【最新】2013年中考数学总复习学案:第16课时 二次函数应用
- 格式:doc
- 大小:355.50 KB
- 文档页数:3
二次函数的实际应用1例题1:一场篮球赛中,小明跳起投篮,已知球出手时离地面高209米,与篮圈中心的水平距离为8米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。
⑴问此球能否投中?⑵在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?例题2:(2012·武汉·五月调考)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为335米,问此次跳水会不会失误?并通过计算说明理由.O练习1. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.2. 一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是21251233y x x=-++则他将铅球推出的距离是m 练习1图3.如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。
一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。
例题3:公园要建造圆形的喷水池,在水池中央垂直于水面外安装一个柱子OA,O恰好在水面中心,OA =1.25米,由柱子顶端A处的喷水头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离为1米处达到距水面最大高度2.25米.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至落到池外?(2)如果水流喷出的抛物线开口与(1)相同,水池半径为3.5米,要使水流不落到池外,此时水流的最大高度应达多少米?例题4:(2012·武汉·四月调考)要修建一个圆形喷水池,在池中心竖直安装一根2.25m的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3m.(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);(2)如图;在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3 m,最内轨道的半径为r m,其上每0.3 m的弧长上安装一个地漏,其它轨道上的地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r为多少时池中安装的地漏的个数最多?练习:1. 爱琴公园的音乐喷泉中的一个旋转喷泉如图所示,水管AB高出水面53米,B处是自转的水喷头,喷出水流呈抛物线状,喷出的水流在与A点的水平距离2米处达到最高点C,点C距离水面3米。
2013年中考数学复习专题—函数问题1. (2012湖南长沙10分)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:()() 40x25x30y250.5x30<x35⎧-≤≤⎪=⎨-≤⎪⎩.(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.【答案】解:(1)∵25≤28≤30,()()40x25x30y250.5x30<x35⎧-≤≤⎪=⎨-≤⎪⎩,∴把28代入y=40﹣x得,y=12(万件)。
答:当销售单价定为28元时,该产品的年销售量为12万件。
(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,∴当x=30时,W最大为﹣25,即公司最少亏损25万。
②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣12x2+35x﹣625=﹣12(x﹣35)2﹣12.5,∴当x=35时,W最大为﹣12.5,即公司最少亏损12.5万。
综合①,②得,投资的第一年,公司亏损,最少亏损是12.5万。
二次函数的实际应用专题复习教案盛康中心学校司念钦学习目标:1、能够正确根据题意确定二次函数关系式,运用二次函数性质解决实际问题.2、通过利用递进式问题串,让学生经历不同题型的分析解决过程,进一步培养学生分析解决问题的能力.3、通过把实际问题转化为数学问题的过程,形成初步的数学建模思想.教学重点:让学生掌握把生活信息转化为数学问题的方法,正确建立二次函数关系式,并用二次函数的性质解决实际问题.教学难点:培养学生从实际问题中抽象出数学问题,并运用数学知识加以解决,最后再回到实际问题的能力.教学过程:一、创设情境请同学们欣赏图片,进而发现生活中的抛物线,欣赏图片想象导弹发射出去的运行轨迹,跟学生聊聊中韩关系激发学习热情引入新课。
二、诊断练习归纳方法1,一种卡车的刹车距离y(m)与滑行时间x(s)之间函数关系式是y=﹣x2+10x 该型卡车采取刹车后滑行_____m才能停下来,此时卡车滑行时间为______秒.引导分析:整理二次函数有关的性质.把y=﹣x2+10x化为y=a(x-h)2+ k形式为__________,开口______,顶点______,对称轴______,当x =___时y有最___值____;当x ___时y随x _______,当x ___时y随x _______.2,一种信号枪从地面垂直向上发出一枚信号弹,信号弹的高度h(米)与它运动时间t(秒)的函数关系式是h=-5t2+10t+55,那么信号弹运动中的最大高度为()米。
.反思归纳:求刹车距离及信号弹最大高度就是求___________,先把二次函数一般式化为______________式,再根据________________解决实际问题.3,为了丰富野战官兵的业余生活,野战军某部在临时场地装备篮球投篮篮筐,篮筐P距离地面x轴为3m,以篮筐P所在直线为y轴,建立平面直角坐标系,篮球投出后呈抛物线y= -x2+bx+c先向上至最高点然后落下,士兵投球位置为B(球出手高度忽略不计),则最高点距地面_____m,此时距离y轴为_____m。
