (L/h) 9.58 (1.85) 9.60 (1.40)a Reported as median (range)b AUC0-∞,for single-dose administration; AUC0-tau, for multiple-dose administration; C max, maximum observed concentration; T max, time of C max; AUC0-∞, area under concentration-time curve from time 0 to infinity; AUC0-tau, area under concentration-time curveover dosing interval (0-12 hours); T1/2, terminal elimination half-life; CL, plasma clearance327328 The C max and AUC of ceftaroline increase approximately in proportion to dose within the single dose range of 50 to 1000 mg. No appreciable 329 accumulation of ceftaroline is observed following multiple IV infusions of 600 mg administered every 12 hours for up to 14 days in healthy adults with 330 normal renal function.331 Distribution332 The average binding of ceftaroline to human plasma proteins is approximately 20% and decreases slightly with increasing concentrations over 1-50 333 mcg/mL (14.5-28.0%). The median (range) steady-state volume of distribution of ceftaroline in healthy adult males (n=6) following a single 600 mg IV 334 dose of radiolabeled ceftaroline fosamil was 20.3 L (18.3-21.6 L), similar to extracellular fluid volume.335 Metabolism336 Ceftaroline fosamil is converted into bioactive ceftaroline in plasma by a phosphatase enzyme and concentrations of the prodrug are measurable in plasma 337 primarily during IV infusion. Hydrolysis of the beta-lactam ring of ceftaroline occurs to form the microbiologically inactive, open-ring metabolite 338 ceftaroline M-1. The mean (SD) plasma ceftaroline M-1 to ceftaroline AUC0-∞ ratio following a single 600 mg IV infusion of ceftaroline fosamil in 339 healthy adults (n=6) with normal renal function is 28% (3.1%).340 When incubated with pooled human liver microsomes, ceftaroline was metabolically stable (< 12% metabolic turnover), indicating that ceftaroline is not a 341 substrate for hepatic CYP450 enzymes.342 Excretion343 Ceftaroline and its metabolites are primarily eliminated by the kidneys. Following administration of a single 600 mg IV dose of radiolabeled ceftaroline 344 fosamil to healthy male adults (n=6), approximately 88% of radioactivity was recovered in urine and 6% in feces within 48 hours. Of the radioactivity 345 recovered in urine approximately 64% was excreted as ceftaroline and approximately 2% as ceftaroline M-1. The mean (SD) renal clearance of ceftaroline 346 was 5.56 (0.20) L/h, suggesting that ceftaroline is predominantly eliminated by glomerular filtration.347 Specific Populations348 Renal Impairment349 Following administration of a single 600 mg IV dose of Teflaro, the geometric mean AUC0-∞ of ceftaroline in subjects with mild (CrCl > 50 to ≤ 80 350 mL/min, n=6) or moderate (CrCl > 30 to ≤50 mL/min, n=6) renal impairment was 19% and 52% higher, respectively, compared to healthy subjects with 351 normal renal function (CrCl > 80 mL/min, n=6). Following administration of a single 400 mg IV dose of Teflaro, the geometric mean AUC0-∞ of 352 ceftaroline in subjects with severe (CrCl ≥ 15 to ≤30 mL/min, n=6) renal impairment was 115% higher compared to healthy subjects with normal renal 353 function (CrCl > 80 mL/min, n=6). Dosage adjustment is recommended in patients with moderate and severe renal impairment [see Dosage and 354 Administration (2.2)].355 A single 400 mg dose of Teflaro was administered to subjects with ESRD (n=6) either 4 hours prior to or 1 hour after hemodialysis (HD). The geometric 356 mean ceftaroline AUC0-∞ following the post-HD infusion was 167% higher compared to healthy subjects with normal renal function (CrCl > 80 mL/min, 357 n=6). The mean recovery of ceftaroline in the dialysate following a 4-hour HD session was 76.5 mg, or 21.6% of the administered dose. Dosage 358 adjustment is recommended in patients with ESRD (defined as CrCL < 15 mL/min), including patients on HD [see Dosage and Administration (2.2)]. 359 Hepatic Impairment360 The pharmacokinetics of ceftaroline in patients with hepatic impairment have not been established. As ceftaroline does not appear to undergo significant 361 hepatic metabolism, the systemic clearance of ceftaroline is not expected to be significantly affected by hepatic impairment.362 Geriatric Patients363 Following administration of a single 600 mg IV dose of Teflaro to healthy elderly subjects (≥65 years of age, n=16), the geometric mean AUC0-∞ of 364 ceftaroline was ~33% higher compared to healthy young adult subjects (18-45 years of age, n=16). The difference in AUC0-∞ was mainly attributable to。
河流污水处理的相关论述1前言随着工业化和城市化的发展,水环境污染、水资源紧缺日益严重,水污染控制、水环境保护已刻不容缓。
我国现在新建城市或城区采用雨污分流制,但老城市或老城区大多仍然是雨污合流的排水体制。
许多合流污水是直接排放到水体。
而将旧合流制改为分流制,受现状条件限制大许多。
老城区建成年代较长,地下管线基本成型,地面建筑拥挤,路面狭窄,旧合流制改分流制难度较大。
合流污水的一大特点是旱季和雨季的水质、水量变化大,雨季污水B O D浓度低,不利于生化处理。
国家提出2010的我国城市污水处理率要求达到40%,因此研究有效的合流污水处理方法对加快城市污水处理步伐具有重要的意义。
本文针对合流污水处理的有关情况,谈一些个人看法。
2污水处理工艺要求我国目前不少城市,新城区与老城区并存,合流制与分流制并存。
因此,新建或扩建的污水处理厂,在满足城市总体规划和排水规划需要的同时,还应能达到如下要求:1.具备接纳旧城区合流污水的能力,具有较强的适应冲击负荷的能力。
污水处理厂污水来源包括两部分,一是新城区分流污水,二是老城区合流污水。
与合流污水相比,分流污水水质、水量变化幅度小得多,对污水处理厂调节缓冲的要求小得多。
对于合流污3工艺流程选择和特点说明泥得以增长;2、在亚硝化菌和硝化菌作用下,4结语击负荷的要求,设置缓冲池均衡水质、储存水量比较适宜。
2.通过多个氧化沟构成若干个串、并联运行方式,在适应进水水质、水量、季节性变化方面能够发挥重要作用。
3.通过安排适当的进出水口位置、回流污泥入口位置,氧化沟可形式一个倒置A2/0工艺,在去除B O D 的同时,能取得较好的氮磷去除效果4.熟化塘的应用,为处理水安全排放水体,能够提供可靠的技术保证。
熟化塘投资省、运行费用低、管理维护方面、污水处理与利用相结合,在防治水污染、保护水环境及生态环境综合治理方面具有明显优势。
如果美化熟化塘表观,设置喷泉等设施,形成供人们休闲、游乐的人工景点,协调城市建设中土地资源的合理配置,那么熟化塘占地面积较大这一不足就不会成为突出的问题。
表层沉积物中磷释放对水体水质影响郭晨辉1,刘利军1,孙晓杰2,李 磊1,刘剑东1,李颖异1(1. 山西省生态环境科学研究院,山西 太原 030027;2. 太原师范学院地理科学学院,山西 晋中 030619)摘 要: 在外源磷污染逐步得到控制后,表层沉积物作为内源磷污染的主体,对水体水质的影响作用日益凸显。
随着人类活动干扰的加剧,表层沉积物中磷的释放增加了包括河流在内的各类型水体发生富营养化的机率。
黄河甘宁蒙段较为密集的闸坝数量、频繁的河道清淤疏浚工程以及水量在年内的不均匀分配,增大了区域内表层沉积物中磷的释放风险。
掌握表层沉积物-水界面之间磷的交换行为对水环境的治理和磷负荷的调控具有重要的意义。
关键词: 表层沉积物;磷;释放;水体水质;环境治理中图分类号: X52文献标志码: A DOI :10.16803/ki.issn.1004 − 6216.2021.03.028The influence of phosphorus release from surface sediments on water qualityGUO Chenhui 1,LIU Lijun 1,SUN Xiaojie 2,LI Lei 1,LIU Jiandong 1,LI Yingyi 1(1. Shanxi Research Academy of Eco-environmental Sciences, Taiyuan 030027, China ;2. School of Geography Science, Taiyuan Normal University, Jinzhong 030619, China )Abstract : With the controlling of the external phosphorus pollution, the surface sediments become the main source of the internal phosphorus pollution and have an increasingly prominent impact on the water quality. Because of the intensification of human activities, the phosphorus release from the surface sediments increases the probability of water eutrophication for all kinds of water bodies, including the rivers. The risk of phosphorus release from the surface sediments is increased due to the intensive dams,the frequent river dredging and the uneven distribution of the water flow during the year among the Gansu, Ningxia and Inner Mongolia sections of the Yellow River. It is significant to understand the exchange behavior of phosphorus between the surface sediment and the overlying water for the treatment of water environment and the regulation of the phosphorus load.Keywords : surface sediment ;phosphorus ;release ;water quality ;environment treatment CLC number : X52磷在生产和生活中的应用极为广泛,磷肥及磷化工产品的应用促进了经济的发展,便利了人民的生活,而大量含磷化合物的生产应用,增加了其迁移进入水体的风险,提高了水体富营养化发生的概率。
