2014届高考数学试题大冲关 不等关系与不等式 理
- 格式:doc
- 大小:72.00 KB
- 文档页数:5
第七章不等式考点1 不等关系与不等式1.(2017•山东,7)若a>b>0,且ab=1,则下列不等式成立的是()A.a+ <<log2(a+b)B.<log2(a+b)<a+C.a+ <log2(a+b)<D.log2(a+b))<a+ <1. B ∵a>b>0,且ab=1,∴可取a=2,b= .则= ,= = ,log2(a+b)== ∈(1,2),∴<log2(a+b)<a+ .故选B.2.(2017·天津,8)已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是()A.[﹣,2]B.[﹣,]C.[﹣2 ,2]D.[﹣2 ,]2. A 当x≤1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣x2+x﹣3≤ +a≤x2﹣x+3,即有﹣x2+ x﹣3≤a≤x2﹣x+3,由y=﹣x2+ x﹣3的对称轴为x= <1,可得x= 处取得最大值﹣;由y=x2﹣x+3的对称轴为x= <1,可得x= 处取得最小值,则﹣≤a≤ ①当x>1时,关于x的不等式f(x)≥| +a|在R上恒成立,即为﹣(x+ )≤ +a≤x+ ,即有﹣(x+ )≤a≤ + ,由y=﹣(x+ )≤﹣2 =﹣2 (当且仅当x= >1)取得最大值﹣2 ;由y= x+ ≥2 =2(当且仅当x=2>1)取得最小值2.则﹣2≤a≤2②由①②可得,﹣≤a≤2.故选A .3.(2016·北京,5)已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0B.sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0D.ln x +ln y >0 3.C [函数y =1x 在(0,+∞)上单调递减,所以1x <1y ,即1x -1y <0,A 错;函数y =sin x 在(0,+∞)上不是单调函数,B 错;函数y =⎝⎛⎭⎫12x 在(0,+∞)上单调递减,所以⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y<0,所以C 正确;ln x +ln y =ln xy ,当x >y >0时,xy 不一定大于1,即不一定有ln xy >0,D 错.]4. (2016·全国Ⅰ,8)若a >b >1,0<c <1,则( )A.a c <b cB.ab c <ba cC.a log b c <b log a cD.log a c <log b c4.C [对A :由于0<c <1,∴函数y =x c 在R 上单调递增,则a >b >1⇒a c >b c ,故A 错; 对B :由于-1<c -1<0,∴函数y =x c-1在(1,+∞)上单调递减,∴a >b >1⇔a c -1<b c -1⇔ba c <ab c ,故B 错;对C :要比较a log b c 和b log a c ,只需比较a ln c ln b 和b ln c ln a ,只需比较ln c b ln b 和ln ca ln a ,只需比较b ln b 和a ln a .构造函数f (x )=x ln x (x >1),则f ′(x )=ln x +1>1>0,f (x )在(1,+∞)上单调递增,因此f (a )>f (b )>0⇒a ln a >b ln b >0⇒1a ln a <1b ln b ,又由0<c <1得ln c <0,∴ln c a ln a >ln cb ln b⇒b log a c >a log b c ,C 正确; 对D :要比较log a c 和log b c ,只需比较ln c ln a 和ln cln b,而函数y =ln x 在(1,+∞)上单调递增,故a >b >1⇔ln a >ln b >0⇔1ln a <1ln b ,又由0<c <1得ln c <0,∴ln c ln a >ln cln b ⇔log a c >log b c ,D 错误,故选C.]5.(2014·四川,4)若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c5.D [由c <d <0⇒-1d >-1c >0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <bc ,故选D.]6.(2014·浙江,6)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6C.6<c ≤9 D.c >96.C [由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].]7.(2015·江苏,7)不等式2x 2-x <4的解集为________.7.{x |-1<x <2} [∵2x 2-x <4=22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.]8.(2014·江苏,10)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.8.⎝⎛⎭⎫-22,0[由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0, 解得-22<m <0.] 考点2 线性规划1.(2018天津,2)设变量x ,y 满足约束条件则目标函数 的最大值为( )A .6B .19C .21D .451.C 绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:,可得点A 的坐标为: 2 3 ,据此可知目标函数的最大值为: ax.本题选择C 选项.2.(2017•新课标Ⅱ,5)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.92.A x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选A.3.(2017·天津,2)设变量x,y满足约束条件,则目标函数z=x+y的最大值为()A. B.1C. D.33. D 变量x,y满足约束条件的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由可得A(0,3),目标函数z=x+y的最大值为:3.故选D.4.(2017•北京,4)若x,y满足,则x+2y的最大值为()A.1B.3C.5D.94. D x,y满足的可行域如图:由可行域可知目标函数z=x+2y经过可行域的A时,取得最大值,由,可得A(3,3),目标函数的最大值为:3+2×3=9.故选D.5.(2017•浙江,)若x 、y 满足约束条件,则z=x+2y 的取值范围是( )A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)5. A x 、y 满足约束条件,表示的可行域如图:目标函数z=x+2y 经过坐标原点时,函数取得最小值,经过A 时,目标函数取得最大值, 由解得A (0,3),目标函数的直线为:0,最大值为:36目标函数的范围是[0,6].故选A .6.(2016·四川,7)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件6.A [如图,(x -1)2+(y -1)2≤2①表示圆心为(1,1),半径为2的圆内区域所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1②表示△ABC 内部区域所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A.]7.(2016·山东,4)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A.4B.9C.10D.127.C[满足条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如右图阴影部分(包括边界),x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然,当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.]8.