工程力学__第11章强度失效分析与设计准则习题解
- 格式:pdf
- 大小:311.57 KB
- 文档页数:6
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
工程力学第十一章习题解答题目:一物体质量为10kg,在水平地面上以10m/s的初速度开始运动,若物体受到一个恒力F=20N的作用,且与运动方向相反,求物体在力作用下停止前所经过的距离。
解答过程:一、问题分析根据牛顿第二定律,力等于质量乘以加速度,即F=ma。
本题中,物体受到一个恒力F=20N的作用,且与运动方向相反,因此加速度a为负值。
我们需要求解物体在力作用下停止前所经过的距离。
二、解题步骤1. 求加速度a根据牛顿第二定律,F=ma,代入已知数据,得到加速度a:a = F/m = -20N / 10kg = -2m/s²2. 求物体停止前所经过的时间t由于物体初速度v0=10m/s,加速度a=-2m/s²,根据速度-时间关系式v=v0+at,我们可以求解物体停止前的时间t:0 = 10m/s - 2m/s² tt = 10m/s / 2m/s² = 5s3. 求物体在力作用下停止前所经过的距离s根据位移-时间关系式s=v0t + 1/2at²,代入已知数据,求解物体在力作用下停止前所经过的距离s:s = 10m/s 5s + 1/2 (-2m/s²) (5s)²s = 50m - 25ms = 25m三、答案验证根据动能定理,物体在运动过程中,动能的变化等于外力做的功。
物体从初始速度10m/s减速到0,动能变化为:ΔK = 1/2 m (v² - v0²) = 1/2 10kg (0 - 100m²/s²) = -500J外力做的功为:W = F s = 20N 25m = 500J由于动能变化等于外力做的功,所以我们的答案是正确的。
四、总结本题主要考查了牛顿第二定律、速度-时间关系式、位移-时间关系式和动能定理的应用。
通过求解加速度、时间和距离,我们得到了物体在力作用下停止前所经过的距离为25m。
第十一章压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a)所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
——————————————工程力学习题——————————————第一章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。
习题2-1图2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2习题2-2图(b)F 1F 1F 2习题2-3图(a )F 1习题2-4图2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
F 12习题2-5图(b)(a)(c)(d)AC2-7 画出图中各物体的受力图。
(f)(g) 习题2-6图(b)(a )DC2-8 试计算图中各种情况下F 力对o 点之矩。
(d)习题2-7图习题2-8图 P(d)(c)(a ) A2-9 求图中力系的合力F R 及其作用位置。
习题2-9图( a )1F 3 ( b )F 3F 2( c) 1F /m( d )F 32-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
( a )q 1=600N/m2( b )q ( c )习题2-10图B习题2-11图第三章静力平衡问题习题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm,压力p=6N/mm2,若α=30︒, 求工件D所受到的夹紧力F D。
第1章静力学基础思考题1-1 说明下面两个式子的意义。
(1)F1=F2(2)F1=F2解:(1)式中F表示力矢量;因此F1=F2表示力F1和F2的大小相等,方向相同。
(2)式中F表示力的大小;因此F1=F2表示力F1和F2的大小相等。
1-2 能否说合力一定比分力大,为什么?解:不一定。
例如,大小相等、方向相反,且作用在同一直线上的两个力的合力为零。
1-3 二力平衡原理与作用和反作用定律有何异同?解:二力平衡原理是指:作用在刚体上的两个力,使刚体保持平衡的充要条件是:这两个力的大小相等,方向相反,且作用在同一直线上。
作用和反作用定律是指:任何两个物体间的作用,总是大小相等、方向相反、沿同一作用线分别作用在两个物体上。
可以看出,二力平衡原理描述的是,两个不同的力作用在同一个物体上的情况;作用和反作用定律描述的是两个不同物体之间相互作用的情况。