【最新】2019年中考数学总复习学案:第16课时 二次函数应用一、选择题1. 已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则tA . B. C . D .2.如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .2564m 2 B .34m 2 C .38m 2 D .4m 23.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是( )A.4.6mB. 4.5mC.4mD.3.5m二、填空题4.二次函数y=12x 2+x-1,当x=______时,y 有最_____值,这个值是____. 5.(2008年庆阳)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上(如图所示),则6楼房子的价格为元/平方米.6.用一根120cm 长的铁丝围成一个矩形,矩形的最大面积为 ;若将其分成两部分,每 第5题图 第2题图 第3题图 第8题第8题图一部分弯曲成一个正方形,那么两个正方形的面积和最小为 .7. 用长20cm 的篱笆,一面靠墙围成一个长方形的园子,当园子宽为 ,园子有最大面积是 .8.某菜农搭建一个横截面为抛物线的大棚,有关尺寸如上图所示,若菜农身高为1.6m ,则他在不弯腰的情况下在大棚内活动的范围是 米.参考答案9.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?10.(2008安徽)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成点)的路线是抛物线23315y x x =-++的一部分,如图. (1)求演员弹跳离地面的最大高度;(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.11.(2008兰州)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并第10题图 A BC排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.。
1中考数学人教版专题复习:二次函数的应用一、考点突破1. 掌握二次函数的对称轴求法;2. 理解二次函数的最值与其开口方向和对称轴的关系;3. 会分析自变量有一定取值范围的二次函数最值的求法。
二、重难点提示重点:会求二次函数的最值。
难点:当自变量有一定取值范围时,求二次函数的最值。
考点精讲1. 二次函数的最值求法(1)当自变量的取值范围为全体实数时,二次函数2(0)y ax bx c a =++≠在自变量x 取任意实数时的最值情况:24ac-b 024b a x a a>=-当时,函数在处取得最小值,无最大值;24ac-b 024b a x a a<=-当时,函数在处取得最大值,无最小值;【重要提示】自变量x 取任意实数。
(2)当自变量的取值范围不为全体实数时,二次函数2(0)y ax bx c a =++≠的自变量x ,不能取遍任意实数时的最值情况。
需作出函数在所给范围内的图象,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值。
2. 实际问题中的二次函数最值(1)二次函数与几何图形的面积最值问题; (2)二次函数与销售问题中的利润最值问题。
典例精析例题1 崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线。
如果以水平地面为x 轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分。
则水喷出的最大高度是多少?思路分析:根据题意,可以得到喷水的最大高度,就是水在空中划出的抛物线y=-x2+4x的顶点坐标的纵坐标,利用配方法或公式法,求得其顶点坐标的纵坐标,即为本题的答案。
答案:∵水在空中划出的曲线是抛物线y=-x2+4x,∴喷水的最大高度,就是水在空中划出的抛物线y=-x2+4x的顶点坐标的纵坐标,∴y=-x2+4x=-(x-2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故答案为4。
二次函数实际应用【命题趋势】在中考中.二次函数的实际应用是中考必考考点.常以解答题形式考查.往往会结合方程(组)与一次函数考查。
【中考考查重点】一、二次函数的实际应用-运动类型二、二次函数的实际应用-经济类型三、二次函数的实际应用-面积类型四、二次函数的实际应用-拱桥类型考点一:运动类型考向1 落地模型1.(2021秋•松江区期末)一位运动员投掷铅球.如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+.那么铅球运动过程中最高点离地面的距离为米.【答案】3【解答】解:由题意可得:y=﹣=﹣(x2﹣8x)+=﹣(x﹣4)2+3.故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.考向2 最值模型2.(2021秋•信阳期中)烟花厂为建党成立100周年特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+8t.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣=﹣=6.∴从点火升空到引爆需要的时间为6s.故选:D.3.(2021秋•越秀区期末)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2.则飞机停下前最后10秒滑行的距离是米.【答案】15【解答】解:∵s=60t﹣1.5t2=﹣(t﹣20)2+600.﹣<0.抛物线开口向下.∴当t=20时.s有最大值.此时s=600.∴飞机从落地到停下来共需20秒.飞机前10秒滑行的距离为:s1=60×10﹣1.5×102=585(米).∴飞机停下前最后10秒滑行的距离为:600﹣585=15(米).故答案为:15.考点二:经济类型4.(2021秋•克东县期末)某水果商场经销一种高档水果.原价每千克50元.连续两次降价后每千克32元.若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元.每天可售出500千克.经市场调查发现.在进货价不变的情况下商场决定采取适当的涨价措施.若每千克涨价1元.日销售量将减少20千克.现该商场要保证每天盈利6000元.且要尽快减少库存.那么每千克应涨价多少元?(3)若使商场每天的盈利达到最大值.则应涨价多少元?此时每天的最大盈利是多少?【答案】(1)20% (2)涨价5元(3)涨价7.5元.6125元【解答】解:(1)设每次下降的百分率为a.根据题意.得:50(1﹣a)2=32.解得:a=1.8(舍)或a=0.2.答:每次下降的百分率为20%;(2)设每千克应涨价x元.由题意.得:(10+x)(500﹣20x)=6000.整理.得x2﹣15x+50=0.解得:x1=5.x2=10.因为要尽快减少库存.所以x=5符合题意.答:该商场要保证每天盈利6000元.那么每千克应涨价5元;(3)设商场每天的盈利为y元.由(2)可知:y=(10+x)(500﹣20x)=﹣20x2+300x+5000.∵﹣20<0.∴当x=﹣=7.5时.y取最大值.∴当x=7.5时.y最大值=(10+7.5)×(500﹣20×7.5)=6125(元).答:应涨价7.5元.每天的盈利达到最大值.为6125元.5.(2021秋•郧西县期末)根据对某市相关的市场物价调研.预计进入夏季后的某一段时间.某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示.乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1.y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨.设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大.最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在什么范围内合适?【答案】(1)y1=0.6x .y2=﹣0.2x2+2.2x(2)2≤t≤6【解答】解:(1)由题意得:5k=3.解得k=0.6.∴y1=0.6x;由.解得:.∴y2=﹣0.2x2+2.2x;(2)①W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.当t=4时.W有最大值9.2.答:甲种蔬菜进货量为6吨.乙种蔬菜进货量为4吨时.获得的销售利润之和最大.最大利润是9200元;②当W=8.4=﹣0.2(t﹣4)2+9.2.∴t1=2.t2=6.∵a=﹣2<0.∴当2≤t≤6时.W≥8.4.答:为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在2≤t≤6范围内合适.考点三:面积类型6.(2021秋•西湖区校级期中)在校园嘉年华中.九年级同学将对一块长20m.宽10m的场地进行布置.设计方案如图所示.阴影区域为绿化区(四块全等的矩形).空白区域为活动区.且4个出口宽度相同.其宽度不小于4m.不大于8m.设出口长均为x(m).活动区面积为y(m2).(1)求y关于x的函数表达式;(2)当x取多少时.活动区面积最大?最大面积是多少?(3)若活动区布置成本为10元/m2.绿化区布置成本为8元/m2.布置场地的预算不超过1850元.当x为整数时.请求出符合预算且使活动区面积最大的x值及此时的布置成本.【答案】(1)y=﹣x2+30x(4≤x≤8)(2)x取8m时.最大面积是176m2(3)x=5时.活动区面积最大.此时的布置成本为1850元【解答】解:(1)根据题意得:y=20×10﹣4××=200﹣(20﹣x)(10﹣x)=200﹣200+30x﹣x2=﹣x2+30x.∴y与x的函数关系式为y=﹣x2+30x(4≤x≤8);(2)由(1)知:y=﹣x2+30x=﹣(x﹣15)2+225.∵﹣1<0.∵当x<15时.y随x的增大而增大.∵4≤x≤8.∴当x=8时.y有最大值.最大值为176.∴当x取8m时.活动区面积最大.最大面积是176m2;(3)设布置场地所用费用为w元.则w=10(﹣x2+30x)+8[200﹣(﹣x2+30x)]=﹣10x2+300x+1600+8x2﹣240x=﹣2x2+60x+1600.令w=1850.﹣2x2+60x+1600=1850.解得:x=25或x=5.∵4≤x≤8.∴4≤x≤5.∵活动区域面积为y=﹣x2+30x.﹣1<0.对称轴为直线x=15.∴当x=5时.活动区面积最大.此时的布置成本为1850元.考点三:拱桥类型7.(2021秋•建华区期末)如图(1)是一个横断面为抛物线形状的拱桥.水面在l时.拱顶(拱桥洞的最高点)离水面3米.水面宽4米.如果按图(2)建立平面直角坐标系.那么抛物线的解析式是.【答案】【解答】解:设出抛物线方程y=ax2(a≠0).由图象可知该图象经过(﹣2.﹣3)点.故﹣3=4a.a=﹣.故y=﹣x2.故答案为.8.(2021秋•绿园区期末)一座石拱桥的桥拱是近似的抛物线形.建立如图所示的平面直角坐标系.其函数关系为.当水面的宽度AB为16米时.水面离桥拱顶的高度OC为m.【答案】4【解答】解:∵水面的宽度AB为16米∴B的横坐标为8.把x=8代入y=﹣x2.得y=﹣4.∴B(8.﹣4).∴OC=4m.水面离桥拱顶的高度OC为4m.故答案为:4.9.(2021秋•营口期末)如图①.桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).【答案】(1)y=﹣x2+2x(0≤x≤8)(2)不会碰到头【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵小船距O点0.4m.小船宽1.2m.工人直立在小船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将=1代入y=﹣x2+2x.解得:y==1.75∵1.75m>1.68m.∴此时工人不会碰到头.1.(2021秋•房山区期末)从地面竖直向上抛出一小球.小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是s时.小球最高;小球运动中的最大高度是m.【答案】3.45.【解答】解:h=30t﹣5t2=﹣5(t﹣3)2+45.∵﹣5<0.0≤t≤6.∴当t=3时.h有最大值.最大值为45.故答案为:3.45.2.(2021秋•龙凤区期末)飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t﹣0.5t2.飞机着陆后滑行m才能停下来.【答案】200【解答】解:s=20t﹣0.5t2=﹣0.5(t﹣20)2+200当t=20时.s有最大值为200.即飞机着陆后滑行200m才能停下来.故答案为200.3.(2021秋•黔西南州期末)中国贵州省省内的射电望远镜(F AST)是目前世界上口径最大.精度最高的望远镜.根据有关资料显示.该望远镜的轴截面呈抛物线状.口径AB 为500米.最低点P到口径面AB的距离是100米.若按如图(2)所示建立平面直角坐标系.则抛物线的解析式是.【答案】y=x2﹣100【解答】解:由题意可得:A(﹣250.0).P(0.﹣100).设抛物线解析式为:y=ax2﹣100.则0=62500a﹣100.解得:a=.故抛物线解析式为:y=x2﹣100.故答案为:y=x2﹣100.4.(2021秋•和平区期末)如图.小明父亲想用长为100m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m.设矩形ABCD的边AB=xm.面积为Sm2.(1)请直接写出S与x之间的函数表达式为.并直接写出x的取值范围是;(2)求当x为多少m时.面积S为1050m2;(3)当AB.BC分别为多少米时.羊圈的面积最大?最大面积是多少?【答案】(1)S=﹣2x2+100x.30≤x<50 (2)x为35m时.面积S为1050m2(3)AB=30m.BC=40m时.面积S有最大值为1200m2【解答】解:(1)∵AB=CD=xm.则BC=(100﹣2x)m.∴S=x(100﹣2x)=﹣2x2+100x.∵0<100﹣2x≤40.∴30≤x<50.∴S与x之间的函数表达式为S=﹣2x2+100x.自变量x的取值范围是30≤x<50.故答案安为:S=﹣2x2+100x.30≤x<50;(2)令S=1050.则﹣2x2+100x=1050.解得:x1=15.x2=35.∵30≤x<50.∴x=35.