Stiffness matrices for layered soils
- 格式:pdf
- 大小:841.83 KB
- 文档页数:19
基于分形维度的林业遥感图像树种分类识别
周晨;刘磊
【期刊名称】《计算机仿真》
【年(卷),期】2022(39)2
【摘要】传统的树种分类识别方法未进行最大池化操作,导致树种分类识别精度差。
现引入分形维度进行林业遥感图像树种分类识别。
通过ROI区域截取获取遥感树
种图像,利用直方图均衡化方法进行原始图像预处理,以便获得高质量与清晰度的林
业遥感图像;通过分形维度理论分析提取的林业遥感图像纹理特征,完成卷积神经网
络模型的优化构建;将林业遥感图像纹理特征输入卷积层,经卷积层的卷积操作并计
算特征数据,池化池通过最大池化操作卷积层输出的数据;通过Relu激活函数对林
业遥感图像树种纹理特征进行深度分析,利用Softmax分类器实现树种分类识别。
实验结果表明,上述方法预处理后的遥感图像质量高,且林业遥感图像树种分类识别
的效率高,分类识别的时间低至35.7ms,分类识别的准确率高达95.62%。
【总页数】5页(P212-216)
【作者】周晨;刘磊
【作者单位】西安科技大学测绘科学与技术学院;电子科技大学成都学院
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于特征的模糊神经网络遥感图像目标分类识别
2.基于高阶神经网络的遥感图像分类识别研究
3.基于光学遥感图像的目标检测与分类识别方法
4.基于光学遥感图像的目标检测与分类识别方法
5.基于高光谱遥感图像的树种(树种组)分类
因版权原因,仅展示原文概要,查看原文内容请购买。
An Empirical Soil Loss EquationLiu Baoyuan, Zhang Keli and Xie YunDepartment of Resources and Environmental Sciences, Beijing Normal University, Key Laboratory of Environmental Change and Natural Disaster, the Ministry of Education of China,Beijing 100875, PR ChinaAbstract: A model was developed for estimating average annual soil loss by water on hillslope for cropland, which is called Chines Soil Loss Equation (CSLE). Six factors causing soil loss were evaluated based on soil loss data collected from experiment stations covering most regions of China and modified to the scale of Chinese unit plot defined. The model uses an empirical multiplicative equation, A=RKLSBET, for predicting interrill erosion from farmland under different soil conservation practices. Rainfall erosivity (R) was the product of rainfall amount and maximum intensity of 10min, and also was estimated by using daily rainfall data. The value of soil erodibility (K), the average soil loss of unit plot per rainfall erosivity, for 6 main soil types was calculated based on the data measured from unit plots and other data modified to the unit plot level. The method of calculating Kfrom soil survey data for regions without measured data was given. The slope length and steepness factors was calculated by using the equations in USLE if slope steepness is less than 11 degree, otherwise the steepness factor was evaluated by using a new seep slope equation based on the analysis of measured soil loss data from steep slope plots within China.According to the soil and water conservation practices in China, the values of bio-control, engineering-control, and tillage factors were estimated.Keywords: Chines soil loss equation, soil loss, unit plot1 IntroductionSoil loss equation is to predict soil loss by using mathematical methods to evaluate factors causing soil erosion. It is an effective tool for assessing soil conservation measures and making land use plans. Universal soil loss equation is an empirical equation developed during 1950’s that had been applied for natural resources inventory successfully in the US and revised in 1990’s. From 1980’s the process-based models for prediction of soil loss have been studied though the world, such as WEPP (Water Erosion Predict Project, Nearing et al., 1989), GUEST (Griffith University Erosion System Template, Misra and Rose, 1996), EUROSEM (the European Soil Erosion Model Morgan etal., 1998) and LISEM (Limburg Soil Erosion Model, De Roo and Wesseling, 1996). There have been many studies on soil erosion models and related experiments since 1940's, but the models were limited in local levels and difficult to expand to broad regions due to data collected without universal standard. So far there is not any soil loss equations that could be applied through China with minor errors. The objective of this study is to develop a soil loss equation used within China based on measured data from Chinese unit plots and data from many plots modified to Chinese unit plot, which is called Chinese soil loss equation (CSLE).2 Model descriptionSoil loss is a process of soil particle detachment by raindrops and then transported by runoff from the rainfall. Many factors like soil physical characteristics slope features, land surface cover etc. will influence soil loss amount, but they have interactions. It is necessary to distinct their effects on soil loss mathematically and to evaluate them on the same scale in order to improve the accuracy of the model. Unit plot is such a good method to solve the problem. The normalized data covering the China by modified to unit plot supported the development of Chines soil loss equation. In addition,22 two features of soil erosion in China are distinctive and should be considered in the equation. One issoil erosion with steep slope, and the other is the systematical practices for soil conservation during thelong history of combating soil erosion, which could be classified as biological-control, engineering-control and tillage measures. So the Chinese soil loss equation was express as followsafter the analysis of data collected from most regions of ChinaA = RKSLBET (1)where A is annual average soil loss (t/ha), R is rainfall erosivity (MJ mm/(h ha y)), K is soilerosibility (t ha h/(ha MJ mm y)), S and L are dimensionless slope steepness and slope lengthfactors, B , E , and T are dimensionless factors of biological-control, engineering-control, and tillagepractices respectively. The dimensionless factors of slope and soil conservation measures were defined as the ratio of soil loss from unit plot to actual plot with aimed factor changed but the samesizes of other factors as unit plot. Chinese soil loss equation is to predict annual average soil lossfrom slope cropland under different soil conservation practices.To evaluated factors in the equation, about 1841 plot-year data were analyzed. Of these, 214plot-year data from 12 plots and 1143 rainfall events from 14 weather stations were used to evaluaterainfall erosivity. The Chinese unit plot was determined by analyzing 384 plot size data, and about200 plot-year data from 12 plots modified to unit plot were used to evaluate erodibility for 6 types ofsoil. About 30 plot-year data from steep plots modified to unit plot was used to establish the steepslope factor equation. Other plot data was used to calculate the values of biological-control, engineering-control and tillage factors.3 Factor calculations for the equation3.1 Rainfall erosivity (R )A threshold for erosive rainfall of 12mm was estimated, close to that suggested by Wischmeierand Smith (1978), 12.7mm. After comprehensive considering the accuracy of rainfall erosivity, thedata availability and calculation simplicity, the rainfall index of a rainfall event for Chinese soil losserosion was defined. It is the product of rainfall amount (P ) and its maximum 10-min intensity (I 10),and the relationship between PI 10 and the universal rainfall index EI 30 was also estimated as follows:EI300.1773PI 10 R 20.902 (2)where E is the total energy for a rainfall event (MJ/ha), I 30 and I 10 are the rainfall maximum 30min and10min intensities respectively (mm/hr), P is the rainfall amount (mm). The annual rainfall erosivityis the sum of PI 10 for total rainfalls through the year. Actually, it is also difficult to get the rainfallevent data. To apply the weather data from weather stations covering the China, an equation functionfor estimating half-month rainfall erosivity by using daily rainfall data was developed.1010.184(n hm d d i i R P ==∑)IR 20.973 (3)where R hm is the rainfall erosivity for half-month (MJ mm/h ha), P d is the daily rainfall amount (mm)and I 10d is the daily maximum 10min rainfall intensivity (mm/h). I =1, …, n is the rainfall days withina half-month. If there is no I 10d available, R hm was also calculated by using only daily rainfall amount.1()n hm d i i R P βα==∑ (4)where α and β are fitted coefficients and other variables had the same meaning as above.Seasonal rainfall erosivity distribution could be estimated by the sum of R hm . To plot Chineseisoerodent map for estimation or interpolation of local values of average annual rainfall erosivity in23 any place, the empirical relationships by using different rainfall available data were estimated (not listed). Users can choose different equations to calculate average annual rainfall erosivity according to the data availability.3.2 Soil erodibility (K)Soil erodibility is defined as soil loss from unit plot with 22.1m long and 9% slope degree per rainfall erosion index unit (Olson and Wischmeier, 1963). Different from the US, much of soil loss was from steep slope in China. So the Chinese unit plot was defined as a 20m long, 5m wide and 15°degree slope plot with continuously in a clean-tilled fallow condition and tillage performed upslope and downslope. The suggestion of Chinese unit plot made data measured be used to evaluate K values as much as possible without large errors. Because 15° is the middle values for most plots in China. Modified data measured from both plots of less than 15° and larger than 15° to a unit plot had the relative minimum errors.Based on the K defination and Chines unit plot, soil erodibility for 6 main soil types in China was estimated. For example, the values of K for loess were 0.61, 0.33, and 0.44 t ha h/(ha MJ mm) in Zizhou, Ansai, and Lishi in Loess Plateau of China.3.3 Slope length (L) and slope steepness (S) factorsTopography is an important factor affecting soil erosion. It is significant to quantitatively evaluate the effects of topography on erosion for predicting soil loss. The effects of topography on erosion includes slope length and steepness in terms of soil-loss estimation. In soil loss equation, factors of slope length and steepenss were cited with dimensionless values. They are values of the ratio of the soil loss from the plot with actual slope steepness or slope length to that from the unit plot.The relationship between slope length and soil loss has been studied from field or lab data for a long time. Many studies showed that the soil loss per area is proportional to some power of slope length except that the values of the exponent are slightly different. For example, Zingg (1940) derived a value of 0.6 for the slope-length exponent. Musgrave (1947) used 0.35. USLE (Universal Soil Loss Equation ) published in 1965 suggested the values of 0.6 and 0.3 respectively for slopes steeper than 10% and very long slopes, and 0.5 for other conditions. In 1978, the USLE (Wischmeier and Smith, 1978) adjusted the exponent values for different cases, 0.5 for 5% slope or more, 0.4 for slopes between 3.5% and 4.5%, 0.3 for slopes between 1% and 3%, and 0.2 for slopes less than 1%. Revised USLE (RUSLE) published in 1997 used a continuous function of slope gradient for calculating slope-length exponent.Soil erosion from the steep slope is serious in China. How slope length influences soil loss on steep slopes needs further studies. For this end, the relationship between slope length and soil loss on steep slopes was examined based on the plot data obtained at Suide, Ansai, and Zizhou on the loess plateau of China and modified to the unit plot. The results indicated