自控原理超前滞后校正
- 格式:docx
- 大小:174.48 KB
- 文档页数:7
定常系统的频率法超前校正1问题描述用频率法对系统进行校正,是利用超前校正网络的相位超前特性来增大系统的相位裕量,从而提高系统的稳定性,致使闭环系统的频带扩展,以达到改善系统暂态响应的目的。
但系统频带的加宽也会带来一定的噪声干扰,为了系统具有满意的动态性能,高频段要求幅值迅速衰减,以减少噪声影响。
2设计过程和步骤2.1题目 已知单位反馈控制系统的开环传递函数:设计超前校正装置,使校正后系统满足:2.2计算校正传递函数(1)根据稳态误差的要求,确定系统的开环增益K则解得100k =(2)由于开环增益100k =,在MATLAB 中输入以下命令:z=[ ] ;p=[0,-10,-100];k=100000;[num,den]=zp2tf(z,p,k);[mag,phase,w]=bode(num,den);margin(mag,phase,w);则可得未校正系统的伯德图如图1所示:图1 校正前系统的伯德图由图中可以看出相位裕量角为061.1(3)谐振峰值为%0.161 1.250.4r M σ-=+=, 给定系统的相位裕量值1arcsin()53.1301r M γ==,由于未校正系统的开环对数幅频特性在剪切频率处的斜率为40/db dec -,一般取005~10ε=,在这里取为10,超前校正装置应提供的相位超前量φ,即:5201.611061.11301.531=+-=+-==εγγφφmε是用于补偿因超前装置的引入,使系统的剪切频率增大而增加的相角迟后量。
(4)根据所确定的最大相位超前角m φ,按下式计算相应的α(5)计算校正装置在m w 处的幅值110log α。
由于校正系统的对数幅频特性图,求得其幅值为110log α-处的频率,该频率m φ就是校正后系统的开环剪切频率c w ,即76.80==m c ωω(6)确定校正网络的转折频率和1ω、2ω4946.200644.076.8011=⨯===αωωm T ,(7)画出校正后系统的伯德图,并验算相应的相位裕量是否满足要求?如果不满足,则改变ε值,从步骤(3)开始重新进行计算。
滞后-超前校正——课程设计一、设计目的:1. 了解控制系统设计的一般方法、步骤。
2. 掌握对系统进行稳定性的分析、稳态误差分析以及动态特性分析的方法。
3. 掌握利用MATLAB 对控制理论内容进行分析和研究的技能。
4. 提高分析问题解决问题的能力。
二、设计内容与要求:设计内容:1. 阅读有关资料。
2. 对系统进行稳定性分析、稳态误差分析以及动态特性分析。
3. 绘制根轨迹图、Bode 图、Nyquist 图。
4. 设计校正系统,满足工作要求。
设计条件:1、被控制对象的传递函数是m m 1m 2012mn sn 1n 2012nb s b s b s b ()a s a a s a G S ----+++⋯+=+++⋯+(n≥m)2、参数a0,a1,a2,...an和b0,b1,b2,...bm因小组而异。
设计要求:1. 能用MATLAB 解复杂的自动控制理论题目。
2. 能用MATLAB 设计控制系统以满足具体的性能指标。
3. 能灵活应用MATLAB 的CONTROL SYSTEM 工具箱和SIMULINK 仿真软件,分析系统的性能。
三、设计步骤:1、自学MATLAB软件的基本知识,包括MATLAB的基本操作命令。
控制系统工具箱的用法等,并上机实验。
2、基于MALAB用频率法对系统进行串联校正设计,使其满足给定的领域性能指标。
要求程序执行的结果中有校正装置传递函数和校正后系统开环传递函数,校正装置的参数T,α等的值。
已知开环传递函数为G(S)= 0(2)(40)k s s s ++,使用频率法设计串联滞后—超前校正装置,使系统的相角裕度大于等于40°,静态速度误差系数等于20。
校正前根据上式可化简G(S)= 00.0125(0.51)(0.0251)k s s s ++,所以公式G(S)=20(0.51)(0.0251)s s s ++,所以=1,则c w = 6.1310,相角裕度γ为9.3528。
