Disjoint pattern database heuristics
- 格式:pdf
- 大小:491.02 KB
- 文档页数:19
机器学习专业词汇中英⽂对照activation 激活值activation function 激活函数additive noise 加性噪声autoencoder ⾃编码器Autoencoders ⾃编码算法average firing rate 平均激活率average sum-of-squares error 均⽅差backpropagation 后向传播basis 基basis feature vectors 特征基向量batch gradient ascent 批量梯度上升法Bayesian regularization method 贝叶斯规则化⽅法Bernoulli random variable 伯努利随机变量bias term 偏置项binary classfication ⼆元分类class labels 类型标记concatenation 级联conjugate gradient 共轭梯度contiguous groups 联通区域convex optimization software 凸优化软件convolution 卷积cost function 代价函数covariance matrix 协⽅差矩阵DC component 直流分量decorrelation 去相关degeneracy 退化demensionality reduction 降维derivative 导函数diagonal 对⾓线diffusion of gradients 梯度的弥散eigenvalue 特征值eigenvector 特征向量error term 残差feature matrix 特征矩阵feature standardization 特征标准化feedforward architectures 前馈结构算法feedforward neural network 前馈神经⽹络feedforward pass 前馈传导fine-tuned 微调first-order feature ⼀阶特征forward pass 前向传导forward propagation 前向传播Gaussian prior ⾼斯先验概率generative model ⽣成模型gradient descent 梯度下降Greedy layer-wise training 逐层贪婪训练⽅法grouping matrix 分组矩阵Hadamard product 阿达马乘积Hessian matrix Hessian 矩阵hidden layer 隐含层hidden units 隐藏神经元Hierarchical grouping 层次型分组higher-order features 更⾼阶特征highly non-convex optimization problem ⾼度⾮凸的优化问题histogram 直⽅图hyperbolic tangent 双曲正切函数hypothesis 估值,假设identity activation function 恒等激励函数IID 独⽴同分布illumination 照明inactive 抑制independent component analysis 独⽴成份分析input domains 输⼊域input layer 输⼊层intensity 亮度/灰度intercept term 截距KL divergence 相对熵KL divergence KL分散度k-Means K-均值learning rate 学习速率least squares 最⼩⼆乘法linear correspondence 线性响应linear superposition 线性叠加line-search algorithm 线搜索算法local mean subtraction 局部均值消减local optima 局部最优解logistic regression 逻辑回归loss function 损失函数low-pass filtering 低通滤波magnitude 幅值MAP 极⼤后验估计maximum likelihood estimation 极⼤似然估计mean 平均值MFCC Mel 倒频系数multi-class classification 多元分类neural networks 神经⽹络neuron 神经元Newton’s method ⽜顿法non-convex function ⾮凸函数non-linear feature ⾮线性特征norm 范式norm bounded 有界范数norm constrained 范数约束normalization 归⼀化numerical roundoff errors 数值舍⼊误差numerically checking 数值检验numerically reliable 数值计算上稳定object detection 物体检测objective function ⽬标函数off-by-one error 缺位错误orthogonalization 正交化output layer 输出层overall cost function 总体代价函数over-complete basis 超完备基over-fitting 过拟合parts of objects ⽬标的部件part-whole decompostion 部分-整体分解PCA 主元分析penalty term 惩罚因⼦per-example mean subtraction 逐样本均值消减pooling 池化pretrain 预训练principal components analysis 主成份分析quadratic constraints ⼆次约束RBMs 受限Boltzman机reconstruction based models 基于重构的模型reconstruction cost 重建代价reconstruction term 重构项redundant 冗余reflection matrix 反射矩阵regularization 正则化regularization term 正则化项rescaling 缩放robust 鲁棒性run ⾏程second-order feature ⼆阶特征sigmoid activation function S型激励函数significant digits 有效数字singular value 奇异值singular vector 奇异向量smoothed L1 penalty 平滑的L1范数惩罚Smoothed topographic L1 