(2016·北京,2)若x ,y 满足⎩⎨⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为()A.0B.3C.4D.58.C [不等式组表示的可行域如图中阴影部分所示.令z =2x +y ,则y =-2x +z ,作直线2x +y =0并平移,当直线过点A 时,截距最大,即z 取得最大值,由⎩⎪⎨⎪⎧2x -y =0,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2,所以A 点坐标为(1,2),可得2x +y 的最大值为2×1+2=4.]9.(2015·广东,6)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧4x +5y ≥8,1≤x ≤3,0≤y ≤2,则z =3x +2y 的最小值为( )A.315B.6C.235D.49.C[不等式组所表示的可行域如下图所示,由z =3x +2y 得y =-32x +z 2,依题当目标函数直线l :y =-32x +z2经过A ⎝⎛⎭⎫1,45时,z 取得最小值即z min =3×1+2×45=235,故选C.]10.(2015·北京,2)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A.0B.1C.32D.210.D[可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z ,过点A (0,1)时,z 取得最大值2.]11.(2015·福卷,5)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =2x -y 的最小值等于( )A.-52B.-2C.-32D.211.A[如图,可行域为阴影部分,线性目标函数z =2x -y 可化为y =2x -z ,由图形可知当y =2x -z 过点⎝⎛⎭⎫-1,12时z 最小,z min =2×(-1)-12=-52,故选A.]12.(2015·山东,6)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若z =ax +y 的最大值为4,则a =( )A.3B.2C.-2D.-312.B[不等式组表示的平面区域如图阴影部分所示.易知A (2,0),由⎩⎪⎨⎪⎧x -y =0,x +y =2,得B (1,1).由z =ax +y ,得y =-ax +z .∴当a =-2或a =-3时,z =ax +y 在O (0,0)处取得最大值,最大值为z max =0,不满足题意,排除C,D 选项;当a =2或3时,z =ax +y 在A (2,0)处取得最大值, ∴2a =4,∴a =2,排除A,故选B.]13.(2015·陕西,10)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B.16万元C.17万元13.D[设甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3).则z max =3×2+4×3=18(万元).]14.(2014·广东,3)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n=( ) A.5 B.6C.7D.814.B[作出可行域(如图中阴影部分所示)后,结合目标函数可知,当直线y =-2x +z 经过点A 时,z 的值最大,由⎩⎪⎨⎪⎧y =-1x +y =1⇒⎩⎪⎨⎪⎧x =2y =-1,则m =z max =2×2-1=3.当直线y =-2x +z 经过点B 时,z 的值最小,由⎩⎪⎨⎪⎧y =-1y =x ⇒⎩⎪⎨⎪⎧x =-1y =-1,则n =z min =2×(-1)-1=-3,故m -n =6.]15.(2014·安徽,5)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1B.2或12C.2或1D.2或-115.D[法一 由题中条件画出可行域,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.法二 目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.]16.(2014·山东,9)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A.5B.4C. 5D.216.B [法一 不等式组表示的平面区域如图所示,根据目标函数的几何意义可知,目标函数在点A (2,1)处取得最小值,故2a +b =25,两端平方得4a 2+b 2+4ab =20,又4ab =2×a ×2b ≤a 2+4b 2,所以20≤4a 2+b 2+a 2+4b 2=5(a 2+b 2),所以a 2+b 2≥4,即a 2+b 2的最小值为4,当且仅当a =2b ,即b =25,a =45时等号成立. 法二 把2a +b =25看作平面直角坐标系aOb 中的直线,则a 2+b 2的几何意义是直线上的点与坐标原点距离的平方,显然a 2+b 2的最小值是坐标原点到直线2a +b =25距离的平方,即⎝ ⎛⎭⎪⎫|-25|52=4.]17.(2014·新课标全国Ⅰ,9)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A.p 2,p 3B.p 1,p 4C.p 1,p 2D.p 1,p 317.C[画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.]18.(2018全国Ⅰ,13)若,满足约束条件,则的最大值为_____________.18.6根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.ax19.(2018全国Ⅱ,14)若满足约束条件则的最大值为__________.19.9不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时, ax.20.(2018浙江,12)若满足约束条件则的最小值是___________,最大值是___________.20.-28作可行域,如图中阴影部分所示,则直线过点A(2,2)时取最大值8,过点B(4,-2)时取最小值-2.21.(2018北京,12)若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.21.3作可行域,如图,则直线过点A(1,2)时,取最小值3.22.(2017•新课标Ⅰ,14)设x,y满足约束条件,则z=3x﹣2y的最小值为________.22. -5 由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A ,联立,解得A (﹣1,1).∴z=3x ﹣2y 的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.23.(2017•新课标Ⅲ,13)若x ,y 满足约束条件,则z=3x ﹣4y 的最小值为________23.﹣1 由z=3x ﹣4y ,得y=x ﹣,作出不等式对应的可行域(阴影部分),平移直线y= x ﹣,通过平移可知当直线y=x ﹣,经过点B (1,1)时,直线y= x ﹣在y 轴上的截距最大,此时z 取得最小值,将B 的坐标代入z=3x ﹣4y=3﹣4=﹣1, 即目标函数z=3x ﹣4y 的最小值为﹣1. 故答案为:﹣1.24.(2017•山东,10)已知,x y 满足30{350 30x y x y x -+≤++≤+≥,则2z x y =+的最大值是__________.24. 5 画出约束条件表示的平面区域,如图所示;由解得A (﹣3,4),此时直线y=﹣x+z 在y 轴上的截距最大,所以目标函数z=x+2y 的最大值为z max =﹣3+2×4=5.故选C .25.(2016·全国Ⅲ,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.25.32[满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0的可行域为以A (-2,-1),B (0,1),C ⎝⎛⎭⎫1,12为顶点的三角形内部及边界,过C ⎝⎛⎭⎫1,12时取得最大值为32.] 