that the slope-length equation in the RUSLE could not be used for soil loss prediction under the steep slope conditions. The equation for calculating soil length factor in the USLE published in 1978 could be applied into China:22.13mLλ=(5)where λ is slope-length (m), m is the slope length exponent.Slope gradient is another topographical factor affecting soil erosion. Most studies have shown that the relation of soil loss to gradient may be expressed as some exponential function or quadratic polynomial. Zingg (1940) concluded that soil loss varies as the 1.4 power of percent slope, and Musgrave (1947) recommended the use of 1.35. Based on a substantial number of field data, Wischmeier and Smith (1965) derived a slope-gradient equation expressed as quadratic polynomial function of gradient percent. Having analyzed the data assembled from plots under natural and simulated rainfall, McCool et al., (1987) found that soil loss increased more rapidly from the slopes24 steeper than 5° than that from slopes less than 5°, and he recommended two different slope steepnessfactor equations for different ranges of slopes:S =10.8sin θ + 0.03 θ 5° (6-1)S =16.8 sin θ – 0.5 θ > 5°(6-2) These equations were established based on soil loss data from gentle slopes, and have not beentested for steep slope conditions. We used soil loss plot data from Suide, Ansai, and Tianshui on theloess plateau of China to test the equations. The results showed that great errors were produced whenusing equations suggested by McCool et al ., (1987) for predict soil loss from slopes steeper than 10°. After the slope degree was larger than 10°, soil loss from steep slopes increased ripedly. Based theregression analysis of our data, am equation to calculate slope steepness factor for seep slopes wasdeveloped:S =21.91 sin θ – 0.96 θ10°(6-3)So in Chinese soil loss equation, slope steepness factor could be estimated by using equation (6-1)to (6-3) under different slope conditions3.4 Bilogical-control (B ), engineering-control (E ), and tillage (T ) factorsDuring the development of the historical agriculture traditions in China, the systematical practicesfor soil and water conservation formed. They could be divided into three categories: biological-control, Engineering-control and tillage measures. Biological-control practices include theforest or grass plantation for reducing runoff and soil loss. Engineering-control practices refer to thechanges of topography to reduce runoff and soil loss by engineering construction like terrace, check-dams. Tillage practices are the measures taken by farmland equipment. The difference between engineering and tillage is that the latter does not change the topography and is only applied onthe farmland.Table 1 Estimated values of biological-control factor for cropsSeedbed Establishment Development Maturing crop Growing season Annual averageBuckwheat 0.71 0.54 0.19 0.21 0.74 0.74 Potato 1.00 0.53 0.47 0.30 0.47 0.50 Millet 1.00 0.57 0.52 0.52 0.53 0.55 Soybean 1.00 0.92 0.56 0.46 0.51 0.53 Winter wheat 1.00 0.17 0.23Maize intercropping with soybean1.00 0.40 0.26 0.03 0.28 Hyacinth Dolichos 1.00 0.70 0.46 0.57Table 2 Estimated values for factors of woodland and grassland vegetationSophora Korshinsk Peashrub Seabuckthorn Seabuckthorn & PoplarSeabuckthorn & Chinese Pine Erect Milkvetch Sainfoin Alfalfa First year Sweetclover Second year Sweetclover0.004 0.054 0.083 0.144 0.164 0.067 0.160 0.256 0.377 0.08325Many studies gave the B values for different biologic measures in China, but they were not from the universal calculated methods and could not be used directly in soil loss equation. Based on the defination of B values, the ratio of soil loss from plots with some biological-control practice to that from unit plot, we calculated B values for some types of biological-control practices (Table 1). Some values for typical engineering-control and tillage measures in China were summarized (not listed).References[1] Nearing, M.A., G.R. Foster, L.J. Lane, and S.C. Finkner. A process-based soil erosion modelfor USDA-water erosion prediction project technology. Transactions of The ASAE, 1989, 32(5):1587-1593.[2] Misra R K, Rose C W. Application and sensitivity analysis of process -based erosionmodel—GUEST[J]. European Journal Soil Science. 1996,10:593-604.[3] Morgan R P C, Quinton J N, Smith R E, et al., The European soil erosion model (EUROSEM): Adynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms, 1998,23:527-544.[4] De Roo A P J. The LISEM project: an introduction. Hydrological Processes. 1996, vol.10:1021-1025.[5] Wischmeier W H, Smith D D. Predicting rainfall erosion losses[R]. USDA AgriculturalHandbook No.537. 1978.[6] Olson,T.C., and Wischmeier,W.H. 1963. Soil erodibility evaluations for soils on the runoff anderosion stations. Soil Science Society of American Proceedings 27(5):590-592.[7] Zingg A W. Degree and length of land slope as it affects soil loss in runoff[J]. AgriculturalEngineering, 1940,21: 59-64.[8] Musgrave G W. The quantitative evaluation of factors in water erosion A first approximation[J].Journal Soil and Water Cons, 1947, 2:133-138.[9] Renard K G,Foster G R,Weesies G A et al., RUSLE―A guide to conservation planning with therevised universal soil loss equation[R]. USDA Agricultural Handbook No.703. 1997.[10] McCool, D. K. Brown, L.C., Foster, G. R., et al., Revised slope steepness factor for theuniversal soil loss equation. TRANSACTIONS of the ASAE, 1987, 30(5): 1387-1396.。
基底和膜层-基底系统的赝布儒斯特角计算(英文)刘华松;姜玉刚;王利栓;姜承慧;季一勤【期刊名称】《光子学报》【年(卷),期】2013(0)7【摘要】对基底和膜层-基底系统的赝布儒斯特角进行了数值计算.结果显示:当基底的消光系数小于0.01时,基底的赝布儒斯特角主要是由折射率决定;当基底的消光系数大于0.1时,基底的赝布儒斯特角不仅与折射率有关,而且还与消光系数有关,随着消光系数发生后周期性变化.研究表明:单层膜-基底系统的赝布儒斯特角主要由膜层的物理厚度、折射率、基底的光学常量所决定;在HfO2-硅和HfO2-融石英基底系统中,赝布儒斯特角随着入射光波长和膜层厚度的变化呈现准周期性规律变化,可能是由入射光在膜层的干涉效应引起的.【总页数】6页(P817-822)【关键词】光学常量;折射率;消光系数;膜层-基底系统;赝布儒斯特角【作者】刘华松;姜玉刚;王利栓;姜承慧;季一勤【作者单位】天津津航技术物理研究所天津市薄膜光学重点实验室,天津300192;同济大学物理系先进微结构材料教育部重点实验室,上海200092;哈尔滨工业大学光电子技术研究所可调谐激光技术国家级重点实验室,哈尔滨150080【正文语种】中文【中图分类】O484【相关文献】1.以介孔TiO2膜为过渡层在玻璃基底上制备Cu3(BTC)2连续膜 [J], 李力成;钱祺;王磊;仇龙云;王昊翊;张所瀛;杨祝红;李小保;赵学娟2.前列腺癌发生发展中基底细胞层和基底膜的改变 [J], 杨敏;刘爱军;韦立新;郭爱桃;宋欣;陈薇3.镍改性层增强铜基底沉积金刚石膜的形核(英文) [J], 刘学璋;魏秋平;翟豪;余志明;4.硅基底上生长金刚石层细晶粒的研究(英文) [J], 何敬晖;玄真武;刘尔凯5.在n型硅基底上二次注入硼离子金刚石膜的p-n结效应(英文) [J], 孙秀平;冯克成;李超;张红霞;费允杰因版权原因,仅展示原文概要,查看原文内容请购买。
ReviewAn interdisciplinary approach towards improved understanding of soil deformation during compactionT.Keller a,b,1,*,mande´c,1,S.Peth d,e,M.Berli f,J.-Y.Delenne g,W.Baumgarten d,W.Rabbel h,F.Radjaı¨g,J.Rajchenbach i,A.P.S.Selvadurai j,D.Or ka Agroscope Reckenholz-Ta¨nikon Research Station ART,Department of Natural Resources and Agriculture,Reckenholzstrasse191,CH-8046Zu¨rich,Switzerlandb Swedish University of Agricultural Sciences,Department of Soil&Environment,Box7014,SE-75007Uppsala,Swedenc Aarhus University,Department of Agroecology&Environment,Research Centre Foulum,P.O.Box50,DK-8830Tjele,Denmarkd Christian-Albrechts-University Kiel,Institute for Plant Nutrition and Soil Science,Hermann-Rodewaldstrasse2,D-24118Kiel,Germanye University of Kassel,Faculty11,Organic Agricultural Sciences,Group of Soil Science,Nordbahnhofstrasse1a,D-37213Witzenhausen,Germanyf Desert Research Institute,Division of Hydrologic Sciences,755E.Flamingo Road,Las Vegas,NV,USAg Universite´Montpellier2,Physics and Mechanics of Granular Media,Cc048,F-34095Montpellier Cedex5,Franceh Christian-Albrechts-University Kiel,Institute of Geosciences,Otto-Hahn-Platz1,D-24118Kiel,Germanyi Universite´de Nice,Laboratoire de Physique de la Matie`re Condense´e,28Avenue Valrose,F-06108Nice Cedex2,Francej McGill University,Department of Civil Engineering and Applied Mechanics,817Sherbrooke Street West,Montre´al,QC,H3A2K6,Canadak Swiss Federal Institute of Technology,Soil and Terrestrial Environmental Physics,Universita¨tstrasse16,CH-8092Zu¨rich,SwitzerlandContents1.Introduction (62)2.Deformation of porous media:theory,approaches and applications of different researchfields (63)2.1.Soil physics and soil mechanics (63)2.1.1.Soil physics and soil mechanics–similar subject,different approaches (63)Soil&Tillage Research128(2013)61–80A R T I C L E I N F OArticle history:Received22June2012Received in revised form28September2012Accepted8October2012Keywords:Soil compactionContinuum mechanicsGranular mediaSeismic methodsModellingX-ray computed tomographyA B S T R A C TSoil compaction not only reduces available pore volume in whichfluids are stored,but it alters thearrangement of soil constituents and pore geometry,thereby adversely impactingfluid transport and arange of soil ecological functions.Quantitative understanding of stress transmission and deformationprocesses in arable soils remains limited.Yet such knowledge is essential for better predictions of effectsof soil management practices such as agriculturalfield traffic on soil functioning.Concepts and theoryused in agricultural soil mechanics(soil compaction and soil tillage)are often adopted from conventionalsoil mechanics(e.g.foundation engineering).However,in contrast with standard geotechnicalapplications,undesired stresses applied by agricultural tyres/tracks are highly dynamic and last forvery short times.Moreover,arable soils are typically unsaturated and contain important secondarystructures(e.g.aggregates),factors important for affecting their soil mechanical behaviour.Mechanicalprocesses in porous media are not only of concern in soil mechanics,but also in otherfields includinggeophysics and granular material science.Despite similarity of basic mechanical processes,theoreticalframeworks often differ and reflect disciplinary focus.We review concepts from different butcomplementaryfields concerned with porous media mechanics and highlight opportunities forsynergistic advances in understanding deformation and compaction of arable soils.We highlight theimportant role of technological advances in non-destructive measurement methods at pore(X-raytomography)and soil profile(seismic)scales that not only offer new insights into soil architecture andenable visualization of soil deformation,but are becoming instrumental in the development andvalidation of new soil compaction models.The integration of concepts underlying dynamic processesthat modify soil pore spaces and bulk properties will improve the understanding of how soilmanagement affect vital soil mechanical,hydraulic and ecological functions supporting plant growth.ß2012Elsevier B.V.All rights reserved.