福建省厦门市湖滨中学2019-2020学年数学人教版七年级上第二章整式的加减知识点复习扫描版无答案
- 格式:docx
- 大小:2.41 MB
- 文档页数:6
2019-2020学年七年级数学上册 第二章《整式的加减》期末知识点复习 新人教版1. 单项式:由 与 的乘积组成的式子叫做单项式.单独的一个数或字母也是单项式.2. 系数:单项式前面的 叫做这个单项式的系数.3. 单项式的次数:一个单项式中,所有 的和叫做这个单项式的次数.4. 多项式:几个单项式的和叫做多项式.其中,每个 叫做多项式的项,不含字母的项叫做 .5. 多项式的次数:多项式里 的次数,叫做这个多项式的次数.6. 整式: 与 统称整式.7. 同类项: 相同,并且相同字母的 也相同的项叫做同类项.几个常数项也是 .8.合并同类项:把多项式中的 合成一项,叫做合并同类项.9.去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 ; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 . 一般地,几个整式相加减,如果有括号就先 ,然后再合并 .第二章 《整式的加减》复习效果检测一.填空题(每题3分,共36分)1.单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 .2.当2-=x 时,代数式-122-+x x = ,122+-x x = .3.写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 .4.已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 . 5.张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元.6.计算:=-+-7533x x , )9()35(b a b a -+-= .7.计算:)2008642()200953(m m m m m m m m ++++-++++ = .8.-bc a 2+的相反数是 , π-3= ,最大的负整数是 .9.若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 .10.若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = .11.已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a .12.多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 .二.选择题(每题3分,共30分)13.下列等式中正确的是( )A.)25(52x x --=-B.)3(737+=+a aC.-)(b a b a --=-D.)52(52--=-x x14.下面的叙述错误的是( )A.倍的和的平方的与的意义是2)2(2b a b a +.B.222b a b a 与的意义是+的2倍的和C.3)2(ba 的意义是a 的立方除以2b 的商 D.b a b a 与的意义是2)(2+的和的平方的2倍15.下列代数式书写正确的是( )A.48aB.y x ÷C.)(y x a +D.211abc 16.-)(c b a +-变形后的结果是( )A.-c b a ++B.-c b a -+C.-c b a +-D.-c b a --17.下列说法正确的是( )A. 0不是单项式B.x 没有系数C.37x x+是多项式 D.5xy -是单项式 18.下列各式中,去括号或添括号正确的是( )A.c b a a c b a a +--=+--2)2(22B.)123(123-+-+=-+-y x a y x aC.1253)]12(5[3+--=---x x x x x xD.-)1()2(12-+--=+--a y x a y x 19.代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A.3 B.4 C.5 D.620.若A 和B 都是4次多项式,则A+B 一定是( )A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式21.已知yx x n m n m 2652与-是同类项,则( )A.1,2==y xB.1,3==y xC.1,23==y x D.0,3==y x 22.下列计算中正确的是( )A.156=-a aB.x x x 1165=-C.m m m =-2D.33376x x x =+三.化简下列各题(每题3分,共18分) 23.)312(65++-a a 24.b a b a +--)5(225.-32009)214(2)2(++--y x y x 26.-[]12)1(32--+--n m m27.)(4)()(3222222y z z y y x ---+- 28.1}1]1)1([{2222-------x x x x四.化简求值(每题5分,共10分)29.)]21(3)13(2[22222x x x x x x ------- 其中:21=x30.)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五.解答题(31.32题各6分,33.34题各7分,共20分)31.已知: 213227y a b b a +-与是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值.32.已知:A=2244y xy x +- ,B=225y xy x -+,求(3A-2B )-(2A+B )的值.。
第二章整式加减单元测试题第I卷〔选择题共30分〕、选择题〔每题3分,共30分〕1 .以下式子中,不是整式的是〔〕A. 3X ~ 5yB. —+bC. 8 兀2.关于单项式一xy3z2,以下说法正确的选项是〔A.系数是1 ,次数是5 B .系数是—1 ,次数是6C.系数是1 ,次数是6 D .系数是—1 ,次数是53 •多项式a3—4a2b2+3ab—1的项数与次数分别是〔〕A. 3 和4 B , 4 和4 C . 3 和3 D . 4 和34,一6a9b4和5a4n b4是同类项,那么12n—10的值是〔〕A. 17 B . 37 C . — 17 D . 985.用式子表示“ x的2倍与y的和的平方〞是〔〕A. 〔2x + y〕2B . 2x+y2C . 2x2+y2D , x〔2 + y〕26.整式x2—3x的值是4,那么3x2-9x + 8的值是〔〕A. 20 B . 4 C . 16 D . -47.观察如下图图形,那么第n个图形中三角形的个数是〔〕A. 2n+2 B . 4n+ 4 C . 4n D . 4n-48.某教学楼阶梯教室,第一排有m个座位,后面每一排都比前面一排多座位数是〔〕A. 4 B . 4nC. n+4(mr 1) D . 4(n- 1)9.A= 3a2+b2-c2, B= — 2a2—b2+3c:且A+ B+ C= 0,那么C=(A. a2+ 2c2B . — a2- 2c2C. 5a2+2b—4c2D . —5a2—2b2+4c210.如图,两个六边形的面积分别为16和9,两个阴影局部的面积分别为a的值为〔〕4个座位,那么第n排的a, b( a< b),那么b-A. 4 C. 6请将选择题答案填入下表:二、填空题(每题3分,共18分)11 .一m)n y 是关于x, y 的一个单项式且系数为 3,次数为4,那么nn=. 12 .假设关于x, y 的多项式4xy 3- 2ax 2- 3xy + 2x 2-1不含x 2项,那么a =.13 .把 a —b 看作一个整体,合并同类项: 3(a -b) +4(a -b)2-2(a - b) - 3(a -b)2-(a -b)2=14 .一列数2, 8, 26, 80,…,按此规律,那么第 n(n 为正整数)个数是.(用含n 的式子表示) 15 .某班学生在实践基地进行拓展活动,由于器材的原因,教练要求分成固定的 a 组,假设每组 5人,那么多出9名同学;假设每组 6人,最后一组的人数将不满,那么最后一组的人数用含a 的式子可表不为.16 .假设 |a + 1|+(b —;)2=0,那么 5a 2+3b 2 + 2(a 2—b 2) — (5a 2—3b 2)的值为.三、解做题(共52分)17 .(本小题总分值 6 分) 12a 2b 2x, 8a 3xy, 4m i nx 2, 60xyz 3.(1)观察上述式子,请写出这四个式子都具有的两个特征; (2)请写出一个新的式子,使该式同时具有你在(1)中所写出的两个共同特征.B. 5 D. 718.(本小题总分值6分)去掉以下各式中的括号: (1)8m — (3n +5);(2)n —4(3—2m);(3)2(a -2b) -3(2m-n).19.(本小题总分值6分)关于x, y的多项式x4+(m+2)x n y —xy2+3,其中n为正整数.(1)当m, n为何值时,它是五次四项式?(2)当m, n为何值时,它是四次三项式?20.(本小题总分值6 分)有这样一道题:“计算(2x 3— 3x2y — 2xy2) —(x 3— 2xy2 + y3) + ( — x3 + 3x2y1 、,, 1 ,, ................ ,, 1 ,, ,一,一 e 一—y3)的值,其中x=2, y=—1.〞甲同学把“ x=2'错抄成"x= —2',但他计算的结果也是正确的,试说明理由,并求出正确结果.21 .(本小题总分值6分)A= 2a2-a, B= —5a+1.(1)化简:3A- 2B+ 2;1 一一—,…(2)当a=—万时,求3A- 2B+ 2的值.22.(本小题总分值7分)一个四边形的周长是48 cm,第一条边长是a cm第二条边比第条边的2倍还长3 cmi第三条边长等于第一、第二两条边长的和.(1)用含a的式子表示第四条边长;(2)当a=7时,还能得到四边形吗?并说明理由.23.(本小题总分值7分)暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购置全票,那么学生享受半价优惠〞;乙旅行社说:“所有人按全票价的六折优惠〞.全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子表示甲、乙旅行社的收费;(2)假设有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.24.(本小题总分值8分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务.某地区沙漠原有面积是100万平方千米,为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果记录如下表:预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取举措,那么到第m年年底,该地区沙漠面积将变为多少万平方千米?(2)如果第5年后采取举措,每年改造0.8万平方千米沙漠(沙漠面积的扩大趋势不变),那么到第n年(n >5)年年底该地区沙漠的面积为多少万平方千米?(3)在(2)的条件下,第90年年底,该地区沙漠面积占原有沙漠面积的多少?1 . C 2, B 3 . B 4 . A 5. A 6. A 7. C 8. D9 . B10 . D11 . —27 12. 1 13. a-b 14. 3n— 1 15. 15- a 16. 317.解:此题答案不唯一.如:(1)①都是单项式;②次数都是 5.(2)14 ab2c2.18.解:(1)8 mn(3n+5)=8m 3n-5.(2) n —4(3 —2m) =n—(12 —8m) = n —12+8m(3)2( a-2b) -3(2mn n) =2a-4b-(6mn 3n) =2a—4b— 6m^ 3n.19.解:(1)由于多项式是五次四项式,所以n+1=5, 2w0,所以n = 4, mr5— 2.