2016青岛一模数学试题(理)
- 格式:doc
- 大小:2.77 MB
- 文档页数:11
2016年省市市南区中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A、B、C、D四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分1.绝对值为的数是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.2015年末市常住人口数约为9050000人,将9050000用科学记数法表示为()A.9.05×106B.0.905×106C.0.905×107D.9.05×1074.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条5.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A. cm B. cm C.2cm D. cm6.△ABC在直角坐标系中的位置如图所示,若将△ABC绕点O旋转,点C的对应点为点D,其中A (1,2),B(﹣1,0),C(3,﹣1),D(﹣1,﹣3),则旋转后点A的对应点E的坐标为()A.(﹣1,2)B.(0,﹣1)C.(1,﹣3)D.(2,﹣1)7.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点C为圆心,4为半径的⊙C与AB相切于点D,交CA于E,交CB于F,则图中阴影部分的面积为()A. B. C.16﹣4πD.16﹣2π8.如图,过原点O的直线与双曲线y=交于A、B两点,过点B作BC⊥x轴,垂足为C,连接AC,若S=5,则k的值是()△ABCA. B. C.5 D.10二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:﹣()﹣2= .10.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为.11.小明进行射击训练,5次成绩分别为3环、4环、6环、8环,9环,则这5次成绩的方差为.12.某公司销售甲、乙两种球鞋,去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.求去年甲,乙两种球鞋各卖出多少双?若设去年甲种球鞋卖了x双,乙两种球鞋卖了y双,则根据题意可列方程组为.13.如图,在▱ABCD中,AB=6,AD=8,∠ADC的平分线交BC于点F,交AB的延长线于点G,过点C 作CE⊥DG,垂足为E,CE=2,则△BFG的周长为.14.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,∠BAC和边AB上一点D.求作:⊙O,使⊙O与∠BAC的两边分别相切,其中与AB相切于点D,且圆心O落在∠ABC的部.四、解答题(本题满分74分,共有9道小题)16.化简:(a2﹣4)÷.17.解不等式组:.18.如图,一艘客轮以30km/h的速度由A码头出发沿北偏东53°方向航行至B码头,已知A、B两码头所在的河岸均为东西走向,河宽为16km,求该客轮至少用多长时间才能到达B码头?(结果精确到0.1h,参考数据:sin53°≈,cos53°≈,tan53°≈)19.有五卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一,记下字母后放回,充分洗匀后,再从中摸出一,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一,记下字母后不放回,洗匀后再从中摸出一,则两次摸到卡片字母相同的概率又是多少?20.某市为了解中学生参加体育训练的情况,组织部分学生参加测试进行抽样调查,其过程如下:从全市抽取2000名学生进行体育测试:①从某所初中学校抽取2000名学生;②从全市九年级学生中随机抽取2000名学生;③从全市初中生中随机抽取2000名学生.其中你认为合理的抽样方法为(填数学序号)整理数据:对测试结果进行整理,分为四个等级:优秀;良好;及格;不及格,并将测试结果绘成了如图两幅不完整的统计图.请补全频数分布表和扇形统计图:测试结果频数频率优秀 200 0.1良好 480 0.24及格 0.51不及格 300分析数据:若该市共有3万名初中学生,根据测试情况请你估计不及格的人数有多少?针对本次测试得到的相关信息,你有何看法和建议?(字数不超过30字)21.某商场销售A、B两种品牌的节能灯,每盏售价B种节能灯比A种节能灯多10元,且花费150元购买A种节能灯与花费200元购买B种节能灯的数量相同.(1)求每盏A、B两种品牌的节能灯的售价分别是多少元?(2)某公司准备在该商场从A、B两种品牌的节能灯中选购其中一种,购买数量不少于10盏,因为购买数量较多,商场可给予以下优惠:购买A种节能灯每盏均按原售价8折优惠;购买B种节能灯,5盏按原售价付款,超出5盏每盏按原售价5折优惠,请帮助该公司判断购买哪种节能灯更省钱.22.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.23.如图,一座抛物线型拱桥,桥面CD与水面平行,在正常水位时桥下水面宽OA为30米,拱桥B 处为警戒水位标识,点B到OC的水平距离和它到水面OA的距离都为5米.(1)按如图所示的直角坐标系,求该抛物线的函数表达式;(2)求在正常水位时桥面CD距离水面的高度;(3)一货船载长方体货箱高出水面2米(船高不计).若要使货船在警戒水位时能安全通过该拱桥,则货箱最宽应为多少米?24.问题情境:我们知道若一个矩形的周长固定,当相邻两边相等,即为正方形时,面积是最大的,反过来,若一个矩形的面积固定,它的周长是否会有最值呢?探究方法:用两条直角边分别为a、b的四个全等的直角三角形,可以拼成一个正方形,若a≠b,可以拼成如图①的正方形,从而得到a2+b2,即a2+b2>2ab;若a=b,可以拼成如图②的正方形,从而得到a2+b2,即a2+b2=2ab.于是我们可以得到结论:a,b为正数,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值为2ab.另外,我们也可以通过代数式运算得到类似上面的结论.∵(a﹣b)2﹣2ab+b2≥0,a2+b2≥2ab,∴对于任意实数a,b,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值为2ab.仿照上面的方法,对于正数a,b试比较a+b和2的大小关系.类比应用利用上面所得到的结论,完成填空:(1)x2+≥,代数式x2+有最值为.(2)当x>0时,x+≥,代数式x+有最值为.(3)当x>2时,x+ ,代数式x+有最值为.问题解决:若一个矩形的面积固定为n,它的周长是否会有最值呢?若有,求出周长的最值及此时矩形的长和宽;若没有,请说明理由,由此你能得到怎样的结论?25.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A 出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.2016年省市市南区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A、B、C、D四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分1.绝对值为的数是()A. B. C. D.【考点】实数的性质.【分析】根据绝对值的性质,可得答案.【解答】解:绝对值为的数是,故选:B.【点评】本题考查了实数的性质,互为相反数的绝对值相等是解题关键.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2015年末市常住人口数约为9050000人,将9050000用科学记数法表示为()A.9.05×106B.0.905×106C.0.905×107D.9.05×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9050000用科学记数法表示为:9.05×106.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C【点评】本题考查了统计中用样本估计总体的思想,关键是根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例解答.5.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A. cm B. cm C.2cm D. cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求出BC,由折叠的性质可得∠BED=∠C=90°,BE=BC=3cm,得出AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,∵将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,∴△BED≌△BCD,∴∠BED=∠C=90°,BE=BC=3cm,∴AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得:AE2+DE2=AD2,即22+x2=(4﹣x)2,解得:x=.故选:B.【点评】本题主要考查翻折变换的性质,全等三角形的性质,勾股定理;熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.6.△ABC在直角坐标系中的位置如图所示,若将△ABC绕点O旋转,点C的对应点为点D,其中A (1,2),B(﹣1,0),C(3,﹣1),D(﹣1,﹣3),则旋转后点A的对应点E的坐标为()A.(﹣1,2)B.(0,﹣1)C.(1,﹣3)D.(2,﹣1)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质作出旋转后的图形,写出点A对应点的坐标即可得解.【解答】解:如图,点A的对应点E的坐标为(2,﹣1).故选D.【点评】本题考查了坐标与图形变化﹣旋转,利用数形结合求解更加简便,准确作出图形是解题的关键.7.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点C为圆心,4为半径的⊙C与AB相切于点D,交CA于E,交CB于F,则图中阴影部分的面积为()A. B. C.16﹣4πD.16﹣2π【考点】扇形面积的计算;切线的性质.【分析】利用切线的性质以及直角三角形的性质得出DC 、BC 的长,再利用勾股定理得出AC 的长,进而得出答案.【解答】解:连接CD ,∵⊙C 与AB 相切于点D ,∴∠CDB=90°,由题意可得:DC=4,则BC=2×4=8,设AC=x ,则AB=2x ,故x 2+82=(2x )2,解得:x=,∴S △ABC =××8=,故图中阴影部分的面积为:﹣S 扇形CEF =﹣=﹣4π.故选:A .【点评】此题主要考查了扇形面积求法以及切线的性质和直角三角形的性质等知识,正确得出AC 的长是解题关键.8.如图,过原点O 的直线与双曲线y=交于A 、B 两点,过点B 作BC⊥x 轴,垂足为C ,连接AC ,若S △ABC =5,则k 的值是( )A .B .C .5D .10【考点】反比例函数系数k 的几何意义.【分析】由题意得:S △ABC =2S △AOC ,又S △AOC =|k|,则k 的值即可求出.【解答】解:设A (x ,y ),∵直线与双曲线y=交于A 、B 两点,∴B(﹣x ,﹣y ),∴S △BOC =|xy|,S △AOC =|xy|,∴S △BOC =S △AOC ,∴S △ABC =S △AOC +S △BOC =2S △AOC =5,S △AOC =|k|=,则k=±5.又由于反比例函数位于一三象限,k>0,故k=5.故选C.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:﹣()﹣2= ﹣1 .【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式利用立方根定义,以及负整数指数幂法则计算即可得到结果.【解答】解:原式=3﹣4=﹣1.故答案为:﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为20°.【考点】圆周角定理.【分析】由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,可求得∠D的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=70°,∴∠A=90°﹣∠ABC=20°,∴∠D=∠A=20°.故答案为:20°.【点评】此题考查了圆周角定理.注意直径所对的圆周角是直角.11.小明进行射击训练,5次成绩分别为3环、4环、6环、8环,9环,则这5次成绩的方差为 5 .【考点】方差.【分析】根据平均数和方差公式计算即可.【解答】解:五次成绩的平均数为(3+4+6+8+9)=6,方差= [(3﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(9﹣6)2]=5.故答案为:5;【点评】本题考查平均数和方差的计算,关键是根据方差公式计算.12.某公司销售甲、乙两种球鞋,去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.求去年甲,乙两种球鞋各卖出多少双?若设去年甲种球鞋卖了x双,乙两种球鞋卖了y双,则根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设去年甲种球鞋卖了x双,乙种球鞋卖了y双,根据条件“去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双”建立方程组即可.【解答】解:设去年甲种球鞋卖了x双,乙两种球鞋卖了y双,则根据题意可列方程组为.故答案为:.【点评】此题考查从实际问题中抽象出二元一次方程组,找出题目蕴含的数量关系是解决问题的关键.13.如图,在▱ABCD中,AB=6,AD=8,∠ADC的平分线交BC于点F,交AB的延长线于点G,过点C 作CE⊥DG,垂足为E,CE=2,则△BFG的周长为4+ .【考点】相似三角形的判定与性质;等腰三角形的判定与性质;平行四边形的性质.【分析】首先利用已知条件可证明△ADE是等腰三角形,根据等腰三角形“三线合一”的性质得出DE=2DG,而在Rt△ADG中,由勾股定理可求得DG的值,即可求得DE的长;然后,证明△ADE∽△BFE,再分别求出△ADE的周长,然后根据周长比等于相似比即可得到答案.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE;,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠CDF=∠DFC,∴CD=CF=6,∵CE⊥DG,∴DF=2DE,在Rt△CDE中,∵∠DEC=90°,CD=6,CE=2,∴DE==4,∴DF=2DE=8;∴△CDF的周长=12+8,∵CF=6,BC=AD=8,∴BF=BC﹣CF=8﹣6=2,∴CF:BF=6:2=3:1.∵AB∥CD,∴△CDF∽△BFG,∴△CDF的周长:△BFG的周长=CF:BF=3:1,则△BFG 周长=4+.故答案为:4+.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.14.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有 4 种拼接方法.【考点】几何体的展开图.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.【点评】此题主要考查了几何体的展开图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,∠BAC和边AB上一点D.求作:⊙O,使⊙O与∠BAC的两边分别相切,其中与AB相切于点D,且圆心O落在∠ABC的部.【考点】作图—复杂作图.【专题】作图题.【分析】过点D作AB的垂线,作∠BAC的平分线,两线相交于点O,然后以O点为圆心,OD为半径作⊙O即可.【解答】解:如图,⊙O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本题满分74分,共有9道小题)16.