sparsity penalty 平滑地形L1稀疏惩罚函数smoothing 平滑Softmax Regresson Softmax回归sorted in decreasing order 降序排列source features 源特征sparse autoencoder 消减归⼀化Sparsity 稀疏性sparsity parameter 稀疏性参数sparsity penalty 稀疏惩罚square function 平⽅函数squared-error ⽅差stationary 平稳性(不变性)stationary stochastic process 平稳随机过程step-size 步长值supervised learning 监督学习symmetric positive semi-definite matrix 对称半正定矩阵symmetry breaking 对称失效tanh function 双曲正切函数the average activation 平均活跃度the derivative checking method 梯度验证⽅法the empirical distribution 经验分布函数the energy function 能量函数the Lagrange dual 拉格朗⽇对偶函数the log likelihood 对数似然函数the pixel intensity value 像素灰度值the rate of convergence 收敛速度topographic cost term 拓扑代价项topographic ordered 拓扑秩序transformation 变换translation invariant 平移不变性trivial answer 平凡解under-complete basis 不完备基unrolling 组合扩展unsupervised learning ⽆监督学习variance ⽅差vecotrized implementation 向量化实现vectorization ⽮量化visual cortex 视觉⽪层weight decay 权重衰减weighted average 加权平均值whitening ⽩化zero-mean 均值为零Letter AAccumulated error backpropagation 累积误差逆传播Activation Function 激活函数Adaptive Resonance Theory/ART ⾃适应谐振理论Addictive model 加性学习Adversarial Networks 对抗⽹络Affine Layer 仿射层Affinity matrix 亲和矩阵Agent 代理 / 智能体Algorithm 算法Alpha-beta pruning α-β剪枝Anomaly detection 异常检测Approximation 近似Area Under ROC Curve/AUC Roc 曲线下⾯积Artificial General Intelligence/AGI 通⽤⼈⼯智能Artificial Intelligence/AI ⼈⼯智能Association analysis 关联分析Attention mechanism 注意⼒机制Attribute conditional independence assumption 属性条件独⽴性假设Attribute space 属性空间Attribute value 属性值Autoencoder ⾃编码器Automatic speech recognition ⾃动语⾳识别Automatic summarization ⾃动摘要Average gradient 平均梯度Average-Pooling 平均池化Letter BBackpropagation Through Time 通过时间的反向传播Backpropagation/BP 反向传播Base learner 基学习器Base learning algorithm 基学习算法Batch Normalization/BN 批量归⼀化Bayes decision rule 贝叶斯判定准则Bayes Model Averaging/BMA 贝叶斯模型平均Bayes optimal classifier 贝叶斯最优分类器Bayesian decision theory 贝叶斯决策论Bayesian network 贝叶斯⽹络Between-class scatter matrix 类间散度矩阵Bias 偏置 / 偏差Bias-variance decomposition 偏差-⽅差分解Bias-Variance Dilemma 偏差 – ⽅差困境Bi-directional Long-Short Term Memory/Bi-LSTM 双向长短期记忆Binary classification ⼆分类Binomial test ⼆项检验Bi-partition ⼆分法Boltzmann machine 玻尔兹曼机Bootstrap sampling ⾃助采样法/可重复采样/有放回采样Bootstrapping ⾃助法Break-Event Point/BEP 平衡点Letter CCalibration 校准Cascade-Correlation 级联相关Categorical attribute 离散属性Class-conditional probability 类条件概率Classification and regression tree/CART 分类与回归树Classifier 分类器Class-imbalance 类别不平衡Closed -form 闭式Cluster 簇/类/集群Cluster analysis 聚类分析Clustering 聚类Clustering ensemble 聚类集成Co-adapting 共适应Coding matrix 编码矩阵COLT 国际学习理论会议Committee-based learning 基于委员会的学习Competitive learning 竞争型学习Component learner 组件学习器Comprehensibility 可解释性Computation Cost 计算成本Computational Linguistics 计算语⾔学Computer vision 计算机视觉Concept drift 概念漂移Concept Learning System /CLS 概念学习系统Conditional entropy 条件熵Conditional mutual information 条件互信息Conditional Probability Table/CPT 