∴当x为35m时.面积S为1050m2;(3)∵S=﹣2(x2﹣50x+625﹣625)=﹣2(x﹣25)2+1250.∵﹣2<0.∴当x>25时.S随着x的增大而减小.∵30≤x<50.∴当x=30时.S有最大值为1200.∴当AB=30m.BC=40m时.面积S有最大值为1200m2.5.(2021秋•龙江县校级期末)某超市销售一种商品.每件成本为50元.销售人员经调查发现.销售单价为100元时.每月的销售量为50件.而销售单价每降低2元.则每月可多售出10件.且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元.并使顾客获得更多的实惠.销售单价应定为多少元?(3)为了每月所获利润最大.该商品销售单价应定为多少元?【答案】(1) y=﹣5x+550 (2)70元(3)80元【解答】解:(1)依题意得:y=50+(100﹣x)××10=﹣5x+550.∴y与x的函数关系式为y=﹣5x+550;(2)依题意得:y(x﹣50)=4000.即(﹣5x+550)(x﹣50)=4000.解得:x1=70.x2=90.∵70<90.∴当该商品每月销售利润为4000.为使顾客获得更多实惠.销售单价应定为70元;(3)设每月总利润为w元.依题意得w=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500.∵﹣5<0.此图象开口向下.∴当x=80时.w有最大值为4500元.∴为了每月所获利润最大.该商品销售单价应定为80元.6.(2021秋•宽城区期末)某商场以每件20元的价格购进一种商品.经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系.其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价.又不高于36元.当每件商品的售价定为多少元时.每天销售利润最大?最大利润是多少?【答案】(1)y=﹣2x+120 (2)w=﹣2x2+160x﹣2400(3)售价定为36元时.每天销售利润最大.最大利润是768元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知:.解得.故y与x的函数关系式为y=﹣2x+120;(2)∵y=﹣2x+120.∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400.即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;(3)w=﹣2x2+160x﹣2400=﹣2(x﹣40)2+800.∵﹣2<0.20≤x≤36<40.∴当x=36时.w取得最大值.w最大=﹣2×(36﹣40)2+800=768.答:当每件商品的售价定为36元时.每天销售利润最大.最大利润是768元.1.(2020•长沙)“闻起来臭.吃起来香”的臭豆腐是长沙特色小吃.臭豆腐虽小.但制作流程却比较复杂.其中在进行加工煎炸臭豆腐时.我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下.“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0.a.b.c是常数).如图记录了三次实验的数据.根据上述函数关系和实验数据.可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟【答案】C【解答】解:将图象中的三个点(3.0.8)、(4.0.9)、(5.0.6)代入函数关系P=at2+bt+c 中..解得.所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9.由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=﹣=﹣=3.75.则当t=3.75分钟时.可以得到最佳时间.故选:C.2.(2021•黔西南州)小华酷爱足球运动.一次训练时.他将足球从地面向上踢出.足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t.则足球距地面的最大高度是m.【答案】7.2【解答】解:∵h=﹣5t2+12t.a=﹣5.b=12.c=0.∴足球距地面的最大高度是:=7.2m.故答案为:7.2.3.(2020•日照)如图.某小区有一块靠墙(墙的长度不限)的矩形空地ABCD.为美化环境.用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆.篱笆的厚度不计).(1)若四块矩形花圃的面积相等.求证:AE=3BE;(2)在(1)的条件下.设BC的长度为xm.矩形区域ABCD的面积为ym2.求y与x之间的函数关系式.并写出自变量x的取值范围.【答案】(1)AE=3BE(2)(0<x<)【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等.∴ME=BE.AM=GH.∵四块矩形花圃的面积相等.即S矩形AMND=2S矩形MEFN.∴AM=2ME.∴AE=3BE;(2)∵篱笆总长为100m.∴2AB+GH+3BC=100.即.∴.设BC的长度为xm.矩形区域ABCD的面积为ym2.则.∵.∴BE=10﹣x>0.解得x<.∴(0<x<).4.(2020•呼伦贝尔)某商店销售一种销售成本为每件40元的玩具.若按每件50元销售.一个月可售出500件.销售价每涨1元.月销量就减少10件.设销售价为每件x元(x ≥50).月销量为y件.月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下.使月销售利润达到8000元.销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.【答案】(1)y= ﹣10x2+1400x﹣40000 (2)8元(3)70元时会获得最大利润9000【解答】解:(1)由题意得:y=500﹣10(x﹣50)=1000﹣10x.w=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000;(2)由题意得:﹣10x2+1400x﹣40000=8000.解得:x1=60.x2=80.当x=60时.成本=40×[500﹣10(60﹣50)]=16000>10000不符合要求.舍去.当x=80时.成本=40×[500﹣10(80﹣50)]=8000<10000符合要求.∴销售价应定为每件80元;(3)∵w=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.又∵﹣10<0.当x=70时.w取最大值9000.故销售价定为每件70元时会获得最大利润9000元.5.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①.