串联超前校正和滞后校正的不同之处在控制系统中,超前校正和滞后校正是两种常见的校正方法。
它们都是为了提高系统的稳定性和性能而采取的措施。
然而,它们的实现方式和效果却有很大的不同。
本文将从理论和实践两个方面,分别探讨串联超前校正和滞后校正的不同之处。
一、理论分析1. 超前校正超前校正是指在控制系统中,通过提前控制信号的相位,使得系统的相位裕度增加,从而提高系统的稳定性和响应速度。
具体来说,超前校正是通过在控制信号中加入一个比例项和一个积分项,来提高系统的相位裕度。
这样,系统就能更快地响应外部干扰和变化,从而提高系统的性能。
2. 滞后校正滞后校正是指在控制系统中,通过延迟控制信号的相位,使得系统的相位裕度减小,从而提高系统的稳定性和抗干扰能力。
具体来说,滞后校正是通过在控制信号中加入一个比例项和一个微分项,来减小系统的相位裕度。
这样,系统就能更好地抵抗外部干扰和变化,从而提高系统的性能。
二、实践应用1. 超前校正超前校正在实践中的应用非常广泛。
例如,在电力系统中,超前校正可以用来提高电力系统的稳定性和响应速度。
在机械控制系统中,超前校正可以用来提高机械系统的精度和响应速度。
在化工生产中,超前校正可以用来提高化工生产的稳定性和生产效率。
2. 滞后校正滞后校正在实践中的应用也非常广泛。
例如,在飞行控制系统中,滞后校正可以用来提高飞行器的稳定性和抗干扰能力。
在汽车控制系统中,滞后校正可以用来提高汽车的稳定性和安全性。
在医疗设备中,滞后校正可以用来提高医疗设备的精度和稳定性。
总之,串联超前校正和滞后校正是两种常见的校正方法,它们都是为了提高系统的稳定性和性能而采取的措施。
然而,它们的实现方式和效果却有很大的不同。
在实践中,我们需要根据具体的应用场景和需求,选择合适的校正方法,以达到最佳的控制效果。
自控原理超前滞后校正自动控制原理课程设计定常系统的频率法超前校正1问题描述用频率法对系统进行校正,是利用超前校正网络的相位超前特性来增大系统的相位裕量,从而提高系统的稳定性,致使闭环系统的频带扩展,以达到改善系统暂态响应的目的。
但系统频带的加宽也会带来一定的噪声干扰,为了系统具有满意的动态性能,高频段要求幅值迅速衰减,以减少噪声影响。
2设计过程和步骤2.1题目已知单位反馈控制系统的开环传递函数:G(s)?711S(S?1)(S?1)26设计超前校正装置,使校正后系统满足:r?40o?2o,wc?1rad/s,h?10要求:1、分析建立系统校正环节模型,给出校正后系统的MATLAB仿真结果;2、运用EWB搭建模拟电路,分别演示校正前后的效果;3、硬件系统搭建并实现。
2.2计算校正传递函数(1)MATLAB系统校正前程序如下:num1=[7];den1=[1/12 2/3 1 0];sys1=tf(num1,den1);margin(sys1);grid则可得未校正系统的伯德图如图1所示:自控原理课程设计Bode DiagramGm = 1.16 dB (at 3.46 rad/sec) , Pm = 3.36 deg (at 3.24 rad/sec) Magnitude (dB)Phase (deg)10101010Frequency (rad/sec)1010图1 校正前系统的伯德图由图中可以看出相位裕量角为3.36oMATLAB系统校正后程序如下:num1=[7];den1=[1/12 2/3 1 0];sys1=tf(num1,den1); num2=[8.2 1];den2=[35.2 1];sys2=tf(num2,den2); sysa=series(sys1,sys2);margin(sysa);grid- 1 -自控原理课程设计图2校正后系统的伯德图(7)画出校正后系统的伯德图,滞后校正装置的传递函数为:8.2S?1G(s)?35.2S?1经过校正的传递函数为:G(s)?8.2S?17?35.2S?1S(1S?1)(1S?1)263软件仿真实验结果及分析(1)在MATLAB/SIMULINK环境下搭建校正前仿真模型进行仿真。