化简:(a2﹣4)÷.【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=(a+2)(a﹣2)•=a(a﹣2)=a2﹣2a.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.17.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得:x≥1,解不等式7x﹣8<5x,得:x<4,故不等式组解集为:1≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,一艘客轮以30km/h的速度由A码头出发沿北偏东53°方向航行至B码头,已知A、B两码头所在的河岸均为东西走向,河宽为16km,求该客轮至少用多长时间才能到达B码头?(结果精确到0.1h,参考数据:sin53°≈,cos53°≈,tan53°≈)【考点】解直角三角形的应用-方向角问题.【分析】首先过点A作AE⊥BD于点E,由题意可得:cos53°=,进而得出AB的长即可得出答案.【解答】解:如图所示:过点A作AE⊥BD于点E,由题意可得:AE=16km,∠EAB=53°,故cos53°===,解得:AB=,∵客轮的速度为30km/h,∴÷30=≈0.9(h),答:该客轮至少用0.9h才能到达B码头.【点评】此题考查了方向角问题,注意结合实际问题,利用解直角三角形的相关知识求解是解此题的关键,注意数形结合思想的应用.19.有五卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一,记下字母后放回,充分洗匀后,再从中摸出一,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一,记下字母后不放回,洗匀后再从中摸出一,则两次摸到卡片字母相同的概率又是多少?【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是放回实验;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是不放回实验.【解答】解:画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有9种等可能的结果,∴两次摸到卡片字母相同的概率为:;画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有4种等可能的结果,∴两次摸到卡片字母相同的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.某市为了解中学生参加体育训练的情况,组织部分学生参加测试进行抽样调查,其过程如下:从全市抽取2000名学生进行体育测试:①从某所初中学校抽取2000名学生;②从全市九年级学生中随机抽取2000名学生;③从全市初中生中随机抽取2000名学生.其中你认为合理的抽样方法为③(填数学序号)整理数据:对测试结果进行整理,分为四个等级:优秀;良好;及格;不及格,并将测试结果绘成了如图两幅不完整的统计图.请补全频数分布表和扇形统计图:测试结果频数频率优秀 200 0.1良好 480 0.24及格1020 0.51不及格 300 0.15分析数据:若该市共有3万名初中学生,根据测试情况请你估计不及格的人数有多少?针对本次测试得到的相关信息,你有何看法和建议?(字数不超过30字)【考点】频数(率)分布表;抽样调查的可靠性;用样本估计总体;扇形统计图.【分析】(1)根据抽取的学生必须有代表性,能反映全年级学生的情况,可以采取随机抽样或随机分层抽样,据此即可得出正确答案;(2)根据频率=,即可求得不及格类部分的频率,频数=总数×频率;算出对应数据填表;①利用频数=总数×频率计算得出估计不及格的人数;②根据数据提出合理的建议即可.【解答】解:(1)合理的抽样方法为③;(2)2000×0.51=1020,300÷2000=0.15;1﹣0.24﹣0.1=66%;填表如下:测试结果频数频率优秀 200 0.1良好 480 0.24及格1020 0.51不及格 300 0.15补充图如下:①30000×0.15=4500(人).答:估计不及格的人数有4500人.②建议:同学们要多参加体育锻炼,增强自身的体质.【点评】本题考查的是频数分布表和扇形统计图的综合运用,读懂图表,从图表中得到必要的信息是解决问题的关键.分布表能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.某商场销售A、B两种品牌的节能灯,每盏售价B种节能灯比A种节能灯多10元,且花费150元购买A种节能灯与花费200元购买B种节能灯的数量相同.(1)求每盏A、B两种品牌的节能灯的售价分别是多少元?(2)某公司准备在该商场从A、B两种品牌的节能灯中选购其中一种,购买数量不少于10盏,因为购买数量较多,商场可给予以下优惠:购买A种节能灯每盏均按原售价8折优惠;购买B种节能灯,5盏按原售价付款,超出5盏每盏按原售价5折优惠,请帮助该公司判断购买哪种节能灯更省钱.【考点】分式方程的应用.【分析】(1)设每盏A种品牌的节能灯的售价是x元,则每盏B种品牌的节能灯的售价是(x+10)元,根据“花费150元购买A种节能灯与花费200元购买B种节能灯的数量相同”列出方程,求解即可;(2)设该公司购买节能灯a盏,则a≥10.用含a的代数式分别表示出购买A种品牌的节能灯的费用为:30×0.8a=24a(元);购买B种品牌的节能灯的费用为:40×5+40×0.5(a﹣5)=20a+100(元).再分三种情况讨论即可求解.【解答】解:(1)设每盏A种品牌的节能灯的售价是x元,则每盏B种品牌的节能灯的售价是(x+10)元,根据题意得=,解得x=30,经检验,x=20是原方程的解.则x+10=40.答:每盏A种品牌的节能灯的售价是30元,每盏B种品牌的节能灯的售价是40元;(2)设该公司购买节能灯a盏,则a≥10.如果购买A种品牌的节能灯,那么费用为:30×0.8a=24a(元);如果购买B种品牌的节能灯,那么费用为:40×5+40×0.5(a﹣5)=20a+100(元).当24a=20a+100时,a=25;当24a>20a+100时,a>25;当24a<20a+100时,a<25.故该公司购买节能灯盏数a满足10≤a<25时,购买A种品牌的节能灯更省钱;购买节能灯25盏时,两种品牌的节能灯一样省钱;购买节能灯盏数a满足a>25时,购买B种品牌的节能灯更省钱.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH 是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.23.如图,一座抛物线型拱桥,桥面CD与水面平行,在正常水位时桥下水面宽OA为30米,拱桥B 处为警戒水位标识,点B到OC的水平距离和它到水面OA的距离都为5米.(1)按如图所示的直角坐标系,求该抛物线的函数表达式;(2)求在正常水位时桥面CD距离水面的高度;(3)一货船载长方体货箱高出水面2米(船高不计).若要使货船在警戒水位时能安全通过该拱桥,则货箱最宽应为多少米?【考点】二次函数的应用.。
保密★启用前2015—2016学年第一学期期末模块测试高三数学(理科)试卷2016.1一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{}|11M x x =-<,集合{}2|23N x x x =-<,则R M C N = ( )A .{}|02x x <<B .{}|12x x -<<C .{}|123x x x x -<<≤<或 D .φ 2、设复数cos sin i e i θθθ=+,则复数3i e π的虚部为( ) A .12 BC .12i D3、如右图放置的六条棱长都相等的三棱锥,则这个几何体的侧视图是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .无两边相等的三角形4、不等式2||20x x -++<的解集是( ) A .{|22}x x -<<B .{|22}x x x <->或C .{|11}x x -<<D .{|11}x x x <->或5、已知()sin()(0)3f x x πωω=+>的图象与1y =-的图象的相邻两交点间的距离为π,要得到()y f x =的图象,只需把cos 2y x =的图象( ) A .向左平移个单位 B .向右平移个单位 C .向左平移个单位D .向右平移个单位6、执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )A .k >7B .k >6C .k >5D .k >4 7、设221(32)a x x dx =-⎰,则261()ax x-的展开式中的第4项为( ) A .﹣1280x 3 B .﹣1280C .240D .﹣2408、已知ABC ∆的重心为G ,角,,A B C 所对的边分别为,,a b c若230aGA cGC +=,则sin :sin :sin A B C =( )A .1:1:1 B2 C2:1 D.3:29、已知双曲线22221x y a b-=的焦点到其渐近线的距离等于2,抛物线22y px =的焦点为双曲线的右焦点,双曲线截抛物线的准线所得的线段长为4,则抛物线方程为( ) A .24y x = B.2y = C.2y = D .28y x =10、对于函数()f x ,若,,,(),(),()abc R f a f b f c ∀∈为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x x e tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是( ) A .[0,)+∞ B .[0,1]C .[1,2]D .第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
2016年省市市南区中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A、B、C、D四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分1.绝对值为的数是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.2015年末市常住人口数约为9050000人,将9050000用科学记数法表示为()A.9.05×106 B.0.905×106C.0.905×107D.9.05×1074.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条5.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm6.△ABC在直角坐标系中的位置如图所示,若将△ABC绕点O旋转,点C的对应点为点D,其中A(1,2),B(﹣1,0),C(3,﹣1),D(﹣1,﹣3),则旋转后点A的对应点E的坐标为()A.(﹣1,2)B.(0,﹣1)C.(1,﹣3)D.(2,﹣1)7.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点C为圆心,4为半径的⊙C与AB相切于点D,交CA于E,交CB于F,则图中阴影部分的面积为()A.B.C.16﹣4πD.16﹣2π8.如图,过原点O的直线与双曲线y=交于A、B两点,过点B作BC⊥x轴,垂足为C,连接AC,=5,则k的值是()若S△ABCA.B.C.5 D.10二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:﹣()﹣2=.10.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为.11.小明进行射击训练,5次成绩分别为3环、4环、6环、8环,9环,则这5次成绩的方差为.12.某公司销售甲、乙两种球鞋,去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.求去年甲,乙两种球鞋各卖出多少双?若设去年甲种球鞋卖了x双,乙两种球鞋卖了y双,则根据题意可列方程组为.13.如图,在▱ABCD中,AB=6,AD=8,∠ADC的平分线交BC于点F,交AB的延长线于点G,过点C作CE⊥DG,垂足为E,CE=2,则△BFG的周长为.14.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,∠BAC和边AB上一点D.求作:⊙O,使⊙O与∠BAC的两边分别相切,其中与AB相切于点D,且圆心O落在∠ABC的部.四、解答题(本题满分74分,共有9道小题)16.化简:(a2﹣4)÷.17.解不等式组:.18.如图,一艘客轮以30km/h的速度由A码头出发沿北偏东53°方向航行至B码头,已知A、B 两码头所在的河岸均为东西走向,河宽为16km,求该客轮至少用多长时间才能到达B码头?(结果精确到0.1h,参考数据:sin53°≈,cos53°≈,tan53°≈)19.有五卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一,记下字母后放回,充分洗匀后,再从中摸出一,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一,记下字母后不放回,洗匀后再从中摸出一,则两次摸到卡片字母相同的概率又是多少?20.某市为了解中学生参加体育训练的情况,组织部分学生参加测试进行抽样调查,其过程如下:从全市抽取2000名学生进行体育测试:①从某所初中学校抽取2000名学生;②从全市九年级学生中随机抽取2000名学生;③从全市初中生中随机抽取2000名学生.其中你认为合理的抽样方法为(填数学序号)整理数据:对测试结果进行整理,分为四个等级:优秀;良好;及格;不及格,并将测试结果绘成了如图两幅不完整的统计图.请补全频数分布表和扇形统计图:测试结果频数频率优秀200 0.1良好480 0.24及格0.51不及格300分析数据:若该市共有3万名初中学生,根据测试情况请你估计不及格的人数有多少?针对本次测试得到的相关信息,你有何看法和建议?(字数不超过30字)21.某商场销售A、B两种品牌的节能灯,每盏售价B种节能灯比A种节能灯多10元,且花费150元购买A种节能灯与花费200元购买B种节能灯的数量相同.(1)求每盏A、B两种品牌的节能灯的售价分别是多少元?(2)某公司准备在该商场从A、B两种品牌的节能灯中选购其中一种,购买数量不少于10盏,因为购买数量较多,商场可给予以下优惠:购买A种节能灯每盏均按原售价8折优惠;购买B种节能灯,5盏按原售价付款,超出5盏每盏按原售价5折优惠,请帮助该公司判断购买哪种节能灯更省钱.22.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.23.如图,一座抛物线型拱桥,桥面CD与水面平行,在正常水位时桥下水面宽OA为30米,拱桥B处为警戒水位标识,点B到OC的水平距离和它到水面OA的距离都为5米.(1)按如图所示的直角坐标系,求该抛物线的函数表达式;(2)求在正常水位时桥面CD距离水面的高度;(3)一货船载长方体货箱高出水面2米(船高不计).若要使货船在警戒水位时能安全通过该拱桥,则货箱最宽应为多少米?24.问题情境:我们知道若一个矩形的周长固定,当相邻两边相等,即为正方形时,面积是最大的,反过来,若一个矩形的面积固定,它的周长是否会有最值呢?探究方法:用两条直角边分别为a、b的四个全等的直角三角形,可以拼成一个正方形,若a≠b,可以拼成如图①的正方形,从而得到a2+b2,即a2+b2>2ab;若a=b,可以拼成如图②的正方形,从而得到a2+b2,即a2+b2=2ab.于是我们可以得到结论:a,b为正数,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值为2ab.另外,我们也可以通过代数式运算得到类似上面的结论.∵(a﹣b)2﹣2ab+b2≥0,a2+b2≥2ab,∴对于任意实数a,b,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值为2ab.仿照上面的方法,对于正数a,b试比较a+b和2的大小关系.类比应用利用上面所得到的结论,完成填空:(1)x2+≥,代数式x2+有最值为.(2)当x>0时,x+≥,代数式x+有最值为.(3)当x>2时,x+,代数式x+有最值为.问题解决:若一个矩形的面积固定为n,它的周长是否会有最值呢?