26.(2016·全国Ⅰ,16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B 需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.26. 216 000 [设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,y ≥0,x ∈N *,y ∈N*目标函数z =2 100x +900y .作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).]27.(2015·新课标全国Ⅰ,15)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________. 27.3[约束条件的可行域如下图,由y x =y -0x -0,则最大值为3.]28.(2014·大纲全国,14)设x 、y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.28.5[作出约束条件下的平面区域,如图所示.由图可知当目标函数z =x +4y 经过点B (1,1)时取得最大值,且最大值为1+4×1=5.]29.(2014·湖南,14)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.29.-2[画出可行域(图略),由题意可知不等式组表示的区域为一三角形,平移参照直线2x +y =0,可知在点(k ,k )处z =2x +y 取得最小值,故z min =2k +k =-6.解得k =-2.]考点3 基本不等式1.(2018全国Ⅲ,12)设 , ,则( ) A . B . C . D .1.B a ,,,,即.又a , a ,即a a .故选B.2.(2018天津,13)已知 ,且 ,则的最小值为_____________.2.由 可知 ,且:,因为对于任意x , 恒成立,结合均值不等式的结论可得:.当且仅当,即 时等号成立.综上可得的最小值为.3.(2017•江苏,10)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.3.30 由题意可得:一年的总运费与总存储费用之和= +4x≥4×2× =240(万元).当且仅当x=30时取等号.故答案为:30.4.(2017·天津,12)若a,b∈R,ab>0,则的最小值为________.4. 4 a,b∈R,ab>0,∴≥= =4ab+ ≥2 =4,当且仅当,即,即a= ,b= 或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.5 .(2014·上海,5)若实数x,y满足xy=1,则x2+2y2的最小值为________.5.22[∵x2+2y2≥2x2·2y2=22xy=22,当且仅当x=2y时取“=”,∴x2+2y2的最小值为2 2.]。
2014年高考题专题整理 --不等式和线性规划第I 部分1.【2014年四川卷(理04)】若0a b >>,0c d <<,则一定有A .a b c d >B .a b c d <C .a b d c >D .a bd c<【答案】D【解析】由1100c d d c <<⇒->->,又0a b >>, 由不等式性质知:0a b d c ->->,所以a bd c<2.【2014年江西卷(理11)】(1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为A.1B.2C.3D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=3.【2014年安徽卷(理05)】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数 a 的值为(A )21或1- (B )2或21(C )2或1(D )2或1-【答案】D【解析】可行域如右图所示,ax y z -=可化为z ax y +=,由题意知2=a 或1-2=-+y x 022=--y x 022=+-y x xyO1-=k 2=k 21=k4.【2014年天津卷(理02)】设变量x 、y 满足约束条件20201x y x y y +-≥⎧⎪--≤⎨⎪≥⎩,则目标函数2z x y =+的最小值为A.2B.3C.4D.5【答案】B【解析】画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.5.【2014年山东卷(理09)】已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭。
2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-= C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是 A .2p ,3P B .1p ,4p C .1p ,2p D .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =u u u r u u u r,则||QF =A .72B .52C .3D .211.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。
E 单元 不等式E1 不等式的概念与性质5.,,[2014·某某卷] 已知实数x ,y 满足a x <a y(0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1) C. sin x >sin y D. x 3>y 35.D [解析] 因为a x <a y(0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D. 4.[2014·某某卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b cD.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c>0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <b c.故选D.E2 绝对值不等式的解法 9.、[2014·某某卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( )A .5或8B .-1或5C .-1或-4D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝ ⎛⎭⎪⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎪⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=a2-1=3,可得a =8.当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎪⎫x >-a 2,-x -a +1⎝⎛⎭⎪⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.E3 一元二次不等式的解法2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.12.、[2014·新课标全国卷Ⅱ] 设函数f (x )=3sin πxm,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值X 围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝ ⎛⎭⎪⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝ ⎛⎭⎪⎫k 0+122+3<m 2.因为⎝ ⎛⎭⎪⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值X 围是(-∞,-2)∪(2,+∞).E4 简单的一元高次不等式的解法 E5 简单的线性规划问题5.