*Corresponding author.Tel.:+41443777605;fax:+41443777201.E-mail addresses:Thomas.Keller@slu.se,thomas.keller@art.admin.ch(T.Keller).1These authors contributed equally to this work.Contents lists available at SciVerse ScienceDirectSoil&Tillage Researchj ou r n a l h o m e p a g e:w w w.e l s e v i e r.co m/l o c a t e/s t i l l0167-1987/$–see front matterß2012Elsevier B.V.All rights reserved./10.1016/j.still.2012.10.0042.1.2.Mechanics of agricultural and forest soils (63)2.1.3.Soil rheology (63)2.2.Geomechanics (64)2.2.1.Mechanical behaviour of an isotropic elasto-plastic saturated material (65)2.2.2.Poroelasto-plastic behaviour of a one-dimensional column (65)2.3.Geophysics (66)2.3.1.Electrical conductivity (67)2.3.2.Electrical permittivity (67)2.3.3.Seismic methods (68)2.4.Physics of granular media (68)3.Modelling approaches (69)3.1.Analytical solutions for stress transmission (69)3.1.1.Influence of geomaterial inhomogeneity on stress transmission (70)3.2.Thefinite element method (70)3.2.1.Essential ingredients of the FEM (70)3.2.2.Potential and limitations of modelling soil compaction with FEM (71)3.3.The discrete element method (71)4.Non-destructive measurement techniques for soil structure and deformation (72)puted tomography (72)4.1.1.Background (72)4.1.2.Potential and limitations of CT and m CT in soil compaction research (73)4.2.Scanning electron microscopy (73)4.3.Seismic methods (74)5.Synthesis:potentials and challenges (74)5.1.Scale-dependent soil structural organization and how it influences soil strength,stress transmission and soil deformation (74)5.2.Mechanical deformation as a time(rate)-dependent process (75)5.3.Visualization of soil structure and soil deformation (76)5.4.Linking seismic measurements to soil mechanical properties (76)6.Conclusions (77)Acknowledgements (77)References (77)1.IntroductionSoil compaction(i.e.reduction of soil porosity)is one of the main threats to sustaining soil quality in Europe(COM,2006).A range of important ecological functions is affected when soil is compacted(e.g.van Ouwerkerk and Soane,1995;Alaoui et al., 2011):compaction reduces saturated hydraulic conductivity and thus triggers surface runoff and soil erosion by water;it may induce preferentialflow in macropores,and hence facilitates transport of colloid-adsorbed nutrients and pesticides to deeper horizons and water bodies;compaction reduces soil aeration,and hence reduces root growth and induces loss of nitrogen and production of greenhouse gases through denitrification by anaerobic processes.Consequently,soil compaction is one of the causes of a number of environmental and agronomic problems (flooding,erosion,leaching of chemicals to water bodies,crop yield losses)resulting in significant economic damage to the society and agriculture.Our understanding of deformation processes in arable soil is still limited.One reason might be that in soil compaction research, the major focus has been on the agronomic(and,more recently, environmental)impacts of compaction,rather than on the soil deformation process itself.That is,the externally applied mechanical stress(e.g.by agricultural machinery)is related to (physical)soil functions or crop response.While such studies are undoubtedly valuable,they do not directly add to the knowledge of the soil compaction process itself.In order to understand the impacts of soil compaction on soil functions(reaction),knowledge of the soil deformation process(cause)is needed.Soil deformation is the response of a soil to an applied stress, which could be either mechanical or hydraulic.Stress and deformation are coupled processes:soil deformation is a function of soil stress and soil strength,and the propagation of stress in soil is a function of soil strength and soil deformation.A better mechanistic understanding of stress transmission in structured soil and the deformation behaviour of unsaturated soil will improve models for prediction of soil compaction.Such models are needed to develop strategies and guidelines for the prevention of soil compaction.Furthermore,improved under-standing of the soil deformation processes will promote better predictions of the impact of soil management practices on physical soil functions and their effect on processes listed above.Concepts and theory used in agricultural soil mechanics(soil compaction and soil tillage)are generally adopted from conven-tional soil mechanics(e.g.foundation engineering).Examples are analytical solutions for stress propagation in soil based on the works of Boussinesq(1885)and Fro¨hlich(1934),soil compressive strength characterized by the precompression stress that is based on Casagrande(1936),or models for predicting draught force of tillage implements that are based on early studies of Coulomb (1776)and Rankine(1858).Nevertheless,agricultural soil mechanics differs from geo-technical applications in a range of aspects,most notably:(i) stresses applied by running tyres,tracks,and tillage implements are dynamic and the loading time is very short($1s);(ii) agricultural soil is typically unsaturated,which makes interac-tions between hydraulics and mechanics very important,but also complex(Horn et al.,1998;Richards and Peth,2009);and(iii) arable soil is structured with compound particles of different sizes and shapes and a network of voids with various morphologies and orientation(e.g.biopores,shear fractures,desiccation cracks). Consequently,models for calculating stress transmission and deformation in arable soil that are based on foundation engineering concepts suffer from insufficient knowledge of soil structure(fabric)and soil moisture effects on stress transmission, and poor characterization of soil mechanical properties relevant for short-term dynamic loading occurring on agricultural soils (Keller and Lamande´,2010).T.Keller et al./Soil&Tillage Research128(2013)61–80 62Stress transmission and deformation processes in porous media are not only a topic in soil mechanics and geomechanics,but also in other researchfields including geophysics,granular material science,and snow/avalanche research.Although dealing with similar processes,the theoretical frameworks used are often research-field specific.We believe that a combination of different approaches could advance our understanding of deformation processes in arable soils.An International Exploratory Workshop held during the autumn of2010at the Agroscope Research Station ART in Zu¨rich(Switzerland)brought together scientists dealing with porous media mechanics from different perspectives ranging from classical soil physics including soil mechanics to geomecha-nics,geophysics,and physics of granular mixtures.The aim of the workshop was to introduce and jointly discuss theoretical frameworks and modelling approaches applied in differentfields to porous media mechanics,and to explore possible new approaches to quantitative description of soil compaction.The primary objectives of this paper were to:(i)review theory, modelling approaches and non-destructive measurement techni-ques applied in different researchfields that deal with deformation of porous media,and(ii)delineate new approaches and pathways for improving the theoretical and experimental basis for modern soil compaction research.2.Deformation of porous media:theory,approaches and applications of different researchfieldsSeveral disciplines(such as soil mechanics,geotechnics, geophysics,granular material science,etc.)deal with deformation processes in porous media.However,the theoretical approaches that describe the physical nature of deformation and the frameworks to solve applications differ between disciplines.This can be attributed to differences in material properties,loading characteristics and boundary conditions of the relevant specific processes.Nevertheless,some of the distinctions may simply be due to historical reasons.2.1.Soil physics and soil mechanics2.1.1.Soil physics and soil mechanics–similar subject,different approachesIn one of the earliest textbooks on soil physics,Baver(1940) defines soil physical properties as:‘‘the mechanical behaviour of the soil mass’’.Around the same time,Terzaghi(1943)defines soil mechanics as:‘‘the application of the laws of mechanics and hydraulics to engineering problems dealing with sediments and other unconsolidated accumulations of solid particles produced by the mechanical and chemical disintegration of rocks’’.Although the two definitions address closely related topics,soil physics and mechanics evolved parallel with little interactions for a good part of the20th century.What happened?Soil physics was developed within the disciplines of agronomy and forestry,driven by the need for land reclamation,irrigation, and drainage as well as related topics such as groundwater recharge,salinization andflood control.Soil physics primarily focused on quantifying hydraulic properties and processes of partially saturated soils.In contrast,starting from the early work of Coulomb(1776),Rankine(1857)and Boussinesq(1885),soil mechanics was addressing foundation and slope stability problems related to fortification,road and dam construction.As an engineering discipline,soil mechanics developed strongly in the early20th century with Fillunger(1913),Terzaghi(1923,1925) and Fro¨hlich(1934).With the development of more advanced mechanical models for soil such as Critical State Soil Mechanics (CSSM)(Roscoe et al.,1958;Schofield and Wroth,1968)and extending from saturated to unsaturated soils(e.g.Bishop,1959;Bailey and VandenBerg,1968;Alonso et al.,1990),frameworks became available that explicitly consider changes in void ratio(or porosity)as a function of applied stress as well as the impact of moisture conditions on the mechanical behaviour of soil.However,it is clear thatfluid transport through soil(primary focus of soil physics)and stability and deformation processes (main focus of soil mechanics)cannot be separated from each other,because any deformation results in a change influid transport properties,while any hydraulic process influences the deformation behaviour of soil.The emerging need to solve environmental issues related to deformable soils(e.g.contaminant transport through engineered clay liners,geologic sequestration of greenhouse gases,impact of vehicle traffic on soil hydraulic properties)finally brought soil physics and soil mechanics closer together(Vulliet et al.,2002).The protection of agricultural and forest soils from compaction is one of these needs.2.1.2.Mechanics of agricultural and forest soilsSince its beginning in the19th century,the mechanics of agricultural and forest soils was linked to problems related to trafficability and soil–vehicle interactions.Soil compaction did not receive much attention before increased mechanization of post World War II agriculture sparked concerns about decreasing soil fertility due to vehicle-induced compaction.Although the focus of attention moved away from the problem of pure trafficability towards preserving soil fertility,military needs remained the main driver to study soil–vehicle interaction until the late1960s (Bekker,1956,1969).To describe and predict soil compaction due to vehicle traffic, the work by So¨hne(1951,1953,1958)was certainly pioneering and addressed the main issues of modern day compaction research such as stress distribution at the tyre–soil interface,stress transfer into the soil as well as impact of these stresses on the degree of soil compaction.Both Bekker(1956)and So¨hne(1951,1953)employed mechanical