圆培优题
- 格式:docx
- 大小:196.09 KB
- 文档页数:3
一、圆的综合 真题与模拟题分类汇编(难题易错题)1.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90°∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE ∴OC OE CF CE= 即106=8CF ∴40CF 3= 点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.2.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动.(1)当t =0时,点F 的坐标为 ;(2)当t =4时,求OE 的长及点B 下滑的距离;(3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-43;(3)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标;(2)利用直角三角形的性质得出∠ABO =30°,即可得出结论; (3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论;(4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t =,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325.综上所述:当以点F为圆心,FA为半径的圆与坐标轴相切时,t的值为245或325.点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO=30°,解(3)的关键是判断出当O、E、F三点共线时,点F到点O的距离最大,解(4)的关键是判断出Rt△FAE∽Rt△ABD,是一道中等难度的中考常考题.3.已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC画图操作:(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)理解应用:(2)在(1)的条件下,①若tan∠APB12=,求点P的坐标②当点P的坐标为时,∠APB最大拓展延伸:(3)若在直线y43=x+4上存在点P,使得∠APB最大,求点P的坐标【答案】(1)图形见解析(2)(0,2),(0,4)(0,33953-,1255)【解析】试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;试题解析:解:(1)∠APB如图所示;(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=12=ABBC.∵A(2,0),B(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,∴BC22AC AB3,∴C(6,3∴K(4,2),∴P(0,3案为:(0,3(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=43x+4交x轴于M(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP5PK⊥OA于K.∵ON∥PK,∴ONPK=OMMK=NMMP,∴4PK=3MK35,∴PK125MK=955,∴OK=55﹣3,∴P(955﹣3,1255).点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.4.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.5.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴BD CD,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt△DEP中,∵37∴22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=17,∴AE=577 ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE AE DF AD= ,即57571257DF = , 解得DF=12,在Rt △BDH 中,BH=12BD=3, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣△BOD 的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π. 【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.6.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .【答案】(1)见解析;(2)14π-【解析】 【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE = 12BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE =CE =1,PC =OC 22OE CE 2+部分的面积.【详解】(1)过C点作直径CM,连接MB,∵CM为直径,∴∠MBC=90°,即∠M+∠BCM=90°,∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠ACD=∠BAC,∵∠BAC=∠M,∠BCP=∠ACD,∴∠M=∠BCP,∴∠BCP+∠BCM=90°,即∠PCM=90°,∴CM⊥PC,∴PC与⊙O相切;(2)连接OB,∵AD是⊙O的切线,切点为A,∴OA⊥AD,即∠PAD=90°,∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=12BC=1,∴AB=AC,∴∠ABC=∠ACB=67.5°,∴∠BAC=180°-∠ABC-∠ACB=45°,∴∠BOC=2∠BAC=90°,∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,∴OE=CE=1,PC=OC=22OE CE2+=,∴S=S△POC-S扇形OFC=()245π21π221 23604⨯⨯⨯-=-.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.7.如图,已知△ABC,23BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x (0≤x≤3); (2) 45; (3) BD 的长是1或1+52. 【解析】【分析】 (1)过点A 作AH ⊥BC ,垂足为点H .构造直角三角形,利用解直角三角形和勾股定理求得AD 的长度.联结DF ,点D 、F 之间的距离y 即为DF 的长度,在Rt △ADF 中,利用锐角三角形函数的定义求得DF 的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH +.设DF 与AE 相交于点Q ,通过解Rt △DCQ 和Rt △AHC 推知12DQ CQ =.故设DQ=k ,CQ=2k ,AQ=DQ=k ,所以再次利用勾股定理推知DC 的长度,结合图形求得线段BD 的长度,易得答案.(3)如果四边形ADCF 是梯形,则需要分类讨论:①当AF ∥DC 、②当AD ∥FC .根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A 作AH ⊥BC ,垂足为点H .∵∠B =45°,AB 2∴·cos 1BH AH AB B ===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴22222AD AH DH x x =+=-+. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴2442cos AD DF x x ADF==-+∠ ∴2442y x x =-+.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴AC =.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,∵3k =k =,∴53DC ==. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵DF =,DC BC BD =-.∴2AD BC BD =-.即23x =-,整理得 210x x --=,解得 x =综上所述,如果四边形ADCF 是梯形,BD 的长是1或2. 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.8.如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径,BD AD =,DE ⊥BC ,垂足为E .(1)判断直线ED 与⊙O 的位置关系,并说明理由;(2)若CE =1,AC =4,求阴影部分的面积.【答案】(1)ED 与O 相切.理由见解析;(2)2=33S π-阴影. 【解析】【分析】 (1)连结OD ,如图,根据圆周角定理,由BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可.【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD260233604π⋅⋅=-•22 23=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.9.如图,AB是半圆⊙O的直径,点C是半圆⊙O上的点,连接AC,BC,点E是AC的中点,点F是射线OE上一点.(1)如图1,连接FA,FC,若∠AFC=2∠BAC,求证:FA⊥AB;(2)如图2,过点C作CD⊥AB于点D,点G是线段CD上一点(不与点C重合),连接FA,FG,FG与AC相交于点P,且AF=FG.①试猜想∠AFG和∠B的数量关系,并证明;②连接OG,若OE=BD,∠GOE=90°,⊙O的半径为2,求EP的长.【答案】(1)见解析;(2)①结论:∠GFA=2∠ABC.理由见解析;②PE=36.【解析】【分析】(1)证明∠OFA=∠BAC,由∠EAO+∠EOA=90°,推出∠OFA+∠AOE=90°,推出∠FAO=90°即可解决问题.(2)①结论:∠GFA=2∠ABC.连接FC.由FC=FG=FA,以F为圆心FC为半径作⊙F.因为AG AG,推出∠GFA=2∠ACG,再证明∠ACG=∠ABC.②图2﹣1中,连接AG,作FH⊥AG于H.想办法证明∠GFA=120°,求出EF,OF,OG即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG,作FH⊥AG于H.∵BD=OE,∠CDB=∠AEO=90°,∠B=∠AOE,∴△CDB≌△AEO(AAS),∴CD=AE,∵EC=EA,∴AC=2CD.∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 323DG OG ∴==, 22221AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 603AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE 3. 【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.已知:如图,以等边三角形ABC 一边AB 为直径的⊙O 与边AC 、BC 分别交于点D 、E ,过点D 作DF ⊥BC ,垂足为F .(1)求证:DF 为⊙O 的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)332 23π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•DF=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。
《第二十四章 圆》培优检测卷班级___________ 姓名___________ 学号____________ 分数____________考试范围:第二十四章; 考试时间:120分钟; 总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·浙江·杭州市建兰中学九年级期中)已知O e 的半径为3cm ,点A 到圆心O 的距离为2cm ,那么点A 与O e 的位置关系是( )A .点A 在O e 内B .点A 在O e 上C .点A 在O e 外D .不能确定【答案】A【分析】根据点到圆心的距离d 与圆的半径r 之间的数量关系进行判断即可.【详解】解:由题意得:2,3d r ==,故:d r <,∴点A 在O e 内,故选A .【点睛】本题考查点与圆的位置关系:点到圆心的距离大于圆的半径时,点在圆外,点到圆心的距离等于圆的半径时,点在圆上,点到圆心的距离小于圆的半径时,点在圆内.2.(2022·福建省福州延安中学九年级阶段练习)下列四个命题中,真命题是( )A .如果两条弦相等,那么它们所对的圆心角相等B .圆是轴对称图形, 任何一条直径都是圆的对称轴C .平分弦的直径一定垂直于这条弦D .等弧所对的圆周角相等【答案】D【分析】根据圆心角、弧、弦的关系对A 进行判断,根据对称轴的定义对B 进行判断,根据垂径定理的推论对C 进行判断,根据圆周角定理的推论对D 进行判断.【详解】解:A 、在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,故此选项错误,不符合题意;B 、圆是轴对称图形, 任何一条直径所在的直线都是圆的对称轴,故此选项错误,不符合题意;C 、平分弦(非直径)的直径一定垂直于这条弦,故此选项错误,不符合题意;D 、等弧所对的圆周角相等正确,故此选项正确,符合题意,故选:D .理及圆周角定理的推论.3.(2022·湖北孝感·九年级期末)点P 到⊙O 的最近点的距离为2cm ,最远点的距离为7cm ,则⊙O 的半径是( )A .5cm 或9cmB .2.5cmC .4.5cmD .2.5cm 或4.5cm【答案】D【分析】根据已知条件能求出圆的直径,即可求出半径,此题点的位置不确定所以要分类讨论.【详解】解:①当点在圆外时,∵圆外一点和圆周的最短距离为2cm ,最长距离为7cm ,∴圆的直径为7﹣2=5(cm ),∴该圆的半径是2.5cm ;②当点在圆内时,∵点到圆周的最短距离为2cm ,最长距离为7cm ,∴圆的直径=7+2=9(cm ),∴圆的半径为4.5cm ,故选:D .【点睛】本题考查了点和圆的位置关系的应用,能根据已知条件求出圆的直径是解此题的关键.4.(2022·北京·人大附中九年级阶段练习)如图,AB 为O e 的直径,点C ,D 在O e 上,若130ADC Ð=°,则BAC Ð的度数为( )A .25°B .30°C .40°D .50°【答案】C 【分析】根据圆内接四边形对角互补求得B Ð,根据直径所对的圆周角是直角可得=90°ACB Ð,根据直角三角形的两个锐角互余即可求解.【详解】解:∵AB 为O ⊙的直径,,60OA OB AOB =Ð=°Q ,AOB \ 是等边三角形,12,12OA AB AP AB \====,223OP OA AP \=-=,即这个正六边形的边心距为3,【点睛】本题考查了正多边形的中心角和边心距、等边三角形的判定与性质、勾股定理,熟练掌握正多边形的中心角和边心距的概念是解题关键.6.(2022·全国·九年级单元测试)如图,AB过半⊙O的圆心O,过点B作半⊙O的切线BC,切点为点C,连接AC,若∠A=25°,则∠B的度数是( )A.65°B.50°C.40°D.25°【答案】C【分析】连接OC,根据切线的性质,得出∠OCB=90°,再利用圆的半径相等,结合等边对等角,得出∠A =∠OCA,然后再利用三角形的外角和定理,得出∠BOC的度数,再利用直角三角形两锐角互余,即可得出∠B的度数.【详解】解:连接OC,∵BC与半⊙O相切于点C,∴∠OCB=90°,∵∠A=25°,∵OA=OC,∴∠A=∠OCA,∴∠BOC=2∠A=50°,∴∠B=90°﹣∠BOC=40°.故选:C【点睛】本题考查了切线的性质、等边对等角、三角形外角和定理、直角三角形两锐角互余,解本题的关键在熟练掌握相关的性质、定理.二、填空题(本大题共6小题,每小题3分,共18分)7.(2022·北京市朝阳区人大附中朝阳分校九年级阶段练习)如图,点A、B、C在⊙O上,∠C=45°,半径OB的长为3,则AB的长为_____.【答案】32【分析】首先根据圆周角定理求出∠【答案】1【分析】连接OA、OC、OD然后由含30°角的直角三角形的性质求解即可.【详解】解:连接OA、OC∵点O为正六边形ABCDEF【答案】15【分析】如图,连接CQ,然后求出【详解】解:如图,连接CQ.由题意CQ=CP,CDPQ=∴DQ=DP=12∵PA=QB,【答案】1或3或5e与坐标轴的切点为【分析】设PQ点D是切点,P e的半径是1Q,PB=2Q=,PC2\=+=,52 AP AC PC定及性质,利用分类讨论的思想求解.三、(本大题共5小题,每小题6分,共30分)(1)点M的坐标为 (2)点D(5,﹣2)在⊙M【答案】(1)(2,0)(2)内【分析】(1)由网络可得出线段(2)解:由图知,圆的半径AM∵2513>,∴点D在圆M内,(1)求正六边形的边长;(2)以A为圆心,AF为半径画弧【答案】(1)6(2)4π(1)求ACBÐ的度数;e的半径为3,求圆弧 AC的长.(2)若O【答案】(1)30°(2)2pe的切线∵AB是O^∴OA AB∴90Ð=OAB°∵90Ð=DAC°Ð=Ð∴DAC OAB(2)在(1)的基础上,连接BO 并延长与【点睛】本题考查了作图:无刻度直尺作图,考查了正五边形的对称性质,掌握正五边形的性质是解题的关键.17.(2022·湖南·长沙麓山国际实验学校九年级阶段练习)如图,与A ,B 重合),过O 作OC ⊥AP (1)试判断CD 与AB 的数量和位置关系?并说明理由;(2)若45B Ð=°,AP=4,则⊙∵45B Ð=°,四、(本大题共3小题,每小题8分,共24分)18.(2021·江苏·阜宁县实验初级中学九年级阶段练习)如图,⊙O 的弦AB 、DC 的延长线相交于点E .A D AE DE E E Ð=Ðìï=íïÐ=Ðî,∴△ACE ≌△DBE (ASA ),∴BE =CE ,∵AE =DE ,∴AE -BE =DE -CE ,即AB =CD .【点睛】本题考查了圆的相关计算与证明,三角形全等的判定和性质,正确理解圆心角、弧与弦的关系是解题的关键.19.(2021·广东惠州·九年级期末)如图在Rt ABC 中,∠C =90º,以AC 为直径作⊙O ,交AB 于D ,过O 作OE ∥AB ,交BC 于E .(1)求证:DE 是⊙O 的切线;(2)如果⊙O 的半径为3,DE =4,求AB 的长;(3)在(2)的条件下,求△ADO 的面积.【答案】(1)证明见解析(2)10AB =(3) 4.32ADO S =△【分析】(1)根据平行线的性质,得出123A Ð=ÐÐ=Ð,,再根据等边对等角,得出1A Ð=Ð,再根据等量代换,得出32Ð=Ð,再利用SAS ,得出OCE ODE ≌△△,进而得出OCE ODE Ð=Ð,进而得出OD DE ^,即可得出结论;(2)根据(1),得出ODE 是直角三角形,根据勾股定理,得出5OE =,再根据三角形的中位线定理,即可得出AB 的长;(3)连接CD ,根据圆周角定理,得出90ADC Ð=°,再根据等面积法,得出CD 的长,然后根据勾股定理,得出AD 的长,再根据三角形的面积公式,得出ADC 的面积,再根据三角形中线平分三角形的面积,即可得出ADO △的面积.(1)证明:如图,∵OE AB ∥,∴123A Ð=ÐÐ=Ð,,∵OA OD =,∴1A Ð=Ð,∴32Ð=Ð,∵OC OD OE OE ==,,∴()OCE ODE SAS △≌△,∴OCE ODE Ð=Ð,∵90C Ð=°,∴90OCE ODE Ð=Ð=°,即OD DE ^,∴DE 是⊙O 的切线.(2)解:由(1),可得:三角形ODE 是直角三角形,在Rt ODE △中,∵34OD DE ==,,∴5OE =,【点睛】本题考查了平行线的性质、等边对等角、全等三角形的性质与判定、切线判定定理、勾股定理、三角形的中位线定理、圆周角定理、三角形中线的性质,解本题的关键在熟练掌握相关的性质定理.20.(2022·江苏·泰州市姜堰区南苑学校九年级)如图,在圆心,OB为半径的圆与(1)如图1,若AP=DP,则⊙O的半径r值为_______;(2)求BC=6,求⊙O的半径r长;(3)若AD的垂直平分线和⊙O有公共点,求半径r的取值范围.【答案】(1)8 3(2)3∵Oe与AC相切于点∴AC OD^,∴∠ADO=90°,即∠PDO∵∠ABC =90°, AB =8,∴22AC AB BC =+=∵OD AC ^,AB BC ^∴1122AC OD BC OB ×+×∴AC OD BC OB ×+×=∵∠EFD=∠ODF=∠OEF=90°∴四边形ODFE是矩形,∵OD=OE,∴四边形ODFE是正方形,===∴AF DF OD r∵222,∵OD<OA,∴OB+OD<OB+OA,∴2r<8,∴r<4,∴r的取值范围是252-【点睛】本题主要考查了圆的切线的判定与性质、切线长定理、勾股定理、用不等式求取值范围等知识与方法,熟练掌握相关知识点是解题的关键,属于考试压轴题.五、(本大题共2小题,每小题9分,共18分)(1)求抛物线解析式及D 点坐标.(2)猜测直线CM 与D e 的位置关系,并证明你的猜想.(3)抛物线对称轴上是否存在点P ,若将线段上?若能,求点P 的坐标;若不能,说明理由.【答案】(1)()2125344y x =--+;(3,0)(2)相切;证明见解析;由抛物线的解析式得:M (3,254∵D (3,0),∴()22225225403416CM æö=-+-=ç÷èø∴222CM CD DM +=,根据题意得∠CP C¢=∠CGD=∠GDO ∴∠CPH+∠HP C¢=90°,∠GCP+∴∠GCD=∠HP C¢,OC=GD=4,∵CP=C¢P∴∆CGP≅∆PH C¢,∴PG=C¢H=GD-DP=4-k,CG=PH六、(本大题共12分)。
第二十四章:圆培优单元试题一.选择题(共10小题)1.下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有()A.1个B.2个C.3个D.4个2.如图,O为圆心,AB是直径,C是半圆上的点,D是上的点.若∠BOC=40°,则∠D的大小为()A.1l0°B.120°C.130°D.140°3.如图, AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°4.如图,AB是⊙O的直径,CD切⊙O于点C,若∠BCD=25°,则∠B等于()A.25°B.65°C.75°D.90°5.如图,等边三角形ABC的边长为2,CD⊥AB于D,若以点C为圆心,CD为半径画弧,则图形阴影部分的面积是()A.﹣πB.2﹣πC.2D.2﹣6.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm7.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定8.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为()A.56°B.62°C.68°D.78°10.如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=3,则下列结论:①F=.其中正确的个数为()是CD的中点;②⊙O的半径是2;③AE=CE;④S阴影A.1 B.2 C.3 D.4二.填空题(共6小题)11.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,设∠A=α,则∠E+∠F=(用含α的式子表示).12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.13.如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB、CB于点F、G,则图中阴影部分的面积为(结果保留π)14.如图,AB是半圆O的直径,点D,E在半圆上,∠DOE=100°,点C在上,连接CD,CE,则∠DCE等于度.15.在△ABC中,AB=AC=2,BC=4,P是AB上一点,连接PC,以PC为直径作⊙M交BC于D,连接PD,作DE⊥AC于点E,交PC于点G,已知PD=PG,则BD=16.如图,AB是⊙O的直径,点C在⊙O上,若⊙O半径为3,AC长为2,则BC=.三.解答题(共7小题)17.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,B P与⊙O交于点C.(1)如图①,若∠P=35°,求∠ABP的度数;(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.18.如图,BC是⊙O的直径,AB是⊙O的弦,半径OF∥AC交AB于点E.(1)求证:=;(2)若AB=6,EF=3.求半径OB的长.19.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.20.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD于点E,BF∥OC,连接BC和CF,CF交AB于点G.(1)求证:∠OCF=∠BCD;(2)若CD=4,tan∠OCF=,求⊙O半径的长.21.如图,在半径为1的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出是哪条边,并求其长度;如果不存在,请说明理由.22.如图,点O是△ABC的边AB上一点,以OB为半径的⊙O交BC于点D,过点D的切线交AC于点E,且DE ⊥AC.(1)证明:AB=AC;(2)设AB=cm,BC=2cm,当点O在AB上移动到使⊙O与边AC所在直线相切时,求⊙O的半径.23.如图,AD的圆O的切线,切点为A,AB是圆O的弦.过点B作BC∥AD,交圆O于点C,连接AC,过点C 作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与圆O的位置关系,并说明理由.(2)若AB=9,BC=6,求圆O的半径和PC的长.参考答案一.选择题1.解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)同圆或等圆中相等的圆心角所对的弧相等,故错误;(3)同圆或等圆中劣弧一定比优弧短,故错误;(4)直径是圆中最长的弦,正确,正确的只有1个,故选:A.2.