[2014·某某卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( )A.12或-1 B .2或12 C .2或1 D .2或-1 5.D [解析]方法一:画出可行域,如图中阴影部分所示,可知点A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z c =2a -2.要使对应最大值的最优解有无数组, 只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A , 解得a =-1或a =2.方法二:画出可行域,如图中阴影部分所示,z =y -ax 可变为y =ax +z ,令l 0:y =ax ,则由题意知l 0∥AB 或l 0∥AC ,故a =-1或a =2.6.[2014·卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2 B .-2 C.12 D .-126.D [解析] 可行域如图所示,当k >0时,知z =y -x 无最小值,当k <0时,目标函数线过可行域内A 点时z 有最小值.联立⎩⎪⎨⎪⎧y =0,kx -y +2=0,解得A ⎝ ⎛⎭⎪⎫-2k ,0,故z min =0+2k =-4,即k =-12.11.[2014·某某卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值11.1 [解析] 作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1.3.[2014·某某卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .83.B [解析] 本题考查运用线性规划知识求目标函数的最值,注意利用数形结合思想求解.画出不等式组表示的平面区域,如图所示.当目标函数线经过点A (-1,-1)时,取得最小值;当目标函数线经过点B (2,-1)时,z 取得最大值.故m =3,n =-3,所以m -n =6.14.[2014·某某卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.14.-2 [解析] 画出可行域,如图中阴影部分所示,不难得出z =2x +y 在点A (k ,k )处取最小值,即3k =-6,解得k =-2.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1),所以z max =1+4=5.9.、[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值X 围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.9.[2014·新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .29.B [解析] 已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A (5,2)处取得最大值,故目标函数的最大值为2×5-2=8.9.[2014·某某卷] 已知x ,y满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a>0,b >0)在该约束条件下取到最小值2 5时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 29.B [解析] 画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(8 5)24×5=4,即a 2+b 2的最小值为4.故选B.18.,[2014·某某卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵PA →+PB →+PC →=0,又PA →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 方法二:∵PA →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2. (2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.5.,[2014·某某卷] 执行如图11所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图11A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.2.[2014·某某卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.13. [2014·某某卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值X 围是________.13.⎣⎢⎡⎦⎥⎤1,32 [解析] 实数x ,y 满足的可行域如图中阴影部分所示,图中A (1,0),B (2,1),C ⎝ ⎛⎭⎪⎫1,32.当a ≤0时,0≤y ≤32,1≤x ≤2,所以1≤ax +y ≤4不可能恒成立;当a >0时,借助图像得,当直线z =ax +y 过点A 时z 取得最小值,当直线z =ax +y 过点B 或C 时z取得最大值,故⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.故a ∈⎣⎢⎡⎦⎥⎤1,32.E62a b+≤16.、[2014·某某卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a+b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝ ⎛⎭⎪⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2. 3a -4b +5c =18λ2-1λ=18⎝ ⎛⎭⎪⎫1λ-42-2≥-2,当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.14.,[2014·某某卷] 若⎝⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.14.2 [解析] T r +1=C r6(ax 2)6-r·⎝ ⎛⎭⎪⎫b x r=C r 6a 6-r ·b r x 12-3r,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.10.,[2014·某某卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝ ⎛⎭⎪⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)=1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 14.,[2014·某某卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|PA |2+|PB |2=|AB |2=10.∴|PA ||PB |≤|PA |2+|PB |22=5,当且仅当|PA |=|PB |时等号成立.E7 不等式的证明方法20.[2014·卷] 对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记 T 1(P )=a 1+b 1,T k (P )=b k +max{T k -1(P ),a 1+a 2+…+a k }(2≤k ≤n ),其中max{T k -1(P ),a 1+a 2+…+a k }表示T k -1(P )和a 1+a 2+…+a k 两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论) 20.解:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.19.