若有,求出周长的最值及此时矩形的长和宽;若没有,请说明理由,由此你能得到怎样的结论?25.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF 从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值围;(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;(3)当t为何值时,△APQ是等腰三角形.2016年省市市南区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A、B、C、D四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分1.绝对值为的数是()A.B.C.D.【考点】实数的性质.【分析】根据绝对值的性质,可得答案.【解答】解:绝对值为的数是,故选:B.【点评】本题考查了实数的性质,互为相反数的绝对值相等是解题关键.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2015年末市常住人口数约为9050000人,将9050000用科学记数法表示为()A.9.05×106 B.0.905×106C.0.905×107D.9.05×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9050000用科学记数法表示为:9.05×106.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C【点评】本题考查了统计中用样本估计总体的思想,关键是根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例解答.5.如图,在△ABC中,∠C=90°,AB=5cm,AC=4cm,点D在AC上,将△BCD沿着BD所在直线翻折,使点C落在斜边AB上的点E处,则DC的长为()A.cm B.cm C.2cm D.cm【考点】翻折变换(折叠问题).【分析】首先由勾股定理求出BC,由折叠的性质可得∠BED=∠C=90°,BE=BC=3cm,得出AE=AB ﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AB=5cm,AC=4cm,∴BC==3cm,∵将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,∴△BED≌△BCD,∴∠BED=∠C=90°,BE=BC=3cm,∴AE=AB﹣BE=2cm,设DC=xcm,则DE=xcm,AD=(4﹣x)cm,由勾股定理得:AE2+DE2=AD2,即22+x2=(4﹣x)2,解得:x=.故选:B.【点评】本题主要考查翻折变换的性质,全等三角形的性质,勾股定理;熟练掌握翻折变换的性质,由勾股定理得出方程是解决问题的关键.6.△ABC在直角坐标系中的位置如图所示,若将△ABC绕点O旋转,点C的对应点为点D,其中A(1,2),B(﹣1,0),C(3,﹣1),D(﹣1,﹣3),则旋转后点A的对应点E的坐标为()A.(﹣1,2)B.(0,﹣1)C.(1,﹣3)D.(2,﹣1)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质作出旋转后的图形,写出点A对应点的坐标即可得解.【解答】解:如图,点A的对应点E的坐标为(2,﹣1).故选D.【点评】本题考查了坐标与图形变化﹣旋转,利用数形结合求解更加简便,准确作出图形是解题的关键.7.如图,在Rt△ABC中,∠C=90°,∠B=30°,以点C为圆心,4为半径的⊙C与AB相切于点D,交CA于E,交CB于F,则图中阴影部分的面积为()A.B.C.16﹣4πD.16﹣2π【考点】扇形面积的计算;切线的性质.【分析】利用切线的性质以及直角三角形的性质得出DC、BC的长,再利用勾股定理得出AC的长,进而得出答案.【解答】解:连接CD,∵⊙C与AB相切于点D,∴∠CDB=90°,由题意可得:DC=4,则BC=2×4=8,设AC=x,则AB=2x,故x2+82=(2x)2,解得:x=,∴S △ABC =××8=,故图中阴影部分的面积为:﹣S 扇形CEF =﹣=﹣4π. 故选:A .【点评】此题主要考查了扇形面积求法以及切线的性质和直角三角形的性质等知识,正确得出AC 的长是解题关键.8.如图,过原点O 的直线与双曲线y=交于A 、B 两点,过点B 作BC ⊥x 轴,垂足为C ,连接AC ,若S △ABC =5,则k 的值是( )A .B .C .5D .10【考点】反比例函数系数k 的几何意义.【分析】由题意得:S △ABC =2S △AOC ,又S △AOC =|k|,则k 的值即可求出.【解答】解:设A (x ,y ),∵直线与双曲线y=交于A 、B 两点,∴B (﹣x ,﹣y ),∴S △BOC =|xy|,S △AOC =|xy|,∴S △BOC =S △AOC ,∴S △ABC =S △AOC +S △BOC =2S △AOC =5,S △AOC =|k|=,则k=±5.又由于反比例函数位于一三象限,k >0,故k=5.故选C .【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:﹣()﹣2=﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题;实数.【分析】原式利用立方根定义,以及负整数指数幂法则计算即可得到结果.【解答】解:原式=3﹣4=﹣1.故答案为:﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.如图,AB是⊙O的直径,∠ABC=70°,则∠D的度数为20°.【考点】圆周角定理.【分析】由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,可求得∠D的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=70°,∴∠A=90°﹣∠ABC=20°,∴∠D=∠A=20°.故答案为:20°.【点评】此题考查了圆周角定理.注意直径所对的圆周角是直角.11.小明进行射击训练,5次成绩分别为3环、4环、6环、8环,9环,则这5次成绩的方差为5.【考点】方差.【分析】根据平均数和方差公式计算即可.【解答】解:五次成绩的平均数为(3+4+6+8+9)=6,方差=[(3﹣6)2+(4﹣6)2+(6﹣6)2+(8﹣6)2+(9﹣6)2]=5.故答案为:5;【点评】本题考查平均数和方差的计算,关键是根据方差公式计算.12.某公司销售甲、乙两种球鞋,去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双.求去年甲,乙两种球鞋各卖出多少双?若设去年甲种球鞋卖了x双,乙两种球鞋卖了y双,则根据题意可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设去年甲种球鞋卖了x双,乙种球鞋卖了y双,根据条件“去年卖出12200双,今年甲种鞋卖出的量比去年去年增加6%,乙种球鞋卖出的数量比去年减少5%,两种球鞋的总销量增加了50双”建立方程组即可.【解答】解:设去年甲种球鞋卖了x双,乙两种球鞋卖了y双,则根据题意可列方程组为.故答案为:.【点评】此题考查从实际问题中抽象出二元一次方程组,找出题目蕴含的数量关系是解决问题的关键.13.如图,在▱ABCD中,AB=6,AD=8,∠ADC的平分线交BC于点F,交AB的延长线于点G,过点C作CE⊥DG,垂足为E,CE=2,则△BFG的周长为4+.【考点】相似三角形的判定与性质;等腰三角形的判定与性质;平行四边形的性质.【分析】首先利用已知条件可证明△ADE是等腰三角形,根据等腰三角形“三线合一”的性质得出DE=2DG,而在Rt△ADG中,由勾股定理可求得DG的值,即可求得DE的长;然后,证明△ADE ∽△BFE,再分别求出△ADE的周长,然后根据周长比等于相似比即可得到答案.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE;,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠CDF=∠DFC,∴CD=CF=6,∵CE⊥DG,∴DF=2DE,在Rt△CDE中,∵∠DEC=90°,CD=6,CE=2,∴DE==4,∴DF=2DE=8;∴△CDF的周长=12+8,∵CF=6,BC=AD=8,∴BF=BC﹣CF=8﹣6=2,∴CF:BF=6:2=3:1.∵AB∥CD,∴△CDF∽△BFG,∴△CDF的周长:△BFG的周长=CF:BF=3:1,则△BFG 周长=4+.故答案为:4+.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.14.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有4种拼接方法.【考点】几何体的展开图.【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可.【解答】解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.【点评】此题主要考查了几何体的展开图.正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.三、作图题(本题满分4分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,∠BAC和边AB上一点D.求作:⊙O,使⊙O与∠BAC的两边分别相切,其中与AB相切于点D,且圆心O落在∠ABC的部.【考点】作图—复杂作图.【专题】作图题.【分析】过点D作AB的垂线,作∠BAC的平分线,两线相交于点O,然后以O点为圆心,OD为半径作⊙O即可.【解答】解:如图,⊙O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本题满分74分,共有9道小题)16.化简:(a2﹣4)÷.【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=(a+2)(a﹣2)•=a(a﹣2)=a2﹣2a.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.17.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得:x≥1,解不等式7x﹣8<5x,得:x<4,故不等式组解集为:1≤x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,一艘客轮以30km/h的速度由A码头出发沿北偏东53°方向航行至B码头,已知A、B 两码头所在的河岸均为东西走向,河宽为16km,求该客轮至少用多长时间才能到达B码头?(结果精确到0.1h,参考数据:sin53°≈,cos53°≈,tan53°≈)【考点】解直角三角形的应用-方向角问题.【分析】首先过点A作AE⊥BD于点E,由题意可得:cos53°=,进而得出AB的长即可得出答案.【解答】解:如图所示:过点A作AE⊥BD于点E,由题意可得:AE=16km,∠EAB=53°,故cos53°===,解得:AB=,∵客轮的速度为30km/h,∴÷30=≈0.9(h),答:该客轮至少用0.9h才能到达B码头.【点评】此题考查了方向角问题,注意结合实际问题,利用解直角三角形的相关知识求解是解此题的关键,注意数形结合思想的应用.19.有五卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一,记下字母后放回,充分洗匀后,再从中摸出一,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一,记下字母后不放回,洗匀后再从中摸出一,则两次摸到卡片字母相同的概率又是多少?【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是放回实验;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是不放回实验.【解答】解:画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有9种等可能的结果,∴两次摸到卡片字母相同的概率为:;画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有4种等可能的结果,∴两次摸到卡片字母相同的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.某市为了解中学生参加体育训练的情况,组织部分学生参加测试进行抽样调查,其过程如下:从全市抽取2000名学生进行体育测试:①从某所初中学校抽取2000名学生;②从全市九年级学生中随机抽取2000名学生;③从全市初中生中随机抽取2000名学生.其中你认为合理的抽样方法为③(填数学序号)整理数据:对测试结果进行整理,分为四个等级:优秀;良好;及格;不及格,并将测试结果绘成了如图两幅不完整的统计图.请补全频数分布表和扇形统计图:测试结果频数频率优秀200 0.1良好480 0.24及格10200.51不及格300 0.15分析数据:若该市共有3万名初中学生,根据测试情况请你估计不及格的人数有多少?针对本次测试得到的相关信息,你有何看法和建议?(字数不超过30字)【考点】频数(率)分布表;抽样调查的可靠性;用样本估计总体;扇形统计图.【分析】(1)根据抽取的学生必须有代表性,能反映全年级学生的情况,可以采取随机抽样或随机分层抽样,据此即可得出正确答案;(2)根据频率=,即可求得不及格类部分的频率,频数=总数×频率;算出对应数据填表;①利用频数=总数×频率计算得出估计不及格的人数;②根据数据提出合理的建议即可.【解答】解:(1)合理的抽样方法为③;(2)2000×0.51=1020,300÷2000=0.15;1﹣0.24﹣0.1=66%;填表如下:测试结果频数频率优秀200 0.1良好480 0.24及格1020 0.51不及格300 0.15补充图如下:①30000×0.15=4500(人).答:估计不及格的人数有4500人.②建议:同学们要多参加体育锻炼,增强自身的体质.【点评】本题考查的是频数分布表和扇形统计图的综合运用,读懂图表,从图表中得到必要的信息是解决问题的关键.分布表能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.某商场销售A、B两种品牌的节能灯,每盏售价B种节能灯比A种节能灯多10元,且花费150元购买A种节能灯与花费200元购买B种节能灯的数量相同.(1)求每盏A、B两种品牌的节能灯的售价分别是多少元?(2)某公司准备在该商场从A、B两种品牌的节能灯中选购其中一种,购买数量不少于10盏,因为购买数量较多,商场可给予以下优惠:购买A种节能灯每盏均按原售价8折优惠;购买B种节能灯,5盏按原售价付款,超出5盏每盏按原售价5折优惠,请帮助该公司判断购买哪种节能灯更省钱.【考点】分式方程的应用.【分析】(1)设每盏A种品牌的节能灯的售价是x元,则每盏B种品牌的节能灯的售价是(x+10)元,根据“花费150元购买A种节能灯与花费200元购买B种节能灯的数量相同”列出方程,求解即可;(2)设该公司购买节能灯a盏,则a≥10.用含a的代数式分别表示出购买A种品牌的节能灯的费用为:30×0.8a=24a(元);购买B种品牌的节能灯的费用为:40×5+40×0.5(a﹣5)=20a+100(元).再分三种情况讨论即可求解.【解答】解:(1)设每盏A种品牌的节能灯的售价是x元,则每盏B种品牌的节能灯的售价是(x+10)元,根据题意得=,解得x=30,经检验,x=20是原方程的解.则x+10=40.答:每盏A种品牌的节能灯的售价是30元,每盏B种品牌的节能灯的售价是40元;(2)设该公司购买节能灯a盏,则a≥10.如果购买A种品牌的节能灯,那么费用为:30×0.8a=24a(元);如果购买B种品牌的节能灯,那么费用为:40×5+40×0.5(a﹣5)=20a+100(元).当24a=20a+100时,a=25;当24a>20a+100时,a>25;当24a<20a+100时,a<25.故该公司购买节能灯盏数a满足10≤a<25时,购买A种品牌的节能灯更省钱;购买节能灯25盏时,两种品牌的节能灯一样省钱;购买节能灯盏数a满足a>25时,购买B种品牌的节能灯更省钱.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,OB=OD,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.23.如图,一座抛物线型拱桥,桥面CD与水面平行,在正常水位时桥下水面宽OA为30米,拱桥B处为警戒水位标识,点B到OC的水平距离和它到水面OA的距离都为5米.(1)按如图所示的直角坐标系,求该抛物线的函数表达式;(2)求在正常水位时桥面CD距离水面的高度;(3)一货船载长方体货箱高出水面2米(船高不计).若要使货船在警戒水位时能安全通过该拱桥,则货箱最宽应为多少米?【考点】二次函数的应用.【分析】(1)设抛物线解析式为:y=ax2+bx,将点B(5,5)、点A(30,0)代入求得a、b的值即可得抛物线解析式;(2)将抛物线解析式配方可得其最大值,即最大高度;(3)使货船在警戒水位时能安全通过该拱桥则y=7,求得x的值,即可的货箱的最大宽度.【解答】解:(1)根据题意,设抛物线解析式为:y=ax2+bx,将点B(5,5)、点A(30,0)代入,得:,。