concepts developed by Rankine(1857),Boussinesq (1885),Terzaghi(1925,1943)and Fro¨hlich(1934)to derive their stress–strain models for soils under vehicular traffic.The strength of these models lay in their simplicity,which makes them hugely popular to this day for applications in agriculture and forestry.With the introduction of concepts like CSSM and unsaturated soil mechanics,more advanced frameworks became available to describe soil deformation.Although some of these models were adopted to describe the mechanics of agricultural soils as early as in the1960s(e.g.Bailey and VandenBerg,1968)and have been further developed ever since(e.g.Hettiaratchi,1987;Gra¨sle et al., 1995;Kirby,1994;O’Sullivan and Robertson,1996),no compre-hensive mechanical theory for agricultural and forest soils is currently available.One reason is that agricultural and forest soils feature various forms of secondary structure that affect the mechanical as well as hydraulic properties of the soil(e.g.Hartge and Sommer,1980; Horn,1993)but are hard to quantify.Only recently,advances in imaging using X-ray(micro-)tomography have allowed non-destructive visualization of the soil structure,a key step towards quantifying the impact of structure on soil hydraulic and mechanical properties.Driven by the increasing possibilities of soil structure visualization,structure-based micro-scale soil mechanics models were developed,which allow the consideration of the interaction of mechanics and hydraulics of the soil at the pore scale(e.g.Or and Ghezzehei,2002;Eggers et al.,2006).2.1.3.Soil rheologyThe extent of soil compaction and subsequent structural recovery are greatly influenced by loading and deformation rates that in turn are determined by soil rheological properties.In contrast with motion and mechanics of rigid bodies,rheology dealsT.Keller et al./Soil&Tillage Research128(2013)61–8063with relative motions of the parts of a body relatively to each another(Reiner,1960).Under the action of a force,a body may deform elastically(deformation is fully recoverable when the force is removed),plastically(permanent deformation even when the force is removed),or the material mayflow at a certain rate (continuous deformation without limit under the action of a force). Reiner(1960)defines‘‘rheology in the narrower sense’’as the science that deals with the deformation andflow of materials that are classified between the extremes of solid(Euclid-solid:rigid body;and Hooke-solid:elastic body)and liquid(Newtonian liquid: ideal viscous liquid;and Pascalian liquid:inviscid liquid).We may distinguish macro-rheology from micro-rheology (Reiner,1960):macro-rheology considers materials as homoge-neous,whereas micro-rheology considers material structure. Macro-rheology is partly treated within‘‘classical’’(continuum) soil mechanics,dealing primarily with strain and stress(e.g. stress–strain curves obtained from uniaxial compression tests, triaxial tests or shear tests).Nevertheless,mechanical behaviour of soil is also dependent upon strain and stress rates,which have received little attention in classical soil mechanics(perhaps due to preoccupation with foundations and static structures).Micro-rheology has two main tasks(Reiner,1960):it aims at either(i) obtaining a picture of the structure of the material giving rise to measuredflow curves,or(ii)at explaining the rheological behaviour of a complex material from the known rheological behaviour of its constituents.In practice,soil rheology deals with dynamic soil deformation processes that consider soil structure,rates of load application and resulting deformation.According to Or(1996),traditional stress–strain approaches fail to capture salient features of soil structure dynamics because these approaches(i)are based on equilibrium state while deformation in agricultural soils are dynamic processes that rarely reach equilibrium,and(ii)often describe bulk volume changes only but cannot describe the evolution of the soil structure at the pore scale that is crucial forflow and transport processes central to hydrological and agronomic applications.Recent developments in soil rheology address the two main tasks of micro-rheology as described by Reiner(1960).The work of Markgraf,Horn and co-workers(see Markgraf et al.,2006)aims at characterizing the structure of soil from observed rheological test curves.Or and co-workers(see Or and Ghezzehei,2002)developed models for soil structure dynamics at the pore scale based on rheological properties.Ghezzehei and Or(2000,2001)developed models for soil aggregate deformation and coalescence due to wetting–drying cycles as well as due to external static and cyclic stresses.These models were further extended to include closure of isolated pores (Ghezzehei and Or,2003;Berli and Or,2006;Berli et al.,2006), which can then be used,for example,to investigate the evolution of hydraulic conductivity upon compression(Eggers et al.,2006;Berli et al.,2008).The approaches are based on(i)geometrical representations of aggregates,pore space and liquid menisci,(ii) energy considerations,and(iii)rheological properties of unsatu-rated soil.It was shown that soil under steady state stress behaves as a viscoplastic material that can be described as a Bingham body (Vyalov,1986;Ghezzehei and Or,2000,2001)as illustrated in Fig.1a,which in general terms can be given as(Reiner,1960;Or and Ghezzehei,2002):˙g¼0t<t yðtÀt yÞ/h pl t!t y&(1)where t is the shear stress,t y is the yield stress,˙g is the strain rate, and h pl is the plastic viscosity.It is seen from Fig.1that the rheological properties t y and h pl(the inverse slope of the straight line of the Bingham model)are functions of soil water content: both t y and h pl decrease with increasing water content.Energy generally appears under three forms in rheological phenomena(Reiner,1960):kinematic energy,elastic(potential) energy,and dissipated(thermal)energy.Elastic energy is stored (conserved)during deformation and fully recovered upon stress release,while energy is dissipated during viscousflow is permanent(if elastic energy is not permanently conserved but dissipates with time,this is referred to as dissipation by relaxation.)Hence,total strain can be divided into an elastic and a viscous component.The ratio of elastic to viscous strain is dependent on the stress rate and the loading time,as shown by Ghezzehei and Or(2001):the shorter the loading rate,the larger the elastic strain and the smaller the viscous(permanent) component of the total strain.Consequently,storage of elastic energy(and therefore elastic strain)is of importance especially during deformation under cyclic or transient stresses as occur e.g. during the passage of agricultural machinery.The behaviour of the soil can then be described as‘‘visco-elastic’’(Ghezzehei and Or, 2001).It is convenient to express the visco-elastic properties in a complex plane system.The shear stress,t,and strain,g,can be related by(Ghezzehei and Or,2001):t¼GÃg(2) where G*is the complex shear modulus;similarly,t and strain rate,˙g,can be related byt¼hÃ˙g(3) where h*is the complex viscosity.The real components of G*and h* indicate the storage(elastic)shear modulus,G0,and elastic viscosity,h0,respectively,while the imaginary components of G*and h*indicate the loss(viscous)shear modulus,G00,and loss viscosity,h00,respectively(Ghezzehei and Or,2001).The relative proportion of the elastic and viscous component can be obtained from the phase shift angle(also termed the mechanical loss angle), d,that describes the delay in strain(peak)due to an applied stress (peak)as a result of the time dependence of viscous strain(d=0for ideal elastic material;d=p/2for ideal viscous material)(Ghezze-hei and Or,2001).Markgraf et al.(2006)measured the stress–strain rate relation-ship in a rotational rheometer in order to derive G0,G00and the‘‘loss factor’’tan d(=G00/G0),as well as the linear visco-elastic(LVE) deformation range and the deformation limiting value,g L.Three phases of material behaviour can be identified(Markgraf et al.,2006; Markgraf,2011),as illustrated in Fig.2.In phase I(initial or plateau phase)G0>G00,a quasi-elastic behaviour can be observed.The quasi-elastic stage is defined by the LVE range and the deriving deformation limit g L.At this stage of low strain,a full recovery of the microstructure can be assumed.In phase II.1,a stage of pre-yielding occurs due to higher strain;soil particles are re-oriented, microstructural stability is given,but decreasing.At the end of phase II.2,an intersection of G0and G00indicates the yield-point.In comparison,the intersection of tan d with the tan d=1-line also indicates a complete loss of stability of the soil microstructure (Markgraf and Horn,2009).By calculating the integral z(Fig.2b),the structural strength,which includes quasi-elasticity and pre-yielding behaviour,can be quantified.Hence,phase III defines thefinal stage of structural collapse,G0<G00;a viscous character predominates,and substances are creeping orflowing.2.2.GeomechanicsApplications of classical continuum mechanics range from the use of elasticity theory(e.g.Davis and Selvadurai,1996)to micromechanical approaches based on particulate mechanicsT.Keller et al./Soil&Tillage Research128(2013)61–80 64(e.g.Misra and Huang,2009;see also Section 2.4).The subject ofgeomechanics has made important advances in terms of describ-ing the mechanics of porous geomaterials by taking into consideration their multi-phase nature,especially pertaining to the coupled behaviour involving fluid flow through the pore space,mechanical deformations (both reversible and irreversible)and thermal deformations of the separate phases (e.g.Desai and Siriwardane,1984;Selvadurai and Nguyen,1995;Pietruszczak,2010).The objective of Section 2.2is to examine two problems,which demonstrate the ability of advanced theories of continuum poromechanics (continuum mechanics that studies the behaviour of fluid-saturated porous media)to provide explanations of soil compaction phenomena.The compaction of an array of soil aggregates (cf .Fig.3)is a more complex problem that cannot be obtained conveniently with continuum mechanics as discussed in Sections 2.1.3and 5.1.2.2.1.Mechanical behaviour of an isotropic elasto-plastic saturated materialThe mechanical behaviour of a fluid-saturated porous medium undergoing infinitesimal elastic strains was first developed by Biot (1941),taking into consideration Darcy’s law to describe the flow of the fluid through the pore space and Hookean elastic behaviour of the porous skeleton to describe deformations.The basic constitutive equations governing the mechanical and fluid transport behaviour of an isotropic poroelastic medium consisting of non-deformable solid matter,which is saturated with anincompressible fluid,can be written in the formsv f ¼ÀK smr p(4)s ¼G ðr u þu rÞþðl r u ÞI þp I(5)where s is the total stress tensor,u is the displacement vector of the skeletal phase,v f refers to the velocities of the fluid,p is the fluid pressure in the pore space,K s is the saturated permeabilitymatrix,G and l are Lame´elastic constants of the porous skeleton,m is the dynamic viscosity of water,5is the gradient operator,and I is the unit matrix.In Eq.