但它们有一个相同点,即上述两种情况下的一对力均满足大小相等、方向相反。
1-4 约束反力的方向和主动力的方向有无关系?解:约束反力的方向总是与约束限制物体位移的方向相反。
对于有些约束类型,如具有光滑接触表面的约束,其约束反力必然作用在接触点处,作用线沿着接触面的公法线方向,且指向被约束物体。
又如绳索类柔性约束,其约束反力只能是沿柔性体的轴线而背离被约束物体的拉力。
而对于圆柱铰链约束等,其约束反力的作用点位置(即接触点位置)、方向和大小由构件所受主动力确定。
因此,约束反力的方向是否和主动力的方向有......专业资料...仅供学习.参考.分享关,取决于约束类型。
1-5 什么叫二力构件?分析二力构件受力时与构件的形状有无关系?解:所谓二力构件,是指只有两点受力而处于平衡状态的构件,如下图所示。
二力构件受力时,二力大小相等、方向相反,且都沿两作用点的连线方向;与构件的形状无关。
1-6 图1-18所示物体的受力图是否正确?如有错误如何改正?(a)(b)图1-18解:图1-18(b)所示受力图错误,正确的受力图所图1-18(c)所示。
11-6 图示悬臂梁,横截面为矩形,承受载荷F 1与F 2作用,且F 1=2F 2=5 kN ,试计算梁内的最大弯曲正应力,及该应力所在截面上K 点处的弯曲正应力。
解:(1) 画梁的弯矩图(2) 最大弯矩(位于固定端):max 7.5 M kN =(3) 计算应力: 最大应力:K 点的应力:11-7 图示梁,由No22槽钢制成,弯矩M =80 N.m ,并位于纵向对称面(即x-y 平面)内。
试求梁内的最大弯曲拉应力与最大弯曲压应力。
解:(1) 查表得截面的几何性质:4020.3 79 176 z y mm b mm I cm ===(2) 最大弯曲拉应力(发生在下边缘点处)()30max880(7920.3)10 2.67 17610x M b y MPa I σ-+-⋅-⨯-⨯===⨯6max max max227.510176 408066ZM M MPa bh W σ⨯====⨯6max max 337.51030132 ********K ZM y M y MPa bh I σ⋅⋅⨯⨯====⨯x M1zM M z(3) 最大弯曲压应力(发生在上边缘点处)30max88020.3100.92 17610x M y MPa I σ---⋅⨯⨯===⨯ 11-8 图示简支梁,由No28工字钢制成,在集度为q 的均布载荷作用下,测得横截面C 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E =200 Gpa ,a =1 m 。
解:(1) 求支反力31 44A B R qa R qa ==(2) 画内力图(3) 由胡克定律求得截面C 下边缘点的拉应力为:49max 3.010******* C E MPa σε+-=⋅=⨯⨯⨯=也可以表达为:2max4C C z zqa MW W σ+== (4) 梁内的最大弯曲正应力:2maxmax max 993267.5 8C zz qa M MPa W W σσ+====qxxF SM11-14 图示槽形截面悬臂梁,F =10 kN ,M e =70 kNm ,许用拉应力[σ+]=35 MPa ,许用压应力[σ-]=120 MPa ,试校核梁的强度。
第一章静力学基础P20-P23 习题:1-1、已知:F1=2000N,F2=150N,F3=200N,F4=100N,各力的方向如图1-1所示。
试求各力在x、y轴上的投影。
解题提示:计算方法:F x= + F cosαF y= + F sinα注意:力的投影为代数量;式中:F x、F y的“+”的选取由力F的指向来确定;α为力F与x轴所夹的锐角。
图1-11-2、铆接薄钢板在孔A、B、C、D处受四个力作用,孔间尺寸如图1-2所示。
已知:F1=50N,F2=100N,F3=150N,F4=220N,求此汇交力系的合力。
解题提示:——计算方法。
一、解析法F R x=F1x+F2x+……+F n x=∑F xF R y=F1y+F2y+……+F ny=∑F yF R = √F R x2+ F R y2tanα=∣F R y/ F R x∣二、几何法按力多边形法则作力多边形,从图1-2图中量得F R的大小和方向。
1-4、求图1-4所示各种情况下力F对点O的力矩。
图1-4解题提示:——计算方法。
①按力矩的定义计算M O(F)= + Fd②按合力矩定理计算M O(F)= M O(F x)+M O(F y)1-5、求图1-5所示两种情况下G与F对转心A之矩。
解题提示:此题按合力矩定理计算各力矩较方便、简捷。
以图1-5a为例:力F、G至A点的距离不易确定,如按力矩的定义计算力矩图1-5既繁琐,又容易出错。