解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D==110°,故选:A.3.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.4.解:连接OC,如图,∵CD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∴∠OCB=90°﹣∠BCD=90°﹣25°=65°,∵OB=OC,∴∠B=∠OCB=65°.故选:B.5.解:∵△ABC是等边三角形,且CD⊥AB,∴AD=AB=1,∠ACB=60°,由勾股定理得:CD==,∴S阴影=S△ABC﹣S扇形CEF=AB•CD﹣=×2×﹣=﹣,故选:A.6.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.7.解:∵圆心A的坐标是(1,2),点P的坐标是(5,2),∴AP==4<5,∴点P在⊙A内,故选:A.8.解:∵⊙O的半径为6.5cm,圆心O到直线l的距离为8cm,6.5<8,∴直线l与⊙O相离.故选:C.9.解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,∴∠CDE=∠B=68°,故选:C.10.解:①∵AF是AB翻折而来,∴AF=AB=6,∵四边形ABCD是矩形,AD=BC=3,∴DF===3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴,设OP=OF=x,则,解得:x=2,∴②正确;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE =4CE , ∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边三角形;同理△OPG 为等边三角形; ∴∠POG =∠FOG =60°,OH =,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG ) =S 矩形OPDH ﹣S △OF G =2×﹣××=.∴④正确;其中正确的结论有:①②④,3个; 故选:C .二.填空题(共6小题)11.解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°,∠ECD =∠A =α,∠BCF =∠A =α, ∴∠EDC +∠FBC =180°,∴∠E +∠F =360°﹣180°﹣2α=180°﹣2α, 故答案为:180°﹣2α.12.解:连接OB ,OD ,∵∠DOB 与∠A 都对,∠DOB (大于平角的角)与∠BCD 都对,∴∠DOB =2∠A ,∠DOB (大于平角的角)=2∠BCD , ∵∠DOB +∠DOB (大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°13.解:∵在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD,∴AE=BE,∠BEA=90°,∴BE=AE∴BE=AE=4,∴图中阴影部分的面积是:()×2=(16﹣4π)×2=32﹣8π,故答案为:32﹣8π.14.解:补全⊙O,在⊙O上AB的下方取一点M,连接DM,EM.∵∠M=∠DOE=50°,∠M+∠DCE=180°,∴∠DCE=130°,故答案为13015.解:如图,作AH⊥BC于H.∵AB=AC=2,AH⊥BC,∴∠B=∠ACD,BH=CH=2,AH==4,∵PC是直径,∴∠PDC=90°∵DE⊥AC,∴∠CDP=∠CED=90°,∵PD=PG,∴∠PDG=∠PGD=∠CGE,∵∠PDG+∠CDE=90°,∠CDE+∠ECD=90°,∴∠PDG=∠ECD=∠B=∠EGC,∵∠PDB=∠DEC=∠AHB=90°,∴△PDB∽△DEC∽△CEG∽△AHB,设BD=a,则有PD=PG=2a,CD=4﹣a,EC=,CG=,∴PC=PG+CG=,在Rt△PCD中,∵PD2+CD2=PC2,∴4a2+(4﹣a)2=()2,解得a=或4(舍弃),∴BD=.故答案为.16.解:∵如图,AB是⊙O的直径,∴∠C=90°,∵⊙O半径为3,AC长为2,∴由勾股定理知:BC===4.故答案是:4.三.解答题(共7小题)17.(1)解:∵AB是⊙O的直径,AP是⊙O的切线,∴AB⊥AP,∴∠BAP=90°;又∵∠P=35°,∴∠AB=90°﹣35°=55°.(2)证明:如图,连接OC,OD、AC.∵AB是⊙O的直径,∴∠ACB=90°(直径所对的圆周角是直角),∴∠ACP=90°;又∵D为AP的中点,∴AD=CD(直角三角形斜边上的中线等于斜边的一半);在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠OAD=∠OCD(全等三角形的对应角相等);又∵AP是⊙O的切线,A是切点,∴AB⊥AP,∴∠OAD=90°,∴∠OCD=90°,即直线CD是⊙O的切线.18.(1)证明:∵AB是直径,∴∠A=90°,∵OF∥AC,∴∠OEB=∠A=90°,∴OF⊥AB,∴=.(2)解:设OB=r,∵OF⊥AB,∴,在Rt△OBE中,∵OB2=OE2+EB2,∴r2=(r﹣3)2+(3)2,∴r=6,即OB=6.19.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.20.(1)证明:∵AB是直径,AB⊥CD,∴,∴∠BCD=∠BFC,∵BF∥OC∴∠OCF=∠BFC,∴∠OCF=∠BCD;(2)解:∵AB⊥CD,∴CE=CD=2,∵∠OCF=∠BCD∴tan∠OCF=tan∠BCD=,∵CE=2∴BE=1,设OC=OB=x,则OE=x﹣1,在Rt△OCE中,∵x2=(x﹣1)2+22,解得x=,即⊙O半径的长为.21.解:(1)∵OD⊥BC,∴BD=BC=,∴OD==;(2)DE的长保持不变,理由如下:连接AB,由勾股定理得,AB==,∵OD⊥BC,OE⊥AC,∴BD=CD,AE=EC,∴DE=AB=.22.(1)证明:连接OD.∵DE是⊙O的切线,∵DE⊥OD,∵AC⊥DE,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠C,∴AB=AC.(2)设AC与⊙O相切于点F,连接OF,作AH⊥BC于H.设半径为r.∵AB=AC,AH⊥BC,∴BH=CH=1,∴AH==2,∴tan∠C==2,∵∠OFE=∠ODE=∠DEF=90°,∴四边形ODEF是矩形,∵OD=OF,∴四边形ODEF是正方形,∴EF=DE=r,∵tan C==2,∴EC=,∴AF=﹣r﹣r=﹣r,在Rt△AOF中,∵OA2=AF2+OF2,∴(﹣r)2=r2+(﹣r)2,解得r=.23.解:(1)直线PC与圆O相切,理由是:如图1,连接CO交延长,交⊙O于点N,连接BN,∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠BNC,∴∠BNC=∠ACD,∵∠BCP=∠ACD,∴∠BNC=∠BCP,∵CN是⊙O的直径,∴∠CBN=90°,∴∠BNC+∠BCN=90°,∴∠BCP+∠BCN=90°,∴∠PCO=90°,即PC⊥OC,∵点C在⊙O上,∴直线PC与圆O相切;(5分)(2)∵AD是⊙O的切线,∴AD⊥OA,即∠OAD=90°,∵BC∥AD,∴∠OMC=180°﹣∠OAD=90°,即OM⊥BC,∴MC=MB,∴AB=AC,在Rt△AMC中,∠AMC=90°,MC=BC=3,由勾股定理得:AM==6,设⊙O的半径为r,在Rt△OMC中,∠OMC=90°,OM=AM﹣AO=6﹣r,MC=3,OC=r,由勾股定理得:OM2+MC2=OC2,即,解得:r=,∵∠OMC=∠OCP,∠MOC=∠COP,∴△OMC∽△OCP,∴,∴=,∴PC=.(11分)。
第4题 第5题 第6题第1题 第2题 第3题圆的培优专题1——与圆有关的角度计算一 运用辅助圆求角度1、如图,△ABC 内有一点D ,DA =DB =DC ,若∠DAB =20︒,∠DAC =30︒, 则∠BDC = . (∠BDC = 12∠BAC =100︒)2、如图,AE =BE =DE =BC =DC ,若∠C =100︒,则∠BAD = . (50︒)3、如图,四边形ABCD 中,AB =AC =AD ,∠CBD =20︒,∠BDC =30︒,则 ∠BAD = . (∠BAD =∠BAC +∠CAD =40︒+60︒=100︒)解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗! 4、如图,□ABCD 中,点E 为AB 、BC 的垂直平分线的交点,若∠D =60︒, 则∠AEC = . (∠AEC =2∠B =2∠D =120︒)5、如图,O 是四边形ABCD 内一点,OA =OB =OC ,∠ABC =∠ADC =70︒, 则∠DAO +∠DCO = . (所求=360︒-∠ADC -∠AOC =150︒)6、如图,四边形ABCD 中,∠ACB =∠ADB =90︒,∠ADC =25︒,则∠ABC = . (∠ABC =∠ADC =25︒)解题策略:第6题有两个直角三角形共斜边,由直角所对的弦为直径,易得到ACBD 共圆.第10题 第11题 第12题第7题 第8题 第9题 二 运用圆周角和圆心角相互转化求角度7、如图,AB 为⊙O 的直径,C 为AB 的中点,D 为半圆AB 上一点,则∠ADC = . 8、如图,AB 为⊙O 的直径,CD 过OA 的中点E 并垂直于OA ,则∠ABC = . 9、如图,AB 为⊙O 的直径,3BC AC =,则∠ABC = .答案:7、45︒; 8、30︒; 9、22.5︒; 10、40︒; 11、150︒; 12、110︒ 解题策略:以弧去寻找同弧所对的圆周角与圆心角是解决这类问题的捷径!10、如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC =50︒,则∠ADC = . 11、如图,⊙O 的半径为1,弦AB =2,弦AC =3,则∠BOC = . 12、如图,PAB 、PCD 是⊙O 的两条割线,PAB 过圆心O ,若AC CD =,∠P =30︒, 则∠BDC = . (设∠ADC =x ,即可展开解决问题)解题策略:在连接半径时,时常会伴随出现特殊三角形——等腰三角形或直角三角形或等腰 直角三角形或等边三角形,是解题的另一个关键点!圆的四接四边形的外角等于内对角,是一个非常好用的一个重要性质!第1题 第2题 第3题圆的培优专题2——与垂径定理有关的计算1、如图,AB 是⊙O 的弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上,若∠BED =30︒,⊙O 的半径为4,则弦AB 的长是 . 略解:∵OD ⊥AB ,∴AB =2AC ,且∠ACO =90︒, ∵∠BED =30︒,∴∠AOC =2∠BED =60︒∴∠OAC =30︒,OC = 12 OA =2,则AC =23,因此AB =43.2、如图,弦AB 垂直于⊙O 的直径CD ,OA =5,AB =6,则BC = . 略解:∵直径CD ⊥弦AB ,∴AE =BE =12 AB=3∴OE =22534-=,则CE =5+4=9 ∴BC =2293310+=3、如图,⊙O 的半径为25,弦AB ⊥CD ,垂足为P ,AB =8,CD =6,则OP = . 略解:如图,过点O 作OE ⊥AB ,OF ⊥CD ,连接OB ,OD. 则BE =12 AB =4,DF =12 CD =3,且OB =OD =25OE =22(25)42-=,OF =22(25)311-=又AB ⊥CD ,则四边形OEPF 是矩形,则OP =222(11)15+=4、如图,在⊙O 内,如果OA =8,AB =12,∠A =∠B =60︒,则⊙O 的半径为 . 略解:如图,过点O 作OD ⊥AB ,连接OB ,则AD =12 AB =4,因此,BD =8,OD =43∴OB =22(43)847+=.第4题 第5题 第6题5、如图,正△ABC 内接于⊙O ,D 是⊙O 上一点,∠DCA =15︒,CD =10,则BC = 略解:如图,连接OC ,OD ,则∠ODC =∠OCD∵△ABC 为等边三角形,则∠OCA =∠OCE =30︒,∴∠ODC =∠OCD =45︒ ∴△OCD 是等腰三角形,则OC =52 过点O 作OE ⊥BC ,则BC =2CE =566、如图,⊙O 的直径AB =4,C 为AB 的中点,E 为OB 上一点,∠AEC =60︒,CE 的延 长线交⊙O 于点D ,则CD = 略解:如图,连接OC ,则OC =2∵C 为AB 的中点,则OC ⊥AB ,又∠AEC =60︒,∴∠OCE =30︒ 如图,过点O 作OF ⊥CD ,则OF =12 OC =1,CF =3,∴CD =2CF =237、如图,A 地测得台风中心在城正西方向300千米的B 处, 并以每小时107千米的速度沿北偏东60︒的BF 方向移 动,距台风中心200千米范围内是受台风影响的区域. 问:A 地是否受到这次台风的影响?若受到影响,请求 出受影响的时间?解:如图,过点A 作AC ⊥BF 交于点C ,∵∠ABF =30︒,则AC =12 AB =150<200,因此A 地会受到这次台风影响;如图,以A 为圆心200千米为半径作⊙A 交BF 于D 、E 两点,连接AD , 则DE =2CD =2222001501007-=, 所以受影响的时间为100710710÷=(时)圆的培优专题3——圆与全等三角形1、如图,⊙O 的直径AB =10,弦AC =6,∠ACB 的平分线交⊙O 于D ,求CD 的长. 解:如图,连接AB ,BD ,在CB 的延长线上截取BE =AC ,连接DE ∵∠ACD =∠BCD ,∴AD =BD 又∠CAD =∠EBD ,AC =BE ∴△CAD ≌△EBD (SAS ) ∴CD =DE ,∠ADC =∠BDE∵AB 为⊙O 的直径,则∠ACB =∠ADB =90︒∴BC =221068-=;∠ADC +∠CDB =∠CDB +∠BDE =90︒,即∠CDE =90︒ ∴△CDE 是等腰直角三角形且CE =14,∴CD =722、如图,AB 是⊙O 的直径,C 是半圆的中点,M 、D 分别是CB 及AB 延长线上一点,且 MA =MD ,若CM =2,求BD 的长.解:如图,连接AC ,则AC =BC ,∠C =90︒,即△ABC 是等腰直角三角形 过点M 作MN ∥AD ,则∠NMA =∠MAD则△CMN 也是等腰直角三角形,则MN =2CM =2 ∴∠ANC =∠MBD =135︒,又MA =MD ,∴∠D =∠NMA =∠MAD ∴△AMN ≌△BMD (AAS ) ∴BD =MN =23、如图,AB 为⊙O 的直径,点N 是半圆的中点,点C 为AN 上一点,NC =3. 求BC -AC 的值.解:如图,连接AN ,BN ,则△ABN 是等腰直角三角形 在BC 上截取BD =AC ,连接DN ∵AN =BN ,∠CAN =∠DBN ,AC =BD ∴△ACN ≌△BDN (SAS )∴CN =DN ,∠CNA =∠DNB ,∴∠CND =∠CNA +∠AND =∠ADN +∠DNB =90︒,即△CND 是等腰直角三角形 ∴CD =2NC =6,∴BC -AC =BC -BD =CD =64、如图,点A 、B 、C 为⊙O 上三点,AC BC =,点M 为BC 上一点,CE ⊥AM 于E , AE =5,ME =3,求BM 的长.解:如图,在AM 上截取AN =BM ,连接CN ,CM. ∵AC BC =,∴AC =BC ,又∠A =∠B ∴△ACN ≌△BCM (SAS ) ∴CN =CM ,又CE ⊥AM ∴NE =ME =3, ∴BM =AN =AE -NE =25、如图,在⊙O 中,P 为BAC 的中点,PD ⊥CD ,CD 交⊙O 于A ,若AC =3,AD =1, 求AB 的长.解:如图,连接BP 、CP ,则BP =CP ,∠B =∠C 过点P 作PE ⊥AB 于点E ,又PD ⊥CD ∴∠BEP =∠CDP ∴△BEP ≌△CDP (AAS ) ∴BE =CD =3+1=4,PE =PD连接AP ,则Rt △AEP ≌Rt △ADP (HL ),则AE =AD =1 ∴AB =AE+BE =56、如图,AB 是O 的直径,MN 是弦,AE ⊥MN 于E ,BF ⊥MN 于F ,AB =10,MN =8. 求BF -AE 的值.解:∵AE ⊥MN ,BF ⊥MN ,则AE ∥BF ,∴∠A =∠B如图,延长EO 交BF 于点G , 则∠AOE =∠BOG ,AO =BO∴△AOE ≌△BOG (AAS ),则OE =OG 过点O 作OH ⊥MN ,FG =2OH ,HN =4连接ON ,则ON =5,OH =22543-=,则BG -AE =FG =6.圆的培优专题4——圆与勾股定理1、如图,⊙O 是△BCN 的外接圆,弦AC ⊥BC ,点N 是AB 的中点,∠BNC =60︒, 求BNBC的值. 解:如图,连接AB ,则AB 为直径,∴∠BNA =90︒ 连接AN ,则BN =AN ,则△ABN 是等腰直角三角形∴BN =22AB ;又∠BAC =∠BNC =60︒, ∴BC =32AB , ∴BN BC =63(方法2,过点B 作BD ⊥CN ,即可求解)2、如图,⊙O 的弦AC ⊥BD ,且AC =BD ,若AD =22,求⊙O 半径. 解:如图,作直径AE ,连接DE ,则∠ADE =90︒ 又AC ⊥BD ,则∠ADB +∠DAC =∠ADB +∠EDB =90︒ ∴∠DAC =∠EDB ,则CD BE =,∴DE BC =, ∵ AC =BD ,∴AC CD =,则AD BC DE == ∴AD =DE ,即△ADE 是等腰直角三角形 ∴AE =2AD =4,即⊙O 的半径为23、如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为CB 延长线上一点,且∠CAD =45︒, CE ⊥AB 于点E ,DF ⊥AB 于点F.(1)求证:CE =EF ;(2)若DF =2,EF =4,求AC. (1)证:∵ AB 为⊙O 的直径,∠CAD =45︒,则△ACD 是等腰直角三角形,即AC =DC 又CE ⊥AB ,则∠CAE =∠ECB如图,过点C 作CG 垂直DF 的延长线于点G又CE ⊥AB ,DF ⊥AB ,则四边形CEFG 是矩形,∠AEC =∠DGC =90︒ ∴EF =CG ,CE ∥DG ,则∠ECB =∠CDG =∠CAE ∴△ACE ≌△DCG (AAS ),则CE =CG =EF (2)略解:AC =CD =2246213+=.4、如图,AB 为⊙O 的直径,CD ⊥AB 于点D ,CD 交AE 于点F ,AC CE =. (1)求证:AF =CF ;(2)若⊙O 的半径为5,AE =8,求EF 的长 (1)证:如图,延长CD 交⊙O 于点G ,连接AC ∵直径AB ⊥CG ,则AG AC CE == ∴∠CAE =∠ACG ,则AF =CF(2)解:如图,连接OC 交AE 于点H ,则OC ⊥AE ,EH =AH =12 AE=4∴ OH =22543-=,则CH =5-3=2 设HF =x ,则CF =AF =4-x 则2222(4)x x +=-,∴32x =,即HF =32∴EF =1125、如图,在⊙O 中,直径CD ⊥弦AB 于E ,AM ⊥BC 于M ,交CD 于N ,连接AD. (1)求证:AD =AN ;(2)若AB =42,ON =1,求⊙O 的半径. (1)证:∵CD ⊥AB ,AM ⊥BC∴∠C +∠CNM =∠C +∠B =90︒ ∴∠B =∠CNM ,又∠B =∠D ,∠AND =∠CNM ∴∠D =∠AND ,即AD =AN (2)解:∵直径CD ⊥弦AB ,则AE =22 又AN =AD ,则NE =ED如图,连接OA ,设OE =x ,则NE =ED =1x + ∴OA =OD =21x +∴222(22)(21)x x +=+,则1x = ∴⊙O 的半径OA =3圆的培优专题5——圆中两垂直弦的问题1、在⊙O 中,弦AB ⊥CD 于E ,求证:∠AOD +∠BOC =180︒. 证:如图,连接AC ,∵AB ⊥CD ,则∠CAB +∠ACD =90︒ 又∠AOD =2∠ACD ,∠BOC =2∠BAC ∴∠AOD +∠BOC =180︒.2、在⊙O 中,弦AB ⊥CD 于点E ,若⊙O 的半径为R ,求证:AC 2+BD 2=4R 2. 证:∵AB ⊥CD ,则∠CAB +∠ACD =90︒ 如图,作直径AM ,连接CM 则∠ACM =∠ACD +∠DCM =90︒∴∠CAB =∠DCM , ∴BC DM = ∴CM BD =, ∴CM =BD ∵AC 2+CM 2=AM 2 ∴AC 2+BD 2=4R 2.3、在⊙O 中,弦AB ⊥CD 于点E ,若点M 为AC 的中点,求证ME ⊥BD. 证:如图,连接ME ,并延长交BD 于点F ∵AB ⊥CD ,且点M 为AC 的中点 ∴ME 为Rt △AEC 斜边上的中线 ∴AM =ME∴∠A =∠AEM =∠BEF 又∠B =∠C ,∠A +∠C =90︒ ∴∠BEF +∠B =90︒,即∠BFE =90︒ ∴ME ⊥BD.4、在⊙O 中,弦AB ⊥CD 于点E ,若ON ⊥BD 于N ,求证:ON =12AC. 证:如图,作直径BF ,连接DF , 则DF ⊥BD ,又ON ⊥BD , ∴ON ∥FD ,又OB =OF ∴ON =12DF 连接AF ,则AF ⊥AB ,又CD ⊥AB ∴AF ∥CD∴AC FD =,则AC =FD ∴ON =12AC 5、在⊙O 中,弦AB ⊥CD 于点E ,若AC =BD ,ON ⊥BD 于N ,OM ⊥AC 于M. (1)求证:ME //ON ;(2)求证:四边形OMEN 为菱形. 证:(1)如图,延长ME 交OD 于点F ∵OM ⊥AC ,则点M 为AC 的中点∵ AB ⊥CD ,则ME 为Rt △ACE的斜边上中线 ∴AM =EM ,∴∠A =∠AEM =∠BEF 又∠B =∠C ,∠A +∠C =90︒ ∴∠B +∠BEF =90︒,则∠BFE =90︒ ∴MF ⊥BD ,又ON ⊥BD ∴MF ∥ON(2)由(1)知MF ∥ON ,同理可证OM ∥NE , ∴四边形OMEN 是平行四边形 ∵AC =BD ,∴OM =ON ∴四边形OMEN 为菱形.圆的培优专题6——圆与内角(外角)平分线一 圆与内角平分线问题往往与线段和有关,实质是对角互补的基本图形1、如图,⊙O 为△ABC 的外接圆,弦CD 平分∠ACB ,∠ACB =90︒. 求证:CA +CB =2CD.证:如图,在CA 的延长线上截取AE =BC ,连DE ,AD ,BD ∵CD 平分∠ACB ,∴AD =BD 又∠DAE =∠DBC ,AE =BC ∴△DAE ≌△DBC (SAS ) ∴CD =DE ,又∠ACD =45︒∴△CDE 是等腰直角三角形,则CA +CB =CE =2CD.2、如图,⊙O 为△ABC 的外接圆,弦CD 平分∠ACB ,∠ACB =120︒,求CA+CBCD 的值.解:如图,在CA 的延长线上截取AE =BC ,连DE ,AD ,BD ∵CD 平分∠ACB ,∴AD =BD 又∠DAE =∠DBC ,AE =BC ∴△DAE ≌△DBC (SAS ) ∴CD =DE ,又∠ACD =60︒ ∴△CDE 是等边三角形∴CD =CE =CA +BC ,即CA+CBCD=13、如图,过O 、M (1,1)的动圆⊙1O 交y 轴、x 轴于点A 、B ,求OA +OB 的值. 解:如图,过点M 作ME y ⊥轴,MF ⊥x 轴,连AM 、BM 由M (1,1)知:四边形OFME 是正方形 ∴OE =OF =4,EM =FM ,又∠MBF =∠MAE , ∴△AEM ≌△BFM (AAS ),则AE =BF ∴OA +OB =AE +OE +OF -BF =8.二 圆中的外角问题往往与线段的差有关4、如图,⊙O 为△ABC 的外接圆,弦CP 平分△ABC 的外角∠ACQ ,∠ACB =90︒. 求证:(1)PA PB =;(2)AC -BC =2PC. 证:(1)如图,连接AP ,则∠PCQ =∠PAB 又∠PCQ =∠PCA ,则∠PAB =∠PCA ∴PA PB =(2)连接BP ,由(1)得,PA =PB在AC 上截取AD =BC ,连PD ,又∠PAD =∠PBC ∴△PAD ≌△PBC (SAS ),则PD =PC又∠PCD =45︒,则∴PCD 是等腰直角三角形,∴AC -BC =CD =2PC. 5、如图,⊙O 为△ABC 的外接圆,弦CP 平分△ABC 的外角∠ACQ ,∠ACB =120︒. 求BC -AC PC的值.解:如图,在BC 上截取BD =AC ,连AP 、BP 、DP ∵∠PCB =∠PCQ =∠PBA ∴AP =BP ,又∠CAP =∠DBP ∴△CAP ≌△DBP (SAS ),则CP=DP 又∠ACB =120︒,∴∠PCD =30︒, ∴BC -AC PC = CD PC=36、如图,A (4,0),B (0,4),⊙1O 经过A 、B 、O 三点,点 这P 为OA 上动点(异于O 、A ). 求PB -PAPO的值.解:如图,在BP 上截取BC =AP ∵A (4,0),B (0,4),则OA =OB =4 又∠OAP =∠OBC ∴△OAP ≌△OBC (SAS )∴OC =OP ,且∠COP =∠AOB =90︒,则PB -PA PO = PCPO=2.第6题一 切线与一个圆 答案:1、70︒;2、20︒;3、80︒;4、120︒;5、130︒;6、45︒1、如图,AD 切⊙O 于A ,BC 为直径,若∠ACB =20︒,则∠CAD = .2、如图,AP 切⊙O 于P ,PB 过圆心,B 在⊙O 上,若∠ABP =35︒,则∠APB = .3、如图,PA 、PB 为⊙O 的切线,C 为ACB 上一点,若∠BCA =50︒,则∠APB = .4、如图,PA 、PB 为⊙O 的切线,C 为AB 上一点, 若∠BCA =150︒,则∠APB = .5、如图,点O 是△ABC 的内切圆的的圆心,若 ∠BAC =80︒,则∠BOC = .6、如图,PA 切⊙O 于A ,若PA =AB ,PD 平分∠APB 交AB 于D ,则∠ADP = . (设元,列方程)二 切线与两个圆7、如图,两同心圆的圆心为O ,大圆的弦AB 、AC 分别切小圆于D 、E ,小圆的DE 的度数为110︒, 则大圆的BC 的度数为 .8、如图,⊙O 1和⊙O 2交于A 、B 两点,且点O 1在⊙O 2上,若∠D =110︒,则∠C = 9、如图,⊙O 1和⊙O 2外切于D ,AB 过点D ,若∠AO 2D =100︒,C 为优弧BD 上任一点, 则∠DCB = . 