、、[2014·某某卷] 已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+x n q n-1,x i∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,则s<t.19.解:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,x i∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+a n q n-1,t=b1+b2q+…+b n q n-1,a i,b i∈M,i =1,2,…,n及a n<b n,可得s-t=(a1-b1)+(a2-b2)q+…+(a n-1-b n-1)q n-2+(a n-b n)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0,所以s<t.E8 不等式的综合应用9.、[2014·某某卷] 若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为( )A.5或8 B.-1或5C.-1或-4 D.-4或89.D [解析] 当a≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝ ⎛⎭⎪⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎪⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=a2-1=3,可得a =8.当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎪⎫x >-a 2,-x -a +1⎝⎛⎭⎪⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a2时,f min (x )=f ⎝ ⎛⎭⎪⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.13.[2014·某某卷] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析] 设底面矩形的一边长为x ,由容器的容积为4 m 3,高为1 m 得,另一边长为4xm.记容器的总造价为y 元,则y =4×20+2⎝ ⎛⎭⎪⎫x +4x ×1×10=80+20⎝⎛⎭⎪⎫x +4x≥80+20×2x ·4x=160(元),当且仅当x =4x,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元. 21.,,,[2014·某某卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,某某数a 的取值X 围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x(x ≥0). (1)由已知,g 1(x )=x1+x,g 2(x )=g (g 1(x ))=x1+x 1+x1+x=x1+2x, g 3(x )=x1+3x,…,可得g n (x )=x1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x1+kx 1+x 1+kx =x1+(k +1)x,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x 恒成立.设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a (1+x )2=x +1-a(1+x )2,当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立, ∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减,∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x 不恒成立.综上可知,a 的取值X 围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0n x x +1d x 是由曲线y =xx +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+n n +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n⎝⎛⎭⎪⎫1-1x +1d x =n -ln (n +1),结论得证.E9 单元综合16.、[2014·某某卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a+b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝ ⎛⎭⎪⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2,当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2. 3a -4b +5c =18λ2-1λ=18⎝ ⎛⎭⎪⎫1λ-42-2≥-2,当且仅当a =34,b =12,c =52时,3a -4b +5c 取最小值-2.12.、[2014·某某卷] 已知定义在[0,1]上的函数f (x )满足:①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12π D.1812.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.3.[2014·某某卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .53.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内min =1×1+2×1=3.16.[2014·某某七校联考] 不等式|x +2|+|x -1|≤5的解集为________. 16.[-3,2] [解析] 根据绝对值的几何意义,得不等式的解集为-3≤x ≤2.4.[2014·某某六校联考] 若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .44.A [解析] ∵x +y ≥2xy ,且x +y =2,∴2≥2xy ,当且仅当x =y =1时,等号成立,∴xy ≤1,∴1xy≥1,∴1≥M ,∴M max =1.7.[2014·某某某某期末] 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233C.433D.236 7.C [解析] 由题知x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +13a ≥2 43=4 33,当且仅当a =36时,等号成立. 6.[2014·某某模拟] 若f (x )为奇函数,且在区间(0,+∞)上单调递增,f (2)=0,则f (x )-f (-x )x>0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-∞,-2)∪(2,+∞) 6.D [解析] 因为f (x )为奇函数,且在区间(0,+∞)上单调递增,所以f (x )在区间(-∞,0)上单调递增.又f (-x )=-f (x ),所以f (x )-f (-x )x >0等价于2f (x )x>0.根据题设作出f (x )的大致图像如图所示.由图可知,2f (x )x>0的解集是(-∞,-2)∪(2,+∞).13.[2014·某某六市六校联考] 已知正数x ,y 满足x +y +1x +9y=10,则x +y 的最大值为________.13.8 [解析] ∵1x +9y =10-(x +y ),∴(x +y )1x +9y =10(x +y )-(x +y )2.又(x +y )1x+9y=10+9xy+y x≥10+6=16,∴10(x +y )-(x +y )2≥16,即(x +y )2-10(x +y )+16≤0,∴2≤x +y ≤8,∴x +y 的最大值为8.。
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