(2)由于多项式是四次三项式,所以m+ 2=0, n为任意正整数,所以m= — 2, n为任意正整数.20.解:(2x3— 3x2y — 2xy2) — (x3—2xy2 + y3) + ( — x3 + 3x2y —y3) =2x3—3x2y—2xy2—x3 + 2xy2—y3 -x3 + 3x2y- y3= - 2y3.由于化简后的结果中不含x,所以原式的值与x的取值无关.1 3当x =?y=—1 时,原式=—2X( —1)3=2.21.解:(1)3 A—2B+ 2一一 2 一一=3(2 a - a) — 2( — 5a+ 1)+2 2 2 .=6a -3a+ 10a— 2+ 2 = 6a +7a.一1 一(2)当a= —2时,c c c 八,1、2 ,1、 c3A- 2B+ 2=6X (-2)2+7X (-2)=- 2.22.解:(1)由题意,得第四条边长为48—a —(2a+3) — (a+2a+ 3) = (42 — 6a)cm.(2)不能.理由如下:当a= 7时,42-6a=0,所以第四条边长为0 cm,不符合实际意义,所以不能得到四边形.1一23.解:(1)甲旅仃社的费用为a+50%ax=(a+ &ax)兀,............... ......... 3 3 一乙旅行社的费用为(x+1) x 60%a=(三ax+^a)兀. 5 5(2)当x= 30时,甲旅行社的费用为= a+15a= 16a(元),乙旅行社的费用为3ax 31 = 93a(元). 5 593 .............................................由于a>0,所以16a<—a,所以选择甲旅行社更优惠. 524.解:(1)第m年年底的沙漠面积为100.2 +0.2( m 1) =(0.2 100)万平方千米.(2)第n年年底的沙漠面积为0.2n+100—0.8 • ( n—5) = (104 — 0.6 n)万平方千米.(3)在(2)的条件下,当n = 90时,“—..一1104-0.6 n=50, 50+ 100 = ,.r - _________ _ ,一,、,4一一,, 1即第90年年底,该地区沙漠面积占原有沙漠面积的万。
1.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可. 【详解】解:第1次操作,a 1=|23+4|-10=17; 第2次操作,a 2=|17+4|-10=11; 第3次操作,a 3=|11+4|-10=5; 第4次操作,a 4=|5+4|-10=-1; 第5次操作,a 5=|-1+4|-10=-7; 第6次操作,a 6=|-7+4|-10=-7; 第7次操作,a 7=|-7+4|-10=-7; …第2020次操作,a 2020=|-7+4|-10=-7. 故选:A . 【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.3.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C 解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义.4.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D解析:D 【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可. 【详解】第个图案中有黑色纸片3×1+1=4张 第2个图案中有黑色纸片3×2+1=7张, 第3图案中有黑色纸片3×3+1=10张, …第n 个图案中有黑色纸片=3n+1张. 当n=7时,3n+1=3×7+1=22. 故选D. 【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.5.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键. 6.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C 【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解. 【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-,∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数, 当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=,∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个, 即m=45. 故选:C . 【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.下列式子中,是整式的是( ) A .1x + B .11x + C .1÷x D .1x x+ A 解析:A 【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可. 【详解】解:A. 1x +是整式,故正确; B.11x +是分式,故错误; C. 1÷x 是分式,故错误;D.1x x +是分式,故错误. 故选A. 【点睛】本题主要考查了整式,关键是掌握整式的概念.8.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + D解析:D 【分析】利用大正方形的周长减去4个小正方形的周长即可求解. 【详解】解:根据图示可得:大正方形的边长为2a b +,小正方形边长为4a b-,∴大正方形的周长与小正方形的周长的差是: 2a b +×4-4a b-×4=a+3b. 故选;D. 【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.9.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( ) A .A B > B .A B =C .A B <D .无法确定A解析:A 【分析】作差进行比较即可. 【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6) =x 2-5x +2- x 2+5x +6 =8>0, 所以A >B . 故选A . 【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .10.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B . 【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号. 11.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3, 故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 12.根据图中数字的规律,则x y +的值是( )A .729B .593C .528D .738B解析:B 【分析】观察题中的数据发现,表格内左下角的数值是上面数的平方加一,右下角的数值是:上面的数×左下角的数+上面的数=右下角的数. 【详解】根据题中的数据可知: 左下角的数=上面的数的平方+1 ∴28165x =+=右下角的值=上面的数×左下角的数+上面的数 ∴888658528y x =+=⨯+= ∴65528593x y +=+= 故选:B. 【点睛】本题主要考查数字的变化规律,关键是找出规律,列出通式.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A 【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可. 【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元. 故选A . 【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键. 14.多项式33x y xy +-是( ) A .三次三项式 B .四次二项式C .三次二项式D .四次三项式D解析:D 【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了. 【详解】 解:由题意,得该多项式有3项,最高项的次数为4, 该多项式为:四次三项式. 故选:D . 【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关 15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +bC .6aD .10a -b C解析:C 【解析】 【分析】根据长方形的周长公式列出算式后化简合并即可. 【详解】∵长方形一边长为2a +b ,另一边为a -b , ∴长方形周长为:2(2a +b +a -b )=6a. 故选C. 【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键. 1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______.184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m的值.2.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a6=2a5﹣1=2×(2a4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.3.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=_____.65【分析】根据题目中数字的特点可知每组的个数依次增大每组中的数字都是连续的偶数然后即可求出2020是多少组第多少个数从而可以得到mn的值然后即可得到m+n的值【详解】解:∵将正偶数按照如下规律进行解析:65 【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m 、n 的值,然后即可得到m +n 的值. 【详解】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…, ∴第m 组有m 个连续的偶数, ∵2020=2×1010, ∴2020是第1010个偶数,∵1+2+3+ (44)44(441)2⨯+=990,1+2+3+…+45=45(451)2⨯+=1035, ∴2020是第45组第1010-990=20个数, ∴m =45,n =20, ∴m +n =65. 故答案为:65. 【点睛】本题考查探索规律,认真观察所给数据总结出规律是解题的关键.4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n 次时共有4+3(n-1)=3n+1试题解析:3n+1. 【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n 次时,共有4+3(n-1)=3n+1. 试题故剪n 次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3. 【分析】找出a 的次数的高低后,由低到高排列即可得出答案. 【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3. 【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键. 6.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2 【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解. 