甲秀楼的桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).(3)如图③.桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0).该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度.平移后的函数图象在8≤x≤9时.y的值随x值的增大而减小.结合函数图象.求m的取值范围.【答案】(1)y=﹣x2+2x(0≤x≤8)(2)工人不会碰到头(3)5≤m≤8【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵打捞船距O点0.4m.打捞船宽1.2m.工人直立在打捞船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将x=1代入y=﹣x2+2x.解得:y==1.75.∵1.75m>1.68m.∴此时工人不会碰到头;(3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.如图所示.新函数图象的对称轴也是直线x=4.此时.当0≤x≤4或x≥8时.y的值随x值的增大而减小.将新函数图象向右平移m个单位长度.可得平移后的函数图象.如图所示.∵平移不改变图形形状和大小.∴平移后函数图象的对称轴是直线x=4+m.∴当m≤x≤4+m或x≥8+m时.y的值随x值的增大而减小.∴当8≤x≤9时.y的值随x值的增大而减小.结合函数图象.得m的取值范围是:①m≤8且4+m≥9.得5≤m≤8.②8+m≤8.得m≤0.由题意知m>0.∴m≤0不符合题意.舍去.综上所述.m的取值范围是5≤m≤8.1.(2021•晋中模拟)在中考体育训练期间.小宇对自己某次实心球训练的录像进行分析.发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=﹣x2+x+.由此可知小宇此次实心球训练的成绩为()A.米B.8米C.10米D.2米【答案】B【解答】解:当y=0时.即y=﹣x2+x+=0.解得:x1=﹣2(舍去).x2=8.所以小宇此次实心球训练的成绩为8米.故选:B.2.(2021•温州模拟)烟花厂为成都春节特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣==6(s).故选:D.3.(2021秋•岳池县期末)赵州桥的桥拱横截面是近似的抛物线形.其示意图如图所示.其解析式为y=﹣x2.当水面离桥拱顶的高度DO为4m时.水面宽度AB为m.【答案】20【解答】解:由题意得.﹣4=﹣x2.解得x=±10.即点A的坐标为(﹣10.﹣4).点B的坐标为(10.﹣4).这时水面宽度AB为20m.故答案为:20.4.(2021秋•朝阳区期末)一名运动员在平地上推铅球.铅球出手时离地面的高度为米.出手后铅球离地面的高度y(米)与水平距离x(米)之间的函数关系式为.当铅球离地面的高度最大时.与出手点水平距离为5米.则该运动员推铅球的成绩为米.【答案】12【解答】解:设铅球出手点为点A.根据题意建立平面直角坐标系.如图:∵当铅球离地面的高度最大时.与出手点水平距离为5米.∴抛物线的对称轴为直线x=5.∴﹣=﹣==5.则b=.又∵抛物线经过(0.).∴c=.∴y=﹣x2+x+.当y=0时.﹣x2+x+=0.整理得:x2﹣10x﹣24=0.解得:x1=﹣2(舍去).x2=12.故答案安为:12.5.(2021•连云港模拟)汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t.汽车从刹车到停下来所用时间是秒.【答案】【解答】解:∵s=﹣3t2+8t.=﹣3(t﹣)2+.∴当t=秒时.s取得最大值.即汽车停下来.故答案为:.6.(2021•金堂县模拟)如图.有长为24m的篱笆.一面利用墙(墙的最大可用长度为11m)围成中间隔有一道篱笆的矩形花圃.并且预留两个各1m的门.设花圃的宽AB为xm.面积为Sm2.(1)请用含x的代数式表示BC并求S与x的函数关系式;(2)若4<x<7.则S的最大值是多少?请说明理由.【答案】(1)S=﹣3x2+26x(5≤x<)(2)55m2【解答】解:(1)由题可知.花圃的宽AB为x米.则BC为(24﹣3x+2)米=(26﹣3x)米.则S=x(26﹣3x)=﹣3x2+26x.∵BC=26﹣3x≤11.3x<24+2.∴5≤x.∴S=﹣3x2+26x(5≤x<);(2))解不等式组.解得:5≤x<7.∵S=﹣3x2+26x=﹣3(x﹣)2+.∵﹣3<0.∴x>时.S随x的增大而减小.∴x=5时.S的最大值=﹣3×52+26×5=55m2.7.(2021•盐城二模)疫情期间.某销售商在网上销售A、B两种型号的电脑“手写板”.其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400600200B型8001200400根据市场行情.该销售商对A型手写板降价销售.同时对B型手写板提高售价.此时发现A型手写板每降低5元就可多卖1个.B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变.设其中A型手写板每天多销售x个.每天获得的总利润为y元.(1)求y与x之间的函数关系式.并直接写出x的取值范围;(2)要使每天的利润不低于212000元.求出x的取值范围;(3)该销售商决定每销售一个B型手写板.就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生.若当30≤x≤40时.每天的最大利润为203400元.求a的值.【答案】(1)y=﹣10x2+800x+200000.(0≤x≤40且x为整数)(2)20≤x≤40 (3)a=35【解答】解:(1)由题意得.y=(600﹣400﹣5x)(200+x)+(1200﹣800+5x)(400﹣x)=﹣10x2+800x+200000.(0≤x≤40且x为整数).即y与x之间的函数关系式是y=﹣10x2+800x+200000.(0≤x≤40且x为整数);(2)∵y=﹣10x2+800x+200000=﹣10(x﹣40)2+216000.∴当y=212000时.﹣10(x﹣40)2+216000=212000.解得:x1=20.x2=60.要使y≥212000.则20≤x≤60.∵0≤x≤40.∴20≤x≤40.即x的取值范围是:20≤x≤40;(3)设捐款后每天的利润为w元.则w=﹣10x2+800x+200000﹣(400﹣x)a=﹣10x2+(800+a)x+200000﹣400a.对称轴为.∵0<a≤100.∴.∵抛物线开口向下.当30≤x≤40时.w随x的增大而增大.∴当x=40时.w最大.∴﹣10×402+40(800+a)+200000﹣400a=203400.解得.a=35.8.(2021•即墨区一模)即墨古城某城门横断面分为两部分.上半部分为抛物线形状.下半部分为正方形(OMNE为正方形).