滇池水沉积物界面磷形态分布及潜在释放特征何佳;陈春瑜;邓伟明;徐晓梅;王圣瑞;刘文斌;吴雪;王丽【摘要】通过现场调查和室内模拟实验,对滇池35个上覆水沉积物磷的分布特征以及沉积物中磷释放动力学特征进行研究,结果表明:滇池表层沉积物中不同形态磷含量表现为:有机磷(OP)(1482.49±1156.82 mg/kg)>钙结合态磷(Ca-P)(865.54±558.40 mg/kg )>金属氧化物结合态磷( Al-P )(463.77±662.18mg/kg )>残渣态磷( Res-P )(218.52±83.11mg/kg)>可还原态磷(Fe-P)(128.13±101.56mg/kg)>弱吸附态磷(NH4Cl-P)(2.26±3.05mg/kg);滇池上覆水草海总磷浓度处于劣Ⅳ类水平,外海不同湖区总磷浓度介于Ⅳ~Ⅴ类之间;滇池水体中的磷以颗粒态磷含量最高;滇池表层沉积物中磷的释放是由快反应和慢反应两部分组成.释放过程主要发生在前8h内;不同区域沉积物磷的最大释放速率、最大释放量、磷的释放潜力平均值均表现为:草海>外海北部>外海南部>湖心区;滇池表层沉积物中磷的释放主要由NH4 Cl-P、Fe-P、Al-P和OP进行,其中,NH4 Cl-P和Fe-P所占比重较大;磷的释放与上覆水中溶解性总磷、溶解态无机磷和溶解态有机磷呈显著正相关,预示着上覆水中磷的迁移转化更多地受到水沉积物界面浓度梯度的控制,进一步说明不能以总磷含量来评价湖泊磷素释放的状况,需与磷形态及分布特征相结合进行分析.%The distribution status and release characteristics of phosphorus were investigated by studying the lease kinetics charac-teristics and phosphorus forms from thirty-five sediment samples collected in Lake Dianchi. Results indicated that:The rank order of phosphorus contents in the surface sediment of Lake Dianchi was organic P(OP)(1482.49 ±1156.82 mg/kg) >calc ium-bound P(Ca-P)(865.54 ±558.40 mg/kg) >metal oxide-bound P(Al-P)(463.77 ±662.18 mg/kg) >residualP(Res-P)(218.52 ± 83.11mg/kg) >Fe-boundP(Fe-P)(128.13±101.56mg/kg) >weaklyabsordedP(NH4Cl-P) (2.26±3.05mg/kg); The amount of total phosphorus in overlying water exceed V class in Caohai and between ClassⅣand ClassⅤin other sections. The amount of particulate P( PP) is the highest among total phosphorus( TP);The process of phosphate release from the surface sedi-ment to the water in Lake Dianchi mainly occurred in the first 8 h and the kinetics were divided into the rapid-stage and the slow-stage. The rank order of mean values of maximal phosphorus adsorption rate(Vmax), maximal phosphours adsorption capacities (Qmax), the release potential of sedimentary phosphorus(IDE-P) were Caohai >northern coast >southern coast >lake center;From the correlation parameters, phosphorus release can be inferred to obtain the contribution degree of different forms of phosphor-us on release potential of phosphorus in the sediments of Lake Dianchi. Therefore, the evaluation of sediment phosphorus release risk should not be only limited to the analyse of the basic physical and chemical properties. Great attention should be paid to the contents of different forms of phosphorus content and their proportions of total phosphorus.【期刊名称】《湖泊科学》【年(卷),期】2015(000)005【总页数】12页(P799-810)【关键词】滇池;磷;沉积物;上覆水;磷形态;磷释放【作者】何佳;陈春瑜;邓伟明;徐晓梅;王圣瑞;刘文斌;吴雪;王丽【作者单位】昆明市环境科学研究院,昆明650032;昆明市环境科学研究院,昆明650032;昆明市环境科学研究院,昆明650032;昆明市环境科学研究院,昆明650032;中国环境科学研究院湖泊生态环境创新基地,国家环境保护湖泊污染控制重点实验室,北京100012;中国环境科学研究院湖泊生态环境创新基地,国家环境保护湖泊污染控制重点实验室,北京100012;昆明市环境科学研究院,昆明650032;昆明市环境科学研究院,昆明650032【正文语种】中文水-沉积物界面是环境中水相和沉积相之间的转换区,是溶解物质在地球化学循环与生物体系之间进行耦合作用的最初场所,也是水生生态系统物质循环不可缺少的环节.N、P等生源要素在湖泊水-沉积物界面及其附近发生剧烈的生物地球化学循环,并控制N、P等在上覆水体和沉积物间的物质平衡、形态转化和沉积剖面分布等[1].湖泊中磷在生物地球化学循环中,其中沉积物中的磷与水体中的磷相比,潜在的磷源是相对巨大的[2].影响沉积物中磷释放的因素有很多,除温度、pH、溶解氧水平、界面的氧化还原状况、微生物、底泥磷形态和水体扰动之外[3-6],还有沉积物与上覆水磷浓度梯度差、湖泊水化学组成、水生生物、有机质含量及类型、盐度[7-9]等.磷的释放同时受多种因素的影响,多种因素之间也相互影响,释放量的变化取决于它们的综合作用[10].研究内源磷的释放既有助于评价沉积物中磷的可交换性和生物可利用性,又有助于了解水环境中磷的循环过程与再生机制,为生态环境评价提供科学依据[11-12].近年来,关于滇池沉积物磷释放机制的研究在环境因素的影响[13-14]、释放通量[15]等方面较多,但也存在一定的不足之处,如较少结合沉积物性质、样点,多以一个为代表进行分析等.本文以滇池全湖35个表层沉积物样本为研究对象,系统分析了上覆水-沉积物中磷的形态及分布特征,并从不同磷形态与释放过程的关系出发研究二者的相互影响,以期揭示滇池磷素在沉积物-水界面的迁移转化规律,为控制或削减滇池流域内源磷污染提供理论依据.1.1 研究区概况滇池位于我国西南部的云贵高原,是云南省面积最大的高原湖泊,也是我国第6大淡水湖泊[16].滇池是一个典型的断陷构造湖泊,海拔1990m,湖面面积309.5km2,蓄水量15.7×108 m3,最大水深10.24m,平均水深4.40m[17].滇池具有水体滞留时间长的特点,南、西、东三面分布大量寒武纪磷块岩,磷输入来源丰富是导致滇池沉积物中磷含量较高的主要原因.每年有大量磷通过物理、化学和生物作用进入滇池,尤其是近几十年来由于大规模开采磷矿以及一些磷化工企业废物排放,导致进入滇池的磷急剧增加.仅南部澄江、晋宁磷矿开采,每年就有1.3×104 t含磷泥砂进入滇池,滇池北部盘龙江流经昆明市,携带的工业与生活污水也含有相当的磷元素[18],湖泊富营养化严重.1.2 样品采集与处理用彼得森采泥器于2013年3月分别在滇池的草海(n=3)、外海北部(n=15)、湖心区(n=6)和外海南部(n=11)4个湖区采集表层沉积物,样点分布见图1(其中,D4样点沉积物层已被疏浚,未采样).沉积物样品泥深控制在10cm以内,装入塑料密封袋后及时送回实验室冷冻保存,待样品完全冷冻后,放入真空冷冻干燥机进行干燥,同时采集原位约20cm的上覆水.1.3 实验方法1.3.1 沉积物总磷及磷形态的测定沉积物中总磷(TP)含量用Ruban等提出的欧洲标准测试委员会框架下发展的SMT分离方法测定[19];根据改进的Psenner连续提取法[20]测定磷形态(表1).1.3.2 上覆水磷形态的测定上覆水中TP浓度采用过硫酸钾消解后用钼锑抗分光光度法测定[21];溶解性总磷(DTP)浓度是将水样经过0.45μm滤膜过滤后,进行消解测定;颗粒态磷(PP)浓度是指TP与DTP浓度的差值;溶解态无机磷(DIP)浓度是将水样经过0.45μm滤膜过滤后直接测定;溶解态有机磷(DOP)浓度用DTP与DIP浓度之差表示[22].1.3.3 磷的释放实验磷的释放实验分为释放动力学和释放潜力实验.具体方法如图2.2.1 表层沉积物磷形态分布滇池表层沉积物中TP含量介于843.96~8144.44mg/kg之间,平均值为2171.81mg/kg(表2),与国内其他湖泊相比(图3),滇池表层沉积物中TP含量处于较高水平,是其他湖泊的3~12倍左右[23-27].滇池表层沉积物的TP含量较高值出现在草海和外海西南部海口、晋宁附近区域(图4),前者显然与外源排入有关,后者与滇池流域的昆阳、海口、尖山、澄江等大型富磷矿区有关,其磷矿资源储量约为2.1×109 t,约占全国的12%,近30多年来大规模开采使大量的磷被带入湖内[28].东北部区域是昆明花卉蔬菜的主产区,周边土壤TP含量在0.50~7.00g/kg之间,高于全国土壤平均值[29],农业面源的输入加重了沉积物的磷污染;在湖心区也出现了沉积物中磷的高值区,这与湖区的“汇集”作用有关[30].地球化学形态是判别沉积物中磷的迁移能力、生态效应的重要参数.化学连续提取法利用不同性质的化学提取剂,依次提取出沉积物中某种形态的磷而达到分离目的,能较好地反映出沉积物磷的生物地球化学特征[28].沉积物中磷的形态决定了其能否参与界面交换和能否为生物所利用[31],不同结合态磷含量也反映了沉积物的磷污染程度和潜在释放能力,滇池表层沉积物不同形态磷含量表现为:OP(1482.49±1156.82mg/kg)>Ca-P(865.54±558.40mg/kg)>Al-P(463.77±662.18mg/kg)>Res-P(218.52±83.11mg/kg)>Fe-P(128.13±101.56mg/kg)>NH4Cl-P(2.26±3.05mg/kg)(表2).滇池表层沉积物中NH4Cl-P含量在0.69~14.69mg/kg之间,约占TP含量的0.10%(表2),以草海和外海北部湖区含量较高(图4),由于NH4Cl-P主要指被沉积物矿物颗粒表面吸附的磷酸盐,其含量虽然很小,但沉积物产生磷释放时,首先释放出这部分磷,并被水生生物吸收利用[32].Fe-P、Al-P是指通过物理化学作用被Fe、Al和Mn的氧化物及其氢氧化物所结合包裹的磷,该部分磷被认为是生物可以利用的磷,在厌氧和碱性条件下的溶解、迁移是其释放的重要机制[33],对水-沉积物界面磷的循环起到主要作用[34],其受外源磷输入的影响较大,来源主要为生活污水、工业废水和部分农业面源流失的磷[19],能够反映不同区域磷污染的状况.滇池表层沉积物中Fe-P和Al-P含量分别占TP含量的5.65%和20.45%(表2),以草海和晋宁附近湖区较高,海口和呈贡附近湖区较低(图4),最大值和最小值相差10倍以上,其含量的差异体现了人类活动对不同湖区的影响程度不同.Ca-P含量占滇池表层沉积物中TP含量的38.18%(表2),是滇池表层沉积物中无机磷含量最高的磷形态,南部晋宁附近湖区沉积物的Ca-P含量明显高于其他湖区(图4),这可能是因为磷肥生产中石膏和酸性磷酸盐的分离导致Ca-P形成,从而进入表层沉积物[35].Ca-P一般不易释放,但在pH值低、酸度增加时可转化为可溶性磷酸盐[36],从而造成湖泊内源污染.Res-P主要为大分子有机磷或其他难溶性磷,大部分会被沉积物埋藏,难以再生释放出来,被认为是永久结合态磷,滇池(表层)沉积物中Res-P含量占TP含量的9.64%(表2).湖泊沉积物中OP具有部分活性,大约50%~60%的OP可被降解或水解为生物可利用的磷形态,是沉积物中重要的“磷蓄积库”,对湖泊富营养化具有重要作用[37],其主要来源于农业面源[38].滇池表层沉积物中OP含量在830.99~4074.72mg/kg之间,占TP含量的25.98%(表2),其中以滇池草海湖区最高,南部湖区次之(图4),这与滇池流域人口及工农业布局情况相符.2.2 上覆水磷形态分布沉积物中潜在的磷与水体相比是巨大的,这表明少量磷的释放就会对上覆水水质产生明显的影响.通常情况下,沉积物和上覆水间磷酸盐的交换会达到一个动态平衡,当环境条件变化时会形成新的界面平衡,在这个过程中会导致沉积物磷吸附或释放.天然水体中磷的主要来源是含磷矿物(如碳酸钙磷矿、磷灰石等)的侵蚀溶解作用和人类活动的排放(如农业灌溉、城市废水、工业污水、畜牧业养殖等).一般认为当水体中磷浓度在0.02mg/L以上时,对水体的富营养化就会产生明显的促进作用.湖泊水体中的大部分磷以DOP和PP的形式存在,后者占TP的绝大部分[39].对比我国《地表水环境质量标准》(GB 3838-2002),滇池上覆水TP浓度在0.09~0.70mg/L之间(表3),其中,草海TP浓度处于劣Ⅴ类水平(≥0.2mg/L),外海不同湖区TP浓度介于Ⅳ~Ⅴ类之间(0.10~0.20mg/L),以湖心区最低,外海北部和南部湖区较高(图5).DTP指溶于水中,且能通过0.45μm微孔滤膜的磷,根据理化性质,可再细分为DIP和DOP[40].滇池上覆水中DTP浓度在0.01~0.11mg/L之间,平均值为0.03mg/L(表3),分布特征与TP十分相似,以草海和外海北部较高为主要分布特点(图5);DIP能直接被藻类所利用,对湖泊初级生产力有重要的影响,滇池上覆水中DIP浓度为0~0.09mg/L,平均值为0.02mg/L(表3),湖心区和外海南部的中心区域DIP浓度处于较低水平(≤0.005mg/L)(图5);浮游植物细胞被食植动物所消耗,浮游动物的排泄为DOP的主要来源,DOP是一种不容易被生物所利用的磷形态[41],滇池DOP浓度在0~0.04mg/L之间,平均值为0.01mg/L(表3),以草海和外海南部的中心区域浓度较高(图5);PP是指存在于水体中的、因吸附作用存在于固体颗粒物表面或内部的颗粒态磷形态,它通常以粒子运动方式进行运输,虽然PP通常不能被生物区系直接吸收利用,但是从长远来看它又会对水体富营养化有一定的贡献[42],并受水体微环境和物化性质的影响很大.滇池水体中以PP浓度最高,占TP浓度的67.61%,其浓度为0.05~0.62mg/L,平均值为0.13mg/L(表3),滇池水体中PP 在入湖河口(如新运粮河、盘龙江、广普大沟、南冲河、柴河,这些河流几乎同时兼有农灌、泄洪、纳污等功能)区域含量较高(图5),其主要与有机物颗粒结合,是河流系统和河口地区磷的主要存在形态[43].2.3 表层沉积物磷的释放动力学特征磷的释放是一个复杂的动力学过程,由快反应和慢反应两部分组成.通常前一阶段快反应和慢反应同时进行,释放量增加较快,后一阶段以慢反应为主,释放量逐渐趋于平衡并达到最大[44].