【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2, 当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2. 【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键. 7.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键 解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 8.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.9.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+,∴2224828b k b k a k k+=+=, 故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.10.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差 C .x 的平方与y 的差的倒数 D .x 与y 的差的平方的倒数B解析:B 【分析】根据代数式的意义,可得答案. 【详解】 解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B . 【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键. 3.若2312a b x y +与653a bx y -的和是单项式,则+a b =( ) A .3- B .0C .3D .6C解析:C 【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值. 【详解】解:根据题意可得:26{3a b a b +=-=,解得:3{a b ==, 所以303a b +=+=, 故选:C . 【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.4.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40 C .44 D .46A解析:A 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】 ∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36, 故选A. 【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键. 5.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( ) A .21- B .12- C .36 D .12B解析:B 【分析】根据同类项定义得出m 3=,代入求解即可. 【详解】解:∵322x y 和m 2x y -是同类项,∴m 3=,∴4m 24432412-=⨯-=-, 故选B . 【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.6.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-4B解析:B 【分析】直接利用同类项的概念得出n,m的值,即可求出答案.【详解】21412na b--与83mab是同类项,∴21184nm-=⎧⎨=⎩解得:121mn⎧=⎪⎨⎪=⎩则()()5711n m+-=14-故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.7.下列式子:222,32,,4,,,22ab x yz ab ca b xy y mxπ+---,其中是多项式的有()A.2个B.3个C.4个D.5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b,3,2ab,4,m-都是单项式;2x yzx+分母含有字母,不是整式,不是多项式;根据多项式的定义,232ab cxy yπ--,是多项式,共有2个.故选:A.【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.8.设a是最小的非负数,b是最小的正整数,c,d分别是单项式﹣x3y的系数和次数,则a,b,c,d四个数的和是()A.1 B.2 C.3 D.4D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4, ∴a ,b ,c ,d 四个数的和是4, 故选:D . 【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 9.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.10.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.11.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.12.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .2022A解析:A 【分析】设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2,分别令代数式为:2010,2014,2018,2022,算出x 再判断.【详解】解: 设第二个为x ,则第一个,第三个,第四个分别为:x -1,x +1,x +2,总和为:4x +2. 当4x+2=2010时,x=502,则x-1=501; 当4x+2=2014时,x=503,则x-1=502; 当4x+2=2018时,x=504,则x-1=503; 当4x+2=2022时,x=505,则x-1=504; 由图可知每行有9个数, ∵504÷9=56,可以除尽故504为某行的最后一位.表格如下:故选A. 【点睛】本题考查找规律的能力,关键在于通过图形找出四个相连数的关系列出方程. 13.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用. 14.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B 【分析】根据去括号法则解题即可. 【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c 故选B . 【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号. 15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A 【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可. 【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5, 故选:A . 【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.已知整数a 1,a 2,a 3,a 4…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,依此类推,则a 2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+4|=−|−2+4|=−2…所以n 是奇数解析:﹣1008 【解析】a 2=−|a 1+1|=−|0+1|=−1, a 3=−|a 2+2|=−|−1+2|=−1, a 4=−|a 3+3|=−|−1+3|=−2, a 5=−|a 4+4|=−|−2+4|=−2, …,所以n 是奇数时,a n =−12n -;n 是偶数时,a n =−2n;a 2016=−20162=−1008. 故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x ,再利用它们之间的关系,设出其它未知数,然后列方程.2.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的 解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案. 【详解】-.解:由已知单项式的排列规律可得第n个单项式为:(2)n n x-.故答案为:(2)n n x【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.3.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.4.===,……=m=_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】n+=代入即可得出答案.13n+,将210【详解】解:==……,n+13n+=210n∴=8∴=+=19m n故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.5.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b+ (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答; (2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答; (4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答,(5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -; (2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b+cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100aa b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b+ ;(4) 100a a b +; (5) 52y -.【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性. 6.若212m ma b -是一个六次单项式,则m 的值是______.2【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6再解即可【详解】由题意得解得故答案为:2【点睛】此题主要考查了单项式的次数关键是掌握单项式的相关定义解析:2 【分析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得2m+m=6,再解即可. 【详解】由题意,得26m m +=,解得2m =. 故答案为:2 【点睛】此题主要考查了单项式的次数,关键是掌握单项式的相关定义.7.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b 【分析】根据合并同类项法则化简即可. 【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b 【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 8.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31 【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可. 【详解】折叠1次的折痕为1,1121=-; 折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 9.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.10.如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米. 【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a ,b (a>b )由已知2231a b -=四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312 【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