答案:7、140︒;8、40︒;9、50︒(过点D 作两圆的切线)第1题 第2题 第3题 第4题第5题第7题 第8题 第9题1、如图,在⊙O 的内接△ACB 中,∠ABC =30︒,AC 的延长线与过点D 的切线BD 交于 点D ,若⊙O 的半径为1,BD //OC ,则CD = . (CD =33)2、如图△ABC 内接于⊙O ,AB =BC ,过点A 的切线与OC 的延长线交于D ,∠BAC =75︒, CD =3,则AD = . (AD =3)3、如图,⊙O 为△BCD 的外接圆,过点C 的切线交BD 的延长线于A ,∠ACB =75︒,∠ABC =45︒,则 CD DB的值为 . (CDDB =2)4、如图,AB 为⊙O 的直径,弦DC 交AB 于E ,过C 作⊙O 的切线交DB 的延长线于M , 若AB =4,∠ADC =45︒,∠M =75︒,则CD = . (CD =23)5、如图,等边△ABC 内接于⊙O ,BD 切⊙O 于B ,AD ⊥BD 于D ,AD 交⊙O 于E ,⊙O 的半径为1,则AE = . (AE =1)6、如图,△ABC 中,∠C =90︒,BC =5,⊙O 与ABC 的三边相切于D 、E 、F ,若⊙O 的 半径为2,则△ABC 的周长为 . (C =30)7、如图,△ABC 中,∠C =90︒,AC =12,BC =16,点O 在AB 上,⊙O 与BC 相切于D , 连接AD ,则BD = . (示:过D 作DE ⊥AB ,设CD =DE =x ,BD =10)解题策略:连半径,有垂直;寻找特殊三角形;设元,构建勾股定理列方程.第1题 第2题 第3题 第4题 第5题 第6题第7题圆的培优专题9——圆的切线与垂径定理1、如图,AB 为⊙O 的直径,C 为AE 的中点,CD ⊥BE 于D. (1)判断DC 与⊙O 的位置关系,并说明理由; (2)若DC =3,⊙O 的半径为5,求DE 的长. 解:(1)DC 是⊙O 的切线,理由如下:如图,连接OC ,BC ,则∠ABC =∠CBD =∠OCB ∴OC ∥BD ,又CD ⊥BE ∴OC ⊥CD ,又OC 为⊙O 的半径 ∴DC 是⊙O 的切线(2)如图,过O 作OF ⊥BD ,则四边形OFDC 是矩形,且BE =EF ∴OF =CD =3,DF =OC =5,∴EF =BF =22534-=,∴DE =DF -EF =12、如图,AB 为⊙O 的直径,D 是BC 的中点,DE ⊥AC 交AC 的延长线于E ,⊙O 的切线 BF 交AD 的延长线于点F. (1)求证:DE 为⊙O 的切线;(2)若DE =3,⊙O 的半径为5,求DF 的长. (1)证:显然,∠CAD =∠OAD =∠ODA ∴OD ∥AE ,又DE ⊥AC , ∴OD ⊥DE ,又OD 为⊙O 半径 ∴DE 为⊙O 的切线(2)解:如图,过点O 作OG ⊥AC ,则OGDE 是矩形,即OG =DE =3,DE =OD =5 ∴AG =22534-=,则AE =5+4=9,∴2293310+= 连接BD ,则BD ⊥AD ,∴BD =2210(310)10-=设DF =x ,则22(10)x +=BF =22(310)10x +-,∴DF =103x =.3、如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AE ⊥CD 于E ,DA 平分∠BDE. (1)求证:AE 是⊙O 的切线; (2)若AE =2,DE =1,求CD 的长.(1)证:如图,连接OA ,则∠ADE =∠ADO =∠OAD ∴OA ∥CD ,又AE ⊥CD ∴OA ⊥AE ,又OA 为⊙O 的半径 ∴AE 是⊙O 的切线(2)解:如图,过点O 作OF ⊥CD ,则CD =2DF ,且四边形OFEA 是矩形 ∴EF =OA =OD ,OF =AE =2 设DF =x ,则OD =EF =1x + ∴2222(1)x x +=+,∴ 1.5x = ∴CD =2CF =23x =4、如图,AE 是⊙O 的直径,DF 切⊙O 于B ,AD ⊥DF 于D ,EF ⊥DF 于F. (1)求证:EF +AD =AE ;(2)若EF =1,DF =4,求四边形ADFE 的周长. (1)证:如图,连接CE ,则四边形CDFE 是矩形 连接OB 交CE 于点G , ∵DF 是⊙O 的切线 ∴OB ⊥DF ,OB ⊥CE∴BG =CD =EF ,OG ∥AC ,又AO =OE ∴AC =2OG∴EF +AD =AC +CD +EF =2OG +2BG =2OB =AE. (2)解:显然CE =DF =4,CD =EF =1设AC =x ,则AD =1x +,AE =2x +∴2224(2)x x +=+,则3x =,则AC =3,AD =4,AE =5 ∴四边形CDFE 的周长为14.圆的培优专题10——圆的切线与勾股定理1、如图,已知点A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC =BC,AC=12 OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45︒,OC=2,求弦CD的长. (1)证:∵OC=OB,∴AC为OAB的OB边上的中线,又AC=12OB∴△OAB是直角三角形,且∠OAB=90︒,又OA为⊙O的半径∴AB是⊙O的切线(2)解:显然,OA=OC=AC,即△OAC是等边三角形∴∠AOC=60︒,∴∠D=30︒如图,过点A作AE⊥CD于点E,∵∠ACD=45︒,∴△AEC是等腰直角三角形,∴AE=CE=22AC=22OC=2,DE=3AE=6∴CD=62+2、如图,PA、PB切⊙O于A、B,点M在PB上,且OM//AP,MN⊥AP于N.(1)求证:OM=AN;(2)若⊙O的半径3r=,PA=9,求OM的长.(1)证:如图,连接OA,∵PA为⊙O的切线,∴OA⊥AP,又MN⊥AP∴OA∥MN,又OM//AP,∴四边形OANM是矩形,即OM=AN(2)解:如图,连接OB,∵PB、PA为⊙O的切线∴∠OBM=∠MNP=90︒,PB=PA=9∵OM//AP,∴∠OMB=∠P,又OB=OA=MN,∴△OBM≌△MNP(AAS)∴OM=PM,则32+OM2=(9-OM)2,∴OM=53、如图,AB 为⊙O 的直径,半径OC ⊥AB ,D 为AB 延长线上一点,过D 作⊙O 的切线, E 为切点,连接CE 交AB 于F.(1)求证:DE =DF ;(2)连接AE ,若OF =1,BF =3,求DE 的长. (1)证:如图,连接OE ∵PE 为⊙O 的切线, ∴OE ⊥DE ,又OC ⊥AB∴∠C +∠CFO =∠OEF +∠DEF =90︒ 又∠C =∠OCF ,∠CFO =∠DFE ∴∠DEF =∠DFE ,∴DE =DF (2)解:显然,OE =OB =OF +BF =4设BD =x ,则DE =DF =3x +,OD =4x + ∴222(3)4(4)x x ++=+,∴x =4.5 ∴DE =7.54、如图,正方形ABCO 的顶点分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切于F , 已知A (0,8),求圆心M 的坐标. 解:如图,连接FM 交延长交AB 于点E ∵⊙M 与x 轴相切,即OC 是⊙M 的切线∴EF ⊥OC ,又四边形ABCO 是正方形 ∴EF ⊥AB ,又A (0,8)即AB =EM =OA =8 ∴ AE =4设MF =AM =x ,则EM =8-x∴2224(8)x x +-=,∴5x =,即MF =5 ∴点M 的坐标为(-4,5)圆的培优专题11——圆的切线与全等三角形1、如图,BD为⊙O的直径,A为BC的中点,AD交BC于E,过D作⊙O的切线,交BC的延长线于F. (1)求证:DF=EF;(2)若AE=2,DE=4,求DB的长.(1)证:如图,连接AB∴∠BAD=∠BDF=90︒∴∠ABC+∠AEB=∠ADB+∠FDE=90︒又∠ABC=∠ADB,∠AEB=∠DEF∴∠DFE=∠DEF,∴DE=EF(2)解:如图,过点F作FG⊥ED,则EG=GD=2=AE ,又∠BAE=∠FGE=90︒,∠AEB=∠GEF,∴△ABE≌△GFE(ASA),∴BE=EF,即DE为R△BDF的斜边上中线∴DF=EF=DE=4,BF=8,则BD=432、如图,AB为⊙O的直径,C、D为⊙O的一点,OC⊥AD,CF⊥DB于F.(1)求证:CF为⊙O的切线;(2)若BF=1,DB=3,求⊙O的半径.(1)证:∵AB为⊙O的直径Array∴DF⊥AD,又OC⊥AD∴OC∥DF,又CF⊥DB∴OC⊥CF,又OC为⊙O的半径∴CF为⊙O的切线(2)解:如图,过点C作CE⊥BD于点E,则BE=DE=1.5,EF=2.5又OC⊥CF,CF⊥EF∴四边形OCFE是矩形∴⊙O有半径OC=EF=2.53、如图,以⊙O 的弦AB 为边向圆外作正方形ABCD. (1)求证:OC =OD ; (2)过D 作DM 切⊙O 于M ,若AB =2,DM =22,求⊙O 的半径. (1)证:如图,连接OA 、OB ,则OA =OB ∴∠OAB =∠OBA ∵四边形ABCD 是正方形∴AD =BC ,∠DAB =∠CBA =90︒ ∴∠OAD =∠OBC ∴△OAD ≌△OBC (SAS ) ∴OC =OD(2)解:如图,连接OM 、BD ,则OM ⊥DM ,且BD =2AB =22=DM 又OM =OB ,OD =OD ,△ODM ≌△ODB (SSS ) ∴OB ⊥BD ,又∠ABD =45︒∴∠OAB =45︒,即△OAB 是等腰直角三角形 ∴OA =22AB =2 4、如图,在△ABC 中,AC =BC ,∠ACB =90︒,以BC 为直径的⊙O 交AB 于D. (1)求证:AD =BD ;(2)弦CE 交BD 于M ,若3ABCBCMS S=,求BD CE. (1)略证:连接CD ,则CD ⊥AB又AC =BC ,∠ACB =90︒,∴AD =BD (2)解:如图,连接BE ,过A 作AN ⊥CE 于N , ∵3ABCBCMSS=,∴2ACMBCMSS=∴AN =2BE∵∠CAN =∠BCE ,AC =BC ,∠ANC =∠CEB ∴△ANC ≌△CEB (AAS ) ∴BE =CN ,CE =AN设CN =BE =x ,则CE =AN =BE =2x , ∴BC =5x ,∴AB =2BC =10x ,即BD =102x ∴BD CE =104.圆的培优专题12——圆的切线与等腰三角形1、如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与边BC 交于D ,与边AC 交于E , 过D 作DF ⊥AC 于F.(1)求证:DF 为⊙O 的切线;(2)若DE =5,AB =5,求AE 的长. (1)证:如图,连接AD ,OD , ∵AB 为⊙O 的直径,∴AD ⊥BC ,又AB =AC ,OA =OB ∴∠EAD =∠DAB =∠ADO ∴OD ∥AC ,又DF ⊥AC ∴OD ⊥DF ,又OD 为⊙O 的直径 ∴DF 为⊙O 的切线(2)解:∵∠EAD =∠DAB ,∴BD =DE =5,又AB =5,∴AD =225(5)25-= ∵DF ×AC =AD ×CD ,∴DF =2,CF =EF =52(5)21-=,∴AE =5-2=3 2、如图,在△ABC 中,AB =AC ,以边AB 为直径作⊙O ,交BC 于D ,过D 作DE ⊥AE. (1)求证:DE 是⊙O 的切线;(2)连接OC ,若∠CAB =120︒,求 DEOC的值. (1)证:如图,连接AD ,OD ,则AD ⊥BC 又AB =AC ,∴CD =BD ,又AO =OB ∴OD ∥AC ,又DE ⊥AE∴OD ⊥DF ,∴DE 是⊙O 的切线;(2)解:如图,过点O 作OF ⊥BD 于F ,则BD =2BF ∵AB =AC ,∠CAB =120︒,∴∠B =30︒ 设OF =x ,则BF =3x ,OB =2x ,∴AC =AB =4x ,CD =BD =23x ,则CF =33x由勾股定理,得OC =27x ,由面积法,得DE =3x ,∴DE OC=2114.3、如图,AB =AC ,点O 在AB 上,⊙O 过点B ,分别交BC 于D 、AB 于E ,DF ⊥AC. (1)证:DF 为⊙O 的切线;(2)若AC 切⊙O 于G ,⊙O 的半径为3,CF =1,求AC. (1)证:如图,连接OD ,∵ AB =AC ,OB =OD ∴∠B =∠C =∠ODB ∴OD ∥AC ,又DF ⊥AC ∴OD ⊥DF ,又OD 为⊙O 的半径 ∴DF 为⊙O 的切线(2)解:如图,连接OG ,∵AC 为⊙O 的切线∴OG ⊥AC ,又OD ⊥DF ,DF ⊥AC ,OG =OD ∴四边形ODFG 是正方形,即OB =OG =GF =3 设AG =x ,则AB =AC =4x +,则AO =1x + ∴2323(1)x x +=+,∴4x =,则AC =84、如图,CD 是⊙O 的弦,A 为CD 的中点,E 为CD 延长线上一点,EG 切⊙O 于G. (1)求证:KG =GE ;(2)若AC //EG ,DK CK = 35 ,AK =210,求⊙O 的半径.(1)证:如图,连接OG ,OA 交CD 于点F ∵A 为CD 的中点,EG 是⊙O 的切线 ∴OA ⊥CD ,OG ⊥GE∴∠OAG +∠AKF =∠OGA +∠EGK 又∠OAG =∠OGA ,∠AKF =∠EKG ∴∠EGK =∠EKG ∴KG =GE(2)解:∵AC ∥EG ,∴∠CAK =∠EGK ,又∠EGK =∠EKG =∠CKA ∴∠CAK =∠CKA ,∴CA =CK设CK =CA =5x ,则DK =3x ,∴CD =8x ,CF =4x ,EG =x ∴AF =22(5)(4)3x x x -=在Rt △AFK 中,222(3)(210)x x +=,∴2x =∴CE =8,AE =6,设⊙O 的半径为R ,则R 2=82+(R -6)2,∴R =253圆的培优专题13——圆与三角形的内心1、如图,AB 是⊙O 的直径,AC CE =,点M 为BC 上一点,且CM =AC.(1)求证:M 为△ABE 的内心;(2)若⊙O 的半径为5,AE =8,求△BEM 的面积. (1)证:如图,连接CE ,则AC =CE =CM ∴∠CME =∠CEM ,∠CEA =∠CBE ∴∠CBE +∠BEM =∠CEA +∠AEM ∴∠AEM =∠BEM ,又∠ABC =∠CBE ∴点M 为△ABE 的内心.(2)解:如图,过点M 作MN ⊥BE 于点N ,则MN 为△ABE 的内切圆的半径. ∵AB =10,AE =8,则BE =221086-=∴MN =681022+-=, ★★ MN =2a b c +-=aba b c++=2 ∴BME 的面积为12×6×2=6.2、如图,⊙O 为△ABC 的外接圆,BC 为直径,AD 平分∠BAC 点M 是△ABC 的内心. (1)求证:BC =2DM ;(2)若DM =52,AB =8,求OM 的长. (1)证:如图,连接BD ,CD , ∵BC 为直径,AD 平分∠BAC ∴BD =CD ,∠BDC =90︒, ∴BC =2CD连接CM ,则∠ACM =∠BCM ,∠DAC =∠BCD∴∠DMC =∠ACM +∠DAC =∠BCM +∠BCD =∠DCM , ∴DM =CD ,即BC =2DM(2)解:显然,BC =2DM =10,AB =8,则AC =6,且∠MAE =45︒如图,过M 作ME ⊥BC 于点N ,作MF ⊥AC 于点F ,则ME =MF =AF =2 ∴ CF =CE =4,则OE =1 ∴OM =22215+=.3、如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 是BC 的中点,DE ⊥AB 于E ,I 是△ABD 的内心,DI 的延长线交⊙O 于N.(1)求证:DE 是⊙O 的切线;(2)若DE =4,CE =2,求⊙O 的半径和IN 的长. (1)证:∵D 是BC 的中点,OA =OD ∴∠CAD =∠DAO =∠ADO ∴OD ∥AE ,又DE ⊥AB ∴OD ⊥DE ,又OD 为⊙O 的半径 ∴DE 是⊙O 的切线.(2)解:如图,过点O 作OF ⊥AC ,则AF =CF ∵DE ⊥AB ,OD ⊥DE∴四边形ODEF 是矩形,则OF =DE =4设⊙O 的半径为R ,则OA =OD =EF =R ,AF =CF =R -2 ∴(R -2)2+42 =R 2,∴R =5,∴AB =10,如图,连接BI ,AN ,BN ,则IN =BN =AN =52 ★4、如图,在△ABC 中,AB =AC ,I 是△ABC 的内心,⊙O 交AB 于E ,BE 为⊙O 的直径. (1)求证:AI 与⊙O 相切;(2)若BC =6,AB =5,求⊙O 的半径. (1)证:如图,延长AI 交BC 于点D ,则AD ⊥BC , 连接OI ,则∠OIB =∠OBI =∠OBD ∴OI ∥BC ,又AD ⊥BC ∴AD ⊥OI ,又OI 为⊙O 的半径 ∴AI 与⊙O 相切(2)显然BD =3,AB =5,则AD =4如图,过点I 作IF ⊥AB 于点F ,则BF =BD =3,AF =2,IF =ID , 设IF =ID =x ,则AI =4x -,∴2222(4)x x +=-,则IF =32x =设O 的半径为R ,则OF =3-R ,∴(3-R )2+(32 )2 =R 2,∴R =158圆的培优专题14——圆中动态问题1、如图,点P 是等边△ABC 外接圆BC 上的一个动点,求证PA =PB +PC. 证:如图,在AP 上截取PD =PC ,连接CD∵△ABC 是等边三角形,∠ABC =∠ACB =60︒ ∴∠DPC =∠ABC =60︒∴△PCD 是等边三角形,即CD =PC ∵∠ACD +∠BCD =∠BCP +∠BCD =60︒ ∴∠ACD =∠BCP ,又AC =BC ∴△ACD ≌△BCP (SAS ) ∴AD =BP∴PA =AD +DP =PB +PC.2、已知弦AD ⊥BD ,且AB =2,点C 在圆上,CD =1,直线AD 、BC 交于点E. (1)如图1,若点E 在⊙O 外,求∠AEB 的度数; (2)如图2,若C 、D 两点在⊙O 上运动,CD 的 长度不变,点E 在⊙O 内,求∠AEB 的度数. 解:(1)如图-1,连接OC ,OD ∵AD ⊥BD∴AB 为⊙O 的直径,且AB =2∴CD =OC =OD =1,即△OCD 是等边三角形 ∴∠COD =60︒∴∠CBD =12 ∠COD=30︒∴∠AEB =60︒ (2)如图-2,连接OC ,OD同理可得:∠ACD =60︒, ∴∠CBD =12 ∠COD=30︒又∠ADB =90︒,∴∠AED =120︒图-1图-23、已知直线l 经过⊙O 的圆心O ,且交⊙O 于A 、B ,点C 在⊙O 上,且∠AOC =30︒,点 P 是直线l 上一个动点(与O 不重合),直线CP 与⊙O 交于Q ,且QP =QO. (1)如图1,当点P 在线段AO 上时,求∠OCP 的度数; (2)如图2,当点P 在线段OA 的延长线上时,求∠OCP 的度数; (3)如图3,当点P 在线段OB 的延长上时,求∠OCP 的度数. 解:(1)如图-1,设∠OCP =x ∵OC =OQ ,则∠OQP =x 又∠AOC =30︒,QP =QO ∴∠QOP =∠QPO =30x +︒ ∴2(30)180x x +︒+=︒ ∴∠OCP =40x =︒(2)如图-2,设∠COQ =x , 又∠AOC =30︒,QP =QO ∴∠QOP =∠QPO =30x +︒ 又OC =OQ∴∠OQP =∠OCQ =60x +︒ ∴(60)2(30)180x x +︒++︒=︒ ∴∠COQ =20x =︒ ∴∠OCP =100︒ (3)如图-3,设∠QPO =x∴QP =PO ,则∠QOP =∠QPO =x ∴OC =OQ∴∠OCQ =∠OQC =2x ∴230x x +=︒ ∴∠QPO =x =10︒ ∴∠OCP =20︒图-1图-2图-3圆的培优专题15——聚焦圆中无图多解题圆是中考数学考查的一个热点,题型较全,选择、填空、作图、计算与证明经常出现,常与三角形、四边形、相似形、二次函数等知识一起考查。
尖子生培优练习题—圆一、选择题:1、如图,以O为圆心的圆与直线y=-x+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.πB.πC. πD.π2、如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°3、如图,以AB为直径的半圆绕A点,逆时针旋转60o,点B旋转到点B’的位置,已知AB=6,则图中阴影部分的面积为()A.6B.5C.4D.34、如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°5、如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°6、如图,在△ABC中,∠C=90°,AC=BC,AB=2,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为()A.1﹣πB.﹣C.2﹣D.2﹣π7、如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10D.12二、填空题:8、如图,已知AB是⊙O的直径,点C,D在⊙O上,∠ABC=35°,则∠D= .9、如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是.10、如图,平面直角坐标系中,O为坐标原点,以O为圆心作⊙O,点A、C分别是⊙O 与x轴负半轴、y轴正半轴的交点,点B、D在⊙O上,那么∠ADC的度数是 .11、如图,在正六边形ABCDEF中,连接AD,AE,则∠DAE= 度.12、如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB 上一点,∠BMO=120°,则⊙C的半径为________.13、在2×2的正方形网格中,每个小正方形的边长为1.以点O为圆心,2为半径画弧交图中网格线与点A,B,则弧AB的长是________.四、解答题:14、如图,已知四边形ABCD内接于⊙O,E是AD延长线上一点,且AC=BC,求证:DC平分∠BDE。
.圆培优竞赛1.如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A【答案】B.【解析】试题分析:如答图,连接PO,AO,取AO中点G,连接AG,过点A作AH⊥PO于点H,∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,∴PA=PB,CA=CE,DB=DE,∠APO=∠BPO,∠OAP=90º.∵△PCD的周长等于3r,∴∵⊙O的半径为r,∴在Rt△APO∴,即故选B.考点:1.切线的性质;2.切线长定理;3.勾股定理;4.相似三角形的判定和性质;5.锐角三角函数定义;6.直角三角形斜边上中线的性质;7.转换思想的应用.ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).A.R=5,r=2B.R=4,r=3/2C.R=4,r=2D.R=5,r=3/2 【答案】D 【解析】本题考查圆和勾股定理的综合应用,在竞赛思维训练中有典型意义。
可以将选项中的数据代入圆中,看是否满足条件。
做圆心O '和正方形中心O 。
设正方形边长为a 。
设AB 中点为H ,连接OH 并延长,交大圆于点JP则连接OA .由勾股定理有OH =JH R =-所以22r a R R ++=。
将各个选项数据代入,知D 正确。