2016年山东省青岛市高考数学一模试卷(理科)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅2.已知数据x1,x2,x3,...,x50,500(单位:公斤),其中x1,x2,x3,...,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3, (x50)500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.定义min,则由函数f(x)的图象与x 轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C 的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.7.如图所示的程序框图,输出S的值为()A.B.C.D.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.39.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N﹣PAC与三棱锥D﹣PAC的体积比为()A.1:2 B.1:8 C.1:6 D.1:310.已知抛物线x2=4y,直线y=k(k为常数)与抛物线交于A,B两个不同点,若在抛物线上存在一点P(不与A,B重合),满足,则实数k的取值范围为()A.k≥2 B.k≥4 C.0<k≤2 D.0<k≤4二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为_______.12.二项式的展开式中,常数项等于_______(用数字作答).13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM 为等腰直角三角形,则f(x)=_______.14.若a>0,b>0,则的最小值是_______.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是_______.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E(ξ).18.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E为PA的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求二面角B﹣CE﹣D的余弦值.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.2016年山东省青岛市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅【考点】交、并、补集的混合运算.【分析】求出全集中y的值确定出U,再由B利用补集的定义求出B的补集,找出A与B 补集的交集即可.【解答】解:由全集U中y=log2x,x=,1,2,16,得到y=﹣1,0,1,4,即全集U={﹣1,0,1,4},∵A={﹣1,1},B={1,4},∴∁U B={﹣1,0},则A∩(∁U B)={﹣1},故选:B.2.已知数据x1,x2,x3,...,x50,500(单位:公斤),其中x1,x2,x3,...,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3, (x50)500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小【考点】众数、中位数、平均数.【分析】根据平均数与中位数的定义,分析这组数据,即可得出正确的结论.【解答】解:根据题意得,数据x1,x2,x3,…,x50,是某班50个学生的体重,其平均数应在50公斤左右,再增加一个数据500,这51个数据的平均数一定增大,而中位数有可能不变,如:按大小顺序排列后,第25、26个数据相等时,其中位数相等.故选:B.3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.【考点】正态分布曲线的特点及曲线所表示的意义;函数的零点;古典概型及其概率计算公式.【分析】函数f(x)=x2+2x+ξ不存在零点,可得ξ>1,根据随机变量ξ服从正态分布N(1,σ2),可得曲线关于直线x=1对称,从而可得结论.【解答】解:∵函数f(x)=x2+2x+ξ不存在零点,∴△=4﹣4ξ<0,∴ξ>1∵随机变量ξ服从正态分布N(1,σ2),∴曲线关于直线x=1对称∴P(ξ>1)=故选C.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】要判断“a<1”是“|x﹣2|+|x|>a恒成立”的条件,我们可先构造函数y=|x﹣2|+|x|并求出函数的值域,然后转化为一个恒成立的判断与性质问题,最后结合充要条件的定义,进行判断.【解答】解:函数y=|x﹣2|+|x|的值域为[2,+∞)则当a<1时,|x﹣2|+|x|>a恒成立反之若,|x﹣2|+|x|>a,则说明a小于函数y=|x﹣2|+|x|的最小值2恒成立,即a<2故“a<1”是“|x﹣2|+|x|>a恒成立”的充分不必要条件故选:A.5.定义min,则由函数f(x)的图象与x 轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】根据题目给出的函数定义,写出分段函数f(x)=min{x2, },由图象直观看出所求面积的区域,然后直接运用定积分求解阴影部分的面积.【解答】解:由=x2,得:x=1,又当x<0时,<x2,所以,根据新定义有f(x)=min{x2, }=,图象如图,所以,由函数f(x)的图象与x轴、x=2直线所围成的封闭图形为图中阴影部分,其面积为S=x2dx+dx=|+lnx|=+ln2,故选:C.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C 的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用余弦定理可得|PF1|=2c,再由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,运用离心率公式计算即可得到所求值.【解答】解:由题意可得|PF2|=|F1F2|=2c,∠PF2F1=120°,即有|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2F1=4c2+4c2﹣2•4c2•(﹣)=12c2,即有|PF1|=2c,由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,即有c=a,可得e==.故选:A.7.如图所示的程序框图,输出S的值为()A.B.C.D.【考点】程序框图.【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求2n cosnπ的和,n从1取到100,利用等比数列求和公式即可计算得解.【解答】解:通过分析知该算法是求和2cosπ+22cos2π+23cos3π+…+2100cos100π,由于2cosπ+22cos2π+23cos3π+…+2100cos100π=﹣2+22﹣23+24﹣…+2100==.故选:C.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.3【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组,对应的平面区域如图:(阴影部分)由z=|x+2y|,平移直线y=﹣x+z,由图象可知当直线y=﹣x﹣z经过点A时,z取得最大值,此时z最大.即A (﹣2,﹣2),代入目标函数z=|x +2y |得z=2×2+2=6故选:C .9.如图,四棱锥P ﹣ABCD 的底面ABCD 为平行四边形,NB=2PN ,则三棱锥N ﹣PAC 与三棱锥D ﹣PAC 的体积比为( )A .1:2B .1:8C .1:6D .1:3【考点】棱柱、棱锥、棱台的体积.【分析】根据两个棱锥的底面和高与棱锥P ﹣ABC 的底面与高的关系得出两棱锥的体积与棱锥P ﹣ABC 的关系,得出答案.【解答】解:∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD .∴V D ﹣PAC =V P ﹣ACD =V P ﹣ABC .∵NB=2PN ,∴NB=PB ,∴V N ﹣ABC =V P ﹣ABC ,∴V N ﹣PAC =V P ﹣ABC ﹣V N ﹣ABC =V P ﹣ABC .∴. 故选:D .10.已知抛物线x 2=4y ,直线y=k (k 为常数)与抛物线交于A ,B 两个不同点,若在抛物线上存在一点P (不与A ,B 重合),满足,则实数k 的取值范围为( ) A .k ≥2 B .k ≥4 C .0<k ≤2 D .0<k ≤4【考点】抛物线的简单性质.【分析】由题意可得设A(2,k),B(﹣2,k),P(m,),运用向量的数量积的坐标表示,由换元法可得二次方程,由判别式大于等于0和两根非负的条件,运用韦达定理,解不等式即可得到所求范围.【解答】解:由y=k(k>0),代入抛物线x2=4y,可得x=±2,可设A(2,k),B(﹣2,k),P(m,),由,可得(2﹣m,k﹣)•(﹣2﹣m,k﹣)=0,即为(2﹣m)(﹣2﹣m)+(k﹣)2=0,化为m4+m2(1﹣)+k2﹣4k=0,可令t=m2(t≥0),则t2+t(1﹣)+k2﹣4k=0,可得△=(1﹣)2﹣(k2﹣4k)≥0,即1≥0恒成立,由韦达定理可得﹣(1﹣)≥0,k2﹣4k≥0,解得k≥4.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为i.【考点】复数代数形式的乘除运算.【分析】利用复数相等,求出m,n然后求解复数的代数形式.【解答】解:m,n∈R,且m+2i=2﹣ni,可得m=2,n=﹣2,====﹣i.它的共轭复数为i.故答案为:i.12.二项式的展开式中,常数项等于1215(用数字作答).【考点】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项【解答】解:展开式的通项公式为,由6﹣3k=0得k=2,所以常数项为,故答案为1215.13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=cosπx.【考点】正弦函数的图象.【分析】由函数的最值求出A,由函数的奇偶性求出φ的值,由周期求出ω,可得函数的解析式.【解答】解:由题意可得A=,φ=2kπ+,k∈Z,再结合0<φ<π,可得φ=,函数f(x)=sin(ωx+)=cosωx.再根据•=,可得ω=π,函数f(x)=cosπx,故答案为:cosπx.14.若a>0,b>0,则的最小值是2+3.【考点】基本不等式.【分析】化简可得=++3,从而利用基本不等式求解即可.【解答】解:=2+++1=++3≥2+3,(当且仅当=,即a=b时,等号成立);故答案为:2+3.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是.【考点】向量的线性运算性质及几何意义.【分析】y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|,再利用基本不等式的性质即可得出.【解答】解:y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=+﹣+2[λx1+(1﹣λ)x2]=,|x1﹣x2|≤|1﹣2|=1,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|≤=,由于|≤K恒成立,∴,∴K的最小值为.故答案为:.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】(1)化简f(x),根据对称轴求出ω,得出f(x)的解析式,利用周期公式计算周期;(2)由f (A )=解出A ,利用余弦定理和基本不等式得出bc 的最大值,代入面积公式得出面积的最大值.【解答】解:(I )f (x )=cos2ωx ﹣[﹣cos (2ωx ﹣)]= cos (2ωx ﹣)﹣cos2ωx=﹣cos2ωx +sin2ωx=sin (2ωx ﹣).令2ωx ﹣=+k π,解得x=.∴f (x )的对称轴为x=,令=π解得ω=.∵<w <1,∴当k=1时,ω=.∴f (x )=sin (x ﹣).∴f (x )的最小正周期T=.(2)∵f ()=sin (A ﹣)=,∴sin (A ﹣)=.∴A=.由余弦定理得cosA===.∴b 2+c 2=bc +1≥2bc ,∴bc ≤1.∴S △ABC ==≤.∴△ABC 面积的最大值是.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E (ξ). 【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(Ⅰ)甲、乙两人所付费用相同即为0,40,80元,求出相应的概率,利用互斥事件的概率公式,可求甲、乙两人所付租车费用相同的概率;(Ⅱ)确定变量的取值,求出相应的概率,即可求得ξ的分布列与数学期望. 【解答】解:(Ⅰ)甲、乙两人所付费用相同即为0,40,80元.…都付0元的概率为P 1==,都付40元的概率为P 2==,都付80元的概率为P3=(1﹣)(1﹣)=,故所付费用相同的概率为P=P1+P2+P3=.(Ⅱ)由题意甲、乙两人所付的滑雪费用之和ξ的可能取值为0,40,80,120,160,P(ξ=0)==,P(ξ=40)==,P(ξ=80)=+=,P(ξ=120)=+=,P(ξ=160)=(1﹣)(1﹣)=,数学期望E(ξ)=+=80.18.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E为PA的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求二面角B﹣CE﹣D的余弦值.【考点】二面角的平面角及求法;棱锥的结构特征.【分析】(Ⅰ)根据线面平行的判定定理以及性质定理即可证明CD∥l;(Ⅱ)建立空间直角坐标系,求出对应平面的法向量,利用向量法进行求解即可.【解答】证明:(Ⅰ)取CD的中点H,∵AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,∴AH⊥CD,∠CAH=∠CAB=45°,即∠BAH=90°,即四边形ABCH是矩形,则AB∥CH,AB∥CD∵CD⊄面PAB,AB⊂面PAB,∴CD∥面PAB,∵CD⊂面PCD,面PAB∩面PCD=l,∴根据线面平行的性质得CD∥l.(Ⅱ)∵AC=2,∴AB=BC=AH=,DH=,建立以A为原点,AH,AB,AP分别为x,y,z轴的空间直角坐标系如图:则A(0,0,0),B(0,,0),C(,,0),P(0,0,2),E(0,0,1),D(,﹣,0),=(﹣,﹣,1),=(,0,0),=(0,﹣2,0)设平面BPC的一个法向量为=(x,y,z),则,则x=0,令y=,则z=2,即=(0,,2),设平面PCD的一个法向量为=(x,y,z),,则y=0,令x=,则z=2,=(,0,2),则cos<,>====,即二面角B﹣CE﹣D的余弦值是.