已知城门宽度为4米.最高处离地面6米.如图1所示.现以O点为原点.OM所在的直线为x轴.OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式.并写出其自变量的取值范围;(2)有一辆宽3米.高4.5米的消防车需要通过该城门进入古城.请问该消防车能否正常进入?(3)为营造节日气氛.需要临时搭建一个矩形“装饰门”ABCD.该“装饰门”关于抛物线对称轴对称.如图2所示.其中AB.AD.CD为三根承重钢支架.A、D在抛物线上.B.C 在地面上.已知钢支架每米50元.问搭建这样一个矩形“装饰门”.仅钢支架一项.最多需要花费多少元?【答案】(1)(0≤x≤4)(2)消防车能正常进入(3)650元【解答】解:(1)由题意知.抛物线的顶点为(2.6).∴设抛物线的表达式为y=a(x﹣2)2+6.又∵抛物线经过点E(0.4).∴4=4a+6.∴a=.∴抛物线的表达式为.即(0≤x≤4);(2)由题意知.当消防车走最中间时.进入的可能性最大.即当x=时.=4.875>4.5.∴消防车能正常进入;(3)设B点的横坐标为m.AB+AD+CD的长度为L.由题意知BC=4﹣2m.即AD=4﹣2m.CD=AB=.∴L=2×()+(4﹣2m)=﹣m2+2m+12.∵0≤x≤4.当m==1时.L最大.L最大=﹣12+2×1+12=13.∴费用为13×50=650(元).答:仅钢支架一项.最多需要花费650元.9.(2021•路南区一模)某园林专业户计划投资种植树木及花卉.根据市场调查与预测.图1是种植树木的利润y与投资量x成正比例关系.图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1、l2.求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉.其中投入x(x>0)万元种植花卉.那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上.该园林专业户应怎样投资?【答案】(1)y=x2(x≥0)(2)18万元(3)该园林专业户应投资花卉种植超过4万元【解答】解:(1)设l1:y=kx.∵函数y=kx的图象过(1.2).∴2=k⋅1.k=2.故l1中y与x的函数关系式是y=2x(x≥0).∵该抛物线的顶点是原点.∴设l2:y=ax2.由图2.函数y=ax2的图象过(2.2).∴2=a⋅22.解得:a=.故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉.则投入(10﹣x)万元种植树木..∵a=>0.0<x≤10.∴当x=2时.w的最小值是18.他至少获得18万元的利润.(3)根据题意.当w=20时..解得:x=0(不合题意舍).x=4.∴至少获得20万元利润.则x=4.∵在2≤x≤10的范图内w随x的增大而增大.∴w>20.只需要x>4.所以保证获利在20万元以上.该园林专业户应投资花卉种植超过4万元.。
二次函数实际应用类型一销售问题1. 鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)求销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?解:(1)∵当售价为80元/个时,每周可卖出160个,售价每降低2元,每周可多卖出20个,∴y=x2·20+160=10x+160;(2)根据题意得:W=(80-50-x)(10x+160)=-10x2+140x+4800,化为顶点式得W=-10(x-7)2+5290,∵x为偶数,∴当x为6或8元,即定价为80-6=74或80-8=72元时,利润最大,最大利润为5280元;(3)若要利润不低于5200元,则当利润为5200元时,代入(2)中的函数关系式得-10(x-7)2+5290=5200,解得x1=10,x2=4,∵y=10x+160,10>0,∴y随x的增大而增大,∴销量y的最小值为y最小=4×10+160=200,所需资金为200×50=10000(元).答:他至少要准备10000元进货成本.2. 一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元.在销售过程中发现销售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为每千克多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?解:(1)设y 与x 的函数关系式为y =kx +b (k ≠0),根据题意得⎩⎪⎨⎪⎧50k +b =10060k +b =90,解得⎩⎪⎨⎪⎧k =-1b =150,故y 与x 的函数关系式为y =-x +150; (2)根据题意得(-x +150)(x -20)=4000, 解得x 1=70,x 2=100>90(不合题意,舍去),故该批发商若想获得4000元的利润,应将售价定为每千克70元; (3)w 与x 的函数关系式为: w =(-x +150)(x -20) =-x 2+170x -3000 =-(x -85)2+4225, ∵-1<0,且20≤x ≤90,∴当x =85时,利润最大,利润最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w (元)最大,此时的最大利润为4225元.3. 某公司开发出一种高科技电子节能产品,投资2500万一次性购买整套生产设备,此外生产每件产品需成本20元,每年还需投入500万广告费,该商品的年销售量y (万件)与售价x (元/件)之间的函数关系如图所示:第3题图(1)求y 与x 之间的函数关系式,并写出x 的取值范围;(2)若该公司第一年即可盈利,那么该商品的售价应为多少时,第一年盈利最大,此时最大利润是多少?(3)在(2)的前提下,即在第一年盈利最大时,第二年公司重新确定产品定价,能否使两年共盈利3500万元?若能,求第二年产品售价;若不能,说明理由.解:(1)设y 关于x 的函数关系式为y =kx +b , 将点(30,120),(70,80)代入,得⎩⎪⎨⎪⎧30k +b =12070k +b =80, 解得⎩⎪⎨⎪⎧k =-1b =150,∴y 关于x 的函数关系式为y =-x +150(30≤x ≤70); (2)设盈利w 万元,根据题意得 w =(x -20)(-x +150)-2500-500 =-(x -85)2+1225, ∵30≤x ≤70,∴当售价为70元/件时,第一年盈利最大,最大盈利为1000万元; (3)能.根据题意得第二年的投入费用为每件20元的生产成本及500万元的广告费, 根据题意有(x -20)(-x +150)-500=3500-1000, 整理得x 2-170x +6000=0, 解得x =50或x =120(舍去). 故第二年产品售价为50元.类型二 抛物线型4. 把一个足球垂直于水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米),适用公式h =20t -5t 2(0≤t ≤4).