在自动控制系统中,为了改善系统的稳定性和瞬态性能,常采用一种称为超前滞后校正的方法。
这种控制策略涉及到对系统开环传递函数的修改,以改变系统的相位和幅值特性,使得闭环系统的性能满足设计要求。
具体来说,超前校正主要用于提高系统的响应速度和稳定性,而滞后校正则用以增强系统的稳态精度和抗干扰能力。
超前校正的原理是通过在控制系统中引入一个具有相位超前特性的校正器,该校正器在中频段产生正相位shift 并增加系统的截止频率。
这导致系统响应速度变快,过渡过程时间缩短,从而提高了系统动态性能。
由于相位的提前,系统的相位裕度增大,进而提升了系统的稳定性。
然而,超前校正通常会牺牲系统的低频增益,这可能会影响其稳态精度。
滞后校正则是通过加入一个具有相位滞后特性的校正器,它在低频段提供额外的增益而在高频段减少增益,从而增强了系统的低频响应。
这样做可以减小或消除静差,提高系统的稳态准确性。
滞后校正还会降低系统的截止频率,增加相角滞后,有助于滤除高频噪声,提升系统的抗干扰性。
不过,滞后校正会减小系统的相位裕度,可能导致系统反应缓慢,过渡过程时间变长。
在实际应用中,工程师会根据系统的实际需要选择合适的校正方式。
对于需要快速响应和良好动态性能的系统,可能会倾向于使用超前校正;而对于注重稳态精度和抗干扰能力的场合,则可能优先考虑滞后校正。
有时也会将超前和滞后校正结合起来形成超前-滞后校正,以期达到更优的综合性能。
总结而言,超前滞后校正是一种在控制系统设计中常用的方法,它通过改变系统的频率响应来满足不同的性能指标。
超前校正主要改善系统的动态性能和稳定性,而滞后校正则更注重于提升稳态精度和抗干扰能力。
掌握超前滞后校正的原理和适用场合,对于自动控制系统的设计至关重要。
目录一、设计目的-------------------------------------------------------------1二、设计要求-------------------------------------------------------------1三、实现过程-------------------------------------------------------------33.1系统概述-------------------------------------------------------- 33.1.1设计原理------------------------------------------------- 33.1.2设计步骤------------------------------------------------- 43.2设计与分析----------------------------------------------------- 53.2.1校正前参数确定--------------------------------------- 53.2.2确定校正网络的传递函数--------------------------- 53.2.3 理论系统校正后系统的传递函数和BODE 图-- 73.2.4系统软件仿真------------------------------------------ 8四、总结------------------------------------------------------------------15五、参考文献-------------------------------------------------------------16自动控制原理课程设计报告一、设计目的(1)掌握控制系统设计与校正的步骤和方法。
关于⾃动控制频域相位特性滞后与超前的概念1.⾃动控制中,PD可以实现超前校正、PI可以实现滞后校正。
在频域分析中总能看见说相位超前与滞后的概念,我⼀直没太理解,在这⾥说⼀说我的疑惑。
第⼀,时间域中的超前与滞后是什么意思,举个例⼦,阶跃相应中的调节时间能理解为滞后时间吗,如果能那么超前⼜应该怎么理解呢,难道是说还没输⼊输出就有了吗?第⼆,频域中的超前与滞后到底是什么概念,与时间域中的时间超前与滞后是⼀个概念吗?(我的理解他们之间是没有区别的,只是差⼀个⾓频率的关系,相位除以⾓频率不就是时间吗)。