一、选择题1.(2014 安徽理 5)x ,y 满足约束条件20220220x y x y x y +-⎧⎪--⎨⎪-+⎩………,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( ).A.12或1- B. 2或12C. 2或1D. 2或1- 2.(2014 北京理 6)若,x y 满足20200x y kx y y +-⎧⎪-+⎨⎪⎩………且z y x =-的最小值为4-,则k 的值为( ).A.2B.2-C.12 D.12- 3.(2014 广东理 3)若变量,x y 满足约束条件121y x x y z x y y ⎧⎪+=+⎨⎪-⎩且………的最大值和最小值分别为m 和n ,则m n -=( ).A .5 B. 6 C. 7 D. 84.(2014 湖北理 7)由不等式0020x y y x ⎧⎪⎨⎪--⎩………确定的平面区域记为1Ω,不等式组12x y x y +⎧⎨+-⎩……确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ). A.18 B.14 C. 34 D.785.(2014 湖南理 8)某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ). A.2p q+ B.()()1112p q ++-16.(2014 辽宁理 3)已知132a -=,21log 3b =,121log 3c =,则( ). A .a b c >> B .a c b >> C .c a b >> D .c b a >>7.(2014 辽宁理 11)当[]2,1x ∈-时,不等式32430ax x x -++…恒成立,则实数a 的取值范围是( ).A .[]5,3--B .96,8⎡⎤--⎢⎥⎣⎦C .[]6,2--D .[]4,3-- 8.(2014 山东理 2)设集合{}[]{}12,2,0,2xA x xB y y x =-<==∈,则=B A ( ).A. []0,2B.()1,3C.[)1,3 D. ()1,4 9.(2014 山东理 5)已知实数y x ,满足()01xya a a <<<,则下列关系式恒成立的是( ). A.111122+>+y x B.()()22ln 1ln 1x y +>+ C. y x sin sin > D. 33y x > 10.(2014 山东理 9)已知,x y 满足的约束条件10,230,x y x y --⎧⎨--⎩……当目标函数()0,0z ax by a b =+>>在该约束条件下取得最小值22a b +的最小值为( ).A.5B.4D.2 11.(2014 四川理 1)已知集合{}220A x x x =--…,集合B 为整数集,则A B =( ).A .{}1,0,1,2-B .{}2,1,0,1--C .{}0,1D .{}1,0- 12.(2014 四川理 4)若0a b >>,0c d <<,则一定有( ). A .a b c d > B .a b c d < C .a b d c > D .a bd c<13.(2014 天津理 2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧⎪⎩-⎪-⎨………则目标函数2z x y =+的最小值为( ).A.2B.3C.4D.514.(2014 新课标1理 1)已知集合{}2230A x x x =--…,{}22B x x =-<…,则AB =( ).A.[]2,1--B.[)1,2-C.[]1,1-D. [)1,215.(2014 新课标1理9)不等式组124x y x y +⎧⎨-⎩……的解集记为D .有下面四个命题:1p :(),x y D ∀∈,22x y +-…;2p :(),x y D ∃∈,22x y +…; 3p :(),x y D ∀∈,23x y +…; 4p :(),x y D ∃∈,21x y +-…. 其中真命题是( ).A. 2p ,3pB. 1p ,2pC. 1p ,4pD. 1p ,3p 16.(2014 新课标2理1)设集合{}0,1,2M =,{}2320x x x N -+=…,则M N =( ).A.{}1B.{}2C.{}0,1D. {}1,217.(2014 新课标2理9)设,x y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩………,则2z x y =-的最大值为( ).A.10B.8C.3D. 218.(2014 浙江理1)设全集{}2U x x =∈N …,集合{}25A x x =∈N …,则U A =ð( ). A.∅ B. {}2 C. {}5 D. {}2,519.(2014 重庆理 10)已知ABC △的内角,,A B C 满足()sin2sin A A B C +-+=()1sin 2C A B --+,面积S 满足12S 剟,记,,a b c 分别为,,A B C 所对的边,则下列不等式成立的是( ). A. ()8bc b c +> B.()ab a b +> C. 612abc 剟D. 1224abc 剟 二、填空题1.(2014 大纲理 14)设x ,y 满足约束条件02321x y x y x y -⎧⎪+⎨⎪-⎩………,则4z x y =+的最大值为 .2.(2014 福建理 11)若变量y x ,满足约束条件102800x y x y x -+⎧⎪+-⎨⎪⎩………,则y x z +=3的最小值为 .3.(2014 广东理 9)不等式125x x -++…的解集为 .4.(2014 湖南理 14)变量y x ,满足约束条件4y x x y y k⎧⎪+⎨⎪⎩………,且2z x y =+的最小值为6-,则k =________.5.(2014 辽宁理 16) 对于0c >,当非零实数a ,b 满足224240a ab b c -+-=且使|2|a b +最大时,345a b c-+的最小值为 .6.(2014 四川理 14)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是 .7.(2014 浙江理 13)当实数,x y 满足240101x y x y x +-⎧⎪--⎨⎪⎩………时,14ax y +剟恒成立,则实数a的取值范围是________.三、解答题1.(2014 辽宁理 24)(本小题满分10分)选修4-5:不等式选讲设函数()211f x x x =-+-,()21681g x x x =-+,记()1f x …的解集为M ,()4g x …的解集为N .(1)求M ; (2)当x MN ∈时,证明:()()2214x f x x f x +⎡⎤⎣⎦….。
2014年高考数学真题汇编——不等式一.选择题:1.(2014上海)设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( ) (A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件 【答案】 B 【解析】Bb a b a b a b a 所以,选必要不充分条件是必要条件成立,则且若不是充分条件且无法推出显然,.∴422∴22,4∴>+>>>>>+2.(2014四川)若0a b >>,0c d <<,则一定有( )A 、a b c d >B 、a bc d < C 、a b d c > D 、a b d c<【答案】D 【解析】Dcbd a c b d a c d b a cd c d d c 选.0∴0--∴01-1-,001-1-∴011∴0<<>>>>>>>><<<<3.(2014上海)若实数x,y 满足xy=1,则2x +22y 的最小值为______________. 【答案】 22【解析】22,2222≥22y ∴1222222所以,是=•+=+=x x x x x xy 4.(2014新课标I).