滇池表层沉积物对磷的释放过程主要发生在前8h内,各样点沉积物磷的释放量较大,曲线较陡;随着时间的延长,曲线逐渐呈平缓的趋势,基本在15h后,释放量及释放速率随时间的变化不明显,基本趋近于0,释放逐渐达到动态平衡(图6).为了进一步研究沉积物中磷释放的动力学特征,引入释放速率(单位时间、单位质量的沉积物中磷的释放量)的概念[45].滇池表层沉积物磷在0~0.5h之内释放速率最大,为0.08~7.09mg/(kg·h),平均值为1.56mg/(kg·h);在0.5h之后释放速率逐渐降低,与0.5h之内的释放速率相差较大;4h之内是一快速反应,15h之后释放速率很小,且在此之后时间段的释放速率很接近,呈动态稳定的状态(表4).所以,滇池表层沉积物释磷的快反应过程在前0.5h之内完成,慢反应过程延迟至15h,15h内基本完成释放.滇池不同区域表层沉积物磷的最大释放速率表现为:草海(2.22±1.03mg/(kg·h))>外海北部(2.06±1.96mg/(kg·h))>外海南部(0.72±0.42mg/(kg·h))>湖心区(0.37±0.32mg/(kg·h)).为定量分析沉积物磷的释放动力学过程,采用一级动力学方程[46]进行拟合:Qt=Qmax·(1-e-kt).式中,Qt为t时刻磷的释放量(以干质量计,下同)(mg/kg);Qmax为释放平衡时磷的释放量(即最大释放量)(mg/kg);k为磷的释放速率常数;t为释放时间(min).一级动力学方程很好地拟合了滇池表层沉积物释磷的动力学过程,R2>0.70,达到显著相关水平(P<0.05).Qmax表示本研究条件下沉积物磷的释放能力,也是沉积物磷释放动力学特征的重要参数[47].滇池表层沉积物中磷的Qmax介于0.14~11.76mg/kg之间,平均值为2.12mg/kg.不同区域表层沉积物磷的Qmax平均值表现为草海(3.32±2.10mg/kg)>外海北岸(2.83±2.82mg/kg)>外海南岸(1.43±0.50mg/kg)>湖心区(0.99±0.52mg/kg),其分布情况与最大释放速率(Vmax)相同.由于草海植物生长较其它湖区茂盛,植物死亡所产生的生物残体也就较其它湖区多,碎屑在湖底分解往往不能彻底进行,残存物将随泥沙沉降而被层叠式掩埋,在表层仍能进行好氧分解,下层则会产生自上而下的缺氧和厌氧环境.在微生物作用下,向水体中析出游离态离子[48];其次,草海和外海北部是较多入湖河道的受纳区域,新运粮河、宝象河、盘龙江等入湖河流流量较大,且兼顾农灌、泄洪、纳污等功能,表层底泥接纳来自外部污染性颗粒物沉降的机会较其它湖区高,在生物矿化和化学转化等作用下,游离态磷(通常为正磷酸盐(-P))被不断分解出来,进入并溶存于沉积物间隙水中,在表层沉积物物性决定的阻碍层两侧,与上覆水-P浓度形成浓度梯度,进行着与环境条件(如温度)相适应的并遵守分子扩散定律的磷界面的释放[49];再次,湖心区相对远离陆源,因此沉积物中TP和有机质含量较其它湖区偏低,再加上该区域湖面开敞,水动力作用影响大,因此表层沉积物的分选程度较好,有机质矿化作用将较显著,无机矿物颗粒成分应有较高比例.在相对平静的环境中,表层沉积物在一定时段内吸收上覆水中的-P,以致形成内汇,磷的释放作用降低[50].与不同湖泊沉积物相比,滇池沉积物中磷的Vmax和Qmax处于较低水平[51](表5).当湖泊沉积物中金属含量Ca/(Fe+Al)>0.7时,为钙质沉积物[52].滇池沉积物中Ca/(Fe+Al)为0.78~1.46,表明滇池沉积物为典型的钙质沉积物.滇池年平均温度约为17℃,水体pH为7.59~8.80.因此,滇池湖内正磷酸盐被吸附到CaCO3沉淀上或者与CaCO3沉淀发生共沉淀,共沉淀的作用随着温度和pH(在8.0~10.0范围内)的增加而加强[53],这个自然机制阻碍了滇池沉积物中IP含量较高的Ca-P的释放.2.4 表层沉积物磷的释放潜力本实验对沉积物释放潜力的测定采用的是一步浸提法,即在1∶100的沉积物和水的比值下磷的释放量[54].水土比不同,沉积物-水界面磷的平衡浓度也不同,一般来讲,水土比越大越有利于沉积物磷的释放.因此,可以采用无限稀释法测定沉积物磷的释放潜力(IDE-P).滇池表层沉积物中磷的释放量随着水土质量比的增加而增加,水土质量比约为20000时,磷释放量基本达到最大值,水土比再增大时,其磷释放量基本趋于平衡(图7).滇池表层沉积物IDE-P介于32.64~419.00mg/kg 之间,不同区域沉积物的IDE-P平均值表现为:草海(157.96±94.11mg/kg)>外海北部(113.45±87.64mg/kg)>外海南部(80.16±33.69mg/kg)>湖心区(67.17±30.01mg/kg),湖心区由于人类活动较少,磷含量较低,其释放潜力相对较小,而靠近昆明主城区和流经城区的河流入湖口区域的样点由于沉积物TP和PP含量较高,污染物释放潜力相对较高.2.5 沉积物-上覆水磷形态与磷的释放沉积物中不同结合态的磷可以反映不同历史时期磷污染输入特征,同时具有不同的生物有效性,可以间接反映沉积物中磷的释放潜力[55],对上覆水体富营养化的发生具有潜在的、不可忽视的影响.沉积物中磷的释放机理、释放量与内源的存在形态、金属结合态的转化能力、沉积物-上覆水之间磷元素的交换有关[56].底泥中的磷以无机态的-P为主,一旦出现利于钙、铝、铁等不溶性磷酸盐沉淀物溶解的条件,磷的释放就可能发生[57].不同地理环境的湖泊磷释放的决定因素存在差别[58].滇池表层沉积物中磷的释放主要由NH4Cl-P、Fe-P、Al-P和OP进行(表6),其中,NH4Cl-P和Fe-P所占比重较大.NH4Cl-P是较容易释放的磷,Fe-P几乎都具有活性,并且在还原环境下几乎可以全部释放,这进一步说明Fe-P极其不稳定.另外,当氧化还原电位和盐度降低时,Fe-P会被活化而进入水体,这部分磷或被生物利用,或与水体中其他离子(Ca2+、Al3+)相结合,因此当沉积物中Fe、Al、Ca等含量由于人为污染等因素发生改变时,磷就会在不同形态间进行释放和重新组合,从而实现不同形态磷间的转化.-P被认为是DTP中最易被生物利用的磷形态,也称作生物可利用磷,可作为研究湖泊富营养化状态的参数,并随着岩石的自然分化、溶解、土壤的淋溶和迁移,以及生物转化等过程进入水体[59].磷的释放与上覆水中DTP、DIP和DOP浓度呈显著正相关(P<0.05)(表6),预示着上覆水中磷的迁移转化更多地受到水-沉积物界面浓度梯度的控制,进一步说明不能以TP含量来评价湖泊磷素释放的状况,需与磷形态及分布特征相结合进行分析.滇池表层沉积物中TP含量介于843.96~8144.44mg/kg之间,是其他湖泊的3~12倍左右,处于较高水平;不同形态磷含量表现为:OP(1482.49±1156.82mg/kg)>Ca-P(865.54±558.40mg/kg)>Al-P(463.77±662.18mg/kg)>Res-P(218.52±83.11mg/kg)>Fe-P(128.13±101.56mg/kg)>NH4Cl-P(2.26±3.05mg/kg).滇池表层上覆水中TP浓度在0.09~0.70mg/L之间,草海水质为劣Ⅳ类,外海不同湖区水质介于Ⅳ~Ⅴ类之间;滇池上覆水中磷浓度以PP最高,占TP浓度的67.61%,在入湖河流河口处(如新运粮河、盘龙江、广普大沟、南冲河、柴河)浓度较高,长远看来对水体富营养化有一定的贡献.滇池沉积物磷的释放过程主要发生在前8h内;不同区域沉积物磷的Vmax、Qmax和IDE-P平均值均表现为:草海>外海北部>外海南部>湖心区;滇池表层沉积物中磷的释放主要由NH4Cl-P、Fe-P、Al-P和OP进行,其中,NH4Cl-P 和Fe-P所占比重较大;磷的释放与上覆水中DTP、DIP和DOP浓度呈显著正相关(P<0.05),预示着上覆水中磷的迁移转化更多地受到水-沉积物界面浓度梯度的控制,进一步说明不能以TP含量来评价湖泊磷素释放的状况,需与磷形态及分布特征相结合分析.致谢:感谢中国环境科学研究院湖泊生态环境创新基地的焦立新博士在本文完成期间提供的帮助.【相关文献】[1] 李宝,丁士明,范成新等.滇池福保湾底泥内源氮磷营养盐释放通量估算.环境科学,2008,29(1):114-120.[2] 王雨春,万国江,黄荣贵等.湖泊现代沉积物中磷的地球化学作用及环境效应.重庆环境科学,2000,22(4):39-41.[3] 高丽,杨浩,周建民.湖泊沉积物中磷释放的研究进展.土壤,2004,36(1):12-15.[4] Katsev S, Tsandev I, Heureux IL et al. Factors controlling long-term phosphorus efflux from lake sediments: Exploratory reactive-transport modeling. Chemical Geology, 2006, 234(1/2): 127-147.[5] 尤本胜,王同城,范成新等.太湖沉积物再悬浮模拟方法.湖泊科学,2007,19(5):611-617.DOI 10.18307/2007.0518.[6] 李大鹏,黄勇.底泥扰动在水体富营养化发展进程中的作用.中国给水排水,2009,25(14):10-16.[7] Xie LQ, Xie P, Tang HJ. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake. Environmental Pollution, 2003, 122: 391-399.[8] 金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响.中国环境科学,2004,24(6):707-711.[9] Jin XC, Wang SR, Pang Y et al. The adsorption of phosphate on different trophic lake sediments. Colloids and Surfaces A, 2005, 254(1/2/3): 241-248.[10] 董浩平.城市湖泊底泥污染释放规律及在水质模型中的应用[学位论文].南京:河海大学,2005:1-63.[11] 吕晓霞,翟世奎,于增慧.长江口及临近海域表层沉积物中营养元素的分布特征及控制因素.海洋环境科学,2005,24(3):1-5.[12] 秦伯强,朱广伟,张路等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法——以太湖为例.中国科学:D辑:地球科学,2005,35(增刊11):33-34.[13] 高丽,杨浩,周健民.环境条件变化对滇池沉积物磷释放的影响.土壤,2005,37(2):216-219.[14] 邓莎.环境因素对滇池外海中心沉积物磷释放的影响[学位论文].云南:昆明理工大学,2013:1-92.[15] 毛建忠,王雨春,赵琼美等.滇池沉积物内源磷释放初步研究.中国水利水电科学研究院学报,2005,3(3):229-233.[16] Liu JL, Wang RM, Huang B et al. Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China.Environmental Pollution, 2011, 159: 2815-2822.[17] Wan X, Pan XJ, Wang B et al. Distributions, historical trends, and source investigation of polychlorinated biphenyls in Dianchi Lake, China. Chemosphere, 2011, 85: 361-367. [18] 夏学惠,东野脉兴,周建民等.滇池现代沉积物中磷的地球化学及其对环境影响.沉积学报,2002,20(3):416-420.[19] Ruban V, López-Sánchez JF, Pardo P et al. Harmonized protocol and cert ified reference material for the determination of phosphorus in freshwater sediment-A synthesis of recent works. Fresenius Journal of Analytical Chemistry, 2001, 370: 224-228. [20] Kaiserli A, Voutas D, Samara C. Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia, N. Greece. Chemosphere, 2002, 46(8): 1147-1155.[21] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002:246-248.[22] 李大鹏,王晶,黄勇.反复扰动下磷在沉积物和悬浮物以及上覆水间的交换.环境科学,2013,34(6):2191-2197.[23] 杨洋,刘其根,胡忠军等.太湖流域沉积物碳氮磷分布与污染评价.环境科学学报,2014,34(12):28.[24] 王圣瑞,倪栋,焦立新等.鄱阳湖表层沉积物有机质和营养盐分布特征.环境工程技术学报,2012,2(1):24-28.[25] 李强.巢湖流域氮磷的分布特征及其相关性研究[学位论文].武汉:武汉纺织大学,2013:1-59.[26] 李延鹏,杨婕,肖文等.洱海及上游主要湖泊底泥营养盐的研究.大理学院学报,2013,12(4):58-61.[27] 杨文澜,蒋功成,王兆群等.洪泽湖不同湖区表层沉积物中磷的形态和分布特征.地球与环境,2013,41(1):43-49.[28] 刘超,朱淮武,王立英等.滇池与红枫湖沉积物中磷的地球化学特征比较研究.环境科学学报,2013,33(4):1073-1079.[29] 张乃明,李成学,李阳红.滇池流域土壤磷累积特征与释放风险研究.土壤,2007,39(4):665-667.[30] 史丽琼.滇池水体及表层沉积物-水界面各形态磷分布特征研究[学位论文].昆明:昆明理工大学,2011:1-77.[31] 秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨.中国环境科学,2002,22(2):155-153.[32] 袁建.湖泊沉积物中磷形态标准物质研制及环境地球化学行为研究[学位论文].北京:中国地质科学院,2012:1-70.[33] Rydin E. Potentially mobile phosphorus in lake Erken sediment. Water Research, 2000, 34(7): 2037-2042.[34] 岳宗凯,马启敏,张亚楠等.东昌湖表层沉积物的磷赋存形态.环境化学,2013,32(2):219-224.[35] Gao L, Zhou JM, Yang H et al. Phosphorus fractions in sediment profiles and their potential contributions to eutrophication in Dianchi lake. Environmental Geology, 2005, 48(7): 835-844.。
中减少误差的产生。
我厂对于总磷的测定是采用过硫酸钾消解—钼锑抗分光光度法。
其测定原理是在中性条件下用过硫酸钾使试样消解,将所含有的各种形式的磷全部氧化为正磷酸盐。
正磷酸盐在酸性介质下会与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,被还原剂抗坏血酸还原,生成蓝色络合物磷钼蓝,室温下放置15 min,在700 nm光波下,测定吸光度[2]。
现将我厂化验中心总磷测定过程中的每一环节对于测定结果准确性的影响做一些实验性的探讨:1 磷酸盐标准曲线的影响试样测定的准确性离不开一条高质量的标准曲线。
磷酸盐标准曲线的绘制,一般取磷酸盐标准溶液0、0.50、1.00、3.00、5.00、6.00、7.00、10.0、15.0 mL,的点数,测得吸光度,然后顺序生成C(浓度)—A(吸光度)标准曲线。
而不同的操作人员在不同的时间段所用的溶液不同,绘制的标准曲线参数各不相同。