3.如图,Rt △ABC 中,∠C=90°,AB=5,AC=3,点E 在中线AD 上,以E 为圆心的⊙E 分别与AB 、BC 相切,则⊙E 的半径为( ).B.【答案】B.【解析】试题分析:作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连结EB,EC,设⊙E的半径为R,如图,∵∠C=90°,AB=5,AC=3,∴AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=R,∴HC=R,AH=3-R,∵EH∥BC,∴△AEH∽△ADC,∴EH:CD=AH:AC,即∵S△ABE+S△BCE+S△ACE=S△ABC,×4×33×4,故选B.考点:切线的性质.4.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63 º,那么∠B= .【答案】18°【解析】连接ED,CE,由图可知∠B=∠DEB, ∠ECD=∠EDC=2∠B∵∠A=63 º,∴∠ECA=63 º∴∠A+∠ECA+∠ECD+∠B=180º∴∠B=18°5.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .【答案】【解析】小圆方程x 2 +y 2 =1 MC 方程 y = k(x+2), x =2y k - 解y 1y 2= 221k k -+,12y y= 21-3k 2=49此时MC =2B 点坐标为(1449) MBQ 面积=32493/2 = 278= 386.如图,已知⊙O 的半径为,射线PM 经过点O ,OP =15 cm ,射线PN 与⊙O 相切于点Q .动点A 自P 的速度沿射线PM 方向运动,同时动点B 也自P 点以2cm/s 方向运动,则它们从点P 出发 s 后AB 所在直线与⊙O 相切..【答案】0.5s或10.5s.【解析】试题分析:PN与⊙O相切于点Q,OQ⊥PN,即∠OQP=90°,在直角△OPQ中根据勾股定理就可以求出PQ的值,过点O作OC⊥AB,垂足为C.直线AB与⊙O相切,则△PAB∽△POQ,根据相似三角形的对应边的比相等,就可以求出t的值.试题解析: 连接OQ,∵PN与⊙O相切于点Q,∴OQ⊥PN,即∠OQP=90°,∵OP=15,OQ=9,∴cm).过点O作OC⊥AB,垂足为C,∵点A,点B的运动速度为2cm/s,运动时间为ts,∴,PB=2t,∵PO=15,PQ=12,∵∠P=∠P,∴△PAB∽△POQ,∴∠PBA=∠PQO=90°,∵∠BQO=∠CBQ=∠OCB=90°,∴四边形OCBQ为矩形.∵⊙O的半径为,∴BQ=OC=9时,直线AB与⊙O相切.①当AB运动到如图1所示的位置,BQ=PQ-PB=12-2t,∵BQ=9,∴8-4t=9,∴t=0.25(s).②当AB运动到如图2所示的位置,BQ=PB-PQ=2t-12,∵BQ=9,∴2t-12=9,∴t=10.5(s).∴当t为0.5s或10.5s时直线AB与⊙O相切.考点: 1.切线的判定;2.勾股定理;3.矩形的性质;4.相似三角形的判定与性质.7.(本题满分13分)在平面直角坐标系xOy中,点M,以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与x轴、y轴的另一交点分别为点D,A(如图),连接AM点P是弧AB上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.【答案】(1)90°;(20);②.试题分析:(1)首先过点M作MH⊥OD于点H,由点M,可得∠MOH=45°,OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;(2)①由MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案;②由Q的纵坐标为t,即可得P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.(1)过点M作MH⊥OD于点H,∵点M,∴∴∠MOD=45°,试题解析:∵∠AOD=90°,∴∠AOM=45°,∵OM=AM,∴∠OAM=∠AOM=45°,∴∠AMO=90°,∴∠AMB=90°;(2)①∵MH⊥OD,∴,OB=4,∵动点P与点B重合时,OP•OQ=20,∴OQ=5,∵∠OQE=90°,∠POE=45°,∴∴E0);②∵Q的纵坐标为t,∴如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴;如图3,当动点P与A点重合时,Q点在y轴上,∴∵OP•OQ=20,∴此时;∴S的取值范围为5≤S≤10.考点:圆的综合题. 8.(本题满分10分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若(1)求⊙O 的半径;(2)求图中阴影部分的面积. 【答案】(1)2;(2)2π-. 【解析】试题分析:(1)根据垂径定理得CE 的长,再根据已知DE 平分AO 得,解直角三角形求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.试题解析:(1)∵直径AB ⊥DE ,∴DE 平分AO ,∴.又∵∠OCE=90°,∴sin ∠∴∠CEO=30°.在Rt △COE 中,cos30==2,∴⊙O 的半径为2;(2)连接OF .在Rt △DCP 中,∵∠DPC=45°,∴∠D=90°﹣45°=45°,∴∠EOF=2∠D=90°, ∴OEF S 扇形=π. ∵∠EOF=2∠D=90°,OE=OF=2,∴Rt OEF S ∆=∴S 阴影=Rt OEF OEF S S ∆-扇形=2π-..9.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t为何值时,四边形APQD为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?【答案】(1)4;(2)t为4s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,∴当t为时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.10.(10分)如图,以线段AB为直径的⊙O交线段AC于点E,点D是AE的中点,连接OD并延长交⊙O于点M,∠BOE=60°,∠的度数;(1)求A(2)求证:BC是⊙O的切线;(3)求弧AM的长度.【答案】(1)30°;(2)证明见试题解析;(3)π.【解析】试题分析:(1)根据三角函数的知识即可得出∠A的度数.(2)要证BC是⊙O的切线,只要证明AB⊥BC即可.(3)根据垂径定理求得∠AOM=60°,运用三角函数的知识求出OA的长度,即可求得弧AM的长度.试题解析:(1)∵OA=OE,∴∠A=∠OEA,∵∠BOE=∠A+∠OEA=2∠A,∴∠×60°=30°;(2)在△ABC中,∵∴∠C=60°,又∵∠A=30°,∴∠ABC=90°,∴AB⊥BC,∵AB为直径,∴BC是⊙O的切线;(3)∵点D是AE的中点,∴OM⊥AE,∵∠A=30°,∴∠AOM=60°,在RT△ABC中,tanC=∵,∴,∴弧AM的长=π.考点:切线的判定.11.已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)b=2+a或2﹣a;(3)时,以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.【解析】试题分析:(1)连接PM,PN,运用△PMF≌△PNE证明.(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解.(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t:.∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0).∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1,0).∴OQ=1t.由(1)得△PMF≌△PNE ,∴NE=MF=t,∴OE=t﹣1.当△OEQ∽△MPF.当△OEQ∽△MFP.(Ⅱ)如答图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1,0)∴﹣1,由(1)得△PMF≌△PNE ∴NE=MF=t.∴OE=t﹣1.当△OEQ∽△MPF.当△OEQ∽△MFPQ、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.试题解析:解:(1)证明:如答图1,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN∴∠PMF=∠PNE=90°且∠NPM=90°.∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE.在△PMF和△PNE中,NPE MPF PN PMPNE PMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PMF≌△PNE(ASA).∴PE=PF.(2)①当t>1时,点E在y轴的负半轴上,如答图1,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1.∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a.②0<t≤1时,如答图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.考点:1.单动点和轴对称问题;2.切线的性质;3.全等三角形的判定和性质;4.相似三角形的判定和性质;5.分类思想和方程思想的应用.12.如图(1)x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由..(2)①;②存在,(4,3)或或. 【解析】试题分析:(1)把A 的坐标代入抛物线的解析式,即可得到关于c 的方程,求的c 的值,则抛物线的解析式即可求解.(2)①连接MC 、MD ,证明△COM ∽△MED ,根据相似三角形的对应边的比相等即可求解. ②分四种情况进行讨论,根据平行四边形的性质即可求解.试题解析:解:(1)∵点A (﹣2,0(2)①令D (x ,y ),(x >0,y >0),则E (x ,0),M0), 由(1)知C (0,3), 如答图1,连接MC 、MD∵DE 、CD 与⊙O 相切,∴∠CMD=90°.∴△COM ∽△MED.又∵x >0,∴∴D②假设存在满足条件的点G(a,b).若构成的四边形是□ACGF,(答图2)则G与C关于直线x=2对称,∴G点的坐标是:(4,3).-,若构成的四边形是□ACFG,(答图3,4)则由平行四边形的性质有b=3G点的坐标是:.若构成的四边形是□AGCF,(答图5)则CG FA,∴G点的坐标是:(4,3).显而易见,AFCG不能构成平行四边形.综上所述,在抛物线上存在点G,使A、C、G、F四点为顶点的四边形是平行四边形,点G的坐标为(4,3.考点:1.单动点问题;2.二次函数综合题;3.曲线上点的坐标与方程的关系;4.直线与圆相切的性质;5.相似三角形的判定和性质;6. 平行四边形的性质;7.分类思想的应用.13.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【答案】(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB∵AD=4,AB=3,∴BD=5.∴S矩形ABCD=2S△CFE∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD 相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图3所示.S△BCDBD•CF″′.∵S矩形ABCD∴矩形EFCG的面积最大值为12②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴点G考点:1.圆的综合题;2.单动点问题;3.垂线段最短的性质;4.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.14.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=,AD=4cm.若⊙O与矩形ABCD沿l1同时..向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)【答案】(1)105;(2(3t【解析】试题分析:(1)⊙O与l1,l2都相切,连接圆心和两个切点,等正方向.OA即为正方形的对角线,得到∠OAD=450,再在Rt△ADC中,由锐角三角函数求∠DAC=600,从而求得∠OAC的度数1050..(2)连接O 1与切点E ,则O 1E=2,O 1E ⊥l 1,利用△O 1EA 1∽△D 1C 1E 1,求A 12+O 1O+A 1E=AA 1,可求t ,进而求得圆心移动的距离(3)圆心O 到对角线AC 的距离d <2,即d <r.说明⊙O 与AC 相交,所以出找两个临界点的t 值,即⊙O 与AC 相切.运动中存在两个相切的位置.分别求两个相切时t 的值,即可得出d <r 时,t 的取值试题解析:解:(1)1050.(2)O 1,A 1,C 1恰好在同一直线上时,设⊙O 与AC 的切点为E ,连接O 1E ,如答图1, 可得O 1E=2,O 1E ⊥l 1,在Rt △A 1D 1C 1中,∵A 1D 1=4,D 1C∴tan ∠C 1A 1D 1C 1A 1D 1=600.在Rt △A 1O 1E 中, ∠O 1A 1E=∠C 1A 1D 1∵111A E AA OO 2t 2=--=-,∴∴OO 1(3)如答图2,①当直线AC 与⊙O 第一次相切时,设移动时间为t 1.如位置一,此时⊙O 移动到⊙O 2的位置,矩形ABCD 移动到A 2B 2C 2D 2的位置.设⊙O 2与直线l 1、A 2C 2分别相切于点F 、G, 连接O 2 F 、O 2 G 、O 2 A 2, ∴O 2 F ⊥l 1、O 2 G ⊥A 2C 2.又由(2)可得∠C 2A 2D 2=600于,∴∠GA 2F=1200.∴∠O 2A 2F=600.在Rt △O 2A 2F∵OO 2=3t 1, ②当点O 1,A 1,C 1恰好在同一直线上时为位置二,设移动时间为t 2.由(2)可得③当直线AC 与⊙O 第二次相切时,设移动时间为t 3.如位置3,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等.∴2132t t t t -=-,即综上所述,当d<2时,t t考点:1.双面动平移问题;2.直线与圆的位置关系;3.锐角三角函数定义;4.特殊角的三角函数值; 5.分类思想的应用.15.在平面直角坐标系xOy 中,点M ,以点M 为圆心,OM 长为半径作⊙M ,使⊙M 与直线OM 的另一交点为点B ,与x 轴,y 轴的另一交点分别为点D ,A (如图),连接AM.点P 是AB 上的动点.(1)写出∠AMB 的度数;(2)点Q 在射线OP 上,且OP·OQ=20,过点Q 作QC 垂直于直线OM ,垂足为C ,直线QC 交x 轴于点E.①当动点P 与点B 重合时,求点E 的坐标;②连接QD ,设点Q 的纵坐标为t ,△QOD 的面积为S ,求S 与t 的函数关系式及S 的取值范围..【答案】(1)90°;(2)①(0);②【解析】试题分析:(1)首先过点M作MH⊥OD于点H,由点M,可得∠MOH=45°,OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数:如答图3,过点M作MH⊥OD于点H,∵点M,∴∴∠MOD=45°.∵∠AOD=90°,∴∠AOM=45°.∵OA=OM,∴∠OAM=∠AOM=45°.∴∠AMO=90°.∴∠AMB=90°.(2)①由MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OP•OQ=20,可求得OQ的长,继而求得答案.②由Q的纵坐标为t,即可得P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.试题解析:解:(1)90°.(2)①由题意,易知:OM=2,OB=4.当动点P与点B重合时,∵OP·OQ=20,∴OQ=5.∵∠OQE=90°,∠POE=45°,∴∴E点坐标为(0).②∵Q的纵坐标为t,∴如答图1,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,∵OP=4,OP•OQ=20,∴OQ=5,∵∠OFC=90°,∠QOD=45°,∴此时如答图2,当动点P与A点重合时,Q点在y轴上,∴∵OP•OQ=20,∴此时∴S的取值范围为5≤S≤10.考点:1.圆的综合题;2.单动点问题;3.等腰直角三角形的判定和性质;4.点的坐标;5.由实际问题列函数关系式;6.数形结合思想、分类思想和方程思想的应用.16.在平面直角坐标系xOy中,二次函数的图像与x轴交于点A,B(点B在点A的左侧),与y轴交于点C,过动点H(0, m)作平行于x轴的直线,直D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由...【答案】(1)(4,0)和(-1,0);(2(3)存在,m=2-或4-或3或1-.【解析】试题分析:(1)A 、B 两点的纵坐标都为0,所以代入y=0,求解即可.(2)由圆和抛物线性质易得圆心Q 位于直线与抛物线对称轴的交点处,则Q 的横坐标D 、ED 、E 都在抛物线上,代入一点即可得m .(3)使得△ACF 是等腰直角三角形,重点的需要明白有几种情形,分别以三边为等腰三角形的两腰或者底,则共有3种情形;而三种情形中F 点在AC 的左下或右上方又各存在2种情形,故共有6种情形.求解时.利用全等三角形知识易得m 的值.试题解析:解:(1)当y=0,解之得:12x 4,x 1==- ,∴A 、B 两点的坐标分别为(4,0)和(-1,0).(2)∵⊙Q 与x 轴相切,且与D 、E 两点,∴圆心O 位于直线与抛物线对称轴的交点处,且⊙Q 的半径为H 点的纵坐标m (m 0>).∴D 、E 两点的坐标分别为:且均在二次函数.舍去).(3)存在.①当∠ACF=90°,AC=FC 时,如答图1,试卷第22页,总60页过点F 作FG ⊥y 轴于G ,∴∠AOC=∠CGF=90°.∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG. ∴△ACO ≌△∠CFG ,∴CG=AO=4. ∵CO=2,∴()m OG 422=-=--=-或m =OG=2+4=6.②当∠CAF=90°,AC=AF 时,如答图2,过点F 作FP ⊥x 轴于P ,∴∠AOC=∠APF=90°.∵∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP. ∴△ACO ≌△∠FAP ,∴FP =AO=4. ∴m FP 4=-=-或m =FP =4.③当∠AFC=90°,FA=FC 时,如答图3,则F 点一定在AC 的中垂线上,此时存在两个点分别记为F ,F′, 分别过F ,F′两点作x 轴、y 轴的垂线,分别交于E ,G ,D ,H . ∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA. ∵∠CDF=∠AEF ,CF=AF ,∴△CDF ≌△AEF. ∴CD=AE ,DF=EF.∴四边形OEFD 为正方形. ∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD. ∴4=2+2•CD.∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CGF′+∠GF′A,∴∠HF′C=∠GF′A.∵∠HF′C=∠GF′A,CF′=AF′.∴△HF′C≌△GF′A.∴HF′=GF′,CH=AG. ∴四边形OHF′G 为正方形.∴OH CH CO AG CO AO OG CO AO OHCO 4OH 2=-=-=--=--=--.∴OH=1. ∴m=1-.y∵直线l 与抛物线有两个交点,∴m m 可取值为m=2-或4-或3或1-.综上所述,m 的值为m=2-或4-或3或1-...考点:1.二次函数综合题; 2.单动点问题;3.等腰直角三角形存在性问题;4.二次函数的性质;5.曲线上点的坐标与方程的关系;6.直线与圆的位置关系;7.全等三角形的判定和性质;8.正方形的判定和性质;9.分类思想的应用.17.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠A(3,0),D(-1,0),E(0,3).(1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.【答案】(1)y=-x 2+2x +3.B(1,4).(2)证明见解析;(3)P 1(0,0),P 2(9,0),P 3(0.(4)【解析】试题分析:(1)利用两根式列出二次函数解析式y=a(x -3)(x +1),把将E(0,3)代入即可求出a 的值,继而可求顶点B 的坐标;(2)过点B 作BM ⊥y 于点M ,利用已知条件先证明AB 是△ABE 外接圆的直径.再证CB ⊥AB 即可.试卷第24页,总60页(3)存在;(4)分两种情况进行讨论即可.试题解析:(1)解:由题意,设抛物线解析式为y=a(x -3)(x +1). 将E(0,3)代入上式,解得:a=-1.∴y=-x 2+2x +3. 则点B(1,4).(2)如图,证明:过点B 作BM ⊥y 于点M ,则M(0,4). 在Rt △AOE 中,OA=OE=3,∴∠1=∠2=45°,在Rt △EMB 中,EM=OM -OE=1=BM ,∴∠MEB=∠MBE=45°,∴∠BEA=180°-∠1-∠MEB=90°. ∴AB 是△ABE 外接圆的直径. 在Rt △ABE 中,tan ∠∠CBE , ∴∠BAE=∠CBE .在Rt △ABE 中,∠BAE +∠3=90°, ∴∠CBE +∠3=90°.∴∠CBA=90°,即CB ⊥AB . ∴CB 是△ABE 外接圆的切线.(4)解:设直线AB 的解析式为y=kx +b .将A(3,0),B(1,4)代入,得30,4.k b k b +=⎧⎨+=⎩解得2,6.k b =-⎧⎨=⎩∴y=-2x+6.过点E 作射线EF∥x 轴交AB 于点F ,当y=3时,得∴3). 情况一:如图7,当0<t AOE 平移到△DNM 的位置,MD 交AB 于点H ,MN 交AE 于点G .则ON=AD=t ,过点H 作LK ⊥x 轴于点K ,交EF 于点L .由△AHD ∽△FHM HK=2t.∴S 阴=S △MND -S △GNA -S △HAD3×3-t)2·2t=+3t ...情况二:如图8t ≤3时,设△AOE 平移到△PQR 的位置,PQ 交AB 于点I ,交AE 于点V .由△IQA ∽△IPFIQ=2(3-t). ∴S 阴=S △IQA -S△(3-t)×2(3-t)-3t 综上所述:考点:二次函数综合题.18.y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的对称轴为y 轴,且经过(0,0)和两点,点P 在该抛物线上运动,以点P 为圆心的⊙P 总经过定点A (0,2).(1)求a ,b,c 的值;(2)求证:在点P 运动的过程中,⊙P 始终与x 轴相交; (3)设⊙P 与x 轴相交于M (x 1,0),N (x 2,0)(x 1<x 2)两点,当△AMN 为等腰三角形时,求圆心P 的纵坐标.【答案】(1)b=c=0;(2)证明见解析;(3)P 的纵坐标为0或4﹣ 【解析】 试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a ,b ,c 的值即可;(2)设P (x ,y ),表示出⊙P 的半径r ,进而与2比较得出答案即可; (3)分别表示出AM ,AN 的长,进而分别利用当AM=AN 时,当AM=MN 时,当AN=MN时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0∴抛物线的一般式为:y=ax2,2,解得:∵图象开口向上,∴∴抛物线解析式为:2,故b=c=0;(2)设P(x,y),⊙P的半径又∵2,则化简得:2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a2),∵作PH⊥MN于H,则又∵2,则,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴当AM=AN解得:a=0,当AM=MN,解得:2当AN=MN,试卷第26页,总60页..解得:a=﹣2=4﹣综上所述,P 的纵坐标为0或4﹣考点:二次函数综合题.19.木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1,O 2分别在CD ,AB 上,半径分别是O 1C ,O 2A ,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF 拼接到矩形AEFD 下面,并利用拼成的木板锯一个尽可能大的圆。
最新资料推荐圆的培优专题1 ------ 与圆有关的角度计算一运用辅助圆求角度DAC1、如图,△ ABC 内有一点D,DA = DB =。
,若=DAB1100BDC = ) BAC = .( 则=BDC ________ 2100 50 ).,则(BAD = 、如图,2AE = BE = DE = BC = DC ,若C =20 30 =,,则=AD,BDCCBD = 3、如图,四边形ABCD 中,AB = AC+ + 60 BAD = . () BAD == BAC题第3 第1题第2题解题策略:通过添加辅助圆,把问题转化成同弧所对的圆周角与圆心角问题,思维更明朗!60□ ,D4、如图,EABCD中,点为AB、BC的垂直平分线的交点,若= .(=AEC2120B=2) D =贝寸AEC = ---------------70 ADC == OB = OC,, ABC 是四边形5、如图,OABCD 内一点,OA = 150) ADC —360 贝U DAO + DCO = .(所求==—AOC -----------------------------9025. ADB = , ADC == ,则ABC =中,6、如图,四边形ABCD ACB ------------------- () ABC = ADC = 253020 ,=,CAD = 40100D第题第 4 第题 5 6题.题有两个直角三角形共斜边,由直角所对的弦为直径,易得到解题策略:第6ACBD共圆1............................................. 最新资料推荐................................... 运用圆周角和圆心角相互转化求角度二ABAB . = O的直径,C为的中点,D为半圆上一点,则ADC、如图,7AB为O _________ . OA过的中点E并垂直于OA,贝U ABC = 8如图,AB为O O的直径,CD ___________ ACBC 3. ,则二ABC 9、如图,AB为O O 的直径,—8、309; 、22.5解题策略:以50 . 上, BAC = ,贝U ADC = O10、如图,AB为O的直径,点C、D在O O ____________=,弦11、如图,O O的半径为1AB =,弦AC _________________30 CD AC ,P=,过圆心、如图,12PAB、PCD是O O的两条割线,PABO,若X =.(设,即可展开解决问题)ADC 则BDC = ---------------题第12 11 10 第题第题解题策略:在连接半径时,时常会伴随岀现特殊三角形一一等腰三角形或直角三角形或等腰直角三角形或等边三角形,是解题的另一个关键点!题第9第8题第7题、110;、;1040 ; 11、15012 答案:7、45 ;J f3 2.=,贝0 BOC弧去寻找同弧所对的圆周角与圆心角是解决这类问题的捷径!圆的四接四边形的外角等于内对角,是一个非常好用的一个重要性质!最新资料推荐垂径定理有关的计算圆的培优专题BED 上,若, 点E 在O OAB ,垂足为C , 交O O 于点D1、如图,AB 是O O 的弦,OD 30.O 的半径为 O _______ = 90, • AB = 2AC ,且,略解:•/ ODACOAB=BED306014,则弦AB =的长是,BED , • = AOC = 2AB =,因此=30 = , OC OA = 2,贝U AC . ABOA = 5,= 6,贝U BC = 2、如图,弦 AB 垂直于O O 的直径 CD , 1 AB=3 BE 略解:•••直径 CD =弦 AB ,二 AE_• OE = 5221039 3••• BC题第3题52 . 6,则 OP如图,O 3O 的半径为 弦,ABABCD ,垂足为 P ,= 8, CD = OD. CD ,连接, OEO 作OBAB ,OF 略解:如图,过点 1卩52,且 OB = OD = 3 =贝U BE = AB4 , DF224 53 9 =,贝U CEAZ?10 内接于O ABCO ,D 是O O 上一点,,贝U DCA = BC =,5、如图,正△ ------ OCD ODC 略解:如图,连接 OC , OD ,则= ODC = •••△ ABC 为等边三角形,则 45OCA =25 = OCD 是等腰三角形,则 OC••• 2C 过OB ,B长线交O O 于点,贝U CD = 2=略解:如图,连接 OC ,贝U OC AB 60=,•= OC 的中点,贝U 30AB ,又OCE2222112(25) 4 (25) 3 OF OE ==,2215 2 (11) OP 是矩形,则二在O 00A = 8AB = 12A = B =又ABCD ,则四边形 OEPF 60 ,则O O 的半径为,,内,如果4、如图,34 OD =,=,因此,=ADOBODO 略解:如图,过点作 AB ,连接,则= AB4BD8 一 28.最新资料推荐15CD =OCDOCE = 30 =,60AB , AEC = CE6、如图,O O 的直径AB = 4, C 为上一点,的中点,E 为OB 的延CDI'':;丨 2273)(44=OB 3C 为 AEC1332 2CF = CF =,A CD = O 如图,过点作 OF CD ,贝U OF = OC = 1 , - 2处,A 地测得台风中心在城正西方向 300千米的B7、如图,茲 710 60的 并以每小时BF 千米的速度沿北偏东方向移.