第三,我们都知道微分环节具有相位超前的特性,他的相位超前和纯时间超前环节e的sT次⽅有什么区别吗?恳求⼤家解除我的疑惑答:(1)⾸先楼主对这些基础问题的研究真是令⼈佩服。
这些问题看着都眼熟,可要是真正解释,还真是不知道怎么说,我想可能是⼀开始学时就对概念掌握的不够,以后再很少去思考这些,更是变得不懂了。
真是⾃惭形秽啊,只能对部分进⾏讨论,⼀家之⾔。
我所理解的超前和滞后是某个环节或对象所具有的⼀个性质,时域中超前的见得不多,滞后的倒是⽐⽐皆是。
⼀个微分环节算是超前的例⼦的话,那么对应的积分环节可以理解为滞后了,典型的滞后环节应该是⼀阶惯性环节或者纯滞后exp(-Ts)。
频域中的超前和滞后是输出信号相对于输⼊信号的相⾓⽽⾔,经典的例⼦就是电阻和电容组成的RC⽹络。
这个和时域中应该是有对应的。
研究相位超前或纯超前的见得不多,对于滞后和纯滞后应该是不⼀样的。
惯性环节应该也算滞后,它和exp(-Ts)并不⼀样,但是后者展开式可以近似写成⼀阶惯性环节。
频域超前和滞后⼀般在校正中出现或者说应⽤的⽐较多吧!(2)客⽓话就不说了,呵呵说说我的理解⾸先我们通常说的时域下的特性⽐如我提到的调节时间⼀般都是基于阶跃响应来讨论的,注意此时输⼊的频率是0。
如果调节时间可以理解为滞后时间的话那么超前就没有办法理解了,因为仅仅⼀个微分环节是不稳定的,如果⼀定要给超前时间加上⼀个定义的话,这个时间应该是⼀万年(⽆穷⼤,呵呵)。
相位超前校正和滞后校正的区别相位超前校正和滞后校正是电路中常用的两种方法,用于调整信号的相位。
它们在电子领域中具有重要的应用,尤其在通信系统和控制系统中起着至关重要的作用。
本文将详细介绍相位超前校正和滞后校正的区别。
一、相位超前校正相位超前校正是一种使信号相位提前的技术。
在电路中,我们常常遇到信号相位滞后或者信号延迟的情况,这是由于电路元件的特性或者传输介质的影响所致。
为了解决这个问题,我们可以采用相位超前校正的方法。
相位超前校正的原理是在信号路径中引入一个或多个滤波器,并通过合理设计滤波器的参数,使得滤波器对频率较低的信号具有较大的增益,从而使得信号的相位提前。
相位超前校正常用于控制系统中,以提高系统的稳定性和响应速度。
例如,在飞机的自动驾驶系统中,采用相位超前校正可以使飞机更加稳定地飞行。
二、滞后校正滞后校正则是一种使信号相位延迟的技术。
在某些情况下,我们需要延迟信号的相位,以满足特定的要求。
比如,在音频处理中,我们可能需要将不同的音频信号进行时间对齐,以达到更好的音效效果。
此时,我们可以采用滞后校正的方法来实现。
滞后校正的原理是通过引入一个或多个滤波器,在信号路径中对频率较高的信号进行衰减,从而使得信号的相位发生延迟。
滞后校正常用于音频处理、图像处理等领域,以实现信号的同步和对齐。
例如,在音频混音中,我们可以采用滞后校正的方法,将不同音轨的信号进行时间对齐,以获得更好的混音效果。
三、相位超前校正与滞后校正的区别相位超前校正和滞后校正的区别主要体现在以下几个方面:1. 目的不同:相位超前校正的目的是使信号的相位提前,以提高系统的稳定性和响应速度;滞后校正的目的是使信号的相位延迟,以实现信号的同步和对齐。
2. 原理不同:相位超前校正通过引入滤波器来增益低频信号,从而使得信号的相位提前;滞后校正通过引入滤波器来衰减高频信号,从而使得信号的相位延迟。
3. 应用领域不同:相位超前校正主要应用于控制系统中,以提高系统的稳定性和响应速度;滞后校正主要应用于音频处理、图像处理等领域,以实现信号的同步和对齐。
课程设计任务书学生姓名: 张弛 专业班级: 电气1002班指导教师: 刘志立 工作单位: 自动化学院题 目: 用MATLAB 进行控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是)2)(1()(++=s s s K s G 要求系统的静态速度误差系数110-≥S K v ,ο45≥γ。