第 1 页 共 3 页人教版2019—2020学年度上学期七年级数学第二章整式加减测试卷一、选择题(每小题2分,共20分)1. 下列说法正确的是A. 的系数是B. 单项式 的系数为,次数为C.次数为次D.的系数为2. 下列各组中的两项是同类项的是A.和B.和C.和D.和3. 下列各式成立的是A.B.C.D.4. 单项式的次数是A.B.C.D. 5. 已知单项式与是同类项,则的值是A.B.C.D.6. 下列说法错误的是A.的系数是B. 是多项式C. 的次数是D.是四次二项式7. 下列各式中,正确的是A.B.C.D.8. 已知,则多项式的值是A.B.C.D.9. 已知,,则的值为A.B.C.D.10. 如图,图形都是由同样大小的“星星”按一定的规律组成,其中第个图形有个“星星”,第个图形一共有个“星星”,第个图形一共有个“星星”,,则第个图形中“星星”的个数为个.A.B.C.D.二、填空题(每小题3分,共18分)11. 若,则.12. 单项式的系数是 ,次数是 ,多项式的次数是 .13. 如果单项式与的差仍然是一个单项式,则.14. 单项式的次数是 .15. 观察下列单项式: ,,,,,,按此规律第 个单项式是 .( 是正整数 )16. 若干个数,依次记为,,,,,若,从第二个数起每个数都等于与它前面那个数的差的倒数,则.三、解答题(共6小题;共62分)17. 合并同类项:(1);(2).18. 合并同类项.(1). ;(2). ;19. 合并同类项.(1).(2).20. 某工厂第一季度的电费为元,水费比电费的倍多元.第二季度电费比第一季度节约了,水费比第一季度多支出了.(1)该工厂第二季度水电费(电费与水费之和)为多少元?(2)该工厂第二季度水电费与第一季度水电费相比,是增加了还是减少了?增加或减少了多少元? 21. 某校羽毛球队需要购买支羽毛球拍和盒羽毛球,羽毛球拍市场价为元/支,羽毛球为元/盒.甲商场优惠方案为:所有商品折.乙商场优惠方案为:买支羽毛球拍送盒羽毛球,其余原价销售.(1)分别用的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当时,请你通过计算说明选择哪个商场购买比较省钱.22. 有若干个数,,,,,若,从第二个数起,每个数都等于“与它前面的那个数差的倒数”.(1)求;;(2)求的值;(3)是否存在的值,使?若存在,请求出的值.第 2 页共3 页解答:1. C2. B3. B4. B5. A6. A B、C、D、7. D8. B9. C 10. C11.12.,,13.14.15.16.17. (1)(2).18• (1)(2) 19. (1)(2)20. (1)第二季度电费为元,第二季度水费为元,所以第二季度水电费为元.(2),所以第二季度水电费与第一季度水电费相比,是增加了,增加了元.21. (1)甲商场:(元);乙商场:当时,(元),当时,(元).(2)当时,甲商场:(元);乙商场:(元).,选择乙商场购买比较省钱.22. (1);【解析】由题意可得:,,.(2)由题意可得:,则的值每个一循环,故,,,则.(3)从该题可以看出,,为连续三个数,从第一问中我们已经得出结论,任意三个连续的数字,它们三个数字均为,,,只不过排列顺序不同而已.因此,这三个数字相乘,得出的结果是:.又已知,利用倒推法,由,故这个值存在,它的值为.第 3 页共3 页。
人教版2019—2020学年上学期七年级数学第二章整式加减测试卷(含答案)1 / 4人教版2019—2020学年度上学期七年级数学第二章整式加减测试卷一、选择题(每小题2分,共20分)1. 下列说法正确的是A. 的系数是B. 单项式 的系数为,次数为C.次数为次D.的系数为2. 下列各组中的两项是同类项的是A.和B.和C.和D.和3. 下列各式成立的是A.B.C.D.4. 单项式的次数是A.B.C.D. 5. 已知单项式与是同类项,则的值是A.B.C.D.6. 下列说法错误的是A.的系数是B. 是多项式C. 的次数是D.是四次二项式7. 下列各式中,正确的是A.B.C.D.8. 已知,则多项式的值是A.B.C.D.9. 已知,,则的值为A.B.C.D.10. 如图,图形都是由同样大小的“星星”按一定的规律组成,其中第个图形有个“星星”,第个图形一共有个“星星”,第个图形一共有个“星星”,,则第个图形中“星星”的个数为个.A.B.C.D.二、填空题(每小题3分,共18分)11. 若,则.12. 单项式的系数是 ,次数是 ,多项式的次数是 .13. 如果单项式与的差仍然是一个单项式,则.14. 单项式的次数是 .15. 观察下列单项式: ,,,,,,按此规律第 个单项式是 .( 是正整数 )16. 若干个数,依次记为,,,,,若,从第二个数起每个数都等于与它前面那个数的差的倒数,则.三、解答题(共6小题;共62分)17. 合并同类项:(1);(2).18. 合并同类项.(1). ;(2). ;19. 合并同类项.(1).(2).20. 某工厂第一季度的电费为元,水费比电费的倍多元.第二季度电费比第一季度节约了,水费比第一季度多支出了.(1)该工厂第二季度水电费(电费与水费之和)为多少元?(2)该工厂第二季度水电费与第一季度水电费相比,是增加了还是减少了?增加或减少了多少元? 21. 某校羽毛球队需要购买支羽毛球拍和盒羽毛球,羽毛球拍市场价为元/支,羽毛球为元/盒.甲商场优惠方案为:所有商品折.乙商场优惠方案为:买支羽毛球拍送盒羽毛球,其余原价销售.(1)分别用的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当时,请你通过计算说明选择哪个商场购买比较省钱.22. 有若干个数,,,,,若,从第二个数起,每个数都等于“与它前面的那个数差的倒数”.(1)求;;(2)求的值;(3)是否存在的值,使?若存在,请求出的值.人教版2019—2020学年上学期七年级数学第二章整式加减测试卷(含答案)3 / 4解答:1. C2. B3. B4. B5. A6. A B 、C 、D 、7. D8. B9. C 10. C11.12.,, 13.14.15.16.17. (1)(2).18• (1)(2)19. (1)(2)20. (1) 第二季度电费为元,第二季度水费为元, 所以第二季度水电费为元.(2),所以第二季度水电费与第一季度水电费相比,是增加了,增加了元.21. (1) 甲商场:(元);乙商场:当时,(元),当时,(元).(2) 当时,甲商场:(元); 乙商场:(元).,选择乙商场购买比较省钱.22. (1);【解析】由题意可得:,,.(2) 由题意可得:,则 的值每个一循环,故,,,则.(3) 从该题可以看出,,为连续三个数,从第一问中我们已经得出结论,任意三个连续的数字,它们三个数字均为,,,只不过排列顺序不同而已.因此,这三个数字相乘,得出的结果是:.又已知, 利用倒推法,由,故这个值存在,它的值为.。
探索规律(习题)例题示范例1:观察图1至图4中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为M,则M=__________(用含n的代数式表示).图1图2图3图4思路分析做图形规律的题,我们一般从两个方面来研究:(1)观察图形的构成.(2)转化.观察本题的图形,发现后面的图形总比前面的图形多3个小圆圈,可以采用分类的手段进行解决.分成原来的和增加的两类.①2+3×1②2+3×2③2+3×3④2+3×4则第n个:2+3n=3n+2.验证:当n=1时,3n+2=5,成立.故第n个图形中有(3n+2)个小圆圈.(想一想,还有其他观察角度吗?)例2:观察下列球的排列规律(其中●是实心球,○是空心球):从第1个球起到第2019个球止,共有实心球________个.思路分析①判断该题是循环规律,查找重复出现的结构,即循环节;②观察图形的变化规律,发现每10个球为一个循环,每个循环节里有3个实心球.故2019÷10=201…9,201×3=603;③再从某个循环节开始查前9个球,发现有3个实心球,故总数为603+3=606(个). 巩固练习1.如下数表是由从1开始的连续自然数组成,观察规律并完成下列各题.(1)表中第8行的最后一个数是_____,它是自然数______的平方,第8行共有________个数;(2)用含n的代数式表示:第n行的第一个数是_________,最后一个数是_________,第n行共有_________个数.2.将1,-2,3,-4,5,-6,…按一定规律排成下表:第一行1第二行-2,3第三行-4,5,-6第四行7,-8,9,-10……(1)第8行的数是_________________________________;(2)第50行的第一个数是_______.3.下列图形由边长为1的正方形按某种规律排列而成,依此规律,则第8个图形中正方形有()A.38个B.41个C.43个D.48个4.如下图所示,摆第1个“小屋子”要5枚棋子,摆第2个要11枚棋子,摆第3个要17枚棋子,则摆第30个要_________枚棋子.5.下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形的个数为_________.图1图2图36.观察下列图形,根据图形及相应点的个数的变化规律,第n个图形中点的个数为__________.图1图2图3图4图57.如图1,一等边三角形的周长为1,将这个等边三角形的每边三等分,在每边上分别以中间的一段为边作等边三角形,然后去掉这一段,得到图2;再将图2中的每一段作类似变形,得到图3;按上述方法继续下去得到图4,则第4个图形的周长为________,第n个图形的周长为________________.图1图2图38.一个纸环链,纸环按“红黄绿蓝紫”的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()红黄绿蓝紫红黄绿……黄绿蓝紫A.2017B.2018C.2019D.20209.小时候我们就用手指练习过数数,一个小朋友按图中的规则练习数数,数到2021时对应的手指头是()A.大拇指B.食指C.小拇指D.无名指10.如图,平面内有公共端点的八条射线OA,OB,OC,OD,OE,OF,OG,OH,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,8,9,….(1)“20”在射线______________上;(2)请任意写出三条射线上的数字排列规律;(3)“2019”在哪条射线上?思考小结1.我们学习了数的规律、式的规律、图形规律、循环规律等,它们都有对应的操作方法.(1)数与式的规律:①_________;②_________;③处理符号;④验证.(2)图形规律:①观察图形的构成:____________________;②转化:________________________________________.(3)循环规律:①________________;②____________________.【参考答案】巩固练习1.(1)64,8,15;(2)(n-1)2+1(或n2-2n+2),n2,(2n-1).2.(1)29,-30,31,-32,33,-34,35,-36;(2)-1226.3.C4.1795.5n+36.n2-n+17.,8.B9.C10.(1)OD(2)射线OA:8n-7;射线OB:8n-6;射线OC:8n-5;射线OD:8n-4;射线OE:8n-3;射线OF:8n-2;射线OG:8n-1;射线OH:8n.任选三个即可.(3)在射线OC上.思考小结1.(1)①标序号;②找结构.(2)①分类,去重,补形;②转化为数的规律或其他图形的规律.(3)①确定起始位置;②找循环节.。