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.【考点】数列的求和;等差数列的通项公式.【分析】(I)由,可得=T1+2=22,解得a1.利用等差数列的通项公式及其前n项和公式可得a n,S n.可得2n+1=T n+2,利用递推关系可得b n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.可得:c1=﹣12,c2=﹣2,n≥3,c n>0.n≥3,W n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)∵,∴=T1+2=2+2=4=22,∴+1=2,解得a1=1.∴a n=1+(n﹣1)×2=2n﹣1.∴S n==n2.∴2n+1=T n+2,∴当n≥2时,2n+1﹣2n=T n+2﹣(T n+2)=b n,﹣1∴b n=2n,当n=1时也成立.∴b n=2n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.∴c1=﹣12,c2=﹣2,n≥3,c n>0.∴n≥3,W n=﹣c1﹣c2+c3+…+c n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,2Q n=1×22+3×23+…+(2n﹣3)•2n+(2n﹣1)•2n+1,∴﹣Q n=2(2+22+…+2n)﹣2﹣(2n﹣1)•2n+1=2×﹣2﹣(2n﹣1)•2n+1=(3﹣2n)•2n+1﹣6,∴Q n=(2n﹣3)•2n+1+6.∴W n=.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,运用直线斜率公式和斜率之积为﹣1,可得m,再由直线MA与椭圆求得交点P;(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,运用韦达定理,解得P的坐标;同理求得Q的坐标,运用直线的斜率公式可得PQ的斜率,由点斜式方程可得PQ的方程,再由恒过定点思想,即可得到所求定点.【解答】解:(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,可得k BH•k MA=﹣1,即有•=﹣1,可得m=,由MA的方程:y=(x+2),代入椭圆方程,可得8x2+4x﹣48=0,解得x=﹣2,或,即有P(,);(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,可得(36+m2)x2+4m2x+8m2﹣288=0,由﹣2x P=,可得x P=,y P=(x P+2)=;又MB:y=(x﹣2),代入椭圆方程,可得(4+m2)x2﹣4m2x+8m2﹣32=0,由2+x Q=,可得x Q=,y Q=(x Q﹣2)=﹣,即有直线PQ的斜率为k==,则直线PQ:y﹣=(x﹣),化简即有y=(x﹣1),由x﹣1=0,解得x=,y=0.故直线PQ恒过定点(,0).21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式求出a的范围即可;(Ⅱ)求出h(x)的导数,解关于导函数的不等式求出h(x)的单调区间,从而求出h(x)的最大值即可;(Ⅲ)构造函数f(x)=ln(1+x)﹣x,利用导数法可证得ln(1+x)≤x(当x≠0时,ln(1+x)<x),令x=,利用对数函数的运算性质及累加法求和即可证得结论成立.【解答】解:(Ⅰ)f(x)=sinx﹣ax,f′(x)=cosx﹣a,若对于x∈(0,1),f(x)>0恒成立,即a<cosx在(0,1)恒成立,故a≤0;(Ⅱ)a=1时,h(x)=lnx﹣x+1,(x>0),h′(x)=﹣1=,令h′(x)>0,解得:0<x<1,令h′(x)<0,解得:x>1,∴h(x)在(0,1)递增,在(1,+∞)递减,∴h(x)的最大值是h(1)=0;证明:(Ⅲ)构造函数g(x)=ln(1+x)﹣x,则g′(x)=﹣1=,当﹣1<x<0时,g′(x)>0,g(x)在(﹣1,0)上单调递增;当x>0时,g′(x)<0,g(x)在(0,+∞)上单调递减;所以,当x=0时,g(x)=ln(1+x)﹣x取得极大值,也是最大值,所以,g(x)≤g(0)=0,即ln(1+x)≤x,当x≠0时,ln(1+x)<x.令x=,则ln(1+)=ln(n+1)﹣lnn<,即ln(n+1)﹣lnn<,∴ln2﹣ln1<1,ln3﹣ln2<,…,lnn﹣ln(n﹣1)<,ln(n+1)﹣lnn<,以上n个不等式相加得:ln(n+1)﹣ln1<1+++…+,即.。
青岛市高三统一质量检测数学(理科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. B B A A C A C C D B二、填空题:本大题共5小题,每小题5分,共25分.11. i 12. 1215 13.1cos 2x π 14.3+ 15.14 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)解:(Ⅰ)22()sin sin ()6f x x x πωω=--1cos(2)1cos 2322x x πωω---=-111(cos 22)cos 2222x x x ωωω=+-112cos 2)22x x ωω=- 1sin(2)26x πω=- …………………………………………………………………………3分 由直线x π=是()y f x =图象的一条对称轴,可得sin(2)16πωπ-=±,所以2(Z)62k k ππωππ-=+∈,即123k ω=+ (Z)k ∈1(,1)2ω∈ ,Z k ∈,所以1k =,56ω= ………………………………………………6分所以15()sin()236f x x π=-则函数()f x 最小正周期26553T ππ==………………………………………………7分 (Ⅱ)15()sin()236f x x π=-311()sin()5264f A A π∴=-=,1sin()62A π∴-=0A π<< 5666A πππ∴-<-<,663A A πππ∴-==…………………………………9分 1a = , ∴222212cos23b c bc b c bc bc bc bc π=+-=+-≥-=,即1bc ≤1sin 2ABC S bc A ∆∴==≤∴ABC ∆面积的最大值为4. …………………………………………………………12分 17.(本小题满分12分)解:(Ⅰ)两人所付费用相同,相同的费用可能为0,40,80元两人都付0元的概率为11114624P =⨯= …………………………………………………1分 两人都付40元的概率为2121233P =⨯= …………………………………………………2分两人都付80元的概率为31112111(1)(1)42634624P =--⨯--=⨯= ………………………………………3分则两人所付费用相同的概率为12311152432412P P P P =++=++= …………………5分 (Ⅱ)设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160111(0)4624P ξ==⨯=12111(40)43264P ξ==⨯+⨯=1112115(80)46234612P ξ==⨯+⨯+⨯=11121(120)26434P ξ==⨯+⨯=111(160)4624P ξ==⨯=ξ的分布列为……………………………………………………………………………………10分11511()040801201608024412424E ξ=⨯+⨯+⨯+⨯+⨯= ………………………12分 18.(本小题满分12分)解:(Ⅰ)在四边形ABCD 中, AC AD ⊥,2AD AC ==,045ACD ∴∠=45BCA ∠= , 90BCD BCA ACD ∴∠=∠+∠= ,DC BC ⊥又AB BC ⊥ //AB CD ∴………………2分AB ⊂面PAB ,CD ⊄面PAB∴//CD 面PAB ……………………4分CD ⊂ 面PCD ,面PAB 面PCD l =∴//CD l ………………………5分(Ⅱ) PA ⊥平面ABCD ,AC AD ⊥,∴以A 为原点,以AD 所在的直线为x 轴,建系如图,则(0,0,2)P ,(0,0,1)E ,(2,0,0)D ,(0,2,0)C ,(1,1,0)B - ………………6分设面DCE 的法向量为1111(,,)n x y z =(0,2,1)CE =- ,(2,0,1)DE =-由111111020200n CE y z xz n DE ⎧⋅=-+=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩令11x =,则11y =,12z =,1(1,1,2)n ∴=…………………………………8分设面BCE 的法向量为2222(,,)n x y z =(1,1,0)BC = ,(0,2,1)CE =-由22222200200n BC x y y z n CE ⎧⋅=+=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩令21x =,则21y =-,22z =-,2(1,1,2)n ∴=--………………………………10分设二面角B CE D --的平面角为θ,则1212122cos cos ,3||||n n n n n n θ⋅=<>===-⋅…………………………………12分19.(本小题满分12分) 解:(Ⅰ)因为1)22n T =+所以1)122T =+,所以1)1224b =+=,解得:11a =所以1(1)221n a n n =+-⨯=-, 所以2(121)2n n n S n ⨯+-==, …………………………………………………………3分所以122n n T +=+,122n n T +=-当2n ≥时,1122(22)2n n n n n n b T T +-=-=---= 因为12b =适合上式所以2nn b = ……………………………………………………………………………6分(Ⅱ)令14(21)214nn n n c a b n =-=--,显然112c =-,22c =-,3n ≥,0n c > ……………………………7分3n ≥,12312312............22n n n W c c c c c c c c c c =--+++=++++--21232.................(21)214+28n n W n n =⨯+⨯++-- ……………………8分令21232.................(21)2n n Q n =⨯+⨯++-;则2 n Q =2311232......(23)2(21)2n n n n +⨯+⨯++-+- 两式做差得:23122222......22(21)2n n n Q n +-=+⨯+⨯++⨯-- 所以231222222......222(21)2 n n n Q n +-=⨯+⨯+⨯++⨯---2312(222......2)2(21)2n n n +=++++---21242(21)2n n n ++=----所以1(23)26n n Q n +=-+ ………………………………………………………11分所以112, (1)14, (2)(23)21434,(3)n n n W n n n n +⎧=⎪==⎨⎪--+≥⎩……………………………………12分20.(本小题满分13分) 解:(Ⅰ)设MAB ∆的垂心为H ,AB边上的高所在的直线方程为:x =MAB ∆垂心的纵坐标为-H ∴-……………………………………………………………………………2分∴直线BH的斜率为BH k ==所以直线AM的斜率1AM BHk k =-=则AM的方程为:y x =+ ……………………………………………………4分由222184y x x x y y ⎧⎧=+=⎪⎪⎪⎪⇒⎨⎨⎪⎪+==⎪⎪⎩⎩,所以P点的坐标为(2 ………………6分(Ⅱ)设P 点的坐标为11(,)x y ,Q 点坐标为22(,)x y ,则22111(8)2y x =-,22221(8)2y x =- 直线AP的方程为:y x =+由y x M x ⎧=+⎪⇒⎨⎪=⎩………………………………7分 由于,,M B Q 共线,所以BMBQ k k ===22221291(8)(8)x x --=⇒=⇒=化简得:12122)160x x x x -++=……()* ………………………………9分 设直线PQ 的方程为:y kx m =+由22222(12)4280184y kx m k x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩所以2121222428,1212km m x x x x k k-+=-=++,代入()*得:2280m k ++=解得:m =,或m =- ………………………………………………11分当m =时,直线PQ的方程为:y kx =,即(y k x =,恒过;当m =-时,直线PQ的方程为:y kx =-,即(4y kx =-,恒过,此种情况不合题意综上可知:直线PQ恒过 …………………………………………………13分21.(本小题满分14分)解:(Ⅰ)由()0f x >得:sin 0x ax ->,因为01x <<,所以sin xa x< 令sin ()x g x x =,2cos sin ()x x xg x x -'= ……………………………………2分 再令()cos sin m x x x x =-,()cos sin cos sin 0m x x x x x x x '=--=-< 所以()m x 在)1,0(上单调递减,所以()(0)0m x m <= …………………………………………………………4分 所以()0,g x '<则()g x 在)1,0(上单调递减,所以()(1)sin1g x g >=,所以sin1a ≤ ………………………………………6分 (Ⅱ)当1a =时,()sin f x x x =-,()ln 1h x x x ∴=-+ 11()1xh x x x-'=-= 由()0h x '=得:1x = ……………………………………………………………8分 当(0,1)x ∈时,()0h x '>,()h x 在(0,1)上单调递增; 当(1,)x ∈+∞时,()0h x '<,()h x 在(1,)+∞上单调递减;max ()(1)0h x h ∴== ……………………………………………………………………10分(Ⅲ)由(Ⅱ)可知:当(1,)x ∈+∞时,()0h x <,即ln 1x x <- 令1n x n +=,则11ln1n n n n ++<-,即1ln(1)ln n n n+-< …………………………12分 分别令1,2,3,,n n = 得:l n 2l n 11-<,1ln 3ln 22-<,1ln 4ln 33-<,………………,1ln(1)ln n n n+-< 将上述n 个式子相加得:1111ln(1)1231n n n +<+++++- (*N n ∈) …………14分。