千米范围内是受台风影响的区域动,距台风中心200A 地是否受到这次台风的影响?若受到影响,请求问: 岀受影响的时间?BFCAC ,交于点解:如图,过点A 作1 150,因此200A 地会受到这次台风影响; = '• =ABF30AC ,则二 AB_ 2 EBF200 如图,以A 为圆心千米为半径作O A 交于D 、两点,连 接 AD , 广 227100 150 200 DE 则二 22CD =,厂厂 10710 1007 所以受影响的时间为(时)4圆的培优专题 3 ----- 圆与全等三角形.O 于D ,求CDAC 、如图,O O 的直径AB = 10,弦=6,的长ACB 的平分线交O 1DE CB 的延长线上截取 BE = AC ,连接解:如图,连接AB ,BD ,最新资料推荐=BCD ,二•/ ACD = AD BE = EBD 又, CAD = AC ) EBD ( SAS CADBDE6 ACBC • — = CDBD — BC = = 5............................................ 最新资料推荐 ..................................为O O 上三点,,AM 为,点 M 于上一点,CE4、如图,点 A 、B 、.BD ADC• CD = DE ,ACB = 90ADBAB 为O O 的直径,则=T22908 610 CDE ,即 BDE =; 90BC • ADC = + = CDB = CDB27 CD =是等腰直角三角形且 CE = 14, /•••△ CDE 延长线上一点,且是半圆的中点,D 分别是CB 及AB2、如图, AB 是O O 的直径,C<2.,求 BD , 若 CM 是等腰直角三角形的长= MA = MD ,即△ ABCC = 90解:如图,MAD连接 AC ,贝U AC = BC ,AD ,则=NMA 过点M 作MN //22则厶CMN 也是等腰直角三角形,则 MNCM• 135ANC =, MBDMAD 又 MAD ==NMA = MD , • ) AAS AMN BMD• BD = MN I'I AN 3. C 为=上一点,NC 为O 3、如图,ABO的直径,点N 是半圆的中占 八占 八、AC 的值求BC —BN ,则△ ABN 是等腰直角三角形 •/ CAN = DBN , ACAN = BN ,二AN 解:如图,连接,DN AC =,连接 在BC 上截取BD BD)(SASBDN ACNCNADNB = DN • CN =,,CNDCND =+ CNA 是等腰直角三角形 AND = ADN + DNB26 = CD = NC , •BC BC AC ECBM 的长=3,求 AE = 5 , ME CM. , BM ,连接 CN 解:如图,在 AM 上截取 AN = BC AC B A ,二 AC •/= BC ,又=(SAS ) •••△ ACN BCM AM CE /• CN = CM ,又 ,•- NE = ME = 32=••• BM = ANAE — NE =PDCD , CD 交O O 于 A ,若.PDBE = CD = 3+1 = 4 , PE1 Rt △ ADP ( HL ),贝 U AE = = AD 连接 AP ,贝U Rt △ AEP 幻 58. == 10, MN 是 6、如图,ABO 的直径,MN 是弦,AE 于 MNE , BF ,BA =// BF , • AEMN , BFMN ,贝U AE 解:T 如图,延长 EO 交 BF 于点,G BO ,AO 则=AOE = BOGOG ,贝U AAS ) OE = BOG AOE □△( 4过点 O 作 OHMN , FG = ,= 2OHHN2234 5 6.AE — OH , = ON ,则连接 ON5 = BG ,则==FG 6C CPB ,二解:如图,连接 BP 、CP 」BP = CD PDE , 又 过点P 作PE 于点AB CDP=BEP(AAS )•••△ BEPCDP==AE+BEABMN 于 FAB.BAC AC = 3,AD = 15、如图,在O O 中,P 为,的中点, 的长求ABBF — AE 的值最新资料推荐圆与勾股定理4圆的培优专题60AB BNC 是二的中点,,1、如图,O O 是厶BCN 的外接圆,弦AC ,点BCNBN. 求 的DAC = = + ADB + 90 又 ACBD ,贝U EDBADB BCDE CD BE EDB ,贝U,AC = BD 是等腰直角三角形 • AD = DE ,即 △ ADE — I22=4AD =,即O O • AE 的半径为 45 ,CAD = D3、如图,AB 为O O 的直径,C 为O O 上一点,为 CB 延长线上一点,且F.AB ,DF 于点 CEAB 于点EBCBNA =,则AB 为直径,••• 90解:如图, 连接AB 是等腰直角三角形, 则BN = AN , 贝忆ABN连接AN60 =• BN ==,63BN = BC ,即可求解) (方法 2,过点 B 作 BD • AB , • CN =一 BC ------------------ 3222.,求O ACOBD ,且AC = BD ,若AD 半径=2、如图,O O 的弦解:如图,作直径AE ,连接 DE ,贝U ADE = 90• DAC = DE ACCDAD BC ,•,则 AB ;又 BNCBAC 2PAC. = 4,求 EFCE = ; ( 2)若 DF = 2 , EF (1)求证: 45 1CAD 的直径,二,)证:丁 AB 为O O ( DC = 则厶ACD 是等腰直角三角形,即 AC ECB =CAE 又 CEAB ,贝U(ACEDCGAAS ),贝U CG = = CE 「.A2213264 .2 ()略解:CD = AC = 7............................................ 最新资料推荐 .................................................CE AC . ,CD交AE 于点F , 4、如图,AB 为O O 的直径,CDAB 于点D ;= CF (1)求证:AF(2)若O OAC ,连接1 )证:如图,延长 CD 交O O 于点•••直径 AB CF1 AE=4连接BC 于M ,交CD5、如图,在O O 中,直径 CD 于弦AB 于E AN ;.ON ,= 1,求O ( 2 )若 ABO =的半径 BC G的延长线于点作 是矩形,90CG 垂直DF 如图,过点 C 又 CEAB , CAE CDG ==11 =AEC = DGC = DFAB ,则四边形 CEFG••• EFCG ,CEDG ,贝U ECBEFEH = AE ( 2)解:如图,连接 OC 交于点 H ,贝U OCAHAE ,-3,贝U CH =• OH XX = 4 设 HF =—,贝U CF = AF33222 x)(4 2 XX ,•= 则,即HF-2211 EF =2234 52 = 5—=2 AD. NAM ,,,)证:••• CDAMAB (1 90 •- BC + = CNM = C +AN• CNMBCNM BANDD又,=• = D = ADAND ,即的长,的半径为 5AE = 8,求EF G (CE AG AC ,则 CG CAE = = ACG ,贝U •-(1)求证:222垂直弦的问题5圆的培优专题AC ,证:如图,连接AOD = 180.AOD +=• BOC 222 . + BD4R2、在O O 中,弦 ABCD 于点E ,若O O 的半径为 R ,求证:CM 如图,作直径 AM ,连接ACM = ACD + 90贝U DCM =• DCMCAB =,DM BC • BD CMBD •- CM = 222 =T ACCM + AM22 AB ,则 AE =( 2)解:•••直径 CD 弦 EDNE == AD ,贝U又 AN xIx = NE = ED 如图,连接 OA ,设 OE =,则1x 2 == ODOA •••,.222lx 1)2)(2x (2 x•••,则OA 的半径二。
一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC == AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆; (2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.2.如图1O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.【答案】(1)26;(2)333-①见解析,②.【解析】 分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即可; ②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD ,//OP PD PD AB ⊥,,90POB ∴∠=,O 的直径12AB =,6OB OD ∴==,在Rt POB 中,30ABC ∠=,3tan306233OP OB ∴=⋅=⨯= 在Rt POD 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,DC AC =,30DBC ABC ∴∠=∠=,60ABD ∴∠=,OB OD =,OBD ∴是等边三角形,OD FB ∴⊥, 12BE AB =, OB BE ∴=,//BF ED ∴,90ODE OFB ∴∠=∠=,DE ∴是O 的切线;②由①知,OD BC ⊥,3cos306332CF FB OB ∴==⋅=⨯=, 在Rt POD 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD 是等边三角形是解题关键.3.已知:如图,△ABC 中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC 的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.4.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,AB=13,PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC,再利用圆的内接四边形的性质得∠ACF=∠ABP,于是可根据“SAS”判断△ABP≌△ACF;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC,于是可判断△ACE∽△APC,然后利用相似比即可得到结论;(3)先利用AC2=PA•AE计算出AE=134,则PE=AP-AE=34,再证△APF为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
中考数学圆的综合(大题培优)含答案一、圆的综合1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.2.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.(1)求证:DF为⊙O的切线;(2)若AB=4,∠C=30°,求劣弧BE的长.【答案】(1)证明见解析(2)4 3π分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF即∠ODF=90°.∴DF为⊙O的切线;(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,∵∠BOE=2∠BAE,∴∠BOE=120°,∴=·4π=π.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.3.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92 DE .【解析】(1)连接AD ,如图1,设∠BDC =α,∠ADC =β,根据圆周角定理得到∠CAB =∠BDC =α,由AB 为⊙O 直径,得到∠ADB =90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE =∠ADC ,等量代换得到∠ACE =∠CAE ,于是得到结论; (3)如图2,连接OC ,根据圆周角定理得到∠COB =2∠CAB ,等量代换得到∠COB =∠ABD ,根据相似三角形的性质得到OH =5,根据勾股定理得到AB =22AD BD +=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD .如图1,设∠BDC =α,∠ADC =β, 则∠CAB =∠BDC =α,∵点C 为弧ABD 中点,∴AC =CD ,∴∠ADC =∠DAC =β,∴∠DAB =β﹣α,∵AB 为⊙O 直径,∴∠ADB =90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣α),∴∠ABD =2α,∴∠ABD =2∠BDC ;(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为32. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,==∴=,由勾股定理求得6BE =.在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =32, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴22222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为32.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.5.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC ==AD BC ⊥,垂足为D ,过,A D的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF . (1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC 2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD .又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°. 又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC =2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π.点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.6.如图1,延长⊙O 的直径AB 至点C ,使得BC=12AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP . (1)∠C 的最大度数为 ;(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析. 【解析】试题分析:(1)当PC 与⊙O 相切时,∠OCP 的度数最大,根据切线的性质即可求得; (2)由△OPC 的边OC 是定值,得到当OC 边上的高为最大值时,△OPC 的面积最大,当PO⊥OC时,取得最大值,即此时OC边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB,根据等腰三角形的性质得到∠A=∠C,得到CO=OB+OB=AB,推出△APB≌△CPO,根据全等三角形的性质得到∠CPO=∠APB,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC与⊙O相切时,∠OCP最大.如图1,所示:∵sin∠OCP=OPOC =24=12,∴∠OCP=30°∴∠OCP的最大度数为30°,故答案为:30°;(2)有最大值,理由:∵△OPC的边OC是定值,∴当OC边上的高为最大值时,△OPC的面积最大,而点P在⊙O上半圆上运动,当PO⊥OC时,取得最大值,即此时OC边上的高最大,也就是高为半径长,∴最大值S△OPC=12OC•OP=12×6×3=9;(3)连结AP,BP,如图2,在△OAP与△OBD中,OA ODAOP BODOP OB=⎧⎪∠=∠⎨⎪=⎩,∴△OAP≌△OBD,∴AP=DB,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.7.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若13 CFDF=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF ∽△AED ; (2)求FG 的长; (3)求tan ∠E 的值.【答案】(1)证明见解析5 【解析】分析:(1)由AB 是 O 的直径,弦CD ⊥AB ,根据垂径定理可得:弧AD=弧AC ,DG=CG ,继而证得△ADF ∽△AED ;(2)由13CF FD = ,CF=2,可求得DF 的长,继而求得CG=DG=4,则可求得FG=2;(3)由勾股定理可求得AG 的长,即可求得tan ∠ADF 的值,继而求得tan ∠5 本题解析:①∵AB 是⊙O 的直径,弦CD ⊥AB , ∴DG=CG ,∴AD AC =,∠ADF=∠AED , ∵∠FAD=∠DAE (公共角),∴△ADF ∽△AED ;②∵13CF FD =,CF=2,∴FD=6,∴CD=DF+CF=8, ∴CG=DG=4,∴FG=CG-CF=2;③∵AF=3,FG=2,∴225AF FG -=,点睛:本题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识点,考查内容较多,综合性较强,难度适中,注意掌握数形结合的思想.8.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n- ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3mOH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=.可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=. (3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n-=,解得9n :=.即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132nn n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.9.在直角坐标系中,O 为坐标原点,点A 坐标为(2,0),以OA 为边在第一象限内作等边△OAB ,C 为x 轴正半轴上的一个动点(OC >2),连接BC ,以BC 为边在第一象限内作等边△BCD ,直线DA 交y 轴于E 点. (1)求证:△OBC ≌△ABD(2)随着C 点的变化,直线AE 的位置变化吗?若变化,请说明理由;若不变,请求出直线AE 的解析式.(3)以线段BC 为直径作圆,圆心为点F ,当C 点运动到何处时,直线EF ∥直线BO ;这时⊙F 和直线BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE 的位置不变,AE 的解析式为:33y x =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由见解析. 【解析】【分析】(1)由等边三角形的性质可得到OB=AB ,BC=BD ,∠OBA=∠DBC ,等号两边都加上∠ABC ,得到∠OBC=∠ABD ,根据“SAS”得到△OBC ≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA, 则∴点E 坐标为(0,设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:02k b b=+⎧⎪⎨-=⎪⎩ ,解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE的解析式为:y =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下:∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,则EF与EA所在的直线重合,∴点F为DE与BC的交点,又F为BC中点,∴A为OC中点,又AO=2,则OC=4,∴当C的坐标为(4,0)时,EF∥OB,这时直线BO与⊙F相切,理由如下:∵△BCD为等边三角形,F为BC中点,∴DF⊥BC,又EF∥OB,∴FB⊥OB,∴直线BO与⊙F相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.10.如图,AB为⊙O的直径,且AB=m(m为常数),点C为AB的中点,点D为圆上一动点,过A点作⊙O的切线交BD的延长线于点P,弦CD交AB于点E.(1)当DC⊥AB时,则DA DBDC+=;(2)①当点D在AB上移动时,试探究线段DA,DB,DC之间的数量关系;并说明理由;②设CD长为t,求△ADB的面积S与t的函数关系式;(3)当9220PDAC=时,求DEOA的值.【答案】(1)2;(2)①DA+DB =2DC ,②S =12t 2﹣14m 2 ;(3)24235DE OA =. 【解析】【分析】 (1)首先证明当DC ⊥AB 时,DC 也为圆的直径,且△ADB 为等腰直角三角形,即可求出结果;(2)①分别过点A ,B 作CD 的垂线,连接AC ,BC ,分别构造△ADM 和△BDN 两个等腰直角三形及△NBC 和△MCA 两个全等的三角形,容易证出线段DA ,DB ,DC 之间的数量关系;②通过完全平方公式(DA+DB )2=DA 2+DB 2+2DA•DB 的变形及将已知条件AB =m 代入即可求出结果;(3)通过设特殊值法,设出PD 的长度,再通过相似及面积法求出相关线段的长度,即可求出结果.【详解】解:(1)如图1,∵AB 为⊙O 的直径,∴∠ADB =90°,∵C 为AB 的中点,∴AC BC =,∴∠ADC =∠BDC =45°,∵DC ⊥AB ,∴∠DEA =∠DEB =90°,∴∠DAE =∠DBE =45°,∴AE =BE ,∴点E 与点O 重合,∴DC 为⊙O 的直径,∴DC =AB ,在等腰直角三角形DAB 中,DA =DB =22AB , ∴DA+DB =2AB =2CD ,∴DA DB DC+=2;(2)①如图2,过点A 作AM ⊥DC 于M ,过点B 作BN ⊥CD 于N ,连接AC ,BC , 由(1)知AC BC =,∴AC =BC ,∵AB 为⊙O 的直径,∴∠ACB =∠BNC =∠CMA =90°,∴∠NBC+∠BCN =90°,∠BCN+∠MCA =90°,∴∠NBC =∠MCA ,在△NBC 和△MCA 中,BNC CMA NBC MCA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△NBC ≌△MCA (AAS ),∴CN =AM ,由(1)知∠DAE =∠DBE =45°,AM =22DA ,DN =22DB , ∴DC =DN+NC =22DB+22DA =22(DB+DA ), 即DA+DB =2DC ;②在Rt △DAB 中,DA 2+DB 2=AB 2=m 2,∵(DA+DB )2=DA 2+DB 2+2DA•DB ,且由①知DA+DB 2DC 2t ,∴2t )2=m 2+2DA•DB ,∴DA•DB =t 2﹣12m 2, ∴S △ADB =12DA•DB =12t 2﹣14m 2, ∴△ADB 的面积S 与t 的函数关系式S =12t 2﹣14m 2; (3)如图3,过点E 作EH ⊥AD 于H ,EG ⊥DB 于G ,则NE =ME ,四边形DHEG 为正方形, 由(1)知AC BC =,∴AC =BC ,∴△ACB 为等腰直角三角形,∴AB =2AC , ∵9220PD AC =, 设PD =92,则AC =20,AB =202,∵∠DBA =∠DBA ,∠PAB =∠ADB ,∴△ABD ∽△PBA ,∴AB BD AD PB AB PA ==, ∴20292202BD DB =+, ∴DB =162, ∴AD =22AB DB -=122, 设NE =ME =x ,∵S △ABD =12AD•BD =12AD•NE+12BD•ME , ∴12×122×162=12×122•x+12×162•x , ∴x =4827, ∴DE =2HE =2x =967, 又∵AO =12AB =102, ∴961242735102DE OA =⨯=.【点睛】本题考查了圆的相关性质,等腰直三角形的性质,相似的性质等,还考查了面积法及特殊值法的运用,解题的关键是认清图形,抽象出各几何图形的特殊位置关系.11.如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的⊙O 与AD 、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=2,BC=2,求⊙O的半径.6【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O【解析】【分析】(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程222-=,解此方程即可求得⊙O的半径.3)6)x x【详解】解:(1)直线CE与⊙O相切.…理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,∴∠DCE+∠DEC=90°,∠ACB=∠DAC,又∠DCE=∠ACB,∴∠DEC+∠DAC=90°,∵OE=OA,∴∠OEA=∠DAC,∴∠DEC+∠OEA=90°,∴∠OEC=90°,∴OE⊥EC,∵OE为圆O半径,∴直线CE与⊙O相切;…(2)∵∠B=∠D,∠DCE=∠ACB,∴△CDE∽△CBA,∴BC AB=,DC DE又CD=AB2BC=2,∴DE =1根据勾股定理得EC =3, 又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-,解得64x =, ∴⊙O 的半径为64.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.12.如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE =∠C .