人教版2019—2020学年度七年级数学上册第二章《整式的加减》测试题及答案(满分:100分 答题时间:60分钟)温馨提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!一.选择题(每小题4分,共20分)1. 买一个笔盒需要m 元,买一个铅笔需要n 元,则买4个笔盒、7个铅笔共需要( )元(A)4m+7n (B)28mn (C)7m+4n (D)11mn 2. 下列判断中正确的是( )(A) 3a 2bc 与bca 2不是同类项 (B) 52nm 不是整式。
(C) 单项式-x 3y 2的系数是-1 (D) 3x 2-y +5xy 2是二次三项式 3. 下列说法正确的是( )(A)372ba -的系数是7- (B)xy 的系数为0(C)31πx 2的系数为31(D)3 x 2的系数为3. 4. 计算:2223y xy x --与2238y xy x +- 的差,结果正确的是( ) (A)2232y xy x --- (B) 2232y xy x ++(C) 2238y xy x -+- (D) 2225y xy x -+- 5. 下列计算正确的是( ) (A) 4x -9x+6x=-x (B)21a-21a=0 (C)x 3-x 2=x (D)xy-2xy=3xy 二.填空题(每小题4分,共20分)6.已知代数式132+n b a 与223b a m --是同类项,则m=_______,n=________. 7. 飞机的无风航行速度为a 千米/小时,风速为20千米/小时,飞机顺风飞行4小时的行程为 千米/小时。
8. 单项式-4πxy 3的次数为 。
9.三个连续奇数,中间一个是n ,则这三个数的和为 。
10. 写出-5x 3y 2的一个同类项 。
三.解答题(共60分)11.计算(每小题6分,共12分):(1) 2237(43)2x x x x ⎡⎤----⎣⎦; (2) a +(a 2-2a )+(a -2a 2 );12. 计算(每小题6分,共12分): (1) 7xy+xy 3+4+6x-52xy 3-5xy-3 (2) 144mn mn -13. (本题8分)a 2+4ab -b 2加上一个多项式得10a 2-ab ,求这个多项式.14. (本题12分) 按照下列步骤做一做:(1)一个两位数,十位上的数是x ,个位上的数是y ,请写出这个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数; (3)求这两个两位数的和.结果能被11整除吗?为什么?15先化简,再求值(每小题8分,共16分):(1) 3xy 2-[xy -2(xy -23x 2y )+3 xy 2]+3x 2y ,其中x =2,y =-1.(2)) (a 2+2a )-2(21a 2+4a),其中a =-3;整式的加减参考答案1-5、A 、C 、D 、D 、B .6、5,1;;7、4a+80;8、4;9、3n ;10、5x 3y 2等。
第二章 整式的加减单项式与多项式1.下列说法正确的是 ( )A.8-31是多项式 B.yz x 31-是三次单项式,系数为0C.123322-+-y x xy x 是五次多项式D.xb5-是单项式 2.多项式7234423-+-m y x x 的项数与次数分别是 ( ) A.4、9 B.4、6 C.3、9 D.3、103.如果m 是三次多项式,n 是三次多项式,那么m+n 一定是 ( ) A.六次多项式 B.次数不高于3的整式 C.三次多项式 D.次数不低于3的整式4.一个五次多项式,它任何一项的次数 ( ) A.都小于5 B.都等于5 C.都不小于5 D.都不大于55.下列说法正确的是 ( ) A.x 不是单项式 B.x+2y 是单项式 C.-x 的系数是-1 D.0不是单项式6.在式子20a ,42t ,50,3.5x ,vt+1,-m 中,单项式的个数是 ( ) A.3个 B.4个 C.5个 D.6个7.单项式22yz x -的系数、次数分别是 ( ) A.0,2 B.0,4 C.-1,5 D.1,48.单项式(-1)m m ab 的 ( ) A.系数是-1,次数是m B.系数是1,次数是m+1 C.系数是-1,次数是2m+1 D.系数是(-1)m ,次数是m+19.若单项式124+-m b a 与722+-m m b a 是同类项,则m 的值为 ( ) A.4 B.2或-2 C.2 D.-210.15223234-+--a ab b a a 是 次 项式,它的最高次项是 ,常数项是 。
把它按a 的升幂排列是 。
11.如果多项式()113+--x n x m 是关于x 的二次二项式,则m = ,n = . 12.多项式x x xy 52132-+-的项分别是 . 13.若y x x b a --2与525b a 的和仍是单项式,则x= ,y= .14.单项式5332yz x -的系数是 ,次数是 .15.四次单项式(m-n)x 3-m y 的系数为-3,求m ,n 的值.16.如果单项式3432-m b a 的次数与单项式22331z y x 的次数相同,试求m 的值。
一、选择题1.下列代数式的书写,正确的是( ) A .5nB .n5C .1500÷tD .114x 2y 2.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a) 3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100 C .101x 100 D .﹣101x 100 4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .65.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .226.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .857.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .668.下面去括号正确的是( ) A .2()2y x y y x y +--=+- B .2(35)610a a a a --=-+ C .()y x y y x y ---=+- D .222()2x x y x x y +-+=-+ 9.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣410.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b +11.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17B .67C .-67D .012.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差13.若23,33M N x M x +=-=-,则N =( ) A .236x x +-B .23x x -+C .236x x -- D .23x x -14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个 15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1二、填空题16.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______. 18.22223124,4135-=-225146-=⨯ ,……,若221012m m -=⨯+,则m =_____________19.观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2 019个式子为__________. 20.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.21.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.22.在括号内填上恰当的项:22222x xy y -+-=-(_____________________).23.已知22 251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式 2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.24.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.25.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)26.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.三、解答题27.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2; 13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2; ∴13+23+33+43+53=(______ )2= ______ . 根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2. (2)猜想:113+123+133+143+153= ______ .28.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.29.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)30.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.。