我厂化验中心一直采用人员轮流化验项目制度,也就是每人每月轮换一次实验项目,总磷标准曲线也是每月绘制一次。
不同人员由于技术水平不同,绘制的标准曲线质量参差不齐,评估测定试样可能存在误差。
因此我化验中心进行了理论分析,认为标准曲线的质量比其时效性更为重要,也就是成功绘制一条高质量的标准曲线,即使更换操作人员和更换实验溶液(过硫酸钾、抗坏血酸、钼酸盐),也无需重新绘制标准曲线。
为了验证0 引言污水处理厂在工艺调试和排放标准的要求下,磷的测定通常按其存在的形式主要测定总磷、溶解性总磷酸盐和溶解性正磷酸盐。
总磷是指水样经过消解(通常是过硫酸钾消解法)后转化成正磷酸盐;溶解性总磷酸盐是指水样经过0.45 um的滤膜过滤后再进行消解转化为正磷酸盐;溶解性磷酸盐则是指滤膜直接过滤后所得溶解性正磷酸盐。
可见,不管测定哪种形式的磷,正磷酸盐的测定则成为磷测定的最终指标,其测定方法主要离子色谱法和钼锑抗分光光度法。
任何一种测定方法都会存在误差,这种误差通常分为系统误差、偶尔误差和过失误差。
水葫芦和香蒲对富营养化水体及其底泥养分的吸收朱华兵;严少华;封克;邹乐;刘海琴;张志勇【摘要】Water hyacinth and cattail were employed as experimental materials to study their effects on the purification of eutrophic water and nutrients release from sediment. The results showed that water hyacinth grown in eutrophic water with different concentrations of total nitrogen (TN) and total phosphorus (TP) had a more rapid increase in biomass than cattail, indicating that water hyacinth owned a better adaptability to different concentrations of TN and TP . Cultivation of both water hyacinth and cattail effectively reduced TN and TP in the overlying water with initial concentrations of 3. 2-14. 2 mg/L for TN and 0. 2-1. 0 mg/L for TP. After three-month water hyacinth treatment, the concentrations of TN and TP in overlying water were decreased to 0. 84-0. 86 mg/L and 0. 035-0. 044mg/L, respectively, the removal rates of TN and TP were 72. 0% -94. 0% and 82. 5% -98. 1% , and the load removal rates of TN and TP were 18. 4-105. 8 mg/(m2 o d)and 1.3-7.6 mg/(m o d) , respectively. The concentrations of TN and TP in cattail purification system was lowered to 0. 96-1. 09 mg/L and 0. 030-0. 062 mg/L, respectively, the removal rates of TN and TP were 66. 0% -92. 8% and 77. 0% -93. 8% , and the load removal rates of TN and TPrnwere 8.4 - 52.3 mg/(m2·d) and 0.6 -3.7rntng/(m2 o d), respectively. It indicated that cultivation ofrnwater hyacinth and cattail reduced the endogenous N and Prnin eut,ro'phic lakes and improved water quality.%为探明水葫芦、香蒲改善富营养化水体水质的效果及其对底泥养分释放的影响,以其为试材,采用人工模拟试验方法,分析其对不同富营养化水体及其底泥养分吸收的情况.结果显示:水葫芦比香蒲有更好的适应性,在不同浓度的水体中生物量快速增加,而香蒲则需要较长的适应期;在总氮、总磷浓度分别为3.2 ~ 14.2 mg/L和0.2 ~1.0 mg/L的富营养化水体中,水葫芦、香蒲均可有效地消减上覆水中总氮和总磷.处理3个月后,水葫芦净化系统的总氮、总磷浓度分别降至0.84~0.86 mg/L、0.035 ~0.044 mg/L,对水体总氮、总磷的去除量分别为72.0%~ 94.0%、82.5%~98.1%,总氮、总磷的负荷去除量分别为18.4~105.8 mg/(m2 ·d)、1.3~7.6mg/(m2·d);香蒲净化系统的总氮、总磷的浓度分别降至0.96 ~1.09 mg/L、0.030 ~ 0.062 mg/L,对总氮、总磷的去除率分别为66.0%~92.8%、77.0%~93.8%,总氮、总磷的负荷去除量分别为8.4~52.3 mg/(m2·d)、0.6~3.7 mg/(m2·d).表明水生植物水葫芦和香蒲可有效消减富营养化湖泊水体氮、磷等内源污染物,对富营养化水体水质具有良好的改善效果.【期刊名称】《江苏农业学报》【年(卷),期】2012(028)002【总页数】6页(P326-331)【关键词】水葫芦;香蒲;富营养化水体;氮;磷;底泥【作者】朱华兵;严少华;封克;邹乐;刘海琴;张志勇【作者单位】扬州大学环境科学与工程学院,江苏扬州225009;江苏省农业科学院农业资源与环境研究所,江苏南京210014;扬州大学环境科学与工程学院,江苏扬州225009;江苏省农业科学院农业资源与环境研究所,江苏南京210014;江苏省农业科学院农业资源与环境研究所,江苏南京210014;江苏省农业科学院农业资源与环境研究所,江苏南京210014【正文语种】中文【中图分类】X524富营养化水体治理是当今世界性难题。
广东化工2019年第6期· 158 · 第46卷总第392期典型黑臭风水塘水体pH值对底泥中氨氮、总磷释放影响的研究文泽伟(佛山市南海区蓝湾水环境投资建设有限公司,广东佛山528200)[摘要]以珠三角广佛跨界流域工业聚集区农村的典型黑臭风水塘为研究对象,研究水体pH值对底泥中氨氮、总磷释放强度的影响。
pH 值是影响黑臭池塘底泥中氨氮和总磷释放的重要因素之一。
上覆水pH值过大或过小时,底泥中氨氮和总磷的释放强度都会增大,pH值为7.0左右,即上覆水酸碱度为中性时,释放强度最小。
[关键词]底泥释放;氨氮;总磷;pH[中图分类号]X5 [文献标识码]A [文章编号]1007-1865(2019)06-0158-02Effect of pH Value on Ammonia Nitrogen and Total Phosphorus Release from Sediment during the Process of Malodorous Black Pond Sediment RemediationWen Zewei(Foshan Nanhai Lanwan Water Environment Investment and Construction Co. Ltd., Foshan 528200, China)Abstract: A case study of the malodorous black pond that is in the industrial cluster of Guangzhou-Foshan cross-border valley in the Pearl River Delta, the effect of pH value on the ammonia nitrogen and total phosphorus release from sediment has been explored. This study has shown that pH value is one of the important environmental factors of ammonia nitrogen and total phosphorus release from sediments. When pH value is too high or too low in overlying water, the release strength of ammonia nitrogen and total phosphorus from sediment will be increased. When PH value is 7.0 or so, that is, the overlying water is neutral, sediment release is lowest.Keywords: sediment release;ammonia nitrogen;total phosphorus;pH value由于长期的外源污染输入和水生生物残渣沉积,我国城镇河流、湖塘等水体水质持续恶化,直至形成严重黑臭的极端现象。
地下部磷含量英语Phosphorus is an essential nutrient for plant growth, playing a key role in photosynthesis, energy transfer, and the development of seeds and fruits. However, excessive amounts of phosphorus in the soil can lead to issues such as eutrophication in water bodies, which can harm aquatic ecosystems. Therefore, it is important to monitor and manage phosphorus levels in the soil to ensure sustainable agricultural practices.磷是植物生长所必需的营养素,对光合作用、能量传递以及种子和果实的发育起着关键作用。
然而,土壤中磷含量过高会导致问题,例如水体的富营养化,这会危害水生生态系统。
因此,监测和管理土壤中的磷含量对于确保可持续农业实践至关重要。
One of the methods used to determine the phosphorus content in soil is through soil testing. Soil testing involves taking samples from different depths in the soil and analyzing them in a laboratory to determine the levels of various nutrients, including phosphorus. This information can then be used to make recommendations for fertilizer application based on the specific needs of the plants being grown.确定土壤中磷含量的方法之一是通过土壤测试。
30--土壤肥料•资源环境 引用格式:刘小安,张小毅,刘文露,等. 不同绿肥混合还田的腐解特征及养分释放动态[J]. 湖南农业科学,2023(10):30-34. DOI:DOI:10.16498/ki.hnnykx.2023.010.007绿肥是指所有能够翻压到土壤中做肥料的绿色植物体[1]。
我国绿肥种植历史悠久,早在《齐民要术》中就有对绿肥的相关记载。
绿肥是我国农业生产的重要组成部分和传统农业的精华,在保障粮食生产安全、提升土壤肥力等方面发挥了重要作用[2]。
根据植物学分类可将绿肥分为豆科绿肥和非豆科绿肥,其二者混合还田具有较好的互补优势,一方面可以利用它们在腐解速率和养分释放速率上形成的时间差,最大限度地发挥绿肥肥效,从而满足作物不同生长时期对养分的需求,另一方面其氮、磷、钾养分供应均衡,可以充分保障作物生长发育对养分的不同绿肥混合还田的腐解特征及养分释放动态刘小安1,张小毅1,刘文露2,唐 锷1(1. 衡阳市蔬菜研究所,湖南 衡阳 421200;2. 衡阳市农业技术服务中心,湖南 衡阳421200)摘 要:为探究豆科与非豆科绿肥混合还田后的养分腐解和释放规律,以豆科绿肥紫云英和箭舌豌豆、非豆科绿肥黑麦草和油菜为材料,在温室大棚内应用尼龙网袋法研究了紫云英、紫云英+黑麦草、紫云英+油菜、箭舌豌豆+黑麦草、箭舌豌豆+油菜5种绿肥混合还田后的腐解特征及氮、磷、钾养分释放动态变化。
结果表明:各处理绿肥腐解过程可分为快速腐解期(0~20 d )、中速腐解期(20~70 d )和缓慢腐解期(70~110 d )3个阶段;其中,紫云英还田的腐解率及养分累积释放率均在前三阶段(0~5 d 、5~20 d 、20~40 d )较高,而紫云英+油菜和箭舌豌豆+油菜还田的在后两阶段(40~70 d 、70~110 d )较高;试验结束时(110 d ),各处理绿肥累积腐解率为57.61%~66.25%,氮、磷、钾累积释放率分别为57.75%~69.69%、55.54%~64.38%、93.73%~95.71%,表现为钾>氮>磷,其中,紫云英+油菜混合还田的累积腐解率和氮、磷累积释放率最高,箭舌豌豆+黑麦草的钾累积释放量最高。
王明,夏强,孙杨赢,等. 乳酸菌发酵对鸡骨泥钙释放及代谢物的影响[J]. 食品工业科技,2024,45(6):67−75. doi:10.13386/j.issn1002-0306.2023050133WANG Ming, XIA Qiang, SUN Yangying, et al. Effects of Lactic Acid Bacteria Fermentation on Calcium Release and Metabolites in Chicken Bone Paste[J]. Science and Technology of Food Industry, 2024, 45(6): 67−75. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2023050133· 研究与探讨 ·乳酸菌发酵对鸡骨泥钙释放及代谢物的影响王 明,夏 强,孙杨赢,何 俊,潘道东,曹锦轩*,周昌瑜*(宁波大学食品与药学学院,浙江省动物蛋白精深加工重点实验室,浙江宁波 315211)摘 要:本研究以鸡骨为原料,研究了嗜酸乳杆菌(LA )、罗伊氏乳杆菌(LR )和植物乳杆菌(LP )作为发酵剂对鸡骨泥中钙释放及代谢物的影响,通过监测菌株的生长状态、发酵液的pH 、总酸变化、钙分布和钙磷比、代谢物种类及含量揭示乳酸菌的生长特性变化及其对钙释放的影响,并借助主成分分析、相关性分析以及KEGG 代谢通路分析挖掘乳酸菌发酵骨泥的关键代谢通路。
结果表明,LA 、LR 和LP 均能较好的利用鸡骨泥进行生长繁殖,且在发酵30 h 时活菌数达最大值,LA 、LP 和LR 发酵组的总酸含量分别为5.60、3.76和3.75 g/L ,LA 发酵组的总酸含量显著高于其他处理组(P <0.05)。
钙释放分析表明,LR 组、LP 组和LA 组总钙含量分别从181.33 mg/kg (对照组)上升至1176.67、1310.00和1916.67 mg/kg ;游离钙含量分别是对照组的40.60、50.19和74.62倍,且LA 发酵组的游离钙含量显著高于LP 和LR 发酵组(P <0.05)。
泥沙和污染物耦合方程及其底边界条件摘要:本文理论上分析了水流泥沙污染物耦合方程,在对其底边界条件的分析中分别采用挟沙力和切应力方法给出了冲刷引起的吸附在泥沙上污染物的迁移量;并采用悬沙底变形方程给出了冲刷引起的底泥中的水相污染物输运量;最后给出了含有泥沙近底通量的二维污染物水质方程,有效的将泥沙与污染物结合起来。