(1)求证:AE 与⊙O 相切于点A ;(2)若AE ∥BC ,BC =23,AC =2,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO 并延长交⊙O 于点F ,连接BF ,则AF 为直径,∠ABF =90°,根据同弧所对的圆周角相等,则可得到∠BAE =∠F ,既而得到AE 与⊙O 相切于点A .(2))连接OC ,先由平行和已知可得∠ACB =∠ABC ,所以AC =AB ,则∠AOC =∠AOB ,从而利用垂径定理可得AH =1,在Rt △OBH 中,设OB =r ,利用勾股定理解得r =2,在Rt△ABD中,即可求得AD的长为【详解】解:(1)连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,∵AB AB=,∴∠ACB=∠F,∵∠BAE=∠ACB,∴∠BAE=∠F,∵∠FAB+∠F=90°,∴∠FAB+∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.(2)连接OC,∵AE∥BC,∴∠BAE=∠ABC,∵∠BAE=∠ACB,∴∠ACB=∠ABC,∴AC=AB=2,∴∠AOC=∠AOB,∵OC=OB,∴OA⊥BC,∴CH=BH=1BC2在Rt△ABH中,AH1,在Rt△OBH中,设OB=r,∵OH2+BH2=OB2,∴(r﹣1)2+2=r2,解得:r=2,∴DB=2r=4,在Rt△ABD中,AD∴AD的长为【点睛】本题考查了圆的综合问题,恰当的添加辅助线是解题关键.13.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.【答案】(1)见解析;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,见解析;(3)AH313.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明. (3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°, ∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC , ∴2322AH =+,∴31AH =-,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴2322CH ,=+∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.14.如图,已知等边△ABC ,AB=16,以AB 为直径的半圆与BC 边交于点D ,过点D 作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.【答案】(1)证明见解析;(2)6;(3).【解析】试题分析:(1)连接OD,根据等边三角形得出∠A=∠B=∠C=60°,根据OD=OB得到∠ODB=60°,得到OD∥AC,根据垂直得出切线;(2)根据中位线得出BD=CD=6,根据Rt△CDF的三角函数得出CF的长度,从而得到AF的长度,最后根据Rt△AFG的三角函数求出FG的长度;(3)过点D作DH⊥AB,根据垂直得出FG∥DH,根据Rt△BDH求出BH、DH的长度,然后得出∠GDH的正切值,从而得到∠FGD的正切值.试题解析:(1)如图①,连结OD,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线(2)∵OD∥AC,点O为AB的中点,∴OD为△ABC的中位线,∴BD=CD=6.在Rt△CDF中,∠C=60°,∴∠CDF=30°,∴CF=CD=3,∴AF=AC-CF=12-3=9 在Rt△AFG中,∵∠A=60°,∴FG=AF·sinA=9×=(3)如图②,过D作DH⊥AB于H.∵FG⊥AB,DH⊥AB,∴FG∥DH,∴∠FGD=∠GDH.在Rt△BDH中,∠B=60°,∴∠BDH=30°,∴BH=BD=3,DH=BH=3.∴tan∠GDH===,∴tan∠FGD=tan∠GDH=考点:(1)圆的基本性质;(2)三角函数.15.对于平面内的⊙C和⊙C外一点Q,给出如下定义:若过点Q的直线与⊙C存在公共点,记为点A ,B ,设AQ BQ k CQ +=,则称点A (或点B )是⊙C 的“K 相关依附点”,特别地,当点A 和点B 重合时,规定AQ=BQ ,2AQ k CQ =(或2BQ CQ ). 已知在平面直角坐标系xoy 中,Q(-1,0),C(1,0),⊙C 的半径为r .(1)如图1,当2r =时,①若A 1(0,1)是⊙C 的“k 相关依附点”,求k 的值.②A 2(1+2,0)是否为⊙C 的“2相关依附点”.(2)若⊙C 上存在“k 相关依附点”点M ,①当r=1,直线QM 与⊙C 相切时,求k 的值.②当3k =时,求r 的取值范围.(3)若存在r 的值使得直线3y x b =-+与⊙C 有公共点,且公共点时⊙C 的“3相关依附点”,直接写出b 的取值范围. 【答案】(1)2.②是;(2)①3k =②r 的取值范围是12r <≤;(3)333b -<. 【解析】【分析】(1)①如图1中,连接AC 、1QA .首先证明1QA 是切线,根据2AQ k CQ =计算即可解决问题;②根据定义求出k 的值即可判断;(2)①如图,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥,根据定义计算即可; ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,可得()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=,2CQ,推出2MQ NQ DQ k DQ CQ CQ +===,可得当3k =3DQ =221CD CQ DQ -=,假设C 经过点Q ,此时2r ,因为点Q 早C 外,推出r 的取值范围是12r <; (3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =-+经过点Q 时,3b =-,当直线3y x b =-+经过点E 时,33b =,即可推出满足条件的b 的取值范围为333b -<<. 【详解】(1)①如图1中,连接AC 、1QA .由题意:1OC OQ OA ==,∴△1QA C 是直角三角形,190CA Q ∴∠=︒,即11CA QA ⊥,1QA ∴是C 的切线,122222QA k QC ∴=== ②2(12,0)A +在C 上,2212122k +∴==,2A ∴是C 的“2相关依附点”.2(2)①如图2,当1r =时,不妨设直线QM 与C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM CM ⊥. (1,0)Q -,(1,0)C ,1r =,2CQ ∴=,1CM =,∴3MQ =,此时23MQ k CQ= ②如图3中,若直线QM 与C 不相切,设直线QM 与C 的另一个交点为N (不妨设QN QM <,点N ,M 在x 轴下方时同理),作CD QM ⊥于点D ,则MD ND =,()222MQ NQ MN NQ NQ ND NQ DQ ∴+=++=+=,2CQ =,∴2MQ NQ DQ k DQ CQ CQ +===,∴当3k =3DQ =221CD CQ DQ =-,假设C 经过点Q ,此时2r ,点Q 早C 外,r ∴的取值范围是12r <.(3)如图4中,由(2)可知:当3k =时,12r <.当2r 时,C 经过点(1,0)Q -或(3,0)E ,当直线3y x b =+经过点Q 时,3b =3y x b =-+经过点E 时,33b =,∴满足条件的b 的取值范围为333b -<.【点睛】本题考查了一次函数综合题、圆的有关知识、勾股定理、切线的判定和性质、点A (或点)B 是C 的“k 相关依附点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会考虑特殊位置解决问题,属于中考压轴题.。
圆培优试题(一)一、选择题1.如图在⊙O 中,弦AB =8,OC ⊥AB ,垂足为C ,且OC =3,则⊙O 的半径( )A .5B .10C .8D .62.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面宽AB 为( )A .4m B .5m C .6m D .8m3.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .34.如图,⊙O 的半径是3,点P 是弦AB 延长线上的一点,连接OP ,若OP =4,∠APO =30°,则弦AB 的长为( )A .2 B . C .2 D .5.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .6.如图,在半径为5的⊙O 中,AB 、CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3D .47.对下列生活现象的解释其数学原理运用错误的是( )A .把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B .木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C .将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D .将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .129.在⊙O 内有一点P ,已知OP =,且圆内过点P 的最短弦长为6,则⊙O 的面积是( ) A .6π B .8π C .10π D .12π第6题 第1题 第2题 第3题 第5题 第4题10.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A .2cmB .4cmC .2cm 或4cmD .2cm 或4cm11.如图,一条公路的转弯处是一段圆弧(),点O 是这段弧所在圆的圆心,AB =40m ,点C 是的中点,点D 是AB 的中点,且CD =10m ,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m12.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .36°B .30°C .18°D .24°二、填空题13.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为 . 14.⊙O 的直径为10,弦AB =6,P 是弦AB 上一动点,则OP 的取值范围是 .15.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为 .16.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB =1尺(1尺=10寸),则该圆材的直径为 寸.17.如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A ,B ,C 三点的圆的圆心坐标为 .18.如图,一下水管道横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面宽为80cm ,则水位上升 cm .19. 已知⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =16cm ,CD =12cm ,则弦AB 和CD 之间的距离是 cm .第11题第13题 第12题 第16题 第17题 第15题20.如图,AB 是⊙O 的直径,BC 是弦,点E 是的中点,OE 交BC 于点D .连接AC ,若BC =6,DE =1,则AC 的长为 . 21.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .22.如图,AB 、AC 是⊙O 的弦,OE ⊥AB 、OF ⊥AC ,垂足分别为E 、F .如果EF =3.5,那么BC = .23.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =16厘米,则球的半径为 厘米.24.如图,在⊙O 中,弦AB =1,点C 在AB 上移动,连结OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为 .三、解答题25.如图,在⊙O 中,半径OC ⊥AB ,AC=2,CD=2,求⊙O 的半径OA 的长.第21题 第18题 第20题第24题 第23题 第22题26.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.(1)求证:AE⊥DE;(2)若∠BAF=60°,AF=4,求CE的长.【答案】(1)证明见解析;(2)【解析】试题分析:(1)首先连接OC,由OC=OA,,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.试题解析:(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,tan∠CBA=,∴BC=2,∴AB=4,∴AF=2.考点:切线的性质.2.如图,⊙O是△ABC的外接圆,AC为直径,BD=BA,BE⊥DC交DC的延长线于点E(1) 求证:BE是⊙O的切线(2) 若EC=1,CD=3,求cos∠DBA【答案】(1)证明见解析;(2)∠DBA3 5【解析】分析:(1)连接OB,OD,根据线段垂直平分线的判定,证得BF为线段AD的垂直平分线,再根据直径所对的圆周角为直角,得到∠ADC=90°,证得四边形BEDF是矩形,即∠EBF=90°,可得出结论.(2)根据中点的性质求出OF的长,进而得到BF、DE、OB、OD的长,然后根据等角的三角函数求解即可.详解:证明:(1) 连接BO并延长交AD于F,连接OD∵BD=BA,OA=OD∴BF为线段AD的垂直平分线∵AC为⊙O的直径∴∠ADC=90°∵BE⊥DC∴四边形BEDF为矩形∴BE是⊙O的切线(2) ∵O、F分别为AC、AD的中点∴OF=12CD=32∵BF=DE=1+3=4∴OB=OD=35422-=∴cos∠DBA=cos∠DOF=332552OFOD==点睛:此题主要考查了圆的切线的判定与性质,关键是添加合适的辅助线,利用垂径定理和圆周角定理进行解答,注意相等角的关系的转化.3.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF;(3)如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长.图1 图2 图3【答案】(1)见解析(2)见解析12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB=90°,再证明△ABD≌△ACD即可得到结论;(2)连接BE.由同弧所对的圆周角相等,得到∠GAB=∠BEG.再证△KFE≌△BFE,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°. ∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD . (2)连接BE .∵BG =BG ,∴∠GAB =∠BEG . ∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF . ∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°. ∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α. ∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°. ∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM =12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α. 设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK =22(2)m m +=6,解得:m =655,∴AH =2m =1255.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD =45°,∴HL=AH ,AL =2AH =1210.4.如图1,在Rt △ABC 中,∠ABC=90°,BA=BC ,直线MN 是过点A 的直线CD ⊥MN 于点D ,连接BD .(1)观察猜想张老师在课堂上提出问题:线段DC ,AD ,BD 之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B 作BE ⊥BD ,交MN 于点E ,进而得出:DC+AD= BD . (2)探究证明将直线MN 绕点A 顺时针旋转到图2的位置写出此时线段DC ,AD ,BD 之间的数量关系,并证明 (3)拓展延伸在直线MN 绕点A 旋转的过程中,当△ABD 面积取得最大值时,若CD 长为1,请直接写BD 的长.【答案】(1)2;(2)AD ﹣DC=2BD ;(3)BD=AD=2+1. 【解析】 【分析】(1)根据全等三角形的性质求出DC ,AD ,BD 之间的数量关系 (2)过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O , 证明CDB AEB ∆∆≌,得到CD AE =,EB BD =, 根据BED ∆为等腰直角三角形,得到2DE BD =,再根据DE AD AE AD CD =-=-,即可解出答案.(3)根据A 、B 、C 、D 四点共圆,得到当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,由BD AD =即可得出答案. 【详解】解:(1)如图1中,由题意:BAE BCD ∆∆≌, ∴AE=CD ,BE=BD , ∴CD+AD=AD+AE=DE , ∵BDE ∆是等腰直角三角形, ∴DE=2BD , ∴DC+AD=2BD , 故答案为2. (2)2AD DC BD -=.证明:如图,过点B 作BE ⊥BD ,交MN 于点E .AD 交BC 于O .∵90ABC DBE ∠=∠=︒,∴ABE EBC CBD EBC ∠+∠=∠+∠, ∴ABE CBD ∠=∠.∵90BAE AOB ∠+∠=︒,90BCD COD ∠+∠=︒,AOB COD ∠=∠, ∴BAE BCD ∠=∠,∴ABE DBC ∠=∠.又∵AB CB =, ∴CDB AEB ∆∆≌, ∴CD AE =,EB BD =, ∴BD ∆为等腰直角三角形,2DE BD =.∵DE AD AE AD CD =-=-, ∴2AD DC BD -=.(3)如图3中,易知A 、B 、C 、D 四点共圆,当点D 在线段AB 的垂直平分线上且在AB 的右侧时,△ABD 的面积最大.此时DG ⊥AB ,DB=DA ,在DA 上截取一点H ,使得CD=DH=1,则易证2CH AH ==,∴21BD AD ==+.【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.5.如图,在直角坐标系中,⊙M 经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧OA 上,连结BD 交x 轴于点C ,且∠COD =∠CBO. (1)求⊙M 的半径; (2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r 2;(2)证明见解析;(3)点E 的坐标为(2632). 【解析】试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出2,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 6,0),点B 为(02) ∴62 ∴根据Rt △AOB 的勾股定理可得:2∴M 的半径r=122. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴2∴2-22在Rt △AOB 中,3OAOB=∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,2633=∴点E 的坐标为(2632)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.6.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AB=2,BC=2,求⊙O的半径.【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O的半径为6 4【解析】【分析】(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程2223)6)x x-=,解此方程即可求得⊙O的半径.【详解】解:(1)直线CE与⊙O相切.…理由:连接OE,∵四边形ABCD是矩形,∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,∴∠DCE+∠DEC=90°,∠ACB=∠DAC,又∠DCE=∠ACB,∴∠DEC+∠DAC=90°,∵OE=OA,∴∠OEA=∠DAC,∴∠DEC +∠OEA =90°, ∴∠OEC =90°, ∴OE ⊥EC , ∵OE 为圆O 半径, ∴直线CE 与⊙O 相切;…(2)∵∠B =∠D ,∠DCE =∠ACB , ∴△CDE ∽△CBA , ∴BC ABDC DE=, 又CD =AB =2,BC =2, ∴DE =1根据勾股定理得EC =3, 又226AC AB BC =+=,…设OA 为x ,则222(3)(6)x x +=-, 解得6x =, ∴⊙O 的半径为6.【点睛】此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.7.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ;(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)22;(2)224r ≤≤;(3)25252t --<<--或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB =22442+=22; (2)如图,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB,则OE=22,OB=OA=4, ∵⊙O 与线段AB 的“非常距离”为0, ∴224r ≤≤;(3)当⊙T 在△ABC 左侧时,如图,当⊙T 与BC 相切时,d=0,BC=2236+=35,过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,∴TF TH BE BC=, 即2=635, ∴TH=5,∵HO ∥CE,∴△BHO ∽△BEC,∴HO=2,此时T(-5-2,0);当d=2时,如图,同理可得,此时T (252-);∵0<d <2,∴25252t -<<-;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8; 综上,25252t --<<--或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.8.如图,在中,,以为直径作,交边于点,交边于点,过点作的切线,交的延长线于点,交于点.(1)求证:; (2)若,,求的半径. 【答案】(1)证明见解析;(2)4.【解析】 试题分析:(1)连接AD ,根据等腰三角形三线合一即可证明.(2)设⊙O 的半径为R ,则FO=4+R ,FA=4+2R ,OD=R ,连接OD ,由△FOD ∽△FAE ,得列出方程即可解决问题.试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,∵AB=AC,AD⊥BC,∴BD=DC.(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,整理得R2﹣R﹣12=0,∴R=4或(﹣3舍弃).∴⊙O的半径为4.考点:切线的性质、等腰三角形的性质等知识.9.如图,AB为⊙O的直径,BC为⊙O的弦,过O点作OD⊥BC,交⊙O的切线CD于点D,交⊙O于点E,连接AC、AE,且AE与BC交于点F.(1)连接BD,求证:BD是⊙O的切线;(2)若AF:EF=2:1,求tan∠CAF的值.【答案】(1)证明见解析;(2)3. 【解析】【分析】 (1)根据全等三角形的性质得到∠OBD=∠OCD=90°,根据切线的判定定理即可得到结论; (2)根据已知条件得到AC ∥DE ,设OD 与BC 交于G ,根据平行线分线段成比例定理得到AC :EG=2:1,EG=12AC ,根据三角形的中位线的性质得到OG=12AC 于是得到AC=OE ,求得∠ABC=30°,即可得到结论.【详解】证明:(1)∵OC=OB ,OD ⊥BC ,∴∠COD=∠BOD ,在△COD 与△BOD 中, OC OB COD BOD OD OD ===⎧⎪∠∠⎨⎪⎩,∴△COD ≌△BOD ,∴∠OBD=∠OCD=90°,∴BD 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,AC ⊥BC ,∵OD ⊥CB ,∴AC ∥DE ,设OD与BC交于G,∵OE∥AC,AF:EF=2:1,∴AC:EG=2:1,即EG=12AC,∵OG∥AC,OA=OB,∴OG=12AC,∵OG+GE=12AC+12AC=AC,∴AC=OE,∴AC=12AB,∴∠ABC=30°,∴∠CAB=60°,∵CE BE,∴∠CAF=∠EAB=12∠CAB=30°,∴tan∠CAF=tan30°=3.【点睛】本题考查了切线的判定和性质,垂径定理,全等三角形的判定与性质,三角形的中位线的性质,三角函数的定义,正确的识别图形是解题的关键.10.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求BD的长度;(3)若DE=4,AE=8,求线段EG的长.【答案】(1)证明见解析(2)π(3)13【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)易得∠BOD=60°,再由弧长公式求解即可;(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.