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±82.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y 3.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数4.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 5.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009 6.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3 C .4 D .57.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 8.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .669.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 10.一个多项式与²21x x -+的和是32x -,则这个多项式为( )A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 11.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 12.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2B .﹣2C .3D .﹣3 13.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 14.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - 15.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+- C .2513a a --D .21a a -+- 二、填空题16.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时17.观察下列一组图形中点的个数,其中第1个图中共有 4 个点,第2个图中共有 10 个点,第3个图中共有 19 个点, 按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.18.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.19.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.20.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④21.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 22.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.23.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).24.已知()11nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =;…;则123a a a ++456a a a +++的值为______.25.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.26.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.三、解答题27.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.28.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.29.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?30.化简并求值:已知2232A a b ab abc =-+,小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)小强说正确结果的大小与c 的取值无关,对吗?请说明理由.(3)若18a =,15b = ,求正确结果的代数式的值.。
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4 B .8 C .±4 D .±8D解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 2.下面用数学语言叙述代数式1a﹣b ,其中表达正确的是( ) A .a 与b 差的倒数 B .b 与a 的倒数的差 C .a 的倒数与b 的差 D .1除以a 与b 的差C解析:C 【分析】根据代数式的意义,可得答案. 【详解】用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C . 【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答. 3.与(-b)-(-a)相等的式子是( ) A .(+b)-(-a) B .(-b)+a C .(-b)+(-a) D .(-b)-(+a)B解析:B 【分析】将各选项去括号,然后与所给代数式比较即可﹒ 【详解】解: (-b)-(-a)=-b+a A. (+b)-(-a)=b+a ; B. (-b)+a=-b+a ; C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒ 故选:B ﹒ 【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒ 4.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( )A .14B .14-C .4D .-4B解析:B 【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案. 【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩则()()5711n m +-=14-故答案选B. 【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项. 5.下列各代数式中,不是单项式的是( ) A .2m - B .23xy -C .0D .2tD 解析:D 【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择. 【详解】A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D . 【点睛】本题考查单项式的定义,较为简单,要准确掌握定义.6.设a是最小的非负数,b是最小的正整数,c,d分别是单项式﹣x3y的系数和次数,则a,b,c,d四个数的和是()A.1 B.2 C.3 D.4D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4,∴a,b,c,d四个数的和是4,故选:D.【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.7.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A.2+6n B.8+6n C.4+4n D.8n A解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n个“金鱼”需用火柴棒的根数为6n+2.故选:A.【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键.8.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1 B.5y3-3y2-2y-6 C.5y3+3y2-2y-1 D.5y3-3y2-2y-1D 解析:D【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1. 故答案为D . 【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键. 9.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+- D .如果||||x y =,那么x y = B解析:B 【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可. 【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误; 故选:B. 【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.10.下列说法正确的是( ) A .单项式34xy -的系数是﹣3 B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C解析:C 【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可. 【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误; 故选:C . 【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.11.下列同类项合并正确的是( ) A .x 3+x 2=x 5 B .2x ﹣3x =﹣1 C .﹣a 2﹣2a 2=﹣a 2 D .﹣y 3x 2+2x 2y 3=x 2y 3D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误; B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误; C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误; D 、系数相加字母及指数不变,故D 正确; 故选:D . 【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( ) A .2和8 B .4和8- C .6和8 D .2-和8- D解析:D 【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答. 【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8. 故选D . 【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数; (2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数. 13.已知多项式()210mx m x +--是二次三项式,m 为常数,则m 的值为( )A .2-B .2C .2±D .3± A解析:A 【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可. 【详解】 解:因为多项式()210m xm x +--是二次三项式,∴m-2≠0,|m|=2, 解得m=-2, 故选:A. 【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 14.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2C .0D .4A解析:A 【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解. 【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2. 故选:A . 【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键. 15.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个 B .8个C .4个D .5个C解析:C 【分析】根据单项式的定义逐一判断即可. 【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式, -2是单项式, 3b-是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个,故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.1.数字解密:第一个数是3=2+1,第二个数5=3+2,第三个数是9=5+4,第四个数17=9+8,……,观察并猜想第六个数是_______.65【分析】设该数列中第n个数为an (n为正整数)根据给定数列中的前几个数之间的关系可找出变换规律an=2an ﹣1﹣1依此规律即可得出结论【详解】解:设该数列中第n个数为an(n为正整数)观察发现规解析:65【分析】设该数列中第n个数为a n(n为正整数),根据给定数列中的前几个数之间的关系可找出变换规律“a n=2a n﹣1﹣1”,依此规律即可得出结论.【详解】解:设该数列中第n个数为a n(n为正整数),观察,发现规律:a1=3=2+1,a2=5=2a1﹣1,a3=9=2a2﹣1,a4=17=2a3﹣1,…,a n=2a n﹣1﹣1.