关键词:泥沙,污染物,三维方程,二维方程,底边界条件Abstract: This paper analyzes theoretically the flow of water sediment pollutants coupling equations, in the bottom boundary conditions sediment-carrying capacity and shear stress method was adopted and it gives scour the adsorption of sediment in the cause of the pollutants transfer amount; And the suspended sediment bottom deformation are caused by erosion of the equation of the sediment water phase pollutants lose traffic volume; Finally given near the bottom sediment contains the flux of 2 d pollutants water quality equation, effectively will combine pollutants with sediment.Keywords: sediment, pollutants, 3d equation, 2d equation, bottom boundary conditions泥沙是水体生态系统的重要组成部分,可以看作是水中污染物的储备器和来源之一。
厌氧条件下剩余污泥中磷及相关指标的释放和变化规律孙连鹏;谭锦欣;郭五珍;叶挺进;欧伟松【摘要】Excess sludge produced in the process of wastewater treatment was rich in nitrogen and phosphorus, and phosphorus recovery from the excess sludge is an effective way to solve the growing lack of phosphorus resources. The release rule of phosphorus from the sludge is a prerequisite for phosphorus recovery in sludge. Therefore, a pilot model with 5 days of t sludge retention time was established, and the actual sewage sludge was studied in the system. Through analysis of the system parameters changes under anaerobic conditions, total phosphorus concentration and ammonia concentration in the supernatant were got, that is very important to provide conditions for the following sludge phosphorus recovery. The results show that, in the system of 5 days SRT under anaerobic conditions, microbial decay autolysis or decomposed in residual sludge, and intracellular substances was released, so the solid matter was changed into liquid, phosphorus, nitrogen and other related substances have been released. The concentration of total phosphorus and ammonia nitrogen in supernatant could reach 100 mg·L-1 and 40 mg·L-1, respectively. The concentration of nitrogen and phosphorus released was demanded to the minimum required to meet the economic requirements of struvite recovery method. The results provide important basis for nitrogen and phosphorus recovery using struvite method. SS and VSS were all found decreased, that were reduced more than 8.34% and 10.14%, respectively. The reducedmass of VSS was accounted for about 65%of the SS reduced mass. In additional, initial sludge concentration in anaerobic reaction system was great influence for releasing mass of nitrogen and phosphorus. Releasing mass of phosphorus and nitrogen was reached most under 6 300-7 200 mg·L-1of SS, that is 0.015 mg·mg-1 and 0.006 mg·mg-1 per unit dry sludge, respectively. The research results provide an important basis for the recovery of nitrogen and phosphorus in sludge.%污水处理过程中产生的剩余污泥富含大量的氮磷元素,从剩余污泥中回收磷是解决磷资源日益缺乏的一种有效途径。
About URALCHEMURALCHEM Group is the second largest ammonium nitrate producer in the world, number one in Russia and the second largest nitrogen fertiliser producer in Russia.The company has production capacities for 2.5 million tonnes of ammonium nitrate, 2.2 million tonnes of ammonia, 0.8 million tonnes of complex fertilisers (NPK), 0.8 million tonnes of MAP and DAP and 0.5 million tonnes of urea per year.In 2010 URALCHEM produced 27% of Russian ammonium nitrate, 16% of ammonia, 12% of phosphate and NPK fertilisers.URALCHEM’s key assets include:• Kirovo-Chepetsk Chemical Works, OJSC, Kirovo-Chepetsk, Kirov region;• Azot Branch of Open Join Stock Company United Chemical Company Uralchem in Berezniki, Perm region;• Voskresensk Mineral Fertilisers, OJSC, Voskresensk, Moscow region;• Trading House URALCHEM, LLC, Perm, Perm region;• URALCHEM Trading SIA, Riga, Latvia;• Transport and service companies.URALCHEM ’s main competitive advantage is the development and production of fertilisers tailored to particular countries, markets and segments along with ammonium nitrate and urea – in accordance with the chosen strategy of «market tailored products». Future implementation of this strategy foresees gradual reduction in production of standard types of nitrogen and compound fertilisers and an increase the production of specialised products.KIROVO-CHEPETSKCHEMICAL WORKSAZOT BRANCHBEREZNIKIVOSKRESENSKMINERALFERTILISERSContent:N (NS) fertilisers .......................................... 1-4 Ammonium nitrate . (1)Stabilized ammonium nitrate (SAN) (2)Calcium ammonium nitrate with sulphur(CAN+S) (3)Calcium ammonium nitrate (CAN) (4)NP (NPS) fertilisers ...................................... 5-8 MAP 12:52 . (5)DAP 18:46 (6)NP 26:13 (7)NP(S) 14:34(8) (8)NPK (NPKS) fertilisers................................. 9-12 NPK(S) 27:6:6(2) .. (9)NPK(S) 22:7:12(2) (10)NPK(S) 21:10:10(2) (11)NPK 10:26:26 (12)Urea (13)Potassium nitrate (1)4 Legend:Suitable for greenhousesSuitable for foliar applicationSuitable for irrigation systemsExcellent spreading characteristicsSuitable for spring applicationSuitable for autumn applicationSuitable for blendingOur trading (export) asset: URALCHEM Trading SIA Vesetas 7, Riga, LV-1013, Latvia phone: +371 673 88 100Fax: +371 673 88 101e-mail: trading@ 1N (N S )Straight nitrogen fertiliser.Ammonium nitrate is the most well-known source of nitrogen.Contains the readily-available nitrate form of nitrogen. Also contains nitrogen in the ammoniacal form to provide nutrition for plants throughout the whole growing period.Efficient for all types of crops when used either as spring, pre-plantingor for top dressing application.Especially efficient for early-spring nutrition of cereals.Excellent storage and spreading characteristics due to superb granule strength.Produced from pure raw materials.Suitable both for straight application and blending.Fully water-soluble.Packaging and transportation:AN is available in bulk, big-bags (500–1000 kg) or in 50 kg bags.Should be stored under cover.Ammoniumnitrate Appearance White or yellowish prills*............................................................................................................................................................................................................................................................Nitrogen (N):Total Nitrogen (N), min. 34.4%............................................................................................................................................................................................................................................................Moisture content, max. 0.3%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 3%1–4 mm, min. 95%Under 6 mm 100%............................................................................................................................................................................................................................................................Granule static strength, min. 2.0 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................Note: ammonium nitrate is treated by anti-caking agent.* – Colour depends on producer.