2016年某某省某某实验中学高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.54.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.47.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣210.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=111.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为.16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△ABC的面积为6,求边c的值.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.2016年某某省某某实验中学高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅【考点】集合的包含关系判断及应用.【分析】根据对数函数的单调性便可解出A={x|x>1},利用被开方数大于等于0,求出B,从而找出正确选项.【解答】解:A={y|y=log3x,x>3}={y|y>1},B={x|y=}={x|x≥1},∴A⊆B,故选:A.2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式==﹣4﹣3i,故选:A.3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.5【考点】解三角形.【分析】由S==2,得a=1,再直接利用余弦定理求得b.【解答】解:由S===2,得a=1又由余弦定理得b2=a2+c2﹣2accosB=1+32﹣2×=25,所以b=5故选D4.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种【考点】计数原理的应用.【分析】先不考虑学生甲,乙不能同时参加同一学科竞赛,从4人中选出两个人作为一个元素,同其他两个元素在三个位置上排列,其中有不符合条件的,即甲乙两人在同一位置,去掉即可.【解答】解:从4人中选出两个人作为一个元素有C42种方法,同其他两个元素在三个位置上排列C42A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有 36﹣6=30,故选:B5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假【考点】平面与平面之间的位置关系.【分析】根据平面平行的判断方法,我们对已知中的两个命题p,q进行判断,根据判断结合和复合命题真值表,我们对四个答案逐一进行判断,即可得到结论.【解答】解:∵当α⊥β,β⊥γ时,α与γ可能平行与可能垂直故命题p为假命题又∵若α上不共线的三点到β的距离相等时α与β可能平行也可能相交,故命题q也为假命题故命题“p且q”为假,命题“p或¬q”为真,命题“p或q”为假,命题“¬p且¬q”为真故选C6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.4【考点】简单线性规划.【分析】首先作出其可行域,再由题意讨论目标函数在哪个点上取得最值,解出k.【解答】解:作出其平面区域如右图:A(1,2),B(1,﹣1),C(3,0),∵目标函数z=kx﹣y的最小值为0,∴目标函数z=kx﹣y的最小值可能在A或B时取得;∴①若在A上取得,则k﹣2=0,则k=2,此时,z=2x﹣y在C点有最大值,z=2×3﹣0=6,成立;②若在B上取得,则k+1=0,则k=﹣1,此时,z=﹣x﹣y,在B点取得的应是最大值,故不成立,故选B.7.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】相互独立事件的概率乘法公式;离散型随机变量的期望与方差.【分析】根据题意,首先求出X=1、2、3时的概率,进而可得EX的表达式,由题意EX>1.75,可得p2﹣3p+3>1.75,解可得p的X围,结合p的实际意义,对求得的X围可得答案.【解答】解:根据题意,学生发球次数为1即一次发球成功的概率为p,即P(X=1)=p,发球次数为2即二次发球成功的概率P(X=2)=p(1﹣p),发球次数为3的概率P(X=3)=(1﹣p)2,则Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,依题意有EX>1.75,则p2﹣3p+3>1.75,解可得,p>或p<,结合p的实际意义,可得0<p<,即p∈(0,)故选C.8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.【考点】简单空间图形的三视图.【分析】画出几何体的图形,根据三视图的特征,推出左视图的形状,然后求解即可.【解答】解:在三棱锥C﹣ABD中,C在平面ABD上的射影为BD的中点,左视图的面积等于,故选:D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣2【考点】定积分在求面积中的应用;几何概型.【分析】根据积分的几何意义求出阴影部分的面积,利用几何概型的概率公式即可得到结论.【解答】解:由x=0,y=0,x=及y=cosx围成区域内围成的区域面积S==sinx|,由x=0,y=sinx及y=cosx围成的区域面积S==(sinx+cosx)|=,∴根据根据几何概型的概率公式可得所求的概率P=,故选:B.10.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=1【考点】直线和圆的方程的应用;向量的共线定理;数量积判断两个平面向量的垂直关系.【分析】由A,B,C是圆x2+y2=1上不同的三个点,可得,又,所以对两边平方即可得到结论.【解答】解:∵,两边平方得:∵∴λ2+μ2=1故选A11.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.【考点】数列递推式.【分析】设b n=nS n+(n+2)a n,由已知得b1=4,b2=8,从而b n=nS n+(n+2)a n=4n,进而得到是以为公比,1为首项的等比数列,由此能求出.【解答】解:设b n=nS n+(n+2)a n,∵数列{a n}的前n项和为S n,且a1=a2=1,∴b1=4,b2=8,∴b n=b1+(n﹣1)×(8﹣4)=4n,即b n=nS n+(n+2)a n=4n当n≥2时,∴,即,∴是以为公比,1为首项的等比数列,∴,∴.故选:A.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3【考点】函数的值域;函数的定义域及其求法.【分析】得出,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根得出mn=,只需△=a2(a+3)(a﹣1)>0,a>1或a<﹣3,利用函数求解n﹣m==,n﹣m取最大值为.此时a=3,【解答】解:设[m,n]是已知函数定义域的子集.x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数f(x)=﹣在[m,n]上单调递增,则,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根∵mn=∴m,n同号,只需△=a2(a+3)(a﹣1)>0,∴a>1或a<﹣3,n﹣m==,n﹣m取最大值为.此时a=3,故选:D二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是12 .【考点】程序框图.【分析】从程序框图中得到实验数的定义,找出区间中被3整除的数;找出被12整除的数;找出不能被6整除的数得到答案.【解答】解:由程序框图知实验数是满足:能被3整除不能被6整除或能被12整除的数,在[30,80]内的所有整数中,所有的能被3整除数有:30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78共有17个数,在这17个数中能被12 整除的有36,48,60,72,共4个数,在这17个数中不能被6 整除的有33,39,45,51,57,63,69,75,共计8个数,所以在[30,80]内的所有整数中“试验数”的个数是12个.故答案为:12.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值\frac{9}{2} .【考点】基本不等式;平面向量共线(平行)的坐标表示.【分析】由∥,可得:n+2m=4.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵∥,∴4﹣n﹣2m=0,即n+2m=4.∵m>0,n>0,∴+=(n+2m)=≥=,当且仅当n=4m=时取等号.∴+的最小值是.故答案为:.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为\sqrt{7} .【考点】双曲线的简单性质.【分析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【解答】解:根据双曲线的定义,可得|BF1|﹣|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|∴|BF1|﹣|BF2|=2a,即|BF1|﹣|AB|=|AF1|=2a又∵|AF2|﹣|AF1|=2a,∴|AF2|=|AF1|+2a=4a,∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°∴|F1F2|2=|AF1|2+|AF2|2﹣2|AF1|•|AF2|cos120°即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解之得c=a,由此可得双曲线C的离心率e==故答案为:16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为12 .【考点】等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n 项和.【分析】设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的X围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△A BC的面积为6,求边c的值.【考点】正弦定理;三角函数中的恒等变换应用.【分析】(1)利用降幂公式,两角和与差的余弦函数公式,三角形内角和定理,诱导公式化简已知等式,可求cosC的值,结合C的X围可求C的值.(2)利用三角形面积公式可求a的值,结合余弦定理即可求得c的值.【解答】解:(1)sin2+sinAsinB=.⇒,⇒,⇒,⇒,⇒,⇒,⇒,(2)∵,,∴,∵c2=a2+b2﹣2abcosC=10,∴.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【分析】(1)设A i表示事件“此人于2月i日到达该市”依题意知p(A i)=,设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,由此能求出此人到达当日空气质量重度污染的概率.(2)由题意可知,ξ的所有可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列和ξ的期望.【解答】解:(1)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,12).依题意知,p(A i)=,且A i∩A j=Φ(i≠j).设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,所以P(B)=(A1∪A2∪A3∪A7∪A12)=P(A1)+P(A2)+P(A3)+P(A7)+P(A12)=.即此人到达当日空气质量重度污染的概率为.(2)由题意可知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=P(A4∪A8∪A9)=P(A4)+P(A8)+P(A9)=,P(ξ=2)=P(A2∪A11)=P(A2)+P(A11)=,P(ξ=3)=P(A1∪A12)=P(A1)+P(A12)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=2)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3P故ξ的期望Eξ=.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【分析】(1)由余弦定理得BD=,由勾股定理,得BD⊥AD,由线线面垂直得BD⊥PD,从而BD⊥平面PAD,由此能证明PA⊥BD.(2)以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,分别求出平面APB的法向量和平面PBC的法向量,由此能求出二面角A﹣PB﹣C的余弦值.【解答】(1)证明:因为∠DAB=60°,AB=2,AD=1,由余弦定理得BD==,∴BD2+AD2=AB2,故BD⊥AD,∵PD⊥底面ABCD,BD⊂平面ABCD,∴BD⊥PD,又AD∩PD=D,∴BD⊥平面PAD,又PA⊂平面PAD,∴PA⊥BD.(2)解:以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,由已知得A(1,0,0),P(0,0,1),B(0,,0),C(﹣1,,0),=(1,0,﹣1),=(0,,﹣1),=(﹣1,,﹣1),设平面APB的法向量=(x,y,z),则,取y=,得=(3,,3),设平面PBC的法向量=(a,b,c),则,取b=,得=(0,,3),设二面角A﹣PB﹣C的平面角为θ,由图象知θ为钝角,∴cosθ=﹣|cos<>|=﹣||=﹣||=﹣.∴二面角A﹣PB﹣C的余弦值为﹣.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.【考点】椭圆的简单性质.【分析】(1)设B(x0,y0),则C(﹣x0,﹣y0),代入椭圆方程,运用直线的斜率公式,化简即可得到所求值;(2)联立直线AB的方程和圆方程,求得P的坐标;联立直线AB的方程和椭圆方程,求得B 的坐标,再求直线PQ,和直线BC的斜率,即可得到结论;(3)讨论直线PQ的斜率不存在和存在,联立直线PQ的方程和椭圆方程,求得Q的坐标,可得AQ的斜率,即可得证.【解答】解:(1)设B(x0,y0),则C(﹣x0,﹣y0),,所以;(2)联立得,解得,联立得,解得,所以,,所以,故存在常数,使得.(3)证明:当直线PQ与x轴垂直时,,则,所以直线AC必过点Q.当直线PQ与x轴不垂直时,直线PQ方程为:,联立,解得,所以,故直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).【考点】导数在最大值、最小值问题中的应用.【分析】(1)当a=1且x>1时,构造函数m(x)=lnx+﹣2,利用函数单调性和导数之间的关系即可证明:f(x)>3﹣;(2)根据函数最值和函数导数之间的关系将不等式恒成立问题进行转化,某某数a的取值X 围;(3)根据函数的单调性的性质,利用放缩法即可证明不等式.【解答】(1)证明:要证f(x)>3﹣,即证lnx+﹣2>0,令m(x)=lnx+﹣2,则m'(x)=,∴m(x)在(1,+∞)单调递增,m(x)>m(1)=0,∴lnx+﹣2>0,即f(x)>3﹣成立.(2)解法一:由f(x)>x且x∈(1,e),可得a,令h(x)=,则h'(x)=,由(1)知lnx﹣1+>1+=,∴h'(x)>0函数,h(x)在(1,e)单调递增,当x∈(1,e)时,h(x)<h(e)=e﹣1,即a≥e﹣1.解法二:令h(x)=alnx+1﹣x,则h'(x)=,当a>e时,h'(x)>0,函数h(x)在(1,e)上是增函数,有h(x)>h(1)=0,当1<a≤e时,∵函数h(x)在(1,a)上递增,在(a,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,即a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a≤1时,函数h(x)在(1,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,而h(e)=a+1﹣e<0,不合题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上得对∀x∈(1,e),f(x)>x恒成立,a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣】【解法三:由f(x)>x且x∈(1,e)可得由于表示两点A(x,lnx),B(1,0)的连线斜率,由图象可知y=在(1,e)单调递减,故当x∈(1,e)时,,∴0,即a≥e﹣1.(3)当a=时,f(x)=,则f(i)=ln(n+1)!+n,要证f(i)>2(n+1﹣),即证lni>2n+4﹣4,由(1)可知ln(n+1)>2﹣,又n+2=(n+1)+1>2>,∴,∴ln(n+1)>2﹣,∴ln2+ln3+…+ln(n+1)=2n+4﹣4,故f(i)>2(n+1﹣).得证.[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)做出辅助线连接ON,根据切线得到直角,根据垂直得到直角,即∠ONB+∠BNP=90°且∠OBN+∠BMO=90°,根据同角的余角相等,得到角的相等关系,得到结论.(Ⅱ)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即BM•MN=CM•MA,代入所给的条件,得到要求线段的长.【解答】(Ⅰ)证明:连接ON,因为PN切⊙O于N,∴∠ONP=90°,∴∠ONB+∠BNP=90°∵OB=ON,∴∠OBN=∠ONB因为OB⊥AC于O,∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN,PM=PN∴PM2=PN2=PA•PC(Ⅱ)∵OM=2,BO=2,BM=4∵BM•MN=CM•MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【考点】直线的参数方程;点到直线的距离公式;柱坐标刻画点的位置.【分析】(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,求出t1+t2和t1•t2,根据|AB|=•|t1﹣t2|=5,运算求得结果.(Ⅱ)根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=•||,运算求得结果.【解答】解:(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,设A,B对应的参数分别为 t1和t2,则 t1+t2=,t1•t2 =﹣.所以|AB|=•|t1﹣t2|=5 =.(Ⅱ)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=.所以由t的几何意义可得点P到M的距离为|PM|=•||=.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.【考点】带绝对值的函数;绝对值不等式.【分析】(Ⅰ)不等式即|x﹣1|+|x﹣4|≥5,等价于,或,或,分别求出每个不等式组的解集,再取并集即得所求.(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≥4,与偶此解得 a的值.【解答】解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,,或,或.解得:x≤0或x≥5.故不等式f(x)≥5的解集为{x|x≤0,或x≥5 }.…(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…由题意得:|a﹣1|≥4,解得a≤﹣3,或a≥5.…。