不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.5. (2014新课标II)设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=6(2014天津)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5【答案】B 【解析】此题区域不是封闭区域,属于陷阱题结合图象可知,当目标函数通过点()1,1时,z 取得最小值3.7. (2014广东)若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6D.5:(),(2,1)(1,1)3,3,6,.M m M m C --==-∴-=提示画出可行域略易知在点与处目标函数分别取得最大值与最小值选8. (2014北京)若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -9 (2014山东)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小值为(A )5(B )4(CD )2(10(2014安徽)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-15 D11(2014天津)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件 【答案】C 【解析】.. .|,||||;|||, .-||,-||00≤3.|,||||;|||, 002∴,|,|||;∴|,|||, ||,||0≥012222C b a b b a a b b a a b a b b b a a a b a b a b b a a b b a a b a b a b a b b a a b b a a b a b b b a a a b a 选综上,是充要条件则若则若时,,)当(则若则若时,,)当(是必要条件则若是充分条件则若时,,)当(>>>>==<>>>><>>>>>==>12(2014江西) (1).(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为( ) A.1 B.2 C.3 D.4 【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=二.填空题1. (2014大纲)设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5.2(2014浙江)当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________. 31,2⎡⎤⎢⎥⎣⎦3、(2014福建)要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元) 1604(2014福建)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________15 (2014重庆)若不等式2212122++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围是____________.【答案】]211-[, 【解析】]211-[∈1-2≥0221≥25221≥)(∴25)21f(|2||21-||21-|)(222,解得,,即恒成立,即有最小值由数轴可知,a a a a a a a x f x x x x f +++++=+++= 6. (2014辽宁)对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 【答案】-2 【解析】2-54-3.2-)4-1(211054-3654-3.58|22|1032,153:2151:)2-2∴)22(≥])153([1⇒]1532151)2-2[≥])153([1])215()2-2[])153([1∴0-)215()2-2-42-42222222222222222的最小值为所以,这时,取最大值时,,即当((((cb a b b b b bc b a c b a b c b a b b a b a c b b a b ba c cb ba cb ab a +≥=+=++===++••+•+•+=+•=+=+7(2014湖南).若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,则____=k .【答案】2-【解析】求出约束条件中三条直线的交点为()(),,4,k k k k -(),2,2,且不等式组,4y x x y ≤+≤限制的区域如图,所以2k ≤,则当(),k k 为最优解时,362k k =-⇒=-,当()4,k k -为最优解时,()24614k k k -+=-⇒=, 因为2k ≤,所以2k =-,故填2-.【考点定位】线性规划8(2014湖南)x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =________.9 (2014陕西) (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+三.解答题1. (2014新课标I)(本小题满分10分)选修4—5:不等式选讲 若0,0a b >>,且11a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】:(Ⅰ)11a b =+≥,得2ab ≥,且当a b =时等号成立,故3342a b+≥=,且当a b ==∴33a b +的最小值为 ………5分 (Ⅱ)由623a b =+≥32ab ≤,又由(Ⅰ)知2ab ≥,二者矛盾, 所以不存在,a b ,使得236a b +=成立. ……………10分 2. (2014新课标II)(本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.3. (2014辽宁) (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤. 【答案】 (1)}34≤≤0|{x x (2) 【解析】(1)}34≤≤0|{].34,0[1≤)(∴1≤01;34≤≤11≥.1≤1-|1-|2)(x x M x f x x x x x x x f =<<+=所以,的解集为时,解得当时,解得当(2)222222223222213()16814444133[0,],[,],[0,]3444()[()][2(1)1](1)(1)(1)(12)111(1)(1)22413()[()],[0,]44g x x x x M N M N x f x x f x x x x x x x x x x x x x x x x x x x x f x x f x x ,解得--=-+#==?+=?+-+-=?+-=-+-+=-=-?=\+N4(2014福建)(本小题满分7分)选修4—5:不等式选将 已知定义在R 上的函数()21-++=x x x f 的最小值为a .(I )求a 的值;(II )若r q p ,,为正实数,且a r q p =++,求证:3222≥++r q p . 解:(1)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当-1≤x ≤2时,等号成立, 所以f (x )的最小值等于3,即a =3.(2)由(1)知p +q +r =3,又p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9, 即p 2+q 2+r 2≥3.。
- 1 -
2014届高考数学理科试题大冲关:不等关系与不等式
一、选择题
1.设a,b∈R,若b-|a|>0,则下列不等式中正确的是 ( )
A.a-b>0 B.a+b>0
C.a2-b2>0 D.a3+b3<0
2.设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
3.若a>b,则下列不等式正确的是 ( )
A.1a<1b B.a3>
b
3
C.a2>b2 D.a>|b|
4.设a,b为正实数,则“aA.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
5.已知0<a<1b,且M=11+a+11+b,N=a1+a+b1+b,则M、N的大小关系是( )
A.M>N B.M<N
C.M=N D.不能确定
6.若x>y>1,且0logay;③x-a>y-a;④logxa
A.1 B.2
C.3 D.4
二、填空题
7.已知a+b>0,则ab2+ba2与1a+1b的大小关系是________.