| mineral fertilisers2N (N S )mineral fertilisers |High-nitrogen fertiliser with phosphorus.Contains two forms of nitrogen (ammoniacal and nitric) to providenutrition for plants throughout the whole growing period.Contains readily-available, water-soluble forms of phosphates.Efficient for all types of crops when used either as spring, pre-plantingfertiliser or for top dressing application.Excellent storage and spreading characteristics due to superb granulestrength (tested to spread accurately up to 42 m).Produced from pure raw materials.Suitable both for straight application and blending.Packaging and transportation:SAN is available in bulk or big-bags (500–1000 kg).Should be stored under cover.Stabilized ammonium nitrate 33:3Appearance Pinkish-white or greyish-white prills............................................................................................................................................................................................................................................................Nitrogen (N):Total nitrogen (N) 33±1%of whichNitric Nitrogen 16.5%Ammoniacal Nitrogen 16.5%............................................................................................................................................................................................................................................................Phosphorus pentoxide (P 2O 5):Р2О5 available, min. 3%............................................................................................................................................................................................................................................................Moisture content, max. 0.3%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 3%1–4 mm, min. 95%Under 6 mm 100%............................................................................................................................................................................................................................................................Granule static strength, min. 2.5 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................3N (N S )| mineral fertilisers Nitrogen-calcium fertiliser with sulphur. Nitrogen is in the ammoniacal and the nitrate forms and sulphur is in the sulphate form.CaO partly offsets the soil acidification.Contents of nitrogen in the ammoniacal and the nitric forms to provide plant nutrition during the whole growing period.Sulphur increases oil content oil-seed crops and improve quality of grains.Excellent spreading characteristic due to superb granule strenght.Suitable for most soil types.Especially suitable for fertilisation of oil-plants, fodder-plants, roots-crops,bulb-root plants and cereals.Packaging and transportation:CAN+S is available in bulk or big-bags (500–1000 kg).Should be stored under cover.Calciumammoniumnitrate withsulphur (CAN+S)27N+4S Appearance Greyish-white granules............................................................................................................................................................................................................................................................Nitrogen (N):Total Nitrogen (N), max. 27%of whichNitric Nitrogen, max. 12.2%Ammoniacal Nitrogen, max. 14.5%............................................................................................................................................................................................................................................................Sulphur: S(SO 3), min. 4(10)%............................................................................................................................................................................................................................................................Calcium on CaO basis, min. 6%............................................................................................................................................................................................................................................................Calcium nitrate content, max. 1%............................................................................................................................................................................................................................................................Moisture content, max. 1%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 1%Under 2 mm, max. 4%2–5 mm, min. 95%Under 6 mm 100%............................................................................................................................................................................................................................................................Granule static strength, min. 2.5 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................4N (N S )mineral fertilisers |Highly efficient nitrogen fertiliser with calcium.Contains nitrogen in both the ammoniacal and the nitric formsto provide plant nutrition throughout the whole growing period.CaO partly offsets the soil acidification.Suitable for most soil types.Suitable for many crop types, but especially for cereals and grassland.Excellent storage and spreading characteristics due to superb granulestrength (tested to spread accurately up to 36m).Produced from pure raw materials.Suitable both for straight application and blending.Packaging and transportation:CAN is available in bulk or big-bags (500–1000 kg).Should be stored under cover.Calcium ammonium nitrate (CAN) N27%Appearance White granules............................................................................................................................................................................................................................................................Nitrogen (N):Total Nitrogen (N), max. 27%of whichNitric Nitrogen, max. 13.5%Ammoniacal Nitrogen, max. 13.5%............................................................................................................................................................................................................................................................Calcium carbonate, min. 20%............................................................................................................................................................................................................................................................Calcium nitrate content, max. 1%............................................................................................................................................................................................................................................................Moisture content, max. 1%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 3%2–5 mm, min. 95%Under 6 mm 100%............................................................................................................................................................................................................................................................Granule static strength, min. 2.5 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................