要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、 M ATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。
2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。
3、用MATLAB 画出未校正和已校正系统的根轨迹。
4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。
5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。
说明书的格式按照教务处标准书写。
时间安排:指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日摘要 (3)1基于频率响应法校正设计概述 (4)2串联滞后-超前校正原理及步骤 (5)2.1滞后超前校正原理 (5)2.2滞后-超前校正的适用范围 (6)2.3串联滞后-超前校正的设计步骤 (6)3串联滞后-超前校正的设计 (7)3.1待校正系统相关参数计算及稳定性判别 (7)3.1.1判断待校正系统稳定性 (7)3.1.2绘制待校正系统的伯德图 (8)3.1.3绘制待校正系统的根轨迹图 (9)3.1.4绘制待校正系统的单位阶跃响应曲线 (10)3.1.5利用SIMULINK进行控制系统建模仿真 (11)3.2滞后超前-网络相关参数的计算 (12)3.3对已校正系统的验证及稳定性分析 (15)3.3.1绘制已校正系统的伯德图 (15)3.3.2判断已校正系统的稳定性 (16)3.3.3绘制已校正系统的根轨迹图 (17)3.3.4绘制已校正系统的单位阶跃响应曲线 (18)3.3.5利用SIMULINK进行控制系统建模仿真 (19)3.3.6串联滞后-超前校正设计小结 (20)4心得体会 (21)参考文献 (21)附录 (22)随着科学技术的不断向前发展,人类社会的不断进步。
超前滞后校正的原理
超前滞后校正是一种用于系统控制的方法,目的是根据系统特性来补偿系统的超前或滞后相位,以提高系统的稳定性和性能。
超前滞后校正的原理基于系统的频率响应特性,即系统的幅频响应曲线。
在频率响应曲线上,超前滞后校正通过调整系统的相位和幅度来补偿系统的相位超前或滞后,使系统的频率响应曲线更接近预期的目标曲线。
具体来说,超前滞后校正一般包括以下几个步骤:
1. 频率分析:首先对系统进行频率响应分析,获取系统的幅频响应曲线和相频响应曲线。
2. 设计目标曲线:根据系统的要求,设计一个理想的幅频响应曲线和相频响应曲线。
3. 相位补偿:根据实际系统的相频响应曲线和目标曲线的相位差异,设计合适的相位补偿网络,使系统的相位更接近目标曲线。
4. 幅度补偿:根据实际系统的幅频响应曲线和目标曲线的幅度差异,设计合适的幅度补偿网络,使系统的幅度更接近目标曲线。
5. 调整参数:根据实际系统的频率响应,对相位补偿和幅度补偿网络的参数进行调整,使得系统的频率响应更接近目标曲线,
同时保持系统的稳定性。
通过超前滞后校正,可以有效地补偿系统的相位超前或滞后,提高系统的稳定性和性能。
目录绪论 (2)一课程设计的目的及题目 (3)1.1课程设计的目的 (3)1.2课程设计的题目 (3)二课程设计的任务及要求 (4)2.1课程设计的任务 (4)2.2课程设计的要求 (4)三校正函数的设计 (5)3.1理论知识 (5)3.2设计部分 (6)四传递函数特征根的计算 (10)4.1校正前系统的传递函数的特征根 .................. 错误!未定义书签。
4.2校正后系统的传递函数的特征根 .................. 错误!未定义书签。
五系统动态性能的分析.. (11)5.1校正前系统的动态性能分析 (12)5.2校正后系统的动态性能分析 (15)六系统的根轨迹分析............................... 错误!未定义书签。
6.1校正前系统的根轨迹分析 ........................ 错误!未定义书签。