(1)当t =3时,求足球距离地面的高度; (2)当足球距离地面的高度为10米时,求t 的值;(3)若存在实数t 1和t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.解:(1)当t =3时,h =20t -5t 2=20×3-5×9=15(米),∴此时足球距离地面的高度为15米; (2)∵h =10,∴20t -5t 2=10,即t 2-4t +2=0,解得t =2+2或t =2-2,∴经过2+2或2-2秒时,足球距离地面的高度为10米;(3)∵m ≥0,由题意得t 1和t 2是方程20t -5t 2=m 的两个不相等的实数根,移项得5t 2-20t +m =0, ∴b 2-4ac =(-20)2-20m >0, ∴m <20,∴m 的取值范围是0≤m <20.5. 如图,杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-13x 2+2x +4的一部分.第5题图(1)求演员弹跳离地面的最大高度;(2)已知在一次表演中,人梯高BC =4米,人梯到起跳点A 的水平距离是6米,问这次表演是否成功?请说明理由.解:(1)将二次函数y =-13x 2+2x +4化成y =-13(x -3)2+7,∴当x =3时,y 有最大值,y 最大=7, 答:演员弹跳离地面的最大高度是7米; (2)能成功表演.理由是:当x =6时,y =-13×62+2×6+4=4.即点B (6,4)在抛物线y =-13x 2+2x +4上,因此,表演能成功.6. 为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光.如图,已知排球场的长度OD 为18米,位于球场中线处球网的高度AB 为2.43米,一队员站在点O 处发球,排球从点O 的正上方1.8米的C 点向正前方飞出,当排球运行至离点O 的水平距离OE 为7米时,到达最高点G ,建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y (单位:米)与水平距离x (单位:米)的函数关系式;(不要求写自变量x 的取值范围)(2)在(1)的条件下,对方距球网0.5米的点F 处有一队员,她起跳 后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明; (3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h 的取值范围是多少?(排球压线属于没出界)第6题图解:(1)依题可知,排球飞行轨迹线顶点为G (7,3.2)且过C (0,1.8).设排球运动轨迹方程为y =a (x -7)2+3.2, 则1.8=a (0-7)2+3.2, 解得a =-135,∴所求函数关系式为y =-135(x -7)2+3.2,即y =-135x 2+25x +95;(2)把x =(18÷2+0.5)=9.5,代入y =-135x 2+25x +95得,y ≈3.0<3.1.∴她可以成功拦住;(3)设排球飞行的高度y 与水平距离x 的函数关系式为:y =a (x -7)2+h , 当排球正好过网时,将点B (9,2.43)和C (0,1.8)代入解析式得:⎩⎪⎨⎪⎧a (9-7)2+h =2.43a (0-7)2+h =1.8,解得⎩⎪⎨⎪⎧a =-0.014h =2.486, 此时二次函数解析式为y =-0.014(x -7)2+2.486, 则球要过网时,h ≥2.486;当排球不出边界时,将点C (0,1.8)和D (18,0)代入解析式得:⎩⎪⎨⎪⎧a (18-7)2+h =0a (0-7)2+h =1.8,解得⎩⎪⎨⎪⎧a =-0.025h =3.025.此时二次函数解析式为y =-0.025(x -7)2+3.025. 球不出边界时,h ≥3.025.综上所述,若球既要过球网,又不出边界,排球飞行的最大高度h 的取值范围是h ≥3.025.类型三 面积问题7. 如图,在一个矩形空地ABCD 上修建一个矩形花坛AMPQ ,要求点M 在AB 上,点Q 在AD 上,点P 在对角线BD 上.若AB =6 米,AD =4 米,设AM 的长为x 米,矩形AMPQ 的面积为S 平方米.(1)求S 与x 的函数关系式;(2)当x 为何值时,S 有最大值?请求出最大值.第7题图解:(1)∵四边形AMPQ 是矩形,∴PQ =AM =x . ∵PQ ∥AB ,∴△PQD ∽△BAD ,∴DQ DA =PQBA ,∵AB =6,AD =4,∴DQ =23x ,∴AQ =4-23x ,∴S =AQ ·AM =(4-23x )x =-23x 2+4x (0<x <6);(2)S =-23x 2+4x =-23(x -3)2+6.∵-23<0,∴S 有最大值,当x =3时,S 有最大值为6.答:当AM 的长为3米时,矩形AMPQ 的面积最大,最大面积为6平方米.8. 某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.第8题图解:(1)由题意知,苗圃园与墙平行的一边长为(30-2x )米,可列方程 x (30-2x )=72,即x 2-15x +36=0. 解得x 1=3,x 2=12. ∵30-2x ≤18,即x ≥6, ∴x =3舍去,故x =12;(2)依题意得8≤30-2x ≤18,解得6≤x ≤11. 面积S =x (30-2x )=-2(x -152)2+2252(6≤x ≤11).①当x =152时,S 有最大值,S 最大=2252;②当x =11时,S 有最小值,S 最小=11×(30-22)=88; (3)x 的取值范围是6≤x ≤10. 【解法提示】由(1)知,x ≥6, 由题意得x (30-2x )≥100, 即-x 2+15x -50≥0, 解得5≤x ≤10, 又∵x ≥6,∴x 的取值范围是6≤x ≤10.9. 如图,四边形ABCD 是边长为60 cm 的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A 、B 、C 、D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒.(1)若折叠后长方体底面正方形的面积为1250 cm 2,求长方体包装盒的高;(2)设剪掉的等腰直角三角形的直角边长为x (cm),长方体的侧面积为S (cm 2),求S 与x 的函数关系式,并求x 为何值时,S 的值最大.第9题图解:(1)设剪掉阴影部分的每个等腰直角三角形的腰长为x cm ,由题意得:(60-2x2×2)2=1250.解得x 1=52,x 2=552(舍去), 答:长方体包装盒的高为5 2 cm ;【一题多解】如解图,由已知得底面正方形的边长为1250=25 2 cm , ∴AN =252×22=25, ∴PN =60-25×2=10, ∴PQ =10×22=5 2 cm. 