| mineral fertilisers 5Concentrated chlorine- and nitrate-free NP fertiliser.Especially effective on soils with low phosphorous content.Contains phosphate in water-soluble, readily-available form.Improves plant resistance to stress such as drought or frost and certain diseases.Increases sugar content in fruit and root-crops.Suitable for most soil and crop types.Especially efficient as an autumn applied fertiliser for winter crops, as amain fertiliser dressing for root-crops and as a supplementary dressingfor fruit crops.Suitable for greenhouse application.Excellent storage and spreading characteristics due to superb granulestrength.Produced from pure raw materials.Suitable both for straight application and blending.May contain sulphur.Packaging and transportation:MAP is available in bulk and big-bags (500–1000kg).Should be stored under cover.Appearance Greyish granules............................................................................................................................................................................................................................................................Total nutrient content, min. 64%............................................................................................................................................................................................................................................................Phosphorus pentoxide (P 2O 5):Total P 2O 5 52 ±1%of whichP 2O 5 available 99%............................................................................................................................................................................................................................................................ Total Nitrogen (N) 12 ±1%............................................................................................................................................................................................................................................................Moisture content, max. 1.5%............................................................................................................................................................................................................................................................Granulometric composition:Under 1mm, max. 3%2–5 mm, min. 95%Under 6 mm 100%............................................................................................................................................................................................................................................................ Granule static strength, min. 3.0 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................Monoammoniumphosphate (MAP) NP 12:52N P (N P S )mineral fertilisers |6N P (N P S )Concentrated chlorine- and nitrate-free NP fertiliser.Improves plant resistance to stress such as drought or frost and certaindiseases.Contains phosphate in a water-soluble, readily-available form.Increases the sugar content in fruit and root crops.Especially efficient as the main fertiliser for cereals, fodder-cropsand vegetables and as a supplementary dressing for fruits.Suitable for greenhouse application.Excellent spreading characteristics due to superb granule strength.Produced from pure raw materials.Suitable both for straight application and blending.May contain sulphur.Packaging and transportation:DAP is available in bulk.Should be stored under cover.Diammonium phosphate (DAP) NP 18:46Appearance Granules from white to black colour............................................................................................................................................................................................................................................................Total nutrient content, min. 64%............................................................................................................................................................................................................................................................Phosphorus pentoxide (P 2O 5):Total P 2O 5, min. 46%of whichP 2O 5 available, min. 99%............................................................................................................................................................................................................................................................Total Nitrogen (N), min. 18%............................................................................................................................................................................................................................................................Moisture content, max. 1.8%............................................................................................................................................................................................................................................................Granulometric composition:Under 1mm 3%2–5 mm 95%Under 6 mm, min. 100%............................................................................................................................................................................................................................................................Granule static strength, min. 3.0 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................| mineral fertilisers 7N P (N P S ) NP 26:13 is a two component mineral fertiliser with high concentration of nitrogen and phosphorus.Contains forms of nutrient that work efficiently and quickly.Efficient for all types of crops.Especially effective for reclaimed soils with high concentration of potassium. Ideal for cereals.Produced from pure raw materials.Suitable both for straight application and blending.Packaging and transportation:NP 26:13 is available in bulk, big-bags (500–1000 kg) or 50 kg bags.Should be stored under cover.NP 26:13Appearance Greyish-white granules............................................................................................................................................................................................................................................................Total nutrient content, min. 39%............................................................................................................................................................................................................................................................Nitrogen (N):Total Nitrogen, min. 26±1%of whichAmmoniacal Nitrogen, min. 13%Nitric Nitrogen, max. 13%............................................................................................................................................................................................................................................................Phosphorus