6.2校正后系统的根轨迹分析 (20)七系统的奈奎斯特曲线图 (20)7.1校正前系统的奈奎斯特曲线图 (20)7.2校正后系统的奈奎斯特曲线图 ................... 错误!未定义书签。
2 八系统的对数幅频特性及对数相频特性 ............... 错误!未定义书签。
8.1校正前系统的对数幅频特性及对数相频特性 (22)8.2校正后系统的对数幅频特性及对数相频特性 ........ 错误!未定义书签。
总结............................................. 错误!未定义书签。
6参考文献.......................................... 错误!未定义书签。
绪论在控制工程中用得最广的是电气校正装置,它不但可应用于电的控制系统,而且通过将非电量信号转换成电量信号,还可应用于非电的控制系统。
控制系统的设计问题常常可以归结为设计适当类型和适当参数值的校正装置。
第1篇一、实验目的1. 理解超前校正的原理及其在控制系统中的应用。
2. 掌握超前校正装置的设计方法。
3. 通过实验验证超前校正对系统性能的改善效果。
二、实验原理超前校正是一种常用的控制方法,通过在系统的前向通道中引入一个相位超前网络,来改善系统的动态性能。
超前校正能够提高系统的相角裕度和截止频率,从而改善系统的快速性和稳定性。
超前校正装置的传递函数一般形式为:\[ H(s) = \frac{1 + \frac{K}{T_{s}s}}{1 + \frac{T_{s}s}{K}} \]其中,\( K \) 为校正装置的增益,\( T_{s} \) 为校正装置的时间常数。
三、实验设备1. 控制系统实验平台2. 数据采集卡3. 计算机及仿真软件(如MATLAB/Simulink)4. 待校正系统四、实验步骤1. 搭建待校正系统模型:在仿真软件中搭建待校正系统的数学模型,包括系统的传递函数、输入信号等。
2. 分析系统性能:通过仿真软件分析待校正系统的性能,包括稳态误差、超调量、上升时间等。
3. 设计超前校正装置:根据待校正系统的性能要求,设计合适的超前校正装置参数。
4. 仿真验证:将设计好的超前校正装置添加到系统中,进行仿真验证,观察校正后的系统性能。
5. 实验数据分析:对实验数据进行分析,比较校正前后系统的性能差异。
五、实验内容1. 系统模型搭建:搭建一个简单的二阶系统模型,其传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]2. 系统性能分析:分析该系统的稳态误差、超调量、上升时间等性能指标。
3. 设计超前校正装置:根据系统性能要求,设计一个超前校正装置,其传递函数为:\[ H(s) = \frac{1 + \frac{K}{T_{s}s}}{1 + \frac{T_{s}s}{K}} \]其中,\( K = 2 \),\( T_{s} = 0.5 \)。
4. 仿真验证:将设计好的超前校正装置添加到系统中,进行仿真验证,观察校正后的系统性能。
自动控制原理大作业已知单位反馈控制系统如图所示,其中0()(1)KG s s s =+。
1、试用频率法设计串联超前校正网络()c G s ,满足:单位斜坡输入时,位置输出稳态误差19ss e =,开环截止频率 4.5/crad s ω''=,相角裕度50γ''≥,请写出校正具体步骤: 解:1.求开环增益K 传递函数为:0()(1)KG s s s =+ 此系统为为Ⅰ型系统,且系统稳定,故由稳态误差911e ss ==K知:K=9校正前系统传递函数为 )()(1s s 9s o +=G(1)根据校正前系统Bode 图,确定校正前系统相角裕度和开环截止频率:0w c =)(L0w 9lg202c= s /rad 3w c =43.18arctanw -90-180)w (180r c c o ==+=ϕ(2)计算校正网络的参数a 和τ:已知开环截止频率 4.5/crad s ω''=取s /rad 5.4w w c m="= 2co w 9lg 