(4)the velocity of the porous matrix is neglected.In extending the studies to include poroelasto-plasticity effects,we need to select an appropriate constitutive response for saturated clay-type materials.A variety of constitutive relations have been proposed in the literature.For the purpose of illustration,an elasto-plastic skeletal response of the Modified Cam Clay type (e.g.Desai and Siriwardane,1984;Davis and Selvadurai,2002)is presented here.Attention is restricted to an isotropic elasto-plastic material defined by the yield functionð˜sÀa Þ2þq /M ÀÁ2Àa 2¼0(6)where q is the von Mises stress,a is the radius of the yield surface,˜s is the mean effective stress,M is the slope of the critical state line and these are defined byq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi3˜s i j ˜s i j /2;p ˜s ¼À˜s kk /3ÀÁ;˜s i j ¼˜s i j þ˜sd i j (7)The hardening rule is defined by˜s ¼˜s ðe pl kk Þ¼˜s 0c þ˜sc ðe plkk Þ(8)and the incremental plastic strains are defined by an associated flow rule of the typed e pl i j ¼d l @G @si j ;G ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi˜s À˜s o cÀ˜s c ðe pl kk Þ !2þq 2v u u t (9)where the hardening rule takes the form˜s c ¼˜s c ðe pl kk Þ¼H ðÀe plkk Þ(10)and H is a positive constant.In addition to the elasto-plastic constitutive response for the porous skeleton,it is assumed that the fluid flow through the porous skeleton remains unchanged during yield and subsequent hardening of the porous skeleton.However,it is recognized that deformation changes the perme-ability of geomaterials (e.g.Berli et al.,2008).Furthermore,the compaction process can induce stratifications at the macro-level of the fabric that can give rise to transversely isotropic properties in all mechanical and transport phenomena.2.2.2.Poroelasto-plastic behaviour of a one-dimensional columnFor the purpose of illustration,we consider the problem of a one-dimensional column,which is saturated with an incompress-ible fluid and the porous skeleton can possess an elasto-plastic constitutive response described by Eqs.(6–10).The surface of the one-dimensional column is subjected to a quasi-static normal traction or in a cyclic loading–unloading mode in a time-dependent fashion as shown in Fig.4a.The upper surface of the column is maintained at zero pore fluid pressure.The constitutive models are implemented in a general purpose computational multiphysics code and the initial boundary value problems are analysed via a finite element technique.Fig.4b shows the response of the poroelasto-plastic soil skeleton model.Unlike in poroelasticity (not shown),thecyclicFig.1.(a)Example of a strain rate versus stress curve (silt loam at two differentwater contents)(from Or and Ghezzehei,2002).(b)Coefficient of plastic viscosity and yield stress as functions of soil matric potential for the same soil.From Ghezzehei and Or (2000).T.Keller et al./Soil &Tillage Research 128(2013)61–8065。
第一章soil 土rock 岩土sand 沙土silt粉土clay粘土weathering风化disintegration分解;崩解decomposition分解作用mineral矿物crack裂缝fracture断裂;破裂debris岩屑thermal stress热应力rock mass岩体sandstone砂岩gravel砾石parent rock母岩natural soil天然土;底土residual soil残积土transported soil运积土moraine 冰泽igneous rock火成岩granite花岗岩basalt玄武岩sedimentary rock沉积岩limestone石灰岩shale页岩alluvial soil冲积土wind-borne soil风积土loess黄土dune 沙丘wind blown silt风积尘土silty clay粉质粘土glacial soil冰川沉积土pleistocene epoch更新世glacial deposit 冰川沉积erosion侵蚀boulder漂石fragment碎屑foundation engineering基础工程bedrock基岩glacial till 冰土unstratified非层状的unconsolidated不固结的heterogeneous非均质的marsh soil沼泽土muck 淤泥,腐植土inorganic soil 无机土soil particle土粒void 孔隙solid phase固相liquid phase液相vapor phase气相saturated soil饱和土dry soil干土original mineral原生矿物quartz石英feldspar长石isinglass云母hornblende角闪石pyroxene辉石coarseness粗度roundness圆度secondary mineral次生矿物kaolinite高岭石illite依利石montmorillonite蒙脱石water content含水量crystal structure 晶体结构crystal cell晶胞alluminosilicate铝硅酸盐isomorphous replacement同晶置换grain group粒组scree卵石colloidal particle胶粒sieve analysis筛分析grading curve粒晶分布曲线crystal lattice晶格hygroscopic water吸着水capillary water毛细管水gravitational water重力水fabric组构single grain fabric单粒组构flocculent fabric絮凝组构disperded fabric分散组构bulk density湿密度unit weight容重specific gravity比重water content 含水量void ratio孔隙比porosity孔隙率dry density干密度degree of saturation 饱和度saturated unit weight饱和容重dry unit weight干容重buoyant density浮密度buoyant unit weight浮容重relative density 相对密度consistency稠度liquid limit液限plastic limit塑限shrinkage limit缩限kneading method搓滚法liquid-plastic limit combined device液塑限联合测定仪plasticity index塑性指数liquidity index液性指数compaction压实,夯实classification分类coarse grained soil粗粒土fine grained soil细粒土liquefaction液化第二章seepage 渗透total head 总水头elevation head位置水头pressure head压力水头head loss水头损失darcy’s law达西定律pore water pressure孔隙水压力coefficient of permeability渗透系数hydraulic gradient水力坡降(水力梯度) flow path length渗径长度constant-head test常水头试验falling-head test变水头试验pumping test压水试验groundwater地下水soil layers 土层Laplace’s Equation拉普拉斯方程homogeneous均质的isotropic 各向同性的anisotropic各向异性的incompressible不可压缩的finite difference method有限差分法finite element method有限单元法boundary element method边界单元法flow net流网equipotential lines等势线flow lines流线the principle of effective stress有效应力原理total stress总应力effective stress有效应力piezometer孔隙水压力计standpipe测压管seepage force 渗流力liquefaction液化boiling砂沸heaving隆起piping管涌Critical Hydraulic Gradient 临界水力梯度第三章additional stress(stress increase)附加应力at-rest静止bulk unit weight天然(湿)容重buoyant unit weight浮容重centric load中心荷载coefficient of lateral earth pressure at rest静止土压力系数compatible相容,协调concentrated load点荷载,集中荷载contact pressure基底压力dam坝deposit 沉(堆)积,沉(堆)积物eccentric load偏心荷载effective overburden pressure自重应力(有效)elastic half-space弹性半空间体embankment堤坝,堤防,路堤embedment depth埋置深度flexible foundation柔性基础foundation基础geostatic stress自重应力geotechnical engineering岩土工程GL=ground level地面GWL=ground water level地下水位Ground地基Heterogeneous非均质Homogeneous均质Hydraulic fill水力吹填Heave隆起In-situ原位,现场Isotropic各向同性Landfill填埋场Line load线荷载Load intensity荷载强(集)度Major axis主轴Man-made ground人工地基Medium介质Moment力矩Moment of inertia惯性矩Natural ground天然地基Net contact pressure基底净压力(基底附加压力)Offsetting偏心矩Overturning倾覆Point load点荷载,几种荷载Principle of superposition叠加原理Reclamation围垦Retaining wall挡(土)墙Rigid foundation刚性基础Sediment沉积(淀),沉积(淀)物Semi-infinite mass半无限体Settlement沉降Solid waste固体废弃物Stratum(土,地)层Strip foundation条形基础Stress increase附加应力Superimposed stress附加应力Thrust推力Tracing paper描图(透明,透写)纸第四章, 第五章architectural damage建筑损伤brittle脆性caisson沉箱,沉井coefficient of consolidation固结系数coefficient of volume compressibility体积压缩系数collapse settlement湿陷沉降collapsible soil湿陷性土compressible layer 压缩层compression压缩compression index 压缩指数compression modulus压缩摸量consolidation固结consolidation analogy固结模型curve fitting曲线拟合deformation modulus变形摸量degree of consolidation固结度dial gauge量表,百分表differential settlement差异沉降dissipation消散drained,drainage排水drilled shaft钻孔桩driven pile打入桩expansion index回弹指数expansive soil膨胀土floodgate闸门half-closed layer单面排水层hogging crack顶裂Hooke’s law虎克定律hysteretic loop回滞环in-situ compression curve现场压缩曲线intact specimen原状试样isochrones等时线loading ratio荷载率loess黄土masonry砌体,砌石normally consolidated正常固结oedometer固结仪oedometer test固结实验open layer双面排水层overconsolidated超固结overconsolidation ratio超固结比peaty soil泥炭土piezometer孔压计poisson’s ratio泊松比porous stone透水石preconsolidation pressure前期固结应力primary consolidation主固结rebounding curve回弹曲线recompression curve再压缩曲线secondary consolidation次固结settlement沉降soil mass土体soil skeleton土骨架specimen土样standpipe测压管stratum(pl.strata)土层stress history应力历史structural damage结构损伤subsidence沉陷swelling curve回弹曲线swelling index回弹指数time factor时间因数total head总水头underconsolidated欠固结underpin托换undrained不排水uneven settlement不均匀沉降virgin compression curve初始压缩曲线Young’s modulus杨氏摸量第六章all-round pressure 围压anisotropic非各项相等borehole钻孔cohesion凝聚力compression压缩consolidated-drained固结排水consolidated-quick shear test固结快剪试验consolidated-slow shear test固结慢剪试验consolidated-untrained固结不排水creep蠕变critical极限的critical state极限状态critical void ratio临界孔隙比crushing压碎cyclic repeat load循环荷载cylindrical specimen 圆柱试样dense sand紧砂density密度deposition沉积deviator stress 压力差dilatancy膨胀directly shear test直剪试验drainage volume排水量dynamic load动力荷载excavation开挖failure破坏failure envelop强度包线fracturing破裂friction angle 摩擦角friction resistance摩擦阻力hollow cylinder空心圆柱interlocking咬合intermediate stress中主应力isotropic 各项相等kneading揉liquefaction液化loose sand松砂mohr-coulomb failure criterion摩尔- 库仑破坏准则o-ring O形圈parameter参数peak stress峰值应力pedestal底座piezometer孔压计plane strain平面应变pore pressure孔隙压力pore pressure coefficient孔隙压力系数porous ceramic stone透水石principle stress主应力remolded sample重塑土residual strength残余强度ring shear test圆环剪切试验roller bearings滚珠rubber membrane橡皮膜sampling制样screw 螺栓seepage渗透sensitivity灵敏度shear剪切shear vane test十字板剪切试验shell贝壳silt lamination粉沙夹层slope边坡specimen试样stability稳定strength强度stress path应力路径torque扭矩triaxial compression三轴压缩试验true triaxial test真三轴试验unconfined compression无侧限抗压试验unconsolidated-undrained不固结不排水undisturbed sample原状样vertical load垂直荷载volumetric strain体积应变weak plane 软弱面第七章Rankine’s Theory of earth pressure朗肯土压力理论Coloumb’s Theory of earth pressure 库仑土压力理论earth pressure土压力earth pressure at static state静止土压力active earth pressure主动土压力passive earth pressure被动土压力earth pressure coefficient土压力系数at-rest earth pressure coefficient静止土压力系数active earth pressure coefficient主动土压力系数passive earth pressure coefficient被动土压力系数force polygon力多边形bracing system支撑系统第八章acceleration加速度Bishop’s method毕肖普法Bishop’s simplified method简化毕肖普法cutting slope开挖边坡dam 大坝disturbing moment倾覆力矩driving moment滑动力矩earthquake地震effective stress有效应力embankment堤、坝excess pore water pressure超孔隙水压力failure surface破坏面limiting equilibrium 极限平衡method of slice条分法moment arm力臂moment力矩most critical surface最危险滑动面pore pressure孔隙压力pore water pressure孔隙水压力resisting moment抗滑力矩rupture surface破裂面saturated unit weight饱和重度seepage force渗流力seepage surface浸润面seepage, seepage flow渗流seismic force地震力shear resistance抗剪强度shear strength抗剪强度slip arc 滑弧slip circle滑弧slip surface滑动面slope angle坡角slope stability边坡稳定性slope surface 坡面slope边坡stability稳定性steady seepage稳定渗流Swedish method of slices瑞典条分法toe of slope坡脚top of slope坡顶total stress总应力unit weight重度weight重力bulk unit weight 重度。