∴a6=2a5﹣1=2×(2a4﹣1)﹣1=2×(2×17﹣1)﹣1=65.故答案为65.2.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.3.将连续正整数按以下规律排列,则位于第7行第7列的数x是________________.?136********259142027?48131926??7121825??111724??1623??22?????x?【分析】先根据第一行的第一列的数以及第二行的第二列的数第三行的第三列数第四行的第四列数进而得出变化规律由此得出结果【详解】第一行的第一列的数是1;第二行的第二列的数是5=1+4;第三行的第三列的数是解析:85【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列数,第四行的第四列数,进而得出变化规律,由此得出结果.【详解】第一行的第一列的数是 1;第二行的第二列的数是 5=1+4;第三行的第三列的数是 13=1+4+8;第四行的第四列的数是 25=1+4+8+12;......第n行的第n列的数是1+4+8+12+...+4(n-1)=1+4[1+2+3+...+(n+1)]=1+2n(n-1);∴第七行的第七列的数是1+2×7×(7-1)=85;故答案为:85.【点睛】本题考查数字的变化规律,学生通过观察、分析、归纳发现其中的规律,从而利用规律解决问题.4.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024 【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案. 【详解】由图可知分割1次得到正方形的个数为4; 分割2次得到正方形的个数为216=4个; 分割3次得到正方形的个数为364=4个; …以此类推,分割5次得到正方形的个数为:54=1024个, 故答案为:1024. 【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.5.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2 【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可. 【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2. 【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 6.一个长方形的周长为68a b +,其一边长为23a b +,则另一边长为______.【分析】根据长方形的周长公式列出代数式求解即可【详解】解:由长方形的周长=2×(长+宽)可得另一边长为:故答案为:a+b 【点睛】本题考查了整式的加减长方形的周长公式列出代数式是解决此题的关键 解析:+a b【分析】根据长方形的周长公式列出代数式求解即可. 【详解】解:由长方形的周长=2×(长+宽)可得,另一边长为:()()68223a b a b a b +÷-+=+. 故答案为:a +b . 【点睛】本题考查了整式的加减,长方形的周长公式列出代数式是解决此题的关键.7.如图,大、小两个正方形ABCD 与正方形BEFG 并排放在一起,点G 在边BC 上.已知两个正方形的面积之差为31平方厘米,则四边形CDGF 的面积是______平方厘米.【分析】设出两个正方形边长分别为ab (a>b )表示正方形面积之差用ab 表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab (a>b )由已知四边形的面积为:故答案为:【点睛】本题考查 解析:312【分析】设出两个正方形边长分别为a ,b (a>b ),表示正方形面积之差,用a 、b 表示四边形CDGF 的面积,进行整体代入即可. 【详解】解:设两个正方形边长分别为a ,b (a>b ) 由已知2231a b -= 四边形CDGF 的面积为:()()()()()()2211113122222DC GF GC DC GF BC BG a b a b a b +⋅=+-=+-=-= 故答案为:312【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。
一、选择题1.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg2.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元3.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12 4.下列计算正确的是( ) A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9 5.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 6.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-47.下列各代数式中,不是单项式的是( )A .2m -B .23xy - C .0 D .2t8.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 9.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n10.把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是( )A .2+a bB .+a bC .3a b +D .3a b + 11.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-212.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4 13.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c 14.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+- C .2513a a -- D .21a a -+- 15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +二、填空题16.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 17.如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.18.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.19.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.20.已知轮船在静水中的速度为(a +b )千米/时,逆流速度为(2a -b )千米/时,则顺流速度为_____千米/时21.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)22.多项式223324573x x y x y y --+-按x 的降幂排列是______。
2019-2020 学年七年级数学上册第二章《整式的加减》期末知识点复习新人教版1.单项式:由与的乘积组成的式子叫做单项式. 单独的一个数或字母也是单项式 .2.系数:单项式前面的叫做这个单项式的系数 .3.单项式的次数:一个单项式中,所有的和叫做这个单项式的次数 .4.多项式:几个单项式的和叫做多项式 . 其中,每个叫做多项式的项,不含字母的项叫做.5.多项式的次数:多项式里的次数,叫做这个多项式的次数 .6.整式:与统称整式 .7.同类项:相同,并且相同字母的也相同的项叫做同类项. 几个常数项也是.8. 合并同类项:把多项式中的合成一项,叫做合并同类项.9.去括号时符号变化规律:若是括号外的因数是正数,去括号后原括号内各项的符号与原来的符号;若是括号外的因数是负数,去括号后原括号内各项的符号与原来的符号.一般地,几个整式相加减,若是有括号就先,尔后再合并.第二章《整式的加减》复习收效检测一. 填空题(每题 3 分,共36 分)1.单项式3x2减去单项式4x2 y,5x 2 ,2x2 y 的和,列算式为,化简后的结果是.2.当 x 2 时,代数式-x22x1=, x22x1=.3.写出一个关于 x 的二次三项式,使得它的二次项系数为 -5 ,则这个二次三项式为.4.112010x1.已知: x 1 ,则代数式 (x ) 5 的值是x x x5.张大伯从报社以每份0.4 元的价格购进了 a 份报纸,以每份0.5 元的价格售出了 b 份报纸,节余的以每份元的价格退回报社,则张大伯卖报收入元 .6. 计算: 3x3 5x 7,(5a 3b) (9ab) =.7. 计算: ( m 3m 5m2009m)( 2m 4m 6m2008m)=.8. - a 2bc 的相反数是, 3=,最大的负整数是.9. 若多项式 2x 23 7的值为 10,则多项式 6x 29x7 的值为.x(2)23 n 2 是关于 , 的六次单项式,则nm x ym10. 若, =.11. 已知 a 2 2ab 8,b 2 2ab 14,则a 2 4ab b 2; a 2 b 2.12. 多项式 3 2 2 x 7 x 3 1是 次项式,最高次项是 ,常数项是.x二. 选择题(每题 3 分,共 30 分)13. 以低等式中正确的选项是( )A. 2x5 (5 2x)B. 7a 3 7( a 3)C. - a b (a b)D. 2x 5 (2x 5)14. 下面的表达错误的选项是()( 2 .a2 ) 的意义是 与 的2倍的和的平方A.B. a 2b 2的意义是 a 与 b 2 的 2 倍的和C. ( a) 3 的意义是 a 的立方除以2 b 的商2bD. 2(a b)2的意义是 a 与b 的和的平方的 2 倍15. 以下代数式书写正确的选项是()A. a48B.xy C.a(xy)D.1 1abc216. - ( a b c) 变形后的结果是()A. - a b cB. - a b cC. - a b cD. - a b c17. 以下说法正确的选项是( )A. 0 不是单项式B. x 没有系数C. 7x 3 是多项式 D.xy 5 是单项式x18. 以下各式中 , 去括号或添括号正确的选项是()A.a 2 (2ab c)a 2 2ab cB. a 3x 2 y 1 a ( 3x 2y 1)C.3x [5x( 2x 1)] 3x 5x2x 1D. - 2x y a 1 ( 2x y) (a 1)19. 代数式 a1 a b1 2bc,3mn)2a , 4xy,, a,2009, a中单项式的个数是(32420. 若 A 和 B 都是 4 次多项式,则A+B 必然是()A.8 次多项式次多项式C. 次数不高于 4 次的整式D. 次数不低于 4 次的整式21. 已知 2m 6 n 与5x m 2x n y 是同类项,则()A.x2, y1B.x 3, y 1C. x 3, y1 D.x 3, y0 222. 以下计算中正确的选项是()A.6a5a1B.5x6x11xC. m2m mD. x36x37x3三. 化简以下各题(每题 3 分,共 18分)23. 56(2a a1)24.2a(5b a) b325. - 3 (2x y) 2(4x1y) 200926.- 2m 3(m n 1) 2 122 7. 3(x2y 2 ) ( y2z2 ) 4( z2y 2 )28.x 2{ x 2[ x 2( x21) 1] 1}1四. 化简求值(每题5分,共 10 分)2x2[x22(x23x1)3(x2 1 2 )]其中:1x29.x230. 2(ab22a 2b) 3( ab2 a 2b) (2ab22a 2b)其中:a2,b1五.解答题( 31.32 题各 6 分, 33.3 4 题各 7 分,共 20 分)31. 已知:2a2b y 1与7b3a2是同类项,求代数式: 2x2 6 y2m( xy 9y2 ) (3x23xy7 y2 )的值 .32. 已知: A=4x24xy y 2,B=x2xy 5y2,求(3A-2B)-(2A+B)的值.。