2016年青岛市高三统一质量检测理科综合能力测试本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I卷1至5页,第Ⅱ卷6至16页,共300分。
考试时间150分钟。
考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将答题卡收回。
可能用到的相对原子质量:H 1 N 14 O 16 Na 23 S 32 Fe 56第I卷(选择题共126分)本卷共21小题,每小题6分,共126分。
一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中。
只有一项是符合题目要求的。
1.下列关于细胞结构和功能的说法,错误的是A.植物细胞“生命系统的边界”是细胞膜B.胃蛋白酶分泌到消化道内不需要载体蛋白C.胰岛B细胞分泌胰岛素的过程中一定会发生膜的融合D.经核糖体合成到达细胞膜的膜蛋白必须经过高尔基体的加工和包装2.下列关于基因表达的叙述,正确的是A.T细胞受病毒刺激后有特定mRNA的合成B.线粒体、叶绿体和核糖体中均存在A-T和U-A的配对方式C.转运20种氨基酸的tRNA总共有64种D.基因的两条链可分别作模板进行转录,以提高蛋白质合成的效率3.下列有关实验的描述,正确的是A.鉴定还原糖的实验中,刚加入斐林试剂时组织样液呈无色,加热后变成砖红色B.在观察口腔上皮细胞DNA和RNA分布时,盐酸的作用是对该细胞进行解离C.选取经低温诱导的洋葱根尖制成的临时装片,在显微镜下观察不到联会现象D.探究温度对酶活性的影响时,将酶与底物溶液混合后置于不同温度下保温4.下列有关遗传和变异的叙述,正确的是A.基因重组可以产生新的性状,但不能改变基因频率B.一对表现正常的夫妇生一患某遗传病的孩子,正常情况下母方是致病基因的携带者C.花药离体培养过程中,基因突变、基因重组、染色体变异均有可能发生D.基因型为AAbb和aaBB的个体杂交,F2双显性性状中能稳定遗传的个体占1/16 5.下列关于人体内环境稳态及调节的叙述,错误的是A.血浆和组织液都有运输激素的作用B.内环境稳态是指内环境的温度、PH、渗透压保持相对稳定C.兴奋沿反射弧的传递过程离不开内环境D.神经元细胞膜内心外流是形成静息电位的基础6.用不同浓度的生长素类似物溶液处理某植物插条使其生根,结果如下表。
高三自主练习 数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题共50分)一、选择题:本大题共10小题.每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知R 是实数集,{21,M x N y y x ⎧⎫=<==⎨⎬⎩⎭,则R N C M ⋂=() A. ()1,2B. []0,2C. ∅D. []1,22. 等比数列{}n a 中,36a =,前三项和318S =,则公比q 的值为() A.1B. 12-C. 112-或 D. 112-或3. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.二项式3x ⎛ ⎝⎭的展开式的第二项的系数为()A. B.C. 14-D.145.已知圆C 的圆心与双曲线224413x y -=的左焦点重合,又直线4360x y --=与圆C 相切,则圆C 的标准方程为A. ()2214x y -+= B. ()2212x y ++= C. ()2211x y ++= D. ()2214x y ++=6.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则,ωϕ的值分别为()A. 1,6πB. 2,4πC. 2,3πD. 2,6π7.如图,网格纸上正方形小格的边长为1cm ,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积为A. 320cm πB. 316cm πC. 312cm πD.3203cm π8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为4,10,则输出的a 为()A.0B.2C.4D.69.已知抛物线22x py =的准线方程为14y =-,函数()sin f x x ω=的周期为4,则抛物线与函数()f x 在第一象限所围成的封闭图形的面积为() A.63ππ- B.1 C.2π D.42ππ- 10.若函数2x y =上存在点(),x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为()A.12B.1C.2D.2第II 卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.设复数12,z z 在复平面内的对应点关于虚轴对称,112z i =+,i 为虚数单位.则12z z =__________.12.若存在实数x ,使13x a x -+-≤成立,则实数a 的取值范围是__________.13.在ABC ∆中,90,1,2A AB AC ∠===o,设点P ,Q 满足(),1AP AB AQ AC λλ==-uu u r uu u r uuu r uuu r,.2R BQ CP λ∈⋅=-u u u r u u r若,则=λ________.14.如图所示,四个相同的直角三角形与中间的小正方形拼成的一个边长为2的大正方形,若直角三角形中较小的锐角6πθ=,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是_________.15.定义在R 上的函数()f x ,如果存在函数()g x kx b =+(,k b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数.现有如下函数:①()3f x x =;②()2xf x -=;③()1,00,0gx x f x x >⎧=⎨≤⎩;④()sin f x x x =+.则存在承托函数的()f x 的序号为________.(填入满足题意的所有序号)三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)在ABC ∆中,角A,B,C 所对边分别为,,a b c ,已知sin 1sin sin A a bB C a c-=-+-.(I )若b =ABC ∆周长取最大值时,求ABC ∆的面积;(II )设()()sin ,1,6cos ,cos 2m A n B A m n ==⋅u r r u r r,求的取值范围.17. (本小题满分12分)2015年9月12日青岛2015世界休闲体育大会隆重开幕.为普及体育知识,某校学生社团组织了14人进行“体育知识竞赛”活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:根据表格信息解答以下问题:(I )从14人中任选3人,求3人答对题目个数之和为6的概率;(II )从14人中任选2人,用X 表示这2人答对题目个数之和,求随机变量X 的分布列和数学期望EX.18. (本小题满分12分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又PA=AB=4,120CDA ∠=o,点N 在线段PB 上,且PN =.(I )求证:BD PC ⊥;(II )求证:MN//平面PDC ; (III )求二面角A PC B --的余弦值.19. (本小题满分12分)已知数列{}n a 满足112n n n n a a a a ++=-,且11,2a n N +=∈. (1)求数列{}n a 的通项公式;(II )设数列{}n b 的前n 项和为n S ,若数列{}n b满足)()()122212nn n n k b k N a a n k ++=-=∈=⎪⎪⎩,求64S ;(III )设1231111n n T a a a a =+++⋅⋅⋅+,是否存在常数c ,使n T n c ⎧⎫⎨⎬+⎩⎭为等差数列,请说明理由.20. (本小题满分13分)已知椭圆()222:11x C y a a+=>的左、右焦点分别为()()12,0,0F c F c -、,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r最小值为0.(I )求曲线C 的方程;(II )若动直线22,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,使得点B 到12,l l 的距离之积恒为1?若存在,请求出点B 的坐标;若不存在,请说明理由. 21. (本小题满分14分)设函数()ln 2016xn e f x n x e =-+,n 为大于零的常数.(I )求()f x 的单调区间;(II )若()()2210,0,22t n t x t ⎛⎫+-∈∈ ⎪⎝⎭,,求函数()f x 的极值点;(III )观察()f x 的单调性及最值,证明:12211lnnn e n n+-<.。
2016年山东省青岛市市北区中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)的绝对值是()A.﹣6 B.6 C.﹣D.2.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%3.(3分)下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个4.(3分)据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15° B.30° C.45° D.60°6.(3分)当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.(3分)如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③ D.①②③④8.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:= .10.(3分)在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是.11.(3分)已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.12.(3分)如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为.13.(3分)如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.14.(3分)将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2= ;S n= .(用含n的式子表示)三、解答题(本大题共10小题,满分78分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:.16.(8分)(1)化简:(2)解不等式组:.17.(6分)某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.(6分)某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.(6分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.(8分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.(8分)如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.(10分)某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌离拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽.∴=,即DH2=AD×DE.又∵DE=DC∴DH2= .即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD 等积的三角形(不要求写具体作法,但要保留作图痕迹).24.(12分)已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)的绝对值是()A.﹣6 B.6 C.﹣D.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.【点评】本题考查绝对值,解题的关键是明确绝对值的含义.2.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.【点评】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(3分)下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.【点评】此题考查了展开图折叠成几何体,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.(3分)据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15° B.30° C.45° D.60°【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.【点评】本题考查了切线的性质、含30度角的直角三角形.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.6.(3分)当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.【点评】本题考查了一次函数、反比例函数、二次函数的增减性;熟练掌握一次函数、二次函数、反比例函数的性质是关键.7.(3分)如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③ D.