岩土工程专业英语词汇岩土工程专业英语词汇一. 综合类综合类 1.geotechnical engineering 岩土工程岩土工程 2.foundation engineering 基础工程基础工程3.soil, earth 土4.soil mechanics 土力学土力学 cyclic loading 周期荷载周期荷载 unloading 卸载卸载 reloading 再加载再加载 viscoelastic foundation 粘弹性地基粘弹性地基 viscous damping 粘滞阻尼粘滞阻尼 shear modulus 剪切模量剪切模量5.soil dynamics 土动力学土动力学6.stress path 应力路径应力路径二. 土的分类土的分类1.residual soil 残积土残积土 groundwater level 地下水位地下水位2.groundwater 地下水地下水groundwater table 地下水位地下水位 3.clay minerals 粘土矿物粘土矿物 4.secondary minerals 次生矿物次生矿物ndslides 滑坡滑坡 7.engineering geologic investigation 工程地质勘察工程地质勘察 8.boulder 漂石漂石9.cobble 卵石卵石 10.gravel 砂石砂石 11.gravelly sand 砾砂砾砂 12.coarse sand 粗砂粗砂 13.medium sand 中砂中砂14.fine sand 细砂细砂 15.silty sand 粉土粉土 16.clayey soil 粘性土粘性土 17.clay 粘土粘土 18.silty clay 粉质粘土粉质粘土19.silt 粉土粉土 20.sandy silt 砂质粉土砂质粉土 22.saturated soil 饱和土饱和土 23.unsaturated soil 非饱和土非饱和土 24.fill (soil)填土填土 29.soft clay 软粘土软粘土 30.expansive (swelling) soil 膨胀土31.peat 泥炭泥炭32.loess 黄土黄土 33.frozen soil 冻土冻土三. 土的基本物理力学性质土的基本物理力学性质24.degree of saturation 饱和度饱和度 25.dry unit weight 干重度干重度 26.moist unit weight 湿重度湿重度27.saturated unit weight 饱和重度饱和重度 28.effective unit weight 有效重度有效重度 29.density 密度密度pactness 密实度密实度 31.maximum dry density 最大干密度最大干密度32.optimum water content 最优含水量最优含水量 33.three phase diagram 三相图三相图34.tri-phase soil 三相土三相土 35.soil fraction 粒组粒组 36.sieve analysis 筛分筛分37.hydrometer analysis 比重计分析比重计分析 38.uniformity coefficient 不均匀系数不均匀系数39.coefficient of gradation 级配系数级配系数 40.fine-grained soil(silty and clayey)细粒土细粒土41.coarse- grained soil(gravelly and sandy)粗粒土粗粒土 42.Unified soil classification system 土的统一分类系统土的统一分类系统43.ASCE=American Society of Civil Engineer 美国土木工程师学会美国土木工程师学会44.AASHTO= American Association State Highway Officials 美国州公路官员协会美国州公路官员协会45.ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering 国际土力学与岩土工程学会国际土力学与岩土工程学会 四. 渗透性和渗流渗透性和渗流1.Darcy ’s law 达西定律达西定律2.piping 管涌管涌3.flowing soil 流土流土4.sand boiling 砂沸砂沸5.flow net 流网流网6.seepage 渗透(流)渗透(流)7.leakage 渗流渗流8.seepage pressure 渗透压力渗透压力9.permeability 渗透性渗透性 10.seepage force 渗透力渗透力 11.hydraulic gradient 水力梯度水力梯度12.coefficient of permeability 渗透系数渗透系数五. 地基应力和变形地基应力和变形1.soft soil 软土软土2.(negative) skin friction of driven pile 打入桩(负)摩阻力打入桩(负)摩阻力3.effective stress 有效应力有效应力4.total stress 总应力总应力5.field vane shear strength 十字板抗剪强度十字板抗剪强度6.low activity 低活性低活性7.sensitivity 灵敏度灵敏度8.triaxial test 三轴试验三轴试验9.foundation design 基础设计基础设计10.recompaction 再压缩再压缩 11.bearing capacity 承载力承载力 12.soil mass 土体土体13.contact stress (pressure)接触应力(压力)接触应力(压力) 14.concentrated load 集中荷载集中荷载 15.a semi-infinite elastic solid 半无限弹性体半无限弹性体 16.homogeneous 均质均质 17.isotropi 17.isotropic c 各向同性各向同性18.strip footing 条基条基 19.square spread footing 方形独立基础方形独立基础20.underlying soil (stratum ,strata)下卧层(土)下卧层(土) 21.dead load =sustained load 恒载恒载 持续荷载持续荷载22.live load 活载活载 23.short –term transient load 短期瞬时荷载短期瞬时荷载24.long-term transient load 长期荷载长期荷载 26.settlement 沉降沉降 27.deformation 变形变形 28.casing 套管套管 29.dike=dyke 堤(防)堤(防) 30.clay fraction 粘粒粒组粘粒粒组32.subgrade 路基路基 33.well-graded soil 级配良好土级配良好土 34.poorly-graded soil 级配不良土级配不良土35.normal stresses 正应力正应力 36.shear stresses 剪应力剪应力 37.principal plane 主平面主平面38.major (intermediate, minor) principal stress 最大(中、最小)主应力最大(中、最小)主应力39.Mohr-Coulomb failure condition 摩尔-库仑破坏条件库仑破坏条件42.pore water pressure 孔隙水压力孔隙水压力 43.preconsolidation pressure 先期固结压力先期固结压力44.modulus of compressibility 压缩模量压缩模量 45.coefficent of compressibility 压缩系数压缩系数pression index 压缩指数压缩指数 47.swelling index 回弹指数回弹指数48.geostatic stress 自重应力自重应力 49.additional stress 附加应力附加应力 50.total stress 总应力总应力51.final settlement 最终沉降最终沉降 52.slip line 滑动线滑动线六. 基坑开挖与降水基坑开挖与降水1 excavation 开挖(挖方)开挖(挖方)2 dewatering (基坑)降水(基坑)降水3 failure of foundation 基坑失稳基坑失稳4 bracing of foundation pit 基坑围护基坑围护5 bottom heave=basal heave (基坑)底隆起(基坑)底隆起6 retaining wall 挡土墙挡土墙7 pore-pressure distribution 孔压分布孔压分布8 dewatering method 降低地下水位法降低地下水位法 9 well point system 井点系统(轻型)井点系统(轻型) 10 deep well point 深井点深井点 11 vacuum well point 真空井点真空井点 12 braced cuts 支撑围护支撑围护 13 braced excavation 支撑开挖支撑开挖 14 braced sheeting 支撑挡板支撑挡板七. 深基础--deep foundation1.pile foundation 桩基础桩基础 1)cast –in-place 灌注桩灌注桩 diving casting cast-in-place pile 沉管灌注桩沉管灌注桩 bored pile 钻孔桩钻孔桩 piles set into rock 嵌岩灌注桩嵌岩灌注桩 rammed bulb pile 夯扩桩夯扩桩2)belled pier foundation 钻孔墩基础钻孔墩基础 drilled-pier foundation 钻孔扩底墩钻孔扩底墩3)precast concrete pile 预制混凝土桩预制混凝土桩4)steel pile 钢桩钢桩 steel pipe pile 钢管桩钢管桩 steel sheet pile 钢板桩钢板桩5)prestressed concrete pile 预应力混凝土桩预应力混凝土桩 prestressed concrete pipe pile 预应力混凝土管桩预应力混凝土管桩2.caisson foundation 沉井(箱)沉井(箱)3.diaphram wall 地下连续墙地下连续墙 截水墙截水墙4.friction pile 摩擦桩摩擦桩5.end-bearing pile 端承桩端承桩6.shaft 竖井;桩身竖井;桩身 8.pile caps 承台(桩帽)承台(桩帽)9.bearing capacity of single pile 单桩承载力单桩承载力 teral pile load test 单桩横向载荷试验单桩横向载荷试验 11.ultimate lateral resistance of single pile 单桩横向极限承载力单桩横向极限承载力13.vertical allowable load capacity 单桩竖向容许承载力单桩竖向容许承载力14.low pile cap 低桩承台低桩承台 15.high-rise pile cap 高桩承台高桩承台16.vertical ultimate uplift resistance of single pile 单桩抗拔极限承载力单桩抗拔极限承载力17.silent piling 静力压桩静力压桩 18.uplift pile 抗拔桩抗拔桩 19.anti-slide pile 抗滑桩抗滑桩20.pile groups 群桩群桩21.efficiency factor of pile groups 群桩效率系数(η) 22.efficiency of pile groups 群桩效应群桩效应 23.dynamic pile testing 桩基动测技术桩基动测技术24.final set 最后贯入度最后贯入度 27.pile head=butt 桩头桩头 28.pile tip=pile point=pile toe 桩端(头)桩端(头)29.pile spacing 桩距桩距 30.pile plan 桩位布置图桩位布置图 31.arrangement of piles =pile layout 桩的布置桩的布置32.group action 群桩作用群桩作用 33.end bearing=tip resistance 桩端阻桩端阻34.skin(side) friction=shaft resistance 桩侧阻桩侧阻 35.pile cushion 桩垫桩垫 36.pile driving(by vibration) (振动)打桩(振动)打桩 37.pile pulling test 拔桩试验拔桩试验 38.pile shoe 桩靴桩靴 八. 地基处理--ground treatment2.cushion 垫层法垫层法3.preloading 预压法预压法4.dynamic compaction 强夯法强夯法5.dynamic compaction replacement 强夯置换法强夯置换法6.vibroflotation method 振冲法振冲法7.sand-gravel pile 砂石桩砂石桩 8.gravel pile(stone column)碎石桩碎石桩9.cement-flyash-gravel pile(CFG)水泥粉煤灰碎石桩水泥粉煤灰碎石桩 10.cement mixing method 水泥土搅拌桩水泥土搅拌桩 11.cement column 水泥桩水泥桩 12.lime pile (lime column)石灰桩石灰桩 13.jet grouting 高压喷射注浆法高压喷射注浆法14.rammed-cement-soil pile 夯实水泥土桩法夯实水泥土桩法 15.lime-soil compaction pile 灰土挤密桩灰土挤密桩 lime-soil compacted column 灰土挤密桩灰土挤密桩 lime soil pile 灰土挤密桩灰土挤密桩16.chemical stabilization 化学加固法化学加固法 17.surface compaction 表层压实法表层压实法18.surcharge preloading 超载预压法超载预压法 19.vacuum preloading 真空预压法真空预压法21.geofabric ,geotextile 土工织物土工织物 posite foundation 复合地基复合地基23.reinforcement method 加筋法加筋法 24.dewatering method 降低地下水固结法降低地下水固结法26.expansive ground treatment 膨胀土地基处理膨胀土地基处理27.ground treatment in mountain area 山区地基处理山区地基处理28.collapsible loess treatment 湿陷性黄土地基处理湿陷性黄土地基处理 29.artificial foundation 人工地基人工地基30.natural foundation 天然地基天然地基 31.pillow 褥垫褥垫 32.soft clay ground 软土地基软土地基 33.sand drain 砂井砂井 34.root pile 树根桩树根桩 35.plastic drain 塑料排水带塑料排水带九. 固结consolidation1.Terzzaghi ’s consolidation theory 太沙基固结理论太沙基固结理论2.Barraon ’s consolidation theory 巴隆固结理论巴隆固结理论3.Biot ’s consolidation theory 比奥固结理论比奥固结理论4.over consolidation ration (OCR)超固结比超固结比5.overconsolidation soil 超固结土超固结土6.excess pore water pressure 超孔压力超孔压力7.multi-dimensional consolidation 多维固结多维固结 8.one-dimensional consolidation 一维固结一维固结9.primary consolidation 主固结主固结 10.secondary consolidation 次固结次固结11.degree of consolidation 固结度固结度 15.coefficient of consolidation 固结系数固结系数16.preconsolidation pressure 前期固结压力前期固结压力 17.principle of effective stress 有效应力原理有效应力原理18.consolidation under K0 condition K0固结固结十. 抗剪强度shear strength1.undrained shear strength 不排水抗剪强2.residual strength 残余强度残余强度3.long-term strength 长期强度长期强度4.peak strength 峰值强度峰值强度5.shear strain rate 剪切应变速率剪切应变速率6.dilatation 剪胀剪胀7.effective stress approach of shear strength 剪胀抗剪强度有效应力法剪胀抗剪强度有效应力法8.total stress approach of shear strength 抗剪强度总应力法抗剪强度总应力法 9.Mohr-Coulomb theory 莫尔-库仑理论莫尔-库仑理论 10.angle of internal friction 内摩擦角内摩擦角11.cohesion 粘聚力粘聚力 12.failure criterion 破坏准则破坏准则13.vane strength 十字板抗剪强度十字板抗剪强度 14.unconfined compression 无侧限抗压强度无侧限抗压强度15.effective stress failure envelop 有效应力破坏包线有效应力破坏包线16.effective stress strength parameter 有效应力强度参数有效应力强度参数十一. 本构模型--constitutive model1.elastic model 弹性模型弹性模型2.nonlinear elastic model 非线性弹性模型非线性弹性模型3.elastoplastic model 弹塑性模型弹塑性模型4.viscoelastic model 粘弹性模型粘弹性模型5.boundary surface model 边界面模型边界面模型6.Duncan-Chang model 邓肯-张模型邓肯-张模型7.rigid plastic model 刚塑性模型刚塑性模型 8.cap model 盖帽模型盖帽模型 9.work softening 加工软化加工软化10.work hardening 加工硬化加工硬化 11.Cambridge model 剑桥模型剑桥模型 12.ideal elastoplastic model 理想弹塑性模型理想弹塑性模型13.Mohr-Coulomb yield criterion 莫尔-库仑屈服准则莫尔-库仑屈服准则 14.yield surface 屈服面屈服面15.elastic half-space foundation model 弹性半空间地基模型弹性半空间地基模型16.elastic modulus 弹性模量弹性模量 17.Winkler foundation model 文克尔地基模型文克尔地基模型 十二. 地基承载力--bearing capacity of foundation soil1.punching shear failure 冲剪破坏冲剪破坏2.general shear failure 整体剪切破化整体剪切破化3.local shear failure 局部剪切破坏局部剪切破坏4.state of limit equilibrium 极限平衡状态极限平衡状态5.critical edge pressure 临塑荷载临塑荷载6.stability of foundation soil 地基稳定性地基稳定性7.ultimate bearing capacity of foundation soil 地基极限承载力地基极限承载力8.allowable bearing capacity of foundation soil 地基容许承载力地基容许承载力十三. 土压力--earth pressure1.active earth pressure 主动土压力主动土压力2.passive earth pressure 被动土压力被动土压力3.earth pressure at rest 静止土压力静止土压力4.Coulomb ’s earth pressure theory 库仑土压力理论库仑土压力理论5.Rankine ’s earth pressure theory 朗金土压力理论朗金土压力理论十四. 土坡稳定分析--slope stability analysis1.angle of repose 休止角休止角 3.safety factor of slope 边坡稳定安全系数边坡稳定安全系数5.Swedish circle method 瑞典圆弧滑动法瑞典圆弧滑动法6.slices method 条分法条分法十五. 挡土墙--retaining wall1.stability of retaining wall 挡土墙稳定性挡土墙稳定性2.foundation wall 基础墙基础墙3.counter retaining wall 扶壁式挡土墙扶壁式挡土墙4.cantilever retaining wall 悬臂式挡土墙悬臂式挡土墙5.cantilever sheet pile wall 悬臂式板桩墙悬臂式板桩墙6.gravity retaining wall 重力式挡土墙重力式挡土墙7.anchored plate retaining wall 锚定板挡土墙锚定板挡土墙 8.anchored sheet pile wall 锚定板板桩墙锚定板板桩墙 十六. 板桩结构物--sheet pile structure1.steel sheet pile 钢板桩钢板桩2.reinforced concrete sheet pile 钢筋混凝土板桩钢筋混凝土板桩3.steel piles 钢桩钢桩4.wooden sheet pile 木板桩木板桩5.timber piles 木桩木桩十七. 浅基础--shallow foundation1.box foundation 箱型基础箱型基础2.mat(raft) foundation 片筏基础片筏基础3.strip foundation 条形基础条形基础4.spread footing 扩展基础扩展基础pensated foundation 补偿性基础补偿性基础6.bearing stratum 持力层持力层7.rigid foundation 刚性基础刚性基础 8.flexible foundation 柔性基础柔性基础9.embedded depth of foundation 基础埋置深度基础埋置深度 foundation pressure 基底附加应力基底附加应力11.structure-foundation-soil interaction analysis 上部结构-基础-地基共同作用分析上部结构-基础-地基共同作用分析 十八. 土的动力性质--dynamic properties of soils1.dynamic strength of soils 动强度动强度2.wave velocity method 波速法波速法3.material damping 材料阻尼材料阻尼4.geometric damping 几何阻尼几何阻尼5.damping ratio 阻尼比阻尼比6.initial liquefaction 初始液化初始液化7.natural period of soil site 地基固有周期地基固有周期8.dynamic shear modulus of soils 动剪切模量动剪切模量 9.dynamic magnification factor 动力放大因素动力放大因素10.liquefaction strength 抗液化强度抗液化强度 11.dimensionless frequency 无量纲频率无量纲频率12.evaluation of liquefaction 液化势评价液化势评价 13.stress wave in soils 土中应力波土中应力波14.dynamic settlement 振陷(动沉降)振陷(动沉降)十九. 动力机器基础动力机器基础1.equivalent lumped parameter method 等效集总参数法等效集总参数法2.dynamic subgrade reaction method 动基床反力法动基床反力法3.vibration isolation 隔振隔振4.foundation vibration 基础振动基础振动5.elastic half-space theory of foundation vibration 基础振动弹性半空间理论基础振动弹性半空间理论6.allowable amplitude of foundation 基础振动容许振幅基础振动容许振幅7.natural frequency of foundation 基础自振频率基础自振频率二十. 地基基础抗震地基基础抗震1.earthquake engineering 地震工程地震工程2.soil dynamics 土动力学土动力学3.duration of earthquake 地震持续时间地震持续时间4.earthquake response spectrum 地震反应谱地震反应谱5.earthquake intensity 地震烈度地震烈度6.earthquake magnitude 震级震级7.seismic predominant period 地震卓越周期地震卓越周期8.maximum acceleration of earthquake 地震最大加速度地震最大加速度二十一. 室内土工实验室内土工实验1.high pressure consolidation test 高压固结试验高压固结试验2.consolidation under K0 condition K0固结试验固结试验3.falling head permeability 变水头试验变水头试验4.constant head permeability 常水头渗透试验常水头渗透试验5.unconsolidated-undrained triaxial test 不固结不排水试验(UU)6.consolidated undrained triaxial test 固结不排水试验(CU)7.consolidated drained triaxial test 固结排水试验(CD) paction test 击实试验击实试验9.consolidated quick direct shear test 固结快剪试验固结快剪试验 10.quick direct shear test 快剪试验快剪试验11.consolidated drained direct shear test 慢剪试验慢剪试验 12.sieve analysis 筛分析筛分析 13.geotechnical model test 土工模型试验土工模型试验 14.centrifugal model test 离心模型试验离心模型试验15.direct shear apparatus 直剪仪直剪仪 16.direct shear test 直剪试验直剪试验17.direct simple shear test 直接单剪试验直接单剪试验 18.dynamic triaxial test 三轴试验三轴试验19.dynamic simple shear 动单剪动单剪 20.free (resonance )vibration column test 自(共)振柱试验振柱试验 二十二. 原位测试原位测试1.standard penetration test (SPT)标准贯入试验标准贯入试验2.surface wave test (SWT)表面波试验表面波试验3.dynamic penetration test(DPT)动力触探试验动力触探试验4.static cone penetration (SPT) 静力触探试验静力触探试验5.plate loading test 静力荷载试验静力荷载试验teral load test of pile 单桩横向载荷试验单桩横向载荷试验7.static load test of pile 单桩竖向荷载试验单桩竖向荷载试验 8.cross-hole test 跨孔试验跨孔试验9.screw plate test 螺旋板载荷试验螺旋板载荷试验 10.pressuremeter test 旁压试验旁压试验11.light sounding 轻便触探试验轻便触探试验 12.deep settlement measurement 深层沉降观测深层沉降观测13.vane shear test 十字板剪切试验十字板剪切试验 14.field permeability test 现场渗透试验现场渗透试验15.in-situ pore water pressure measurement 原位孔隙水压量测原位孔隙水压量测 16.in-situ soil test 原位试验原位试验。