一、填空题1.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.2.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.3.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 4.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.5.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.6.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
一、选择题1.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.2.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 3.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-2 3020302222a b a b a b a a b aa b++++ -+-=⨯+⨯)()=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.4.下列关于多项式21ab a b--的说法中,正确的是()A.该多项式的次数是2 B.该多项式是三次三项式C.该多项式的常数项是1 D.该多项式的二次项系数是1-B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A、多项式21ab a b--次数是3,错误;B、该多项式是三次三项式,正确;C、常数项是-1,错误;D、该多项式的二次项系数是1,错误;故选:B.【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.5.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是()A.2 B.﹣2 C.0 D.4A解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0,∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A.【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.6.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D 解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b -的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.7.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 8.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.9.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.下列去括号正确的是( )A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x +--=+-+D .()()223423422x y x x y x --+=--+ C解析:C【分析】依据去括号法则计算即可判断正误.【详解】 A. 221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误;B. ()8347831221a ab b a ab b --+=-+-,故此选项错误;C. ()()222353261063x y x x y x +--=+-+,此选项正确;D. ()()223423422x y x x y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.12.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =()A .17B .67C .-67 D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+,∵不含二次项,∴6﹣7m =0,解得m =67.故选:B .本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 13.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.14.一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C 解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.16.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.17.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.18.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 19.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 20.一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( ) A .1 B .-1 C .2020 D .2020- A 解析:A【分析】首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===---32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 21.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.22.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A 解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】 本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.23.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 24.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .64B .77C .80D .85D解析:D【分析】 观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为()()122n n +++n 2,根据规律求解. 【详解】通过观察,得到小圆圈的个数分别是:第一个图形为:()1222+⨯+12=4,第二个图形为:()1332+⨯+22=10,第三个图形为:()1442+⨯+32=19,第四个图形为:()1552+⨯+42=31,…,所以第n个图形为:()()122n n+++n2,当n=7时,()()72712+++72=85,故选D.【点睛】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.25.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.26.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.27.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.28.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.29.代数式x 2﹣1y 的正确解释是( ) A .x 与y 的倒数的差的平方B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.30.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.。
整式求值(讲义)➢课前预习1.若a=1,则a+1=_____;若a2=1,则a2-3=_____;若a+b=3,则2(a+b)=_____.2.对于整式ax+4,当x=1时,ax+4=_______;当x=2时,ax+4=_______;当x=3时,ax+4=_______.若整式ax+4的值不受x取什么值的影响,即与x无关,只需a_______,理由是__________________.➢知识点睛1.整体思想:从问题的整体性质出发,发现问题的整体结构特征,通过对问题整体结构的分析和改造,对问题进行整体处理的解题思想叫做整体思想.整体代入是整体思想的一个重要应用.2.整体代入的思考方向①求值困难,考虑_____________;②化简________________,对比确定________;③_____________,化简.➢精讲精练1.若a2+2a=1,则整式2(a2+2a)3-5(a2+2a)-7的值是_______.2.若整式2a2+3b的值是6,则整式4a2+6b+8的值是_____.3.已知,求整式的值.4.当时,整式的值是2 019;则当时,整式的值是________.5.当时,整式的值是7;则当时,整式的值是_______.6.当时,整式的值是-17;则当时,整式的值是_______.7.已知,求的值.8.若不论x取何值,关于x的多项式的值都不变,则m=______,n=______.9.若关于x,y的多项式的值与x无关,求m的值.10.有这样一道题,计算的值,其中x=1,y=2;甲同学把“x=1”错抄成“x=-1”,但他的计算结果却是正确的,你说这是为什么?11.若a表示一个两位数,b表示一个一位数,把b放在a的左边组成一个三位数,则这个三位数用整式可表示为________.12.若x表示一个两位数,y表示一个三位数,把x放在y的左边组成一个五位数,则这个五位数用整式可表示为________.13.一个三位数能不能被3整除,只要看这个数的各位数字的和能不能被3整除,这是为什么?四位数能否被3整除是否也有这样的规律?你还能得到哪些结论?14.已知x,y,z,m,n满足:①与是同类项;②.求多项式的值.【参考答案】➢课前预习1.2;-2;6.2.a+4;2a+4;3a+4.=0,0乘以任何数都得0.➢知识点睛2.①整体代入;②已知及所求,整体;③整体代入.➢精讲精练1.-102.203.164.-2 0175.-176.227.178.1,39.m=410.略11.100b+a12.1 000x+y13.设这个三位数的百位数字为a,十位数字为b,个位数字为c,则该数可表示为100a+10b+c,则100a+10b+c=(99+1)a+(9+1)b+c=99a+9b+a+b+c=9(11a+b)+(a+b+c)9(11a+b)一定能被3整除,只要(a+b+c)能够被3整除,则这个三位数就能够被3整除.对四位数也存在类似的规律,理由同上.结论:①对任意一个整数,如果各个数位上的数字之和能够被3整除,则这个数就能够被3整除.②对任意一个整数,如果各个数位上的数字之和能够被9整除,则这个数就能够被9整除.14.4。