①②③④【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APM=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.【点评】本题考查了相似三角形的判定和性质,等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.8.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c<0,∴反比例函数y=的图象在第二、四象限.故选D.【点评】此题考查了一次函数、反比例函数与二次函数的图象与系数的关系.此题难度适中,解题的关键是注意数形结合思想的应用,注意函数的图象与系数的关系.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:= ﹣.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.(3分)在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10 .【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.(3分)已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(3分)如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【点评】解决本题的关键是找到所给图形中象限内的一对对应点的变化规律.13.(3分)如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB 面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.【点评】此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.14.(3分)将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2= ;S n= .(用含n的式子表示)【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,=×1×1=,∴S△AB1C1连接B1、B2、B3点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(本大题共10小题,满分78分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC 满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16.(8分)(1)化简:(2)解不等式组:.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>﹣,由②得:x≤3,则不等式组的解集为﹣<x≤3.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.(6分)某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(6分)某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,593,598,613,618,618,624,则其众数为:618,中位数为:=595.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比乙的成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,595.5.【点评】此题主要考查中位数、众数的求法以及从折线统计图得到信息的能力,掌握中位数、众数、方差等知识点的求法和意义是根本.19.(6分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.【点评】此题考查解直角三角形的应用,将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.20.(8分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【分析】(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,依题意得:5x+9(140﹣x)=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)(140﹣x)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.【点评】本题考查了一元一次不等式的应用、一元一次方程的应用以及一次函数的性质,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据函数的单调性解决最值问题.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.21.(8分)如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE 即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题主要考查了平行四边形的判定与性质、菱形的判定以及直角三角形的性质,解题时注意:一组对边平行且相等的四边形的是平行四边形,有一组邻边相等的平行四边形的是菱形.22.(10分)某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌离拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.【点评】本题主要考查二次函数的实际应用,根据题意设出函数解析式是根本,待定系数法求得抛物线解析式是解题关键.23.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE .。
青岛市2016届高三数学1月月考试卷(理科附答案)山东省青岛市城阳第一高级中学2016届高三数学1月月考试题理一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集等于()A.B.C.D.2.已知,那么的值是()A.B.C.D.3.下列结论错误的是A.命题“若”的逆否命题为“若”B.“”是“”的充分条件C.命题“若有实根”的逆命题为真命题D.命题“若”的否命题是“若则或”4.已知、都是正实数,函数的图象过(0,1)点,则的最小值是()A.B.C.4D.25.右图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为()A.B.[]C.D.6.函数上的图象大致是()7.设,若z的最大值为12,则z的最小值为()A.B.C.3D.68.已知的三边长为a、b、c,满足直线相离,则是()A.锐角三角形B.直角三角形C.钝角三角形D.以上情况都有可9.已知双曲线与抛物线有一个共同的焦点F,两曲线的一个交点为P,若,则点F到双曲线的渐近线的距离为()A.B.2C.D.310.已知函数有且只有两个不相等的实数根,则实数a的取值范围为()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共2511.________.12.不等式的解集不为则实数的取值范围________.13.把数列中的数按上小下大,左小右大的原则排成如下图所示三角形表:设是位于从上往下第i行且从左往右第j个数,则_______.14.已知点,若点是圆上的动点,则面积的最小值为.15.①若函数是奇函数,则的图像关于y轴对称;②若函数对任意,则4是函数的一个周期;③若;④若上是增函数,则.其中正确命题的序号是________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程16.(本小题满分12分)在△ABC中,角A、B、C对边分别是a、b、c,且满足(I)求角A的大小(II)若a=4,△ABC的面积为,求b,c.17(本小题满分12分)已知函数的图象相邻两条对称轴的距离为.(I)求的值;(II)将的图象上所有点向左平移个长度单位,得到的图象,若图象的一个对称中心为,当m取得最小值时,求的单调递增区间.18.(本题满分12分)如图,是边长为4的等边三角形,是等腰直角三角形,,平面平面ABD,且平面ABC,.(I)证明:DE//平面ABC;(II)求平面AEC和平面BDE所成锐二面角的余弦值. 19.(本小题满分13分)已知递增等比数列,满足.(I)求数列的通项公式;(II)设,求数列的前n项和.(III)在(II)的条件下,令的前n项和为若恒成立,求的取值范围.20.(本小题满分13分)平面内动点与两定点的连线的斜率之积为,记动点M的轨迹为C.(I)求动点M的轨迹C的方程;(II)定点,T为直线上任意一点,过F作TF的垂线交曲线C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.21.(本小题满分14分)已知函数.(1)当a=1时,求曲线在点(1,f(1))处的切线方程;(2)当a0时,若f(x)在区间[1,e]上的最小值为-2,求a 的值;(3)若对任意,且恒成立,求a的取值范围.。
青岛市高三统一质量检测
数学(理科)
第I 卷(选择题 共50分)
一、选择题:本大题共10小题。
1.已知全集21log ,,1,2,162U y y x x ⎧⎫
===⎨⎬⎩⎭
,集合{}{}1,1,1,4A B =-=,则()U A C B ⋂= A. {}1,1-
B. {}1-
C. {}1
D. ∅
2.已知数据12350,,,,,500x x x x ⋅⋅⋅(单位:公斤),其中12350,,,,,x x x x ⋅⋅⋅是某班50个学生的体重,设这50个学生体重的平均数为x ,中位数为y ,则12350,,,,,500x x x x ⋅⋅⋅这51个数据的平均数、中位数分别与x y 、比较,下列说法正确的是 A.平均数增大,中位数一定变大 B.平均数增大,中位数可能不变 C.平均数可能不变,中位数可能不变 D.平均数可能不变,中位数可能变小
3.设随机变量ξ服从正态分布(
)
21N σ,,则函数()2
=2f x x x ξ++不存在零点的概率为
A.
12
B.
23
C.
34
D.
45
4.已知a R ∈,则“1a <”是“2x x a -+>恒成立”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
5.定义{}()2,1min ,min ,,a a b a b f x x b a b
x ≤⎧⎧⎫
==⎨
⎨⎬>⎩⎭⎩,设,则由函数()f x 的图象与x 轴、直线
2x =所围成的封闭图形的面积为
A. 712
B. 512
C. 1
ln 23
+ D.
1
ln 26
+ 6.已知点12F F ,为双曲线()22
2210,0x y C a b a b
-=>>:的左,右焦点,点P 在双曲线C 的右支
上,且满足21212,120PF F F F F P =∠=o
,则双曲线的离心率为
A.
B.
C.
D.
7.如图所示的程序框图,输出S 的值为
A. 99223-
B. 100223
-
C. 101223-
D. 102223-
8.已知,x y R ∈,且满足34,2y x
x y x ≥⎧⎪
+≤⎨⎪≥-⎩
则2z x y =+的最大值为 A.10
B.8
C.6
D.3
9.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为 A.1:2 B.1:8 C.1:6 D.1:3
10.已知抛物线24x y =,直线y k =(k 为常数)与抛物线交于A,B 两个不同点,若在抛物线
上存在一点P(不与A,B 重合),满足0PA PB ⋅=uu r uu r
,则实数k 的取值范围为
A. 2k ≥
B. 4k ≥
C. 02k <≤
D. 04k <≤
第II 卷(非选择题 共100分)
二、填空题:本大题共5小题,每小题5分,共25分. 11.已知i 是虚数单位,,m n R ∈,且22m i ni +=-,则
m ni
m ni
+-的共轭复数为_______;
12.在二项式6
213x x ⎛
⎫+ ⎪⎝
⎭的展开式中,常数项等于________(用数字作答);
13.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<是偶函数,它的部分图象如图所示.M 是函数()f x 图象上的点,K ,L 是函
数()f x 的图象与x 轴的交点,且KLM ∆为等腰直角三角形,则()f x =___________; 14.若0,0a b >>,则()21a b a b ⎛⎫
++
⎪⎝
⎭的最小值是___________; 15.定义在区间[]12,x x 上的函数()y f x =的图象为C ,M 是C 上任意一点,O
为坐标原点,设
向量()()()()()1122,,,,,OA x f x OB x f x OM x y ===uu r uu u r uuu r
,且实数λ满足()121x x x λλ=+-,
此时向量()1ON OA OB λλ=+-uuu r uu r uu u r .若MN K ≤uuu r
恒成立,则称函数()y f x =在区间[]12,x x 上
可在标准K 下线性近似,其中K 是一个确定的实数.已知函数()22f x x x =-在区间[]1,2上可在标准K 下线性近似,那么K 的最小值是________.
三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知函数()22sin sin 6f x x x πωω⎛⎫
=--
⎪⎝
⎭
(,x R ω∈为常数且1
12
ω<<),函数()f x 的图象关于直线x π=对称. (I )求函数()f x 的最小正周期;(II )在ABC ∆中,角A,B,C 的对边分别为,,a b c ,若
31
1,54
a f A ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.
17. (本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为
11,46;1小时以上且不超过2小时离开的概率分别为12,23
;两人滑雪时间都不会超过3小时.
(I )求甲、乙两人所付滑雪费用相同的概率;
(II )设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望()E ξ.
18. (本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC AD AB BC ⊥⊥,,
45,2BCA AP AD AC ∠====o ,E 为PA 的中点.
(I )设面PAB ⋂面PCD l =,求证://CD l ; (II )求二面角B CE D --的余弦值.
19. (本小题满分12分)已知等差数列{}n a 的公差d=2,其前n 项和为n S ,数列{}n a 的首项
12b =,其前n 项和为n T ,满足)
1
2
2,n T n N *=+∈.
(I )求数列{}n a 、{}n b 的通项公式; (II )求数列{}
14n n a b -的前n 项和n W .
20. (本小题满分13分)已知椭圆22
:184
x y E +=,A 、B 分别是椭圆E 的左、右顶点,动点
M 在射线):0l x y =>上运动,MA 交椭圆E 于点P ,MB 交椭圆E 于点Q.
(I )若MAB ∆垂心的纵坐标为-,求点P 的坐标;
(II )试问:直线PQ 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
21. (本小题满分14分)已知函数()sin f x x ax =-. (I )对于()()0,1,0x f x ∈>恒成立,求实数a 的取值范围;
(II )当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (III )求证:()()1111ln 11231n n N n n
*+<+
++⋅⋅⋅++∈-.
11。