0引言自1988年我国第一条高速公路沪嘉高速通车以来,高速公路建设经历了长足的发展,截至2022年底,我国高速公路总里程已达到17.73万公里,已是经济社会发展的重要支撑。
然而,高速公路的建设和管理也面临着各种自然和人为的风险和挑战,尤其是在地质条件复杂的山区和丘陵地带,高速公路边坡的稳定性问题成为一个亟待解决的难题。
高速公路边坡滑坡是一种常见的地质灾害,其发生频率较高(图1),危害程度较大,影响范围较广,对生命财产安全、交通运输、环境保护等方面都有严重的影响,目前仍是我们所必须面对的重大威胁。
高速公路边坡滑坡防治是一项复杂而艰巨的工程任务,需要综合考虑地质、水文、气候、工程、经济等多方面因素,采取科学合理的技术措施和管理措施,以保证边坡的安全稳定。
为此,国内外许多学者为应对边坡滑坡灾害做了大量研究:袁维[1]等人提出了一种多源数据“融合-预测-预警”的三步式滑坡监测预警方法,针对阶跃型滑坡的变形特征,分别采用经验模态分解法、滑动多项式拟合法、随机森林算法和斜率变点分析法,对滑坡的综合变形进行分解、预测和预警,并以向家坝水库某滑坡体为例,验证了该方法的可行性和有效性。
李琦[2]等人设计了一种滑坡地质灾害远程无线实时预警监测系统,采用北斗卫星定位、无线传感器网络和人工智能技术,实现了滑坡的精准定位、实时监测、智能预警和远程管理。
杨诗诗[3]等人以三峡库区为研究区,基于专业监测数据,建立了降雨型滑坡预警雨量阈值的计算方法,并分析了不同类型滑坡的预警雨量阈值与降雨特征的关系。
唐尧[4]等人利用国产高分辨率遥感数据,对四川省攀西地区的滑坡灾害进行了孕灾致灾演变及周期监测分析,提出了基于遥感技术的滑坡灾害智能预警分析方法,为滑坡灾害的防治提供了科学依据。
熊弢[5]等人利用现场调查、室内试验和数值模拟等方法,分析了云南省普贤乡场滑坡的地质构造、地形地貌、岩土力学特性、滑动机制和稳定性,提出了滑坡的成因类型和防治对策。
吉林省地方标准DB××/T ×××—2016吉林省卫星导航定位基准站数据处理规范Specifications of data processing for GNSS reference stations(征求意见稿)××××-××-××发布××××-××-××实施吉林省质量技术监督局吉林省测绘地理信息局联合发布目次1 范围和意义 (1)2 规范性引用文件 (1)3 术语和定义 (1)3.1 国际卫星导航定位服务INTERNATIONAL GNSS SERVICE;IGS (1)3.2 国际地球自转和参考框架维持服务组织INTERNATIONAL EARTH ROTATION SERVICE;IERS 13.3 测绘基准SURVEYING AND MAPPING DATUM (1)3.4 国际天球参考系INTERNATIONAL CELESTIAL REFERENCE SYSTEM;ICRS (2)3.5 国际地球参考系INTERNATIONAL TERRESTRIAL REFERENCE SYSTEM;ITRS (2)3.6 国际地球参考框架INTERNATIONAL TERRESTRIAL REFERENCE FRAME;ITRF (2)3.7 岁差AXIAL PRECESSION (2)3.8 章动NUTATION (2)3.9 极移POLAR MOTION (3)3.10 日长变化VARIATIONS OF LENGTH OF DAY (3)3.11 世界时UNIVERSAL TIME;UT (3)3.12 地球旋转参数EARTH ROTATION PARAMETERS;ERP (3)3.13 地球定向参数EARTH ORIENTATION PARAMETERS;EOP (3)3.14 与接收机无关的交换格式RECEIVER INDEPENDENT EXCHANGE FORMAT;RINEX (3)3.15 与解无关的交换格式SOLUTION INDEPENDENT EXCHANGE FORMAT;SINEX (3)3.16 连续运行基准站CONTINUOUSLY OPERATING REFERENCE STATIONS;CORS (3)3.17 观测时段OBSERVATION SESSION (4)3.18 平均相位中心AVERAGE PHASE CENTER (4)3.19 天线参考点ANTENNA REFERENCE POINT;ARP (4)3.20 天线相位中心偏差PHASE CENTER OFFSET;PCO (4)3.21 天线相位中心变化PHASE CENTER VARIATION;PCV (4)3.22 单天解DAILY SOLUTION (4)3.23 基线解BASELINE SOLUTION (4)3.24 测站坐标时间序列COORDINATE TIME SERIES OF STATIONS (4)3.25 测站速度场VELOCITY FIELD OF STATIONS (4)4 坐标参考框架 (4)4.1 ITRF2008 (4)4.2 CGCS2000 (4)4.3 1980西安坐标系 (5)4.4 1954年北京坐标系 (5)5 原始观测数据整理与数据预处理 (6)5.1 数据格式 (6)5.2 观测值类型 (6)5.3 数据整理 (6)5.4 质量检查 (6)6 单天解 (6)6.1 数据处理软件 (6)6.2 一般原则 (7)6.3 解算设置及质量评定 (8)6.4 单天解结果文件格式 (11)7 多天解综合及其基准定义 (11)7.1 数据处理软件 (12)7.2 松弛解 (12)7.3 多天解综合 (12)7.4 基准定义 (12)7.5 成果文件格式 (13)8 基准站坐标时间序列获取 (13)8.1 基准站坐标时间序列生成 (13)8.2 基准站时间序列预处理 (13)8.3 基准站时间序列分析 (13)9 基准站运动速度场 (14)9.1 预处理 (14)9.2 速度场计算 (14)10 参考框架间转换关系的确定 (14)10.1 GCGS2000框架与ITRF系列框架的转换 (14)10.2 GCGS2000框架与二维坐标系的转换 (15)11 提交的成果 (17)12 附录A (19)13 附录B (20)前言卫星导航定位基准站不仅是支撑全球和国家坐标参考框架的基础设施,也是提供导航位置服务应用的系统平台,还是揭示和认知固体地球物理变化等地球科学研究的一种重要观测手段。
01. 总论01.001 土壤 soil陆地表面由矿物质、有机物质、水、空气和生物组成,具有肥力,能生长植物的未固结层。
01.002 土壤学 soil science研究土壤的形成、分类、分布、制图和土壤的物理、化学、生物学特性、肥力特征以及土壤利用、改良和管理的科学。
01.003 发生土壤学 pedology侧重研究土壤的发生、演化、特性、分类、分布和利用潜力的土壤学。
土壤学名词01. 总论01.001 土壤 soil陆地表面由矿物质、有机物质、水、空气和生物组成,具有肥力,能生长植物的未固结层。
01.002 土壤学 soil science研究土壤的形成、分类、分布、制图和土壤的物理、化学、生物学特性、肥力特征以及土壤利用、改良和管理的科学。
01.003 发生土壤学 pedology侧重研究土壤的发生、演化、特性、分类、分布和利用潜力的土壤学。
01.004 耕作土壤学 edaphology侧重研究土壤的组成、性质及其与植物生长的关系,通过耕作管理提高土壤肥力和生产能力的土壤学。
01.005 土壤地理[学] soil geography研究土壤的空间分布和组合及其地理环境相互关系的学科。
01.006 土壤物理[学] soil physics研究土壤中物理现象或过程的学科。
01.007 土壤化学 soil chemistry研究土壤中各种化学行为和过程的学科。
01.008 土壤生物化学 soil biochemistry阐明土壤有机碳和氮素等物质的转化、消长规律及其功能的学科。
01.009 土壤矿物学 soil mineralogy研究土壤中原生矿物和次生矿物的类型、性质、成因、转化和分布的学科。
01.010 农业化学 agrochemistry研究植物营养、土壤养分、肥料性质和施用技术及其相互关系的学科。
在广义上也包括农产品加工酿造等。
01.011 土壤分析化学 soil analytical chemistry研究用化学方法和原理测定土壤成分和性质的技术学科。
刚度力椭球及刚度椭球
刚度(stiffness)是指物体对外力作用的反应强度,也可以理解为物体抵抗变形的能力。
在力学中,刚度通常用刚度系数来表示,单位是牛顿/米或牛顿/弧度。
刚度椭球(stiffness ellipsoid)是用来描述物体刚度特性的可视化工具。
它的形状是一个椭球,表示了物体在不同方向上的刚度值。
这个椭球的主要轴与物体的主要刚度方向一致,而轴的长度则表示了在该方向上的刚度值。
因此,椭球越短胖,表示物体在该方向上的刚度越大;椭球越扁平,表示物体在该方向上的刚度越小。
力椭球(force ellipsoid)是与刚度椭球相对应的概念。
它描述了在给定外力作用下,物体上产生的应力分布情况。
力椭球的形状与刚度椭球相似,但是轴的长度表示的是对应方向上的应力值。
刚度椭球和力椭球的概念通常应用于结构力学中,用于分析和设计各种结构的刚度和应力分布。
通过了解刚度椭球和力椭球的形状和特性,可以得出有关结构性能的重要信息,从而优化结构设计。
Value Engineering1概述建筑垃圾的产生随着城市建设的不断发展越来越多。
据统计,目前全国的建筑废弃物总量已经占到城市废弃物总量的30%~40%,新产生的建筑废弃物总量也颇为庞大。
这些建筑垃圾基本都是占用大量土地资源,直接运到郊外露天堆放或填埋,且会严重污染当地环境,没有经过任何处理。
因此,建筑垃圾处理成为国家一贯强调环保的大前提下重点治理的问题。
既能解决环境污染问题,又能合理利用这些资源,取得一定的经济效益,如何利用建筑垃圾使之变废为宝,这是一个颇具深意的课题,因而具有十分重要的现实意义。
[1]结合工程实际,拟使用建筑再生料作为道路基层填筑材料,不仅可以大量减少由于建筑垃圾倾倒对土地资源的占用,也可帮助政府解决部分废料处理问题,同时可降低相应的工程造价[2]。
本文以常见的水泥稳定碎石基层为基础,探索一种新型的环保型固化再生碎石土基层,将建筑再生料资源化利用,推动建设绿色环保公路发展。
2技术背景通过业内咨询,了解到一种新型的环保型固化土基层可来替代老路基层。
通过详细了解,业内某单位对此种新型固化土进行试验,简述如下:将100m 路基处理采用粉剂及水剂固化剂替换原路基处理的40cm 碎石层+40cm石灰土做法,替换后为50m 采用30cm 建筑旧料+30cm 环保型材料固化土层、50m 采用40cm 建筑旧料+20cm 环保型材料固化土层,剩余100m 采用原设计做法。
从压实度、弯沉值和7d 无侧限抗压强度这三项试验结果与水泥稳定碎石基层力学性能指标进行对比分析,可知新型固化土基层在压实度和弯沉值指标上可与水稳基层相媲美,而7d 无侧限抗压强度仍有不足。
因此,本文以常用的水泥稳定碎石基层力学性能指标为依据,针对7D 无侧限抗压强度不足的问题,通过不同土样配合比的试验,确定新型环保固化再生碎石基层的最优配合比,从而达到作为道路基层的性能要求,通过试验探索出一种新的环保型固化再生碎石土基层。
东南大学学报(自然科学版-第56卷第6期2626年4月Vol.50No.6 Noe.2622JOURNAL OF SOUTHEAST UNIVERSITY(Natural Sci/cc Editioy)DOI:1.3969/T issn.1621-25092222.6561成层地基土中群桩挤土效应现场试验研究简万星丁建文黄聪丁诚(东南大学交通学院,南京21149)摘要:为探究沉桩挤土效应的空间分布规律,开展了预制方桩群桩锤击施工的现场试验研究.针对群桩贯入产生的超孔隙水压力与土体深层水平位移进行测试分析,并结合深厚淤泥软土层下卧粉砂粉土互层的上软下硬地层条件,研究了土层性质、沉桩速率、结构损伤等要素对成层地基土中挤土效应的影响机理.结果表明,深厚淤泥土层中超孔隙水压力随深度近似线性增大,可达有效上覆压力的1.51倍,孔压消散速率极为缓慢,休止39d后仍残余59%以上•下卧粉砂粉土互层中超孔隙水压力峰值明显较低,随深度变化无明显线性规律,且孔压消散迅速,休止2d后即可消散95%以上.由于上软下硬的地层分布形式,土体深层水平位移曲线表现出上大下小的特征,在软硬土层交界面处变形易发生突变.群桩锤击施工对土体结构的扰动损伤导致休止期土体的侧向回移速率明显滞后于孔压的消散速率.关键词:挤土效应;成层土;超孔隙水压力;土体水平位移;结构损伤中图分类号:TU446文献标志码:A 文章编号:161-6505(2222)67B797-07FielO test resecrcO on compaction effect)during iestallation ol greup pilet ie layered soiitWan Xing Ding Jianwen Huoig Cong Ding Ch/g(School of TransporWOon,SonUeast University,Naiyino411189,China)Abstreci:To explore Ue spatici disdidution Uw of Ue compaction effects during pile instalUtion, field tests were carried out on hammering instalUtion of group precast squoe piles.The excess pore water pussure(EPWP)as w/i as the lateral soil deformation induced by instalUtion of precast piles were dochmexteX and analyzed.T terms of the pobculo soil cobdikons where silty-sandy layers un-derlia deep muddy clay,the effects of Ue soil properties;the pile instalUtion speed and the disturU-ance of the soil strccture on Ue compaction effects in layered soil foundatiop were cloified.The results show that the EPWP increases Uneoly with the increase of Ue depU in deep mucky clay wiU the maximum velue of1.61times the effective vertical stress.The dissinatiop rate of the EPWP is very slow with more Wan a half of residual EPWP after36d rest.T contrast,the peak velue of Ue EPWP is obviously lower in the silty-sandy layers.The linear Uw cannot be observed in deep muddy clay.The EPWP dissinates fast in Ue silty-sandy layers wiU Ue dissinatiop ratio of more than95% after2d rest.With vertical soil distridu/on feOured by upper-soft and lower-hoU,the curve of lateral soil deformation along the d/U shows loge upwoU and small downwoU.A sudden change of lateral deformation tends to occur at the interface between the soft layers and the hob layers.The rate of the lateral return deUecUop of soils is obviously slower Uo that of the EPWP dissinOion because of Ue bisUrUaoce of the soil strccture induced by pile driving.Key wond:compcchon effects;layered soils;excess pore water pussura;lateral soil deformation;disturUova of soil strccture收稿日期:2622B5B4.作者简介:万星(1294—),男,博士生;丁建文(联系人-男,博士,副教授,博士生导师-.0-0@sec.edb.co.基金项目:国家自然科学基金资助项目(5197849)、十二五”国家科技支撑计划资助项目(264BAB67B02).引用本文:万星,丁建文,黄聪,等•成层地基土中群桩挤土效应现场试验研究J]东南大学学报(自然科学版)—626—2(9):1296-1692.DOT:62.8969/(.issn.1221-2505.2222.62.84.第6期万星,等:成层地基土中群桩挤土效应现场试验研究1791预制桩打入地基土中需排开相同体积的土体,施打过程中桩与土体发生剧烈的挤压剪切作用,从而改变了土体的天然应力状态,在地基土中产生较高的超孔隙水压力及土体位移.当布桩密度较大或施工速率过快时,易造成超孔隙水压力的过量集聚,并产生较大的土体位移,从而妨碍后续施工的进行,对已打入的预制桩及周围构筑物、管线等均会造成不利影响或破坏r5/,软土地区群桩挤土效应导致的工程事故频发•有关预制桩挤土效应产生机理及表现形式的研究由来已久.Vesie[2]采用相关联流动的Monr-golomb屈服准则,给出了均质可压缩理想弹塑性土的圆孔扩张问题的基本解,从力学角度提供了预制桩沉桩挤土效应的机理解释•唐世栋等对单桩贯入引起的超孔隙水压力开展现场测试,发现超孔隙水压力随径向距离增加呈对数关系衰减.已有研究大多针对均质地基土中的沉桩问题,并且侧重于同一深度处孔隙水压力及土体位移沿径向分布规律的探讨•然而,沉桩挤土效应是一个复杂的空间问题,采用平面应变分析方法存在很大缺陷I7〕.工程实践中经常出现上软下硬、上硬下软或软硬互层等非均质土层分布情况,此类地层中的挤土效应沿深度方向往往具有特别的空间分布规律•如鹿群等J0]通过数值模拟方法指出成层地基土中软硬交界处土体位移加大,挤压应力发生剧变,出现应力间断的现象.李镜培等J1]通过室内模型试验,研究了成层地基中模型桩在整个沉桩过程中的挤土效应,揭示了桩周不同位置特别是软硬土层交界处土体位移的变化规律•这些文献主要从数值模拟与模型试验2个角度对成层土地基中的沉桩挤土效应进行了探讨,有关成层地基土中挤土效应的现场试验研究则较为缺乏.本文依托连云港地区某风电试桩项目,开展大面积预制方桩锤击贯入的现场试验研究,针对深厚淤泥层下卧粉砂粉土互层的上软下硬特殊地层条件,分析了成层地基土中挤土效应的空间分布规律,为类似地层条件下的沉桩施工建设提供参考. 1工程概况现场试验依托连云港和风灌西17°MW风电场试桩项目展开•试桩区主要为农田及鱼塘,地形较为平坦,区域地貌单元主要为海积平原,场址区上部分布约17m深的淤泥软土层,其工程性质较差.孔隙潜水主要赋存于上部软弱土层中,地下水位埋深为437~477m.场地下部土层主要为粉土及粉砂互层,土层分布及相应的物理力学指标见表4由表可知,试桩场地土层呈现显著的上软下硬分布特征表1土层物理力学参数统计表地层名称含水率液限塑限重度固快黏聚力固快内摩擦角压缩模量p/%p L%Wp/%y/(kN•m-)c//Pa卩/(°)E t/MPa①素填土17.5②淤泥质黏土54344.520.416.416.70709③淤泥57.547.308.516.49.741 4.1④粉质黏土夹粉砂28.223.417.418.741.715.707⑤粉砂20.316.54.734.710.7⑥粉质黏土夹粉土2/.034.522.516.722.715.47.7⑦粉砂夹粉土45.016.5584310.5⑧粉质黏土夹粉砂22.838.816.718.720.715.708考虑到海相土的腐蚀性,本电场试桩工程选用55°mm x55°mm预应力实心方桩,打桩施工总数共计4根,其中T1~T7为静载试桩,M1-M18为锚桩.试桩T1~T3、M12~M13的桩长为32m,其余桩桩长均为22m.试桩T9~T6、锚桩M1~M11以土层⑦为持力层,试桩T1~T3、锚桩M17~M18以土层⑧为持力层•桩位布置均匀,打桩面积覆盖率为7.77%.施工设备采用D47型柴油锤,预制桩均分为两节锤击贯入,沉桩工况记录见表2.2测点埋设如图1所示,在桩群的不同位置处钻孔并记为表2主要沉桩施工工况沉桩日期沉桩龄期/n沉桩编号2717L5L81M15,M7,M11,M172717L5L58M9,T5,T7,M10,T82717L5L75M5,M3,T4,M8,T0,M42717L5L36T1,M/,M1,M7测孔B1~B3.沿地基土不同深度处布设振弦式孔压计,通过不同的平面位置与深度位置研究超孔隙水压力的空间分布规律[1,610],孔压计的埋深及其对应的土层剖面见图2.埋设前先排净孔压计透水石内的气泡,将孔压计压至埋设深度,将导线引至孔口以测定频率,随后上部用黏土球进行封堵•在ht/://jouoal.sex.e/192东南大学学报(自然科学版)第57卷场地的最西侧及东南侧布设测斜管,分别记为CX4 CX2,测斜管埋深为44 A 轴与B 轴为测斜管中垂直的槽口方向,B 轴朝向正北.m.▲孔压测点•深层水平位移测点图4桩位及观测点布置图(单位:mm )l 2 971l 2 971 l 22002200i [2 971」[2 971,1 1 11 1f 1①杂填土由图4可见,在上部淤泥土中,超孔隙水压力 随深度增加近似线性增大,这主要是由于地基土的初始应力以及不排水抗剪强度等随深度增加而增 长所致1—4].下部粉砂粉土互层渗透性明显较强,测孔B1B3的超孔隙水压力在1 m 深度处(软硬土层交界面)开始衰减,超孔隙水压力要明显低于 上部淤泥层•测孔B2则呈现了不同的竖向分布规 律,超孔隙水压力峰值产生于4 m J ④粉质黏土夹粉砂层)处,这与初始地应力、沉桩施工速率密切 相关,下卧粉砂粉土互层中初始地应力较高,且距离测孔B2最近的4根预制桩均在第5 d 打入,周 围土体的初始应力场急剧改变,因此,尽管土体的 渗透系数较大,但仍产生了较高的超孔隙水压力. 由此可见,同一平面位置处沉桩产生的超孔隙水压力与地基土初始应力、土体渗透系数、沉桩速率等 因素均有关,是一个复杂的空间问题•鉴于沉桩施工速率对超孔隙水压力的峰值有着很大的影响,合理控制施工速率有助于抑制超孔隙水压力的短时 间集聚上升.