8.以下四个不等式:①a<0件有________.
- 2 -
9.已知-π2≤α<β≤π2,则α+β2的取值范围是________;α-β2的取值范围是
________.
三、解答题
10.比较x3与x2-x+1的大小.
11.若a>b>0,c
12.设x,y为实数,满足3≤xy2≤8,4≤x2y≤9,求x3y4的最大值.
详解答案
一、选择题
1.解析:由b>|a|,可得-b得a+b>0,所以选项B正确.由b>|a|,两边平方得b2>a2,则a2-b2<0,所以选项C错误.由
-b0,所以选项D错误.
答案:B
2.解析:因为x≥2且y≥2⇒x2+y2≥4易证,所以充分性满足,反之,不成立,如x=
y
=74,满足x2+y2≥4,但不满足x≥2且y≥2,所以x≥2且y≥2是x2+y2≥4的充分而不必
要条件.
- 3 -
答案:A ∴1a>1b,由不等式的性质a-1a ∴由a当a-1a即(a-b)(1+1ab)<0. ∴“a答案:C ∴M-N=1-a1+a+1-b1+b=2-2ab1+a1+b>0. 又logax 7.解析:ab2+ba2-(1a+1b)=a-bb2+b-aa2 =(a-b)(1b2-1a2)=a+ba-b2a2b2. ∵a+b>0,(a-b)2≥0, ∴ab2+ba2≥1a+1b. 0答案:①②④ ∴-π<α+β<π,∴-π2<α+β2<π2. ∴0<1a-c2<1b-d2. 令lgx=a,lgy=b,则有 lg3≤a+2b≤3lg22lg2≤2a-b≤2lg3, ∴x3y4的最大值是27. 法二:将4≤x2y≤9两边分别平方得,16≤x4y2≤81,①
3.解析:若a=1,b=-3,则1a>1b,a2
答案:B
4.解析:∵a>0,b>0,a
又∵a>0,b>0,∴a-b<0.
∴a
5.解析:∵0<a<1b,∴1+a>0,1+b>0,1-ab>0,
答案:A
6.解析:∵x>y>1,0∴ax
a
,③不成立.
即logxa>logya,∴④也不成立.
答案:C
二、填空题
- 4 -
∴a+ba-b2a2b2≥0.
答案:ab2+ba2≥1a+1b
解析:a<0b<0,故②符合要求;
9.解析:∵-π2≤α<π2,-π2<β≤π2,
∵-π2≤-β<π2,∴-π≤α-β<π.
∴-π2≤α-β2<π2.
又∵α-β<0,∴-π2≤α-β2<0.
答案:(-π2,π2) [-π2,0)
三、解答题
10.解:x3-(x2-x+1)=x3-x2+x-1=x2(x-1)+(x-1)=(x-1)(x2+1).
∵x2+1>0,
∴当x>1时,(x-1)(x2+1)>0,即x3>x2-x+1;
当x=1时,(x-1)(x2+1)=0,即x3=x2-x+1;
当x<1时,(x-1)(x2+1)<0,即x3
又∵a>b>0,∴a-c>b-d>0.
∴(a-c)2>(b-d)2>0.
- 5 -
又∵e<0,∴ea-c2>eb-d2.
12.解:法一:由题设知,实数x,y均为正实数,
则条件可化为lg3≤lgx+2lgy≤lg8,lg4≤2lgx-lgy≤lg9,
又设t=x3y4,则lgt=3lgx-4lgy=3a-4b,
令3a-4b=m(a+2b)+n(2a-b),解得m=-1,n=2,
即lgt=-(a+2b)+2(2a-b)≤-lg3+4lg3=lg27,
又由3≤xy2≤8可得,18≤1xy2≤13,②
由①×②得,2≤x3y4≤27,即x3y4的最大值是27.