20lga 10-5.4"==)(L 06.5a = 0988.006.5*5.41a *w 1m ===τ 10988.01s 5.01s 1s a s c ++=++=s G ττ)((3)验算校正后的性能指标是否满足设计要求:)1s 0988.0)(1s (s )1s 5.0(9)s ()s ()s (c o +++==G G G6.5497.23-47.77-04.6690)w *0988.0(arctan -arctanw -90-)w *5.0(arctan 180)w (180r c cc c =+="""+="+=''ϕ 满足设计要求。
2、用MATLAB 画出校正前系统、校正装置和校正后系统的Bode 图:-100100M a g n i t u d e (d B)10-210-110101102103-180-135-90-45045P h a s e (d e g)Bode DiagramFrequency (rad/sec)MATLAB 程序:G1=tf(9,[1,1,0]);G2=tf(9*[0.5,1],conv([1,1,0],[0.0988,1])); G3=tf([0.5 1],[0.0988 1]) bode(G1) hold bode(G2,'--') hold bode(G3)3、用MATLAB 绘制校正前和校正后系统的单位阶跃响应图,并分析两个系统不同的动态性能指标(超调量、调节时间等):0246810120.20.40.60.811.21.41.6Step ResponseTime (sec)A m p l i t u d eMATLAB 程序:G1=tf(9,[1,1,0]);G2=tf(9*[0.5,1],conv([1,1,0],[0.0988,1])); G3=tf([0.5 1],[0.0988 1]) figureG1_c=feedback(G1,1) G2_c=feedback(G2,1) step(G1_c) hold step(G2_c,'--')动态性能分析: ● 校正前:)()(1s s 9s o +=G9s s 9s 20++=)(ϕ 3w n = 167.061w 21n ≈==ζ%75.58%100*e%100*e%22167.0-1167.0*14.3--1-===ζπζσs06.1167.0-1*314.3-1*w t 22n p ===ζπs986.63*167.05.3w *5.3t n s ===ζ● 校正后:%171.01.0-1.17%=σs648.0t p ≈分析:加入串联超前校正装置后,动态性能中系统超调量下降,稳定性变好,调节时间、峰值时间减小,快速性变好。
自控原理超前滞后校正 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
定常系统的频率法超前校正
1问题描述
用频率法对系统进行校正,是利用超前校正网络的相位超前特性来增大系统的相位裕量,从而提高系统的稳定性,致使闭环系统的频带扩展,以达到改善系统暂态响应的目的。
但系统频带的加宽也会带来一定的噪声干扰,为了系统具有满意的动态性能,高频段要求幅值迅速衰减,以减少噪声影响。
2设计过程和步骤
题目已知单位反馈控制系统的开环传递函数:
设计超前校正装置,使校正后系统满足:
计算校正传递函数
(1)根据稳态误差的要求,确定系统的开环增益K
k=
则解得100
k=,在MATLAB中输入以下命令:
(2)由于开环增益100
z=[ ] ;
p=[0,-10,-100];
k=100000;
[num,den]=zp2tf(z,p,k);
[mag,phase,w]=bode(num,den);
margin(mag,phase,w);
则可得未校正系统的伯德图如图1所示:
图1 校正前系统的伯德图
由图中可以看出相位裕量角为0
61.1 (3)谐振峰值为%0.16
1 1.250.4r M σ-=+=, 给定系统的相位裕量值1arcsin(
)53.1301r M γ==,