pentoxide (Р2О5):Р2О5 available 13±1%of whichР2О5 water soluble, min. 6%............................................................................................................................................................................................................................................................Moisture content, max. 1%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 3%1–4 mm, min. 90%Under 6 mm, min. 100%............................................................................................................................................................................................................................................................ Granule static strength, min. 3.0 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................Note: can be produced upon special request.mineral fertilisers |8N P (N P S )Highly concentrated nitrate- and chlorine-free complex NP-fertiliser with sulphur.Contains nitrogen in the ammoniacal form to provide plant nutrition during the whole growing period and to prevent leaching.Sulphur (in the water-soluble sulphate form) improves crop quality.Efficient for all types of crops for spring seedbed or top dressing application.Especially effective for oil-seeds, legumes and brassica crops.Excellent storage and spreading characteristics due to superb granule strength (tested to spread accurately up to 40m).Suitable for greenhouse application.Produced from pure raw materials.Suitable for both straight application and blending.Packaging and transportation:NP(S) 14:34(8) is available in big-bags (500–1000 kg).Should be stored under cover.NP(S) 14:34(8) (ammonium phosphate sulphate)Appearance Granules of greyish-pink to light brown colour............................................................................................................................................................................................................................................................Total nitrogen (ammoniacal), min. 14%............................................................................................................................................................................................................................................................Phosphorus pentoxide (P 2O 5), min. 34%of whichР2О5 available, min. 96%............................................................................................................................................................................................................................................................Sulphur: S (SO 3), min. 8 (20)%............................................................................................................................................................................................................................................................Moisture content, max. 1%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 3% 2–5 mm, min. 95%............................................................................................................................................................................................................................................................Granule static strength, min. 3.0 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................| mineral fertilisers 9Highly efficient complex fertiliser containing readily available nitrogen and supplementary phosphorous, potassium and sulphur.Very efficient as a spring top dressing fertiliser, especially for grassland, fodder-crops and winter cereals.Suitable for all soil types.Excellent storage and spreading characteristics due to superb granule strength (tested to spread accurately up to 42m). Produced from pure raw materials.Packaging and transportation:NPKS 27:6:6:2 is available in bulk, big-bags (500–1000 kg) or 50 kg bags.Should be stored under cover.NPK(S) 27:6:6(2)Appearance Granules of greyish-pink to light brown colour............................................................................................................................................................................................................................................................Total nutrient content, %, min. 39%...........................................................................................................................................................................................................................................................Nitrogen (N):Total nitrogen 27±1%of whichAmmoniacal Nitrogen, min. 14.5%Nitric Nitrogen, max. 12.2%............................................................................................................................................................................................................................................................Phosphorus pentoxide (P 2O 5):Р2О5 available, min. 6%of whichР2О5 water soluble, min. 2%............................................................................................................................................................................................................................................................Potassium oxide (K 2O): Water soluble К2О, min. 6%............................................................................................................................................................................................................................................................ Sulphur: S (SO 3), min. 2 (5)%............................................................................................................................................................................................................................................................Moisture content, max. 1%............................................................................................................................................................................................................................................................Granulometric composition:Under 1 mm, max. 3%2–5 mm, min. 95%Under 6 mm, min. 100%............................................................................................................................................................................................................................................................Granule static strength, min. 3.0 MPa............................................................................................................................................................................................................................................................Friability, min. 100%............................................................................................................................................................................................................................................................N P K (N P K S )。