答:长方体包装盒的高为5 2 cm.第9题解图(2)由题意得,S =4×2×60-2x2×x =-4x 2+1202x . ∵a =-4<0,∴当x =-12022×(-4)=15 2 时,S 有最大值.类型四 其他问题10. 青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?解:(1)设该酒店有豪华间a间,则:40000 a=24000a-10(1+13),解得a=50,经检验a=50既是原分式方程的解,也符合题意,∴旺季每间价格为:40000÷50=800(元).答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间上涨x元,日总收入为w元,则:w=(x+800)(50-x25)=-125x2+18x+40000=-125(x-225)2+42025,答:当每间价格上涨225元时,日总收入最高,最高总收入为42025元.11. 某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x-h)2+k,二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为-16、20.(1)试确定函数关系式y=a(x-h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?第11题图解:(1)根据题意可设:y=a(x-4)2-16,当x=10时,y=20,∴a(10-4)2-16=20,解得a=1,∴所求函数关系式为:y=(x-4)2-16;(2)当x=9时,y=(9-4)2-16=9,∴前9个月公司累计获得的利润为9万元.又∵当x=10时,y=20,而20-9=11,∴10月份一个月内所获得的利润为11万元;(3)设在前12个月中,第n个月该公司一个月内所获得的利润为s(万元),则有:s=(n-4)2-16-[(n-1-4)2-16]=2n-9,∵s是关于n的一次函数,且2>0,∴s随着n的增大而增大,而n的最大值为12,∴当n=12时,s=15,∴第12个月该公司一个月内所获得的利润最多,最多利润是15万元.12. 国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款36000元用来代理品牌服装的销售.已知该品牌服装进价每件40元,日销售量y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天82元,每天应支付其他费用106元.(1)求日销售y(件)与销售价x (元/件)之间的函数关系式;(2)若暂不考虑还贷,当某天的销售价为48元/件时,收支恰好平衡(收入=支出),求该店员工人数;(3)若该店只有2名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?第12题图解:(1)当40≤x≤58时,设y与x的函数关系式为y=k1x+b1,由图象经过(40,60)、(58,24)两点可得:⎩⎪⎨⎪⎧60=40k 1+b 124=58k 1+b 1,解得⎩⎪⎨⎪⎧k 1=-2b 1=140. ∴y =-2x +140;当58<x ≤71时,设y 与x 的函数关系式为y =k 2x +b 2,由图象经过(58,24)、(71,11)两点,可得: ⎩⎪⎨⎪⎧24=58k 2+b 211=71k 2+b 2,解得⎩⎪⎨⎪⎧k 2=-1b 2=82. ∴y =-x +82.综上所述:y =⎩⎪⎨⎪⎧-2x +140 (40≤x ≤58)-x +82 (58<x ≤71); (2)设人数为a ,当x =48时,y =-2×48+140=44,则(48-40)×44=106+82a ,解得:a =3.答:该店员工人数为3人;(3)设每日的收入为W 元,当40≤x ≤58时,W =(x -40)(-2x +140)=-2(x -55)2+450,∴当x =55时,W 取得最大值450;当58<x ≤71时,W =(x -40)(-x +82)=-(x -61)2+441,∴当x =61时,W 取得最大值441.综上可知,当x =55时,W 取得最大值450.设需要b 天,该店还清贷款,则:(450-106-82×2)b ≥36000,解得b ≥200.答:该店至少需要200天才能还清贷款,此时,每件服装的价格应定为55元.。
第16课时 二次函数应用
一、选择题
1. 已知h 关于t 的函数关系式212
h gt =( g 为正常数,t 为时间)如图,则 函数图象为 ( )
t
A . B
. C . D .
2.如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这
个窗户的最大透光面积是( )
A .
2564m 2 B .34m 2 C .38m 2 D .4m 2
3.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-
+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是( )
A.4.6m
B. 4.5m
C.4m
D.3.5m
二、填空题
4.二次函数y=12
x 2+x-1,当x=______时,y 有最_____值,这个值是____. 5.(2008年庆阳)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在
第5题图 第2题图 第3题图 第8题图
一个二次函数的图像上(如图所示),则6楼房子的价格为 元/平方米.
6.用一根120cm 长的铁丝围成一个矩形,矩形的最大面积为 ;若将其分成两部分,每一部分弯曲成一个正方形,那么两个正方形的面积和最小为 .
7. 用长20cm 的篱笆,一面靠墙围成一个长方形的园子,当园子宽为 ,园子有最大面积是 .
8.某菜农搭建一个横截面为抛物线的大棚,有关尺寸如上图所示,若菜农身高
为1.6m ,则他在不弯腰的情况下在大棚内活动的范围是 米.
三、解答题
9.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
10.(2008安徽)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成点)的路线是抛物线23315y x x =-++的一部分,如图.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高 3.4BC =米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.
第10题图
A B C
11.(2008兰州)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;
(2)求支柱EF的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.
x
图1。