由于未校正系统的开环对数幅频特性在剪切频率处的斜率为40/db dec -,一般取005~10ε=,在这里取为10,超前校正装置应提供的相位超前量φ,
即:5201.611061.11301.531=+-=+-==εγγφφm
ε是用于补偿因超前装置的引入,使系统的剪切频率增大而增加的相角迟后量。
(4)根据所确定的最大相位超前角m φ,按下式计算相应的α
(5)计算校正装置在
m w 处的幅值110log α。
由于校正系统的对数幅频特性图,求得其幅值为110log α-处的频率,该频率m φ就是校正后系统的开环剪切频率c w ,即76.80==m c ωω
(6)确定校正网络的转折频率和1ω、2ω
4946.200644.076.8011=⨯===αωωm T ,
(7)画出校正后系统的伯德图,并验算相应的相位裕量是否满足要求如果不满足,则改变ε值,从步骤(3)开始重新进行计算。
超前校正装置的传递函数为:
经过校正的传递函数为:
)
101.0)(11.0)(10031.0()
1488.0(100)(++++=s s s s s s G
图2校正后系统的伯德图
3软件仿真实验结果及分析
(1)在MATLAB/SIMULINK 环境下搭建仿真模型进行仿真。
其模型图如图3所示:
图3 用simulink 搭建的系统组态图
(2)将校正前后的阶跃响应曲线虎仔同一个坐标系下(以便校正结果的比较),并记录校正前后系统的时域指标。
图4为校正后的仿真图:
图4 校正前后的系统仿真图
(3)在同一坐标系下画出校正前后的Bode 图(以便校正结果的比较),并记录校正前后系统的相角裕量和幅值裕量。
图5 校正前后bode 图
4硬件物理实验结果及分析
4.1超前校正网络的伯德图为:
电路实现模拟
校正前后的电路模拟图如图7和图8所示:
图7 校正前电路模拟图
图8 校正后电路模拟图
5 思考:
(1)超前校正对改善系统性能有什么作用什么情况下不宜采用超前校正
答:超前校正是通过其相位超前特性来改善系统的品质;超前校正增大了系统的相位裕量和截止频率(剪切频率),从而减小瞬态响应的超调量,提高其快速性;超前校正对提高稳态精度作用不大;超前校正适用于稳态精度已经满足、但瞬态性能不满足要求的系统。
当未校正系统的相角在所需剪切频率附近向负相角方面急剧减小时,采用串联校正环节效果不大;或者当需要超前相角的数量很大时,超前校正的网络的系数α值需选择很小,从而使系统的带宽过大高频噪声能顺利通过系统。
以上两种情况不宜采用串联超前校正。
(2)是否有其他形式的校正方案
答:校正装置的连接方式:(1)串联校正;(2)顺馈校正;(3)反馈校正。
其中串联校正又包括串联超前校正、串联滞后校正和串联超前滞后校正。
(3)分析校正前后系统的阶跃响应和Bode图,说明校正装置对系统性能的作用。
答:增加开环频率特性在剪切频率附近的正相角,从而提高了系统的相角裕度;减小对数幅频特性在幅值穿越频率上的负斜率,从而提高了系统的稳定性;提高了系统的频带宽度,从而提高了系统的响应速度;不影响系统的稳态性能。
但若原系统不稳定或稳定裕量很小且开环相频特性曲线在幅值穿越频率附近有较大的负斜率时,不宜采用相位超前校正;因为随着幅值穿越频率的增加,原系统负相角增加的速度将超过超前校正装置正相角增加的速度,超前网络就起不到补偿滞后相角的作用了。
6 心得体会
经过几天的尝试和学习,我对matlab这个软件的认识又多了一些,知道了matlab的特点和用法,以前以为学完这门课就结束了,就懂了,没有考虑到自己能否在实际情况下做出一个需要的东西,这次课程设计可大大的提醒了我,眼高手低,真的不可取,在以后的学习中,我应该对学过只知识的锻炼和实现多重视一点。
Matlab是一个非常强大的软件,MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。
附加的工具箱(单独提供的专用 MATLAB 函数集)扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。
我想我们不仅仅用到这一次,以后的学习中matlab会帮助我们简化和实现好多遇到的问题。