由于超孔隙水压力与初始地应力密切相关,采 用归一化指标超孔压比e (即超孔隙水压力u 与有3测试结果与分析3.1超孔隙水压力的产生图3为测孔B1各深度处超孔隙水压力随时间的变化曲线.由图可知,施工前4 d 超孔隙水压 力上升缓慢,存在一定波动;第5 d 沉桩桩位靠近B1测孔,不同深度土体中超孔隙水压力均迅速上 升,其中最大值为45 kPa,位于1 m 深度处;第2d 尽管仍有部分桩体贯入,但由于远离测孔,超孔隙水压力峰值已开始回落,说明平面径向距离是影响超孔隙水压力大小的首要因素;20 d 后,浅层土 体的超孔隙水压力轻微上升,这与静载试验时大型设备的进场碾压等因素有关•htU ://jonrnci. sex. edb. us图4淤泥土粉砂粉 上互层超孔隙水压力/kPa卩 50100 150 200 250最大超孔隙水压力沿深度分布曲线第6期万星,等:成层地基土中群桩挤土效应现场试验研究1093效上覆压力只的比值)来反映超孔隙水压力的应 力水平[0].由图5可知,上部深厚淤泥土层中超孔隙水压力最大可达有效上覆压力的1.7 1倍•其中, 浅层土中超孔压比明显较大,这与浅部硬壳层的强 结构性有关J 5].随深度增加,淤泥土的胶结强度逐渐增大,超孔压比也增大•土体结构性越强,沉桩产生的超孔隙水压力越大,这是因为锤击施工的挤压 剪切作用导致土体中天然胶结成分破坏,对超孔压的抑制能力明显减弱[6].下部粉砂与粉土夹层中 土体的强渗透性会导致超孔隙水压力迅速消散,挤 土效应相比上部淤泥层明显较弱,超孔压比较低,且分布离散超孔压比沿深度变化曲线▲测孔B3(数据点) —— 测孔Bl (拟合线) 测孔B2(拟合线) ——测孔B3(拟合线)图55淤泥丄1015「丄互层2025■测孔Bl (数据点)•测孔B2(数据点)3・2超孔隙水压力的消散图2对比了测孔B1的不同深度超孔隙水压 力的消散情况,其中超孔压消散率k 定义为式中,u °为沉桩完成时超孔隙水压力的消散初始值;U 为沉桩完成后任意时刻的超孔隙水压力.&&M 溢B m g ®由图2可知,深厚淤泥层中超孔隙水压力的消 散速度缓慢,休止34 O 后超孔压消散率低于54% ,其中,8m 深度处超孔隙水压力的消散速度最慢,34 O 后k 仅为32 . 8% ,这是因为8 m 深度位于淤 泥土层的中部,径向消散速率与竖向消散速率均很 慢•此外,超孔压消散曲线在消散初期易发生突变,一日内超孔压可消散20% ~80% ,随后曲线趋于 平缓;究其原因在于,淤泥层中超孔隙水压力峰值 接近或大于有效上覆压力或有效侧压力时,土体会发生水力压裂现象口18.,地基土中产生水平或竖 向裂缝,形成良好的排水通道,超孔隙水压力迅速 消散,而当超孔隙水压力消散至较低应力水平时,排水通道逐渐闭合,超孔隙水压力的消散又趋于缓慢•相比之下,在下卧粉砂粉土互层中,由于渗透系数较大,超孔隙水压力消散迅速,2 O 后超孔压消 散率均在95%以上,可认为已基本消散完全.淤泥土中超孔隙水压力的消散情况见图7.由图可知,休止4 O 时,不同深度超孔压的消散率为25%〜54 %;休止30 O 时,消散率仅稍有增大;休止4〜30 O 阶段内,超孔隙水压力的消散率不足4%,消散速率缓慢•这一方面是由于水力压裂导致超孔隙水压力的消散具有显著的先快后慢特征;另一方面也与连云港海相软黏土的强结构性特征有关[4],预制桩锤击施工破坏了原状土的天然结构,土体屈服后孔隙比急剧降低,渗透系数大幅度衰减*]・20I超孔压消散率/%30 40 50 60休止时间/d :□ 10■ 30图7淤泥土中超孔隙水压力的消散图□ □3.3 土体深层水平位移图8为测孔CX1处垂直2个方向的土体深层水平位移曲线.其中,土体水平位移通过自下而上 累加得到.由图可知,土体朝向西南方向发生偏移,A 轴』轴2个方向上深层水平位移的大小及分布ht/://jopoa-. sen. e/o. cn194东南大学学报(自然科学版)第57卷较为相似.由于桩位布置具有南北对称性,南北万 向的位移可能是由沉桩施工的遮帘作用导 致[23一24],也可能是因为埋设测斜管时槽口方向存在偏差.(a ) A 轴方向水平位移/mm施工时间/d :(b ) B 轴方向图8 土体水平位移随深度变化曲线施工时间/d :—1—3-^-13x 21—沉桩方fcr 前随着沉桩桩位靠近,土体水平位移逐渐增加, 施工第5 d 时,土体位移发生突变,地表水平位移增大约20 mm,这与超孔隙水压力的突变时间相吻 合.在1〜1 m 深度处,水平位移自下而上急剧增大,此深度范围大约为上部软土层与下部硬土层的 分界面,预制桩在交界面处受力发生剧变[4],土体水平位移发生急剧变化,故沉桩过程中应特别注意软硬土层的交界面,防止桩身变形突变导致桩体的 偏移与折断.土体水平位移的分布形式呈上大下小的特征这与上软下硬的地层特征有关[4—5].淤泥土层的抗变形、抗剪切能力较弱,超孔隙水压力难以消散, 应力释放缓慢,土体变形难以恢复,故其上覆压力 较小,预制桩打入时会产生较大的位移量.而下卧htU ://jonrnci. sex. edb. us粉砂粉土互层的模量及强度明显较高,且上覆压力较大,土体所受约束较大,下部土体的变形量较小.3.4位移与孔压的动态关系图6给出了休止7 d 时超孔压消散与土体侧 向回移的关系曲线•土体侧向回移率m 为式中,s °为沉桩完成时土体侧向位移;it 为沉桩完成 后任意时刻的土体侧向位移.孑L 压消散与土体回移率/%204060801001淤泥上上互层:图9超孔压消散与土体侧向回移的关系由图6可知,休止期超孔压的消散与土体的侧 向回移具有一定的相关性,粉砂粉土互层中超孔隙 水压力的消散率明显高于上覆淤泥层,土体侧向回移率也呈现相同的规律.然而,地基土中土体的侧向回移速率要明显低于超孔压的消散速率,淤泥层中超孔压的消散率为20%〜44%,土体回移率仅为1%甚至更低;而在下卧粉砂粉土互层中,尽管 超孔压已完全消散,土体水平位移仍较大•这是因 为实心预制方桩为挤土桩,沉桩施工时排开部分地基土体不可恢复,锤击沉桩施工形成剧烈的挤压剪切,海相结构性软土地基中产生的大变形、结构损 伤、胶结作用破坏等导致部分侧向变形无法恢复,且土体回移速率缓慢12],这与文献13]的观测结 论相吻合.由此表明,分析休止期内土体的位移与孔压动态关系时,需合理考虑土体的不可恢复侧向变形.由于本风电项目预制方桩均通过锤击法动力贯入,大面积群桩施工对连云港海相软土地基的天 然结构造成了显著的损伤破坏,故土体的侧向回移速率明显滞后于孔压的消散速率.4结论1)深厚淤泥土中超孔隙水压力的大小随深度第6期万星,等:成层地基土中群桩挤土效应现场试验研究1792增加近似线性增大,最大超孔隙水压力可达有效上覆压力的461倍.下部粉砂粉土层中超孔隙水压力峰值较低,与深度无线性规律,沉桩挤土效应明显较弱2)群桩施工产生的挤土效应与超孔隙水压力分布是一个复杂的空间问题径向距离是影响沉桩产生的超孔隙水压力大小的首要因素,而超孔隙水压力的空间分布规律与地基土初始应力、土层渗透系数、沉桩施工速率等因素均有关•3)由于上软下硬的地层特征,沉桩产生的土体深层水平位移呈现上大下小的分布规律,并且软硬土层交界面易发生土体水平位移突变,在实际工程中应予以重视,以防造成桩体偏移或桩身损伤•7)锤击沉桩施工造成土体天然结构破坏,导致土体侧向回移速率明显滞后于超孔隙水压力的消散速率•因此,在分析超孔隙水压力消散与土体侧向回移的动态关系时,需合理考虑土体不可恢复变形的影响参考文献(References)[1]Li G,Amenuvor A C,Hox Y,et al.Effect of open-4X2Ued PHC pile installation during embankment wideningon the surroxnding soii[J].Jocrnai of GeotecOnicoi andGeoeovPoomeotai Engineering,204,135(2):05418006.DOI:10.1061/?asca)gt.443L6O6.0002017.[2]Shen S L,Han J,Zhu HH,et al.Eveluahoo of a dikeOamaged bp pile driving O sof c/p J].Jocrnai of Performance of Constructed Facilities:2005,19(4):300-347.DOC10.1061/(ASCE)067-3328(2005)4:4(300).J]马晓冬,朱国甫,刘立胜,等•动力打桩过程中饱和黏土地基的响应[J].岩石力学与工程学报,2019,39(():205—216.DOC1O13722/j.cib jrme.2019.0482.MnXD,ZhuGF,LnuLS,eini Reeponeeooeniueni0 eV cl/c groxnd during pile driving[J].Cainese Jocrnaiof Roc/Mec/anics and Engineering,2019,33(():205-216.DOC10.18762/j.cob-,jrme.2016.0432 .(inChnneee)[4]王兴龙,陈磊,窦丹若•打桩挤土的现场试验研究及土体位移的计算公式[]•岩土力学,2O3,24(S2):172-179.DOI:10.16285/j.rsm.7008•sf .040.WnngX L,ChenL,DouD R Reeeneohoneonide0 ooemninononueedbspnie0denenngnndiheooemuinoniou0 /ting soil deformation[J].Roc/and Soil Mec/anics:2008,24(S2):172T79.DOC10.12285/j.rsm.2008•e2040(nnChnneee)J]高文生,刘金砺,赵晓光,等•关于预应力混凝土管桩工程应用中的几点认识[]•岩土力学7015,36(S2):610-616.DOC10.17235/j.rsm.7015.S2 .436.GnoW S,LnuJL,ZhnoXG,eini Someundeeeinnd0 nngoopeeeiee e doonoeeiepnpepniennengnneeenngnppin0 cation J].Roc/and Soil Mec/anics,2015,36(S2):610—616 .DOC1O12285/j.rsm.2015.S2.037 .(inChnneee)[6]VeenoA S Eipnnenonooonenineennnnonnnieeonimn eJ].Jocrnai of Oe Soil Mec/anics and FocnOations Division,1972,98(3):225-220•[7]唐世栋,何连生,傅纵•软土地基中单桩施工引起的超孔隙水压力[J/岩土力学,2002,23(6):725-729,732DOI:06285j.eem20020605TnngSD,HeLS,BoZ Eioeeepoeewnieepeeeueecaused bp an installing pile O sof foxndatiop J].Roc/ anO Soil Mec/anics,2002,23(6):725-729,732.DOI:06285j.eem20020605(nnChnneee)[ 8]LnJP,LnL,SunDA,eini Anniseneooundennnedos0 inndenonioneniseipnnenonoonendeenngiheee0dnmenenonni strength of soils[J]•Interoationai Jocrnai of Geome-c/anics,2016,13(5):04016017.DOC10.1061/(ASCE)GM943056220000650[9]HwnngJH,LnnngN,ChenCH Geoundeeeponeedue0ing pile driving[J].Jocrnai of GeotecOnicoi and Geoeo-vironmeotai Engineering,2001,127((1):939—949•J O]鹿群,龚晓南,崔武文,等•饱和成层地基中静压单桩挤土效应的有限元模拟[J],岩土力学,203,29(11),3417 -3420•DOC10.16285/j.rsm.2003.11.028Lu Q,Gong X N,Cui W W,et al.Squeezing effectsof jacked pile O/yeod soil[J]•RocO and Soil Me-c/anics,2003,29(11):3417-3020•DOI:10.6285j.eem.2008..028.(nnChnneee)J1]李镜培,李雨浓,张述涛•成层地基中静压单桩挤土效应试验[J]•同济大学学报(自然科学版),2011,39(6):324—329.LnJP,LnY N,ZhnngST.Eipeenmenininnniseneoooomp noino ne o e oi o o enng ie pnie.noked nn inseeedground[J].Jocrnai of Tongjl Under s ip(Natcrai Science),2011,33(2):324—329.(0Chinese)U2]姚笑青,胡中雄•饱和软土中沉桩引起的孔隙水压力估算[]•岩土力学7997,13(4),34-36.DOC10.6285j.eem99704006YnoX Q,H uZ X Eeinmninng meihod ooeeioe epoee0wnieepee e u eedeeeiopedduenngpniedenenng[ J]RocO anO Soil Mec/anics,1997,18(4):30-34.DOI:06285j.eem99704006(nnChnneee) [3]PeeinnnJM,HuniC E,BensJD Sonideooemninonnndeioe e poeepee e u eeoneidneoundnoioeed0endedpUe[J].Jocrnai of GeotecOnicoi and Geoeovironmeo-tai EngioeerOg,2002,128(1):1- 12.DOI:10.06j(ASCE)0900024(2002)28:()ht/://jouoal.sex.e/1094东南大学学报(自然科学版)第50卷[8]雷华阳,李肖,陆培毅,等•管桩挤土效应的现场试验和数值模拟[J].岩土力学,2012,33(4):1006-1012.DOI:0.16285/j.um.2010.04.439.Lei H Y,Li X,Lu P Y,et al.FPW test and numerical simulation of spueezing Ofect of pipe pile[J]•RocS and Soii MecSanics,2012,33(4):1006—1012.DOI:10.16285/j.um.2012.04.039.(in Chinese) [15]Song M M,Zeng L L,Hong Z S.Pore fluid salinityOfeds on physicochemiccl-zompressive bOaviour ofuconstPuhd mbine clays[J].Appliee Clay Scieoce,2017,146:270—277•DOI:10.1016/j.clay.2017.06.015.16]徐永福,傅德明.结构性软土中打桩引起的超孔隙水压力[J].岩土力学,2000,21(1),53-55.DOI:10•16285/j.rsm.2000•41.415.Xu Y F,Fu DM.Epcess pore pussure induced in piling in satcuhd3101—01x1sot)soils[J]•RocS and SoiiMechanics,2000,21(1):53-55.DOI:10.12285/j.um.2000.01.415.(in Chinese)[17]王育兴,孙钧•打桩施工对周围土性及孔隙水压力的影响[]•岩石力学与工程学报,2004,23(():153-58Wang Y X,Sun J.Influence of pile driving on properties of soils bound pile and pore water pressure[J]•Chioese Jocroai oC RocS MecSanics and Engioeering,2404,23(():153-159.(in Chinese)[18]Mbchi M,Gottardi G,Soga K.Fractming pressme inclayf J].hocmai oC GeotecaCcd and Geoeovironmeo-tai Engioeering,2010,140(2):04413408•DOI:10.1061/jasce)gh1943-2946.4001019.[Lin/Out] [19]Liu S Y,Shao G H,Du Y J,et al.Depositional andgeotechnical propedies of mbine clays in101/^1/0-ng,China[J].Engioeering Geology,2011,121(1/2):66—74.DOI:10.101O/j.oggo.2011.04.010.[20]Madhav M R,Pbk Y M,Mime N.Modelling andstudy of smeb zones around banh shapeP drains[J]•Soils and FounCadoos,1993,33 (4):135-147.DOI:10.3208/sa/fl972.33.4_135.[21]Sathapapthap I,Indrbatna B,RipibatPamjorv C.Eveluakon of smeb zone extent surrounding manOreidriven vedicai drains using the cavity opansiop theory[J].Intematiooai eocroai oC GeomecSanics,2408,8(6):355—365.DOI:0.1061/(ASCE)l536-Z641(2008)8:6(355).[22]刘维正,石名磊•长江漫滩相软土结构性特征及其工程效应分析[]•岩土力学64-0,31(2):427-432.DOI:10.16285/j.rsm.2010.02.042.Liu W Z,Shi M L.Stuictmai chbadodUc and engineering Ofect analysis of Yangtze River backswampsoft soil[J],RocS and Soii MecSanics,2010,31(2):427-436•DOI:10•16285/j.csm.2010.02.049 .(inChinese)[23]罗战友,龚晓南,朱向荣•考虑施工顺序及遮栏效应的静压群桩挤土位移场研究[J,岩土工程学报,2008,30(6):324—829.Luo Z Y,Gong X N,Zhu X R•Soil OisyWcementsbound jacked group piles based on construction se-quoce and compacting effects[J].Chioese Jocroai ofGeotecSnicsi Engioeering,2008,30(6):824-829•(in Chinese)[24]鹿群,张建新,刘寒鹏.考虑施工方向影响的静压桩挤土效应观测与分析[J,土木工程学报,2011,44(S):102 - 105.DOI:10.15951/j.(mgcoP.2011.sU.053.Lu Q,Zhang J X,Liu H P•A case history and it-saoalysis about spueezing effects of tacked piles consiP-ering constdiction direction[J].China Civii Engioeor-ing Jocroai,2011,46(S):102—105.DOI:10.15951/j.tmgcoP.2011.sU.053.(in Chinese)[25]江强,陈育民,王翔鹰,等.排水刚性桩沉桩挤土效应的现场试验研究[J]•土木工程学报,2018,51(4):-93.DOI:10.15951/j.tmgcoP.2013.04.010.Jiang Q,Chen Y M,Wang X Y,etai.FieW tests onspueezing effects of the rioiV-drainage pile[J].ChinaCiti Engioeering Jocrnai,2018,51(4):87-93•DOI:10.15951/j.(mgcoP.2018.04.410.(in Chinese) [26]Roy M,Blanchet R,Tavenas F,et al.Behaviom of asensitive clay dming pile driving[J].CanadiaoGeotecSnicsi Oocrnal,1681,18(1):67—85.DOI:10.1139/W1-007.hth://jom/O .co。
基于三维形貌参数的岩石节理峰值剪切强度模型研究
盛建龙;许立;周新;彭宗桓
【期刊名称】《金属矿山》
【年(卷),期】2022()6
【摘要】基于Grasselli提出的节理粗糙度参数,通过揭示3种粗糙度参数表征视倾角的分布规律,分析了粗糙度参数和初始剪胀角和折减函数的关系,优化剪胀角模型中粗糙度参数的形式;通过文献对比分析,突出了岩石抗拉强度对节理抗剪强度的影响。
采用法向应力、抗拉强度和节理粗糙度参数,提出了一种负指数形式的节理峰值抗剪强度新模型。
最后通过73组试验数据和反算JRC值验证新模型准确度,并与经典模型对比。
结果表明Gasselli模型和Tang模型在各自的试验数据中准确度较高,新模型和Xia模型误差较低,但新模型波动较小。
新模型对Grasselli模型、Xia模型、Tang模型中存在的不符合摩尔库伦准则、物理含义不清晰、剪胀角边界条件不正确、未体现粗糙度等问题进行了改进。
【总页数】8页(P9-16)
【作者】盛建龙;许立;周新;彭宗桓
【作者单位】武汉科技大学资源与环境工程学院;冶金矿产资源高效利用与造块湖北省重点实验室
【正文语种】中文
【中图分类】TU45;TD313
【相关文献】
1.基于起伏形态特征的节理岩石峰值剪切强度准则
2.节理三维形貌参数的采样效应与峰值抗剪强度准则
3.考虑三维形貌参数的结构面峰值剪切强度预测新模型
因版权原因,仅展示原文概要,查看原文内容请购买。
国际立体快速成型技术一瞥
春晓;谢英
【期刊名称】《光的世界》
【年(卷),期】1995(000)002
【总页数】4页(P9-12)
【作者】春晓;谢英
【作者单位】不详;不详
【正文语种】中文
【中图分类】O439
【相关文献】
1.向着更为专业迈进的莱州石材展--第十届中国国际石材展暨第三届中国(莱州)国际石材展一瞥 [J], 侯建华
2.立体光固化快速成型技术的应用及发展 [J], 王葵;姜海;蒋克容
3.南非SUNSAT-1立体测绘微小卫星一瞥 [J],
4.立体交叉方便快捷—俄罗斯新西伯利亚市交通状况一瞥 [J], 尚继成
5.写出立体的人──金圣叹《水浒》人物性格理论一瞥 [J], 张伟
因版权原因,仅展示原文概要,查看原文内容请购买。
从曲线形态和物理参数两个角度出发解释Hardin-Drnevich模型的物理意义Hardin-Drnevich模型是一种用于分析土壤力学性质的数学模型。
从曲线形态和物理参数两个角度出发,我们可以解释该模型的物理意义。
曲线形态Hardin-Drnevich模型基于土壤力学中的三轴试验数据,通过绘制应力路径曲线来描述土壤的力学行为。
应力路径曲线是根据不同的应力状态绘制的曲线,它反映了土壤在不同应力条件下的变形特征。
硬饼状曲线是Hardin-Drnevich模型中最常见的曲线形态之一。
硬饼状曲线的特点是在初期的单向压缩阶段,土壤呈现出较大的刚性,即应力增加时变形较小。
随着应力继续增大,土壤的变形逐渐增加,呈现出非线性的阶段。
曲线上方的面积代表土壤的能量耗散,可以用来评估土壤的破坏性。
物理参数Hardin-Drnevich模型基于三轴试验中的物理参数,如有效应力、孔隙比、剪切模量等,来描述土壤的力学特性。
有效应力是土壤中颗粒间的实际传递应力,它与土壤的孔隙水压力有关。
Hardin-Drnevich模型通过考虑有效应力的作用,能够更准确地描述土壤的力学行为。
孔隙比表示土壤中孔隙的体积比例,它反映了土壤的孔隙度。
Hardin-Drnevich 模型利用孔隙比来考虑土壤的水分饱和度对力学行为的影响。
剪切模量是描述土壤剪切刚度的物理参数。
Hardin-Drnevich模型结合剪切模量的变化规律,能够更好地理解和分析土壤的应力-应变关系。
综上所述,Hardin-Drnevich模型通过曲线形态和物理参数两个角度,揭示了土壤力学性质的物理意义。
它为土壤工程领域的工程师和研究人员提供了一种有效的分析和预测土壤力学行为的工具。