若将力F、G分别沿矩形两边长方向分解,则各分力的力臂不需计算、一目了然,只需计算各分力的大小,即可按合力矩定理计算出各力的力矩。
M A(F)= -F cosαb- F sinαaM A(G)= -G cosαa/2 - G sinαb/21-6、如图1-6所示,矩形钢板的边长为a=4m,b=2m,作用力偶M(F,F′)。
当F=F′=200N时,才能使钢板转动。
试考虑选择加力的位置与方向才能使所费力为最小而达到使钢板转一角度的目的,并求出此最小力的值。
工程力学(静力学与材料力学)习题第12章 失效分析与设计准则12- 1 对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。
(A )逐一进行试验,确定极限应力;(B )无需进行试验,只需关于失效原因的假说;(C )需要进行某些试验,无需关于失效原因的假说; (D )假设失效的共同原因,根据简单试验结果。
正确答案是 。
12-2 对于图示的应力状态(y x σσ>)若为脆性材料,试分析失效可能发生在:(A )平行于x 轴的平面; (B )平行于z 轴的平面;(C )平行于Oyz 坐标面的平面; (D )平行于Oxy 坐标面的平面。
正确答案是 。
12-3 对于图示的应力状态,若x y σσ=,且为韧性材料,试根据最大切应力准则,失效可能发生在:(A )平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行于x 轴、其法线与y 轴的夹角为45°的平面内;(B )仅为平行于y 轴、法线与z 轴的夹角为45°的平面; (C )仅为平行于z 轴、其法线与x 轴的夹角为45°的平面; (D )仅为平行于x 轴、其法线与y 轴的夹角为45°的平面。
正确答案是 。
12-4 铸铁处于图示应力状态下,试分析最容易失效的是:(A )仅图c ;(B )图a 和图b ; (C )图a 、b 和图c ; (D )图a 、b 、c 和图d 。
正确答案是 。
12-5低碳钢处于图示应力状态下,若根据最大切应力准则,试分析最容易失效的是: (A )仅图d ; (B )仅图c ; (C )图c 和图d ; (D )图a 、b 和图d 。
正确答案是 。
12-6 韧性材料所处应力状态如图所示,根据最大切应力准则,试分析二者同时失效的条件是: (A )τσ>,3/2στ=; (B )τσ<,3/4στ=; (C )τσ=;(D )τσ>,3/2τσ=。
11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa ,试计算其临界荷载。
(1)圆形截面,25,1d l ==mm m ;(2)矩形截面2400,1h b l ===m m ;(3)16号工字钢,2l =ml解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力:(1)圆形截面,25,1d l ==mm m :2292220.025*******37.81cr EIP lπππ⨯⨯⨯⨯===N kN(2)矩形截面2400,1h b l ===m m当压杆在不同平面约束相同即长度系数相同均为1μ=时,矩形截面总是绕垂直短边的轴先失稳20.040.02min(,)12y z y I I I I ⨯===,故:2292220.040.022********.71cr EI P l ππ⨯⨯⨯⨯===N kN (3)16号工字钢,2l =m 查表知:4493.1,1130y z I I ==cmcm ,当压杆在不同平面约束相同即长度系数相同均为1μ=时4min(,)93.1y z y I I I I ===cm ,故:2298222001093.110459.42cr EIP lππ-⨯⨯⨯⨯===N kN11-3 有一根30mm ×50mm 的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载?已知材料的弹性模量E=200GPa ,比例极限σP =200MPa 。
解:(1)计算压杆能采用欧拉公式所对应的P λ2299.35P P P E πσλλ=→===(2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于P λ可采用欧拉公式计算临界力。
故0.780.83 1.22999.35x P y zlll l i μλλ⋅===>>=→mm , 即 1.229l >mm 为细长杆,可采用欧拉公式计算临界力。
11-6 某钢材的比例极限230P σ=MPa ,屈服极限274s σ=MPa ,弹性模量E=200GPa ,331 1.09cr σλ=-。