试题解析:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB =x0∴∠P+∠DAF+∠DAB =3x o=90O∴x0=300∴∠BOD=60°,∴BD的长度=(3)解:连接DG,如图2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,∴DG=2222-=-=6,108CG CD∴EG=2222+=+=213.DG DE64。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tan A=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.【答案】(1)答案见解析;(2)AB=3BE;(3)3.【解析】试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x,进而得出OE=1+2x,最后用勾股定理即可得出结论.试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BDAE DE AD==.∵Rt△ABD中,tan A=BDAD=12,∴DE BEAE DE==12,∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=32x.∵OF=1,∴OE=1+2x.在Rt△ODE中,由勾股定理可得:(32x)2+(2x)2=(1+2x)2,∴x=﹣29(舍)或x=2,∴圆O的半径为3.点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.2.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=°时,DM与⊙O相切.【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得α=∠NAD=90°.点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.3.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析;(2)5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴AB=BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.4.已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC.(1)如图1,求证:∠BAD=∠CAD(2)如图2,过点C 作CF ⊥AB 于点F,交⊙0于点E,延长CF 交⊙0于点G.过点作EH ⊥AG 于点H ,交AB 于点K,求证AK=2OF ;(3)如图3,在(2)的条件下,EH 交AD 于点L,若0K=1,AC=CG,求线段AL 的长.图1 图2 图3 【答案】(1)见解析(2)见解析(3)12105【解析】试题分析:(1)由直径所对的圆周角等于90°,得到∠ADB =90°,再证明△ABD ≌△ACD 即可得到结论;(2)连接BE .由同弧所对的圆周角相等,得到∠GAB =∠BEG .再证△KFE ≌△BFE ,得到BF =KF =BK .由OF =OB -BF ,AK =AB -BK ,即可得到结论.(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.先证CM 垂直平分AG ,得到AM =GM ,∠AGC +∠GCM =90°.再证∠GAF =∠GCM =α.通过证明△AGB ≌△CMG ,得到BG =GM =12AG .再证明∠BGC =∠MCG =α.设BF =KF =a , 可得GF =2a ,AF =4a . 由OK =1,得到OF =a +1,AK =2(a +1),AF = 3a +2,得到3a +2=4a ,解出a 的值,得到AF ,AB ,GF ,FC 的值.由tanα=tan ∠HAK =12HK AH =, AK =6,可以求出 AH 的长.再由1tan tan 3BAD BCF ∠=∠=,利用公式tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD∠+∠-∠⋅∠,得到∠GAD =45°,则AL =2AH ,即可得到结论.试题解析:解:(1)∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADC =90°. ∵BD =CD ,∠BDA =∠CDA ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD . (2)连接BE .∵BG =BG ,∴∠GAB =∠BEG . ∵CF ⊥AB ,∴∠KFE =90°.∵EH ⊥AG ,∴∠AHE =∠KFE =90°,∠AKH =∠EKF ,∴∠HAK =∠KEF =∠BEF . ∵FE =FE ,∠KFE =∠BFE =90°,∴△KFE ≌△BFE ,∴BF =KF =BK .∵ OF =OB -BF ,AK =AB -BK ,∴AK =2OF .(3)连接CO 并延长交AG 于点M ,连接BG .设∠GAB =α.∵AC =CG , ∴点C 在AG 的垂直平分线上.∵ OA =OG ,∴点O 在AG 的垂直平分线上, ∴CM 垂直平分AG ,∴AM =GM ,∠AGC +∠GCM =90°. ∵AF ⊥CG ,∴∠AGC +∠GAF =90°,∴∠GAF =∠GCM =α. ∵AB 为⊙O 的直径,∴∠AGB = 90°,∴∠AGB =∠CMG =90°. ∵AB =AC =CG ,∴△AGB ≌△CMG ,∴BG =GM=12AG .在Rt △AGB 中, 1tan tan 2GB GAB AG α∠=== . ∵∠AMC =∠AGB = 90°,∴BG ∥CM , ∴∠BGC =∠MCG =α. 设BF =KF =a , 1tan tan 2BF BGF GF α∠===,∴GF =2a ,1tan tan 2GF GAF AF α∠=== ,AF =4a .∵OK =1,∴OF =a +1,AK =2OF =2(a +1),∴AF =AK +KF =a +2(a +1)=3a +2,∴3a +2=4a ,∴a =2, AK =6,∴AF =4a =8,AB =AC =CG =10,GF =2a =4,FC =CG -GF =6. ∵tanα=tan ∠HAK =12HK AH =,设KH =m ,则AH =2m ,∴AK 22(2)m m +=6,解得:m 65,∴AH =2m 125.在Rt △BFC 中,1tan 3BF BCF FC ∠== .∵∠BAD +∠ABD =90°, ∠FBC +∠BCF =90°,∴∠BCF =∠BAD ,1tan tan 3BAD BCF ∠=∠= ,∴tan ∠GAD =tan tan 1tan tan GAF BAD GAF BAD ∠+∠-∠⋅∠=1123111123+=-⨯,∴∠GAD=45°,∴HL=AH,AL=2AH= 1210.55.如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;(3)在(2)的条件下,若ΔABD的面积为63,ΔABD与ΔABC的面积比为2:9,求CD 的长.【答案】(1)证明见解析;(2)30°;(3)33【解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO 中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.详解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC.(2)如图,连接AO并延长交BC于I交⊙O于J∵AH 是⊙O 的切线且AH ∥BC , ∴AI ⊥BC , ∴BI=IC , ∵AC=BC , ∴IC=12AC , ∴∠IAC=30°,∴∠ABC=60°=∠F=∠ACB . ∵FC 是直径, ∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°. (3)过点D 作DG AB ⊥,连接AO由(1)(2)知ABC 为等边三角形 ∵∠ACF=30°, ∴AB CF ⊥, ∴AE=BE , ∴2ΔABC 33S AB == ∴AB=3 ∴33AE =在RtΔAEO 中,设EO=x ,则AO=2x , ∴222AO AE OE =+, ∴()()222233x x =+,∴x =6,⊙O 的半径为6, ∴CF=12.∵ΔABD 11636322S AB DG DG =⨯⨯=⨯⨯=, ∴DG=2.如图,过点D 作DG CF '⊥,连接OD . ∵AB CF ⊥,DG AB ⊥, ∴CF//DG ,∴四边形G ′DGE 为矩形, ∴2G E '=,63211CG G E CE +=++'==',在RtΔOG D '中,5,6OG OD ='=,∴11DG '=, ∴2221111233CD DG CG =+=+=''点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.6.已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连结CB .[感知]如图①,点A 、B 在CD 同侧,且点B 在AC 右侧,在射线AM 上截取AE =BD ,连结CE ,可证△BCD ≌△ECA ,从而得出EC =BC ,∠ECB =90°,进而得出∠ABC = 度; [探究]如图②,当点A 、B 在CD 异侧时,[感知]得出的∠ABC 的大小是否改变?若不改变,给出证明;若改变,请求出∠ABC 的大小.[应用]在直线MN 绕点A 旋转的过程中,当∠BCD =30°,BD =时,直接写出BC 的长.【答案】【感知】:45;【探究】:不改变,理由详见解析;【拓展】:BC 的长为+1或﹣1.【解析】 【分析】[感知]证明△BCD≌△ECA(SAS)即可解决问题;[探究]结论不变,证明△BCD≌△ECA(SAS)即可解决问题;[应用]分两种情形分别求解即可解决问题.【详解】解:【感知】,如图①中,在射线AM上截取AE=BD,连结CE.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°.∴∠CDB+∠CAB=180°,∵∠CAB+∠CAE=180°∴∠D=∠CAE,∵CD=AC,AE=BD,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.故答案为45【探究】不改变.理由如下:如图,如图②中,在射线AN上截取AE=BD,连接CE,设MN与CD交于点O.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°,∵∠AOC=∠DOB,∴∠D=∠EAC,CD=AC,∴△BCD ≌△ECA (SAS ),∴BC =EC ,∠BCD =∠ECA ,∵∠ACE +∠ECD =90°,∴∠ECD +∠DCB =90°,即∠ECB =90°,∴∠ABC =45°.【拓展】如图①﹣1中,连接AD .∴∠ACD +∠ABD =180°,∴A ,C ,D ,B 四点共圆,∴∠DAB =∠DCB =30°,∴AB =BD =,∴EB =AE +AB =+, ∵△ECB 是等腰直角三角形,如图②中,同法可得BC =﹣1. 综上所述,BC 的长为+1或﹣1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.如图①,已知Rt ABC ∆中,90ACB ∠=,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作O ,过C 作CE 切O 于E ,交AB 于F .(1)若O 的半径为2,求线段CE 的长;(2)若AF BF =,求O 的半径; (3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离. 【答案】(1)42CE =;(2)O 的半径为3;(3)G 、E 两点之间的距离为9.6. 【解析】【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得;(2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r =610,解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GE AB AC =,即12108GE =,解得即可. 【详解】(1)如图,连结OE .∵CE 切O 于E ,∴90OEC ∠=︒.∵8AC =,O 半径为2,∴6OC =,2OE =.∴2242CE OC OE =-=;(2)设O 半径为r .在Rt ABC ∆中,90ACB ∠=︒,10AB =,8AC =, ∴226BC AB AC =-=. ∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵CE 切O 于E ,∴90OEC ∠=︒.∴OEC ACB ∠=∠,∴OEC BCA ∆~∆.∴OE OC BC BA =, ∴8610r r -=, 解得3r =.∴O 的半径为3;(3)连结EG 、OE ,设EG 交AC 于点M ,由对称性可知,CB CG =.又CE CB =,∴CE CG =.∴EGC GEC ∠=∠.∵CE 切O 于E ,∴90GEC OEG ∠+∠=︒.又90EGC GMC ∠+∠=︒,∴OEG GMC ∠=∠.又GMC OME ∠=∠,∴OEG OME ∠=∠.∴OE OM =.∴点M 与点D 重合.∴G 、D 、E 三点在同一条直线上.连结AE 、BE ,∵AD 是直径,∴90AED ∠=︒,即90AEG ∠=︒.又CE CB CG ==,∴90BEG ∠=︒.∴180AEB AEG BEG ∠=∠+∠=︒,∴A 、E 、B 三点在同一条直线上.∴E 、F 两点重合.∵90GEB ACB ∠=∠=︒,B B ∠=∠,∴GBE ABC ∆~∆. ∴GB GE AB AC =,即12108GE =. ∴9.6GE =.故G 、E 两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.8.如图,AB 是半圆⊙O 的直径,点C 是半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接FA ,FC ,若∠AFC =2∠BAC ,求证:FA ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接FA ,FG ,FG 与AC 相交于点P ,且AF =FG .①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE =BD ,∠GOE =90°,⊙O 的半径为2,求EP 的长.【答案】(1)见解析;(2)①结论:∠GFA =2∠ABC .理由见解析;②PE =36. 【解析】【分析】 (1)证明∠OFA =∠BAC ,由∠EAO +∠EOA =90°,推出∠OFA +∠AOE =90°,推出∠FAO =90°即可解决问题.(2)①结论:∠GFA =2∠ABC .连接FC .由FC =FG =FA ,以F 为圆心FC 为半径作⊙F .因为AG AG =,推出∠GFA =2∠ACG ,再证明∠ACG =∠ABC .②图2﹣1中,连接AG ,作FH ⊥AG 于H .想办法证明∠GFA =120°,求出EF ,OF ,OG 即可解决问题.【详解】(1)证明:连接OC.∵OA=OC,EC=EA,∴OF⊥AC,∴FC=FA,∴∠OFA=∠OFC,∵∠CFA=2∠BAC,∴∠OFA=∠BAC,∵∠OEA=90°,∴∠EAO+∠EOA=90°,∴∠OFA+∠AOE=90°,∴∠FAO=90°,∴AF⊥AB.(2)①解:结论:∠GFA=2∠ABC.理由:连接FC.∵OF垂直平分线段AC,∴FG=FA,∵FG=FA,∴FC=FG=FA,以F为圆心FC为半径作⊙F.∵AG AG,∴∠GFA=2∠ACG,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴∠ABC+∠BCA=90°,∵∠BCD+∠ACD=90°,∴∠ABC=∠ACG,∴∠GFA=2∠ABC.②如图2﹣1中,连接AG ,作FH ⊥AG 于H .∵BD =OE ,∠CDB =∠AEO =90°,∠B =∠AOE ,∴△CDB ≌△AEO (AAS ),∴CD =AE ,∵EC =EA ,∴AC =2CD .∴∠BAC =30°,∠ABC =60°,∴∠GFA =120°,∵OA =OB =2,∴OE =1,AE =,BA =4,BD =OD =1, ∵∠GOE =∠AEO =90°,∴OG ∥AC , 33,33DG OG ∴==, 222213AG DG AD ∴=+=, ∵FG =FA ,FH ⊥AG ,∴AH =HG 21∠AFH =60°, ∴AF =27sin 60AH ︒=, 在Rt △AEF 中,EF 2213AF AE -=, ∴OF =OE +EF =43 , ∵PE ∥OG , ∴PE EF OG 0F=, ∴134233=, ∴PE =36.【点睛】圆综合题,考查了垂径定理,勾股定理,圆周角定理,全等三角形的判定和性质,锐角三角函数,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.如图所示,ABC ∆内接于圆O ,CD AB ⊥于D ;(1)如图1,当AB 为直径,求证:OBC ACD ∠=∠;(2)如图2,当AB 为非直径的弦,连接OB ,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作AE BC ⊥于E ,交CD 于点F ,连接ED ,且2AD BD ED =+,若3DE =,5OB =,求CF 的长度.【答案】(1)见解析;(2)成立;(3)145【解析】【分析】 (1)根据圆周角定理求出∠ACB=90°,求出∠ADC=90°,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠BOC=2∠A ,求出∠OBC=90°-∠A 和∠ACD=90°-∠A 即可; (3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,在AD 上取DG=BD ,延长CG 交AK 于M ,延长KO 交⊙O 于N ,连接CN 、AN ,求出关于a 的方程,再求出a 即可.【详解】(1)证明:∵AB 为直径,∴ACB 90∠=︒, ∵CD AB ⊥于D , ∴ADC 90∠=︒,∴OBC A 90∠∠+=︒,A ACD 90∠∠+=︒,∴OBC ACD ∠∠=;(2)成立,证明:连接OC ,由圆周角定理得:BOC 2A ∠∠=,∵OC OB =, ∴()()11OBC 180BOC 1802A 90A 22∠∠∠∠=︒-=︒-=︒-, ∵ADC 90∠=︒,∴ACD 90A ∠∠=︒-,∴OBC ACD ∠∠=;(3)分别延长AE 、CD 交⊙O 于H 、K ,连接HK 、CH 、AK ,∵AE BC ⊥,CD BA ⊥,∴AEC ADC 90∠∠==︒,∴BCD CFE 90∠∠+=︒,BAH DFA 90∠∠+=︒,∵CFE DFA ∠∠=,∴BCD BAH ∠∠=,∵根据圆周角定理得:BAH BCH ∠∠=,∴BCD BAH BCH ∠∠∠==,∴由三角形内角和定理得:CHE CFE ∠∠=, ∴CH CF =,∴EH EF =,同理DF DK =,∵DE 3=,∴HK 2DE 6==,在AD 上取DG BD =,延长CG 交AK 于M ,则AG AD BD 2DE 6=-==, BC GC =,∴MCK BCK BAK ∠∠∠==,∴CMK 90∠=︒,延长KO 交⊙O 于N ,连接CN 、AN ,则NAK 90CMK ∠∠=︒=,∴CM //AN ,∵NCK ADK 90∠∠==︒,∴CN //AG ,∴四边形CGAN 是平行四边形,∴AG CN 6==,作OT CK ⊥于T ,则T 为CK 的中点,∵O 为KN 的中点, ∴1OT CN 32==, ∵OTC 90∠=︒,OC 5=,∴由勾股定理得:CT 4=,∴CK 2CT 8==,作直径HS ,连接KS ,∵HK 6=,HS 10=,∴由勾股定理得:KS 8=, ∴3tan HSK tan HAK 4∠∠==, ∴1tan EAB tan BCD 3∠∠==, 设BD a =,CD 3a =, ∴AD BD 2ED a 6=+=+,11DK AD a 233==+, ∵CD DK CK +=, ∴13a a 283++=, 解得:9a 5=, ∴113DK a 235=+=, ∴2614CF CK 2DK 855=-=-=. 【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.10.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求BD的长度;(3)若DE=4,AE=8,求线段EG的长.【答案】(1)证明见解析(2)π(3)213【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)易得∠BOD=60°,再由弧长公式求解即可;(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.试题解析:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB =x0∴∠P+∠DAF+∠DAB =3x o=90O∴x0=300∴∠BOD=60°,∴BD的长度=π(3)解:连接DG,如图2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,∴DG=2222-=-=6,CG CD108∴EG=2222+=+=213.64DG DE。
九年级数学培优《圆》专题训练(一)
九年级数学培优《圆》专题训练(二)
九年级数学培优《圆》专题训练(三)
九年级数学培优《圆》专题训练(四)
九年级数学培优《圆》专题训练(五)
九年级数学培优《圆》专题训练(六)
九年级数学培优《圆》专题训练(七)
九年级数学培优《圆》专题训练(八)
九年级数学培优《圆》专题训练(九)
九年级数学培优《圆》专题训练(十)
九年级数学培优《圆》专题训练(十一)
九年级数学培优《圆》专题训练(十二)
九年级数学培优《圆》专题训练(十三)
九年级数学培优《圆》专题训练(三十)
九年级数学培优《圆》专题训练(三十一)
九年级数学培优《圆》专题训练(三十二)
(注:可编辑下载,若有不当之处,请指正,谢谢!)。
六年级上册圆培优题圆☞易错题1、两个圆的半径比是2:3,他们的直径比是(),周长比是()。
2、一个圆的直径扩大到原来的2倍,它的半径就扩大到原来()倍,它的周长扩大到原来的()倍。
3、一座石英钟的时针长6cm,经过6小时,这时针的尖端所走的路程是()cm,经过12小时,这时针的尖端所走的路程是()cm4、周长相等的正方形,长方形和圆,面积最大的是(),最小的是()。
5、将一个圆,沿半径剪开,得到若干个小扇形,然后拼成一个近似的长方形。
这个长方形的长是圆的(),宽是圆的()。
如果这个长方形的宽是3cm,那么这个长方形的长是()cm,周长是()cm,面积是()平方厘米。
如果拼成的长方形的长为12.56dm,那么原来圆的面积是()cm26)。
7)平方分米。
8)平方厘米。
9、在一块直径是1.2米的圆形桌布周围缝在一条花边,接头处长6厘米,这条花边长()米。
10、用一根12.56dm长的铁丝弯成一个圆形铁环,这个铁环的直径是()dm,面积是()dm2求阴影部分的面积与周长例1、求下面图形中阴影部分的面积与周长。
练2、.如图,四个扇形的半径相等, 3、如图所示,正方形的面积是18dm²,求阴影部分的面积。
(单位:厘米) 求圆的面积。
4、.如图,大正方形的边长为6厘米,小正方形的边长为4厘米求阴影部分的面积。
5、求阴影部分的面积。
(单位:厘米)半圆的周长例1积。
练1、如图所示,这个四分之一园的周长是17.85厘米,求它的面积。
2、一个半圆形的周长是51.4厘米,求这个半圆形的面积。
钟表问题例1、一个时钟的分针长5厘米,当它走过一圈时,它的尖端走了多少厘米?分针扫过的面积是多少平方厘米?1、一座石英钟的时针长6cm,经过6小时,这时针的尖端所走的路程是多少厘米,经过过12小时,这时针的尖端所走的路程又是多少厘米?2、学校圆形大钟的时钟长40厘米,分针长50厘米,经过一昼夜,分针尖端走过的路程是多少?时钟扫过了多少平方厘米?车轮问题题型1例1、一辆自行车轮胎的外直径70cm,如果每分钟转100圈,通过一座1099m的大桥,大约需要几分钟?练1、为倡导“节能减排,绿色出行”,李叔叔每天骑自行车上班。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.四边形ABCD 的对角线交于点E,且AE=EC,BE=ED,以AD 为直径的半圆过点E,圆心为O.(1)如图①,求证:四边形ABCD 为菱形;(2)如图②,若 BC 的延长线与半圆相切于点 F ,且直径 AD =6,求弧AE 的长.【答案】(1)见解析;(2)π2 【解析】 试题分析:(1)先判断出四边形ABCD 是平行四边形,再判断出AC ⊥BD 即可得出结论; (2)先判断出AD =DC 且DE ⊥AC ,∠ADE =∠CDE ,进而得出∠CDA =30°,最后用弧长公式即可得出结论.试题解析:证明:(1)∵四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,∴四边形ABCD 是平行四边形.∵以AD 为直径的半圆过点E ,∴∠AED =90°,即有AC ⊥BD ,∴四边形ABCD 是菱形;(2)由(1)知,四边形ABCD 是菱形,∴△ADC 为等腰三角形,∴AD =DC 且DE ⊥AC ,∠ADE =∠CDE .如图2,过点C 作CG ⊥AD ,垂足为G ,连接FO .∵BF 切圆O 于点F ,∴OF ⊥AD ,且132OF AD ==,易知,四边形CGOF 为矩形,∴CG =OF =3. 在Rt △CDG 中,CD =AD =6,sin ∠ADC =CG CD =12,∴∠CDA =30°,∴∠ADE =15°. 连接OE ,则∠AOE =2×∠ADE =30°,∴3031802AE ππ⋅⨯==.点睛:本题主要考查菱形的判定即矩形的判定与性质、切线的性质,熟练掌握其判定与性质并结合题意加以灵活运用是解题的关键.3.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明; (2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=4.在平面直角坐标系xOy 中,点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (0,23),则以AB 为边的“坐标菱形”的最小内角为 ;(2)若点C (1,2),点D 在直线y=5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O 的半径为2,点P 的坐标为(3,m ).若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m的取值范围.【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1【解析】分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.详解:(1)∵点A(2,0),B(0,3∴OA=2,OB3.在Rt△AOB中,由勾股定理得:AB22(),∴∠ABO=30°.223∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;(2)如图2.∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.∵⊙O2,且△OQ'D是等腰直角三角形,∴OD2OQ'=2,∴P'D=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.∵⊙O的半径为2,且△OQ'D是等腰直角三角形,∴OD=2OQ'=2,∴BD=3﹣2=1.∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5.∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.5.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧OB上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF.【答案】(1)详见解析;(2)D(﹣34a,34a),E(﹣334a,34a),F(﹣32a,0),P(﹣3a,2a);S△DEF=33a2.【解析】试题分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得出PB PEOP PD=,同理,△OPF∽△BPD,得出PB PDOP PF=,然后利用等量代换即可.(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF的面积.试题解析:(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a, a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,过E作EM⊥x轴于M,∵AO切⊙O1于O,∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a, a),∵E(﹣a, a),D(﹣a, a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为: a,∴S △DEF =×a×a=a 2.故答案为:D (﹣a , a ),E (﹣a , a ),F (﹣a ,0),P (﹣a ,);S △DEF =a 2.6.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)【答案】(1)证明见解析 (2)233π- 【解析】【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.【详解】(1)连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于K .∵AE DE =,∴OE ⊥AD .∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE26023360π⋅⋅=-⨯22233π=-.【点睛】本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.7.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【答案】(1)30°;(2)详见解析.【解析】【分析】(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBE C为平行四边形,再由OB =OC,即可判断四边形OBEC是菱形.【详解】(1)解:在△AOC中,AC=4,∵AO=OC=4,∴△AOC是等边三角形,∴∠AOC=60°,∴∠AEC=30°;(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴∠AEB=90°,∴△AEB为直角三角形,∠EAB=30°.∴∠EAB=∠AEC.∴CE ∥OB ,又∵CO ∥EB∴四边形OBEC 为平行四边形.又∵OB =OC =4.∴四边形OBEC 是菱形.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.8.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM .(1)求证:CM 2=MN.MA ;(2)若∠P=30°,PC=2,求CM 的长.【答案】(1)见解析;(2)2【解析】【分析】(1)由CM DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()1122OA PO PC CO ==+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长.【详解】(1)O 中,M 点是半圆CD 的中点, ∴ CM DM =,CAM DCM ∴∠=∠,又CMA NMC ∠=∠,AMC CMN ∽∴∆∆,∴ CM AM MN CM=,即2·CM MN MA =; (2)连接OA 、DM ,PA 是O 的切线,90PAO ∴∠=︒,又30P ∠=︒, ()1122OA PO PC CO ∴==+, 设O 的半径为r , 2PC =,()122r r ∴=+, 解得:2r =,又CD 是直径,90CMD ∴∠=︒, CM DM =,CMD ∴∆是等腰直角三角形, ∴在Rt CMD ∆中,由勾股定理得222CM DM CD +=,即()222216CM r ==, 则28CM =, 22CM ∴=.【点睛】本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点9.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________. (2)探究证明 如图2,当时,求证:,且. (3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.10.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD⊥AC,垂足为点D,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA=1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.。
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.3.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.(1)求证:AB为⊙O的切线;(2)若BC=6,sinA=35,求⊙O的半径;(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.【答案】(1)连OD,证明略;(2)半径为3;(3)最大值5,5【解析】分析:(1)连接OD,OB,证明△ODB≌△OCB即可.(2)由sinA=35且BC=6可知,AB=10且cosA=45,然后求出OD的长度即可.(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.详解:(1)如图:连接OD、OB.在△ODB和△OCB中:OD=OC,OB=OB,BC=BD;∴△ODB≌△OCB(SSS).∴∠ODB=∠C=90°.∴AB为⊙O的切线.(2)如图:∵sinA=35,∴CB3AB5,∵BC=6,∴AB=10,∵BD=BC=6,∴AD=AB-BD=4,∵sinA=35,∴cosA=45,∴OA=5,∴OD=3,即⊙O的半径为:3.(3)如图:连接OB,交⊙O为点E、F,由三角形的三边关系可知:当P 点与E 点重合时,PB 取最小值.由(2)可知:OD=3,DB=6,∴OB=223635+=.∴PB=OB-OE=353-.当P 点与F 点重合时,PB 去最大值,PB=OP+OB=3+35.点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.4.如图1O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .()1如图2,当//PD AB 时,求PD 的长;()2如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线;②求PC 的长.【答案】(1)262)333①见解析,②.【解析】分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即可; ②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.详解:()1如图2,连接OD ,//OP PD PD AB ⊥,,90POB ∴∠=, O 的直径12AB =,6OB OD ∴==,在Rt POB 中,30ABC ∠=, 3tan30623OP OB ∴=⋅=⨯=, 在Rt POD 中, 22226(23)26PD OD OP =-=-=;()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,DC AC =,30DBC ABC ∴∠=∠=,60ABD ∴∠=,OB OD =,OBD ∴是等边三角形,OD FB ∴⊥,12BE AB =, OB BE ∴=,//BF ED ∴,90ODE OFB ∴∠=∠=,DE ∴是O 的切线;②由①知,OD BC ⊥,3cos306332CF FB OB ∴==⋅=⨯=, 在Rt POD 中,OF DF =, 13(2PF DO ∴==直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出OBD 是等边三角形是解题关键.5.已知:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 是平分线分别交BC ,AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程 x 2﹣kx+23 =0的两根(k 为常数).(1)求证:PA•BD=PB•AE ;(2)求证:⊙O 的直径长为常数k ;(3)求tan ∠FPA 的值.【答案】(1)见解析;(2)见解析;(3)tan ∠FPA=2﹣3 .【解析】试题分析:(1)由PB 切⊙O 于点B ,根据弦切角定理,可得∠PBD=∠A ,又由PF 平分∠APB ,可证得△PBD ∽△PAE ,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE ;(2)易证得BE=BD ,又由线段AE 、BD 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数),即可得AE+BD=k ,继而求得AB=k ,即:⊙O 的直径长为常数k ;(3)由∠A=60°,并且线段AE 、BC 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数),可求得AE 与BD 的长,继而求得tan ∠FPB 的值,则可得tan ∠FPA 的值. 试题解析:(1)证明:如图,∵PB 切⊙O 于点B ,∴∠PBD=∠A ,∵PF 平分∠APB ,∴∠APE=∠BPD ,∴△PBD ∽△PAE ,∴PB :PA=BD :AE ,∴PA•BD=PB•AE ;(2)证明:如图,∵∠BED=∠A+∠EPA ,∠BDE=∠PBD+∠BPD .又∵∠PBD=∠A ,∠EPA=∠BPD ,∴∠BED=∠BDE .∴BE=BD .∵线段AE 、BD 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数),∴AE+BD=k ,∴AE+BD=AE+BE=AB=k ,即⊙O 直径为常数k .(3)∵PB 切⊙O 于B 点,AB 为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA , 又∵PA•BD=PB•AE ,∴BD=AE ,∵线段AE 、BD 的长是一元二次方程 x 2﹣kx+2=0的两根(k 为常数). ∴AE•BD=2, 即AE 2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt △PBA 中,PB=AB•tan60°=(2+)×=3+2.在Rt △PBE 中,tan ∠BPF===2﹣, ∵∠FPA=∠BPF ,∴tan ∠FPA=2﹣. 【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.6.已知P 是O 的直径BA 延长线上的一个动点,∠P 的另一边交O 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.【答案】(1)CD=25;(2)m=23812n n - ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论;(2)解Rt △POH ,得到Rt 3m OH OCH =.在和Rt △1O CH 中,由勾股定理即可得到结论;(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =中,=,,∴2OH =.∵AB =6,∴3OC =. 由勾股定理得: 5CH =∵OH ⊥DC ,∴225CD CH ==.(2)在Rt △1sin 3POH P PO m 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=.(3)△1POO 成为等腰三角形可分以下几种情况:① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n -=,解得9n :=. 即圆心距等于O 、1O 的半径的和,就有O 、1O 外切不合题意舍去.ii )11O P OO =,由22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n :=. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=. ∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得955n :=. 综上所述:n 的值为955或9155. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.7.如图,□ABCD 的边AD 是△ABC 外接圆⊙O 的切线,切点为A ,连接AO 并延长交BC 于点E ,交⊙O 于点F ,过点C 作直线CP 交AO 的延长线于点P ,且∠BCP =∠ACD . (1)求证:PC 是⊙O 的切线;(2)若∠B =67.5°,BC =2,求线段PC ,PF 与弧CF 所围成的阴影部分的面积S .【答案】(1)见解析;(2)14π-【解析】 【分析】(1) 过C 点作直径CM ,连接MB ,根据CM 为直径,可得∠M+∠BCM =90°,再根据AB ∥DC 可得∠ACD =∠BAC ,由圆周角定理可得∠BAC =∠M ,∠BCP =∠ACD ,从而可推导得出∠PCM =90°,根据切线的判定即可得;(2)连接OB ,由AD 是⊙O 的切线,可得∠PAD =90°,再由BC ∥AD ,可得AP ⊥BC ,从而得BE =CE = 12BC =1,继而可得到∠ABC =∠ACB =67.5°,从而得到∠BAC =45°,由圆周角定理可得∠BOC=90°,从而可得∠BOE =∠COE =∠OCE = 45°,根据已知条件可推导得出OE=CE=1,PC=OC=22OE CE2+=,根据三角形面积以及扇形面积即可求得阴影部分的面积.【详解】(1)过C点作直径CM,连接MB,∵CM为直径,∴∠MBC=90°,即∠M+∠BCM=90°,∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠ACD=∠BAC,∵∠BAC=∠M,∠BCP=∠ACD,∴∠M=∠BCP,∴∠BCP+∠BCM=90°,即∠PCM=90°,∴CM⊥PC,∴PC与⊙O相切;(2)连接OB,∵AD是⊙O的切线,切点为A,∴OA⊥AD,即∠PAD=90°,∵BC∥AD,∠AEB=∠PAD=90°,∴AP⊥BC.∴BE=CE=12BC=1,∴AB=AC,∴∠ABC=∠ACB=67.5°,∴∠BAC=180°-∠ABC-∠ACB=45°,∴∠BOC=2∠BAC=90°,∵OB=OC,AP⊥BC,∴∠BOE=∠COE=∠OCE= 45°,∵∠PCM=90°,∴∠CPO=∠COE=∠OCE= 45°,∴OE=CE=1,PC=OC=22OE CE2+=,∴S=S△POC-S扇形OFC=()245π21π221 23604⨯⨯⨯-=-.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、扇形面积等,综合性较强,准确添加辅助线是解题的关键.8.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,∴0 tan30ODPD=,解得OD=1,∴PO,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.9.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=35,求EB的长.【答案】(1)见解析(2)3 2【解析】【分析】()1如图,欲证明EF与O相切,只需证得OD EF⊥.()2通过解直角AEF可以求得AF10.=设O的半径为r,由已知可得△FOD∽△FAE,继而得到OF ODAF AE=,即10r r106-=,则易求15AB AC2r2===,所以153EB AB AE622 =-=-=.【详解】(1)如图,连接OD,OC OD =,OCD ODC ∠∠∴=.AB AC =,ACB B ∠∠∴=,ODC B ∠∠∴=,OD //AB ∴,ODF AEF ∠∠∴=,EF AB ⊥,ODF AEF 90∠∠∴==,OD EF ∴⊥, OD 是O 的半径,EF ∴与O 相切;()2由()1知,OD//AB ,OD EF ⊥.在Rt AEF 中,AE 3sin CFD AF 5∠==,AE 6=, 则AF 10=, OD //AB ,∴△FOD ∽△FAE ,OF OD AF AE∴=, 设O 的半径为r ,10r r 106-∴=, 解得,15r 4=, 15AB AC 2r 2∴===, 153EB AB AE 622∴=-=-=. 【点睛】本题考查了切线的判定、相似三角形的判定与性质、解直角三角形的应用等,正确添加辅助线、灵活应用相关知识是解题的关键.10.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.【答案】(1)证明见解析;(2)5 2【解析】试题分析:(1)连接OC,根据切线的性质和圆周角定理,得出∠OCA=∠OAC与∠CAE=∠OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB∽△AEC,再根据相似三角形的对应边成比例求得AB的长,从而得到圆的半径.试题解析:(1)证明:连接OC.∵CE是⊙O的切线,∴∠OCE =90°∵CE⊥DF,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OCA=90°,∴∠CAE=∠OCA∵OC=OA,∴∠OCA=∠OAC.∴∠CAE=∠OAC,即AC平分∠FAB(2)连接BC.∵AB是⊙O的直径,∴∠ACB =∠AEC =90°.又∵∠CAE=∠OAC,∴△ACB∽△AEC,∴AB AC AC AE=.∵AE=1,CE=2,∠AEC =90°,∴2222125AC AE CE+=+∴22551ACABAE===,∴⊙O的半径为52.。
1.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离_________ cm.
2.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD 与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.
4.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC 于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.6.在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足
为点E.(1)求证:DE为⊙O的切线;(2)计算.
7.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.
9.如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?
10.如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC相切.
(1)求证:OB⊥OC;(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.11.如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC 绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程
中形成的,与线段CG所围成的阴影部分的面积.
12.如图,在矩形ABCD中,E是CD边上的点,且BE=BA,以点A 为圆心、AD长为半径作⊙A交AB于点M,过点B作⊙A的切线BF,切点为F.(1)请判断直线BE与⊙A的位置关系,并说明理由;(2)如果AB=10,BC=5,求图中阴影部分的面积.
13.如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.
16.将半径为5的圆(如图1)剪去一个圆心角为n°的扇形后围成如图2所示的圆锥,则n的值等于_________ .
17.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.
18.已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C 重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE 的形状,并证明你的结论.
19.△ABC是⊙O的内接三角形,AC=BC
D为⊙O中上一点,延长DA至点E,
使CE=CD.(1)求证:AE=BD;(2)若AC
⊥BC,求证:AD+BD=CD.
20.(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.
21.(2014•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.
22.(2014•大庆)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.
(1)求证:CB∥PD;
(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.
23.(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.
(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.24.(2014•天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)判断直线CD和⊙O的位置关系,并说明理由.
(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
25.(2014•聊城)如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC 于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.
(1)求证:PC是半⊙O的切线;
(2)若∠CAB=30°,AB=10,求线段BF的长.
26.(2013•珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A
(1)求证:BC为⊙O的切线;
(2)求∠B的度数.
27.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O 的半径为4,AF=3,求AC 的长.
28.(2013•黄石)如图,AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,E 是⊙O 上一点,D 是AM 上一点,连接DE 并延长交BN 于点C ,且OD∥BE,OF∥BN. (1)求证:DE 与⊙O 相切; (2)求证:OF=
CD .
29.(2012•长沙)如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°, (1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD .
30.(2011•孝感)如图,等边△ABC 内接于⊙O,P 是
上任一
点(点P 不与点A 、B 重合),连AP 、BP ,过点C 作CM∥BP 交PA 的延长线于点M .
(1)填空:∠APC= _________ 度,∠BPC= _________ 度; (2)求证:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM 的面积.。