条件概率表Conditional random field/CRF 条件随机场Conditional risk 条件风险Confidence 置信度Confusion matrix 混淆矩阵Connection weight 连接权Connectionism 连结主义Consistency ⼀致性/相合性Contingency table 列联表Continuous attribute 连续属性Convergence 收敛Conversational agent 会话智能体Convex quadratic programming 凸⼆次规划Convexity 凸性Convolutional neural network/CNN 卷积神经⽹络Co-occurrence 同现Correlation coefficient 相关系数Cosine similarity 余弦相似度Cost curve 成本曲线Cost Function 成本函数Cost matrix 成本矩阵Cost-sensitive 成本敏感Cross entropy 交叉熵Cross validation 交叉验证Crowdsourcing 众包Curse of dimensionality 维数灾难Cut point 截断点Cutting plane algorithm 割平⾯法Letter DData mining 数据挖掘Data set 数据集Decision Boundary 决策边界Decision stump 决策树桩Decision tree 决策树/判定树Deduction 演绎Deep Belief Network 深度信念⽹络Deep Convolutional Generative Adversarial Network/DCGAN 深度卷积⽣成对抗⽹络Deep learning 深度学习Deep neural network/DNN 深度神经⽹络Deep Q-Learning 深度 Q 学习Deep Q-Network 深度 Q ⽹络Density estimation 密度估计Density-based clustering 密度聚类Differentiable neural computer 可微分神经计算机Dimensionality reduction algorithm 降维算法Directed edge 有向边Disagreement measure 不合度量Discriminative model 判别模型Discriminator 判别器Distance measure 距离度量Distance metric learning 距离度量学习Distribution 分布Divergence 散度Diversity measure 多样性度量/差异性度量Domain adaption 领域⾃适应Downsampling 下采样D-separation (Directed separation)有向分离Dual problem 对偶问题Dummy node 哑结点Dynamic Fusion 动态融合Dynamic programming 动态规划Letter EEigenvalue decomposition 特征值分解Embedding 嵌⼊Emotional analysis 情绪分析Empirical conditional entropy 经验条件熵Empirical entropy 经验熵Empirical error 经验误差Empirical risk 经验风险End-to-End 端到端Energy-based model 基于能量的模型Ensemble learning 集成学习Ensemble pruning 集成修剪Error Correcting Output Codes/ECOC 纠错输出码Error rate 错误率Error-ambiguity decomposition 误差-分歧分解Euclidean distance 欧⽒距离Evolutionary computation 演化计算Expectation-Maximization 期望最⼤化Expected loss 期望损失Exploding Gradient Problem 梯度爆炸问题Exponential loss function 指数损失函数Extreme Learning Machine/ELM 超限学习机Letter FFactorization 因⼦分解False negative 假负类False positive 假正类False Positive Rate/FPR 假正例率Feature engineering 特征⼯程Feature selection 特征选择Feature vector 特征向量Featured Learning 特征学习Feedforward Neural Networks/FNN 前馈神经⽹络Fine-tuning 微调Flipping output 翻转法Fluctuation 震荡Forward stagewise algorithm 前向分步算法Frequentist 频率主义学派Full-rank matrix 满秩矩阵Functional neuron 功能神经元Letter GGain ratio 增益率Game theory 博弈论Gaussian kernel function ⾼斯核函数Gaussian Mixture Model ⾼斯混合模型General Problem Solving 通⽤问题求解Generalization 泛化Generalization error 泛化误差Generalization error bound 泛化误差上界Generalized Lagrange function ⼴义拉格朗⽇函数Generalized linear model ⼴义线性模型Generalized Rayleigh quotient ⼴义瑞利商Generative Adversarial Networks/GAN ⽣成对抗⽹络Generative Model ⽣成模型Generator ⽣成器Genetic Algorithm/GA 遗传算法Gibbs sampling 吉布斯采样Gini index 基尼指数Global minimum 全局最⼩Global Optimization 全局优化Gradient boosting 梯度提升Gradient Descent 梯度下降Graph theory 图论Ground-truth 真相/真实Letter HHard margin 硬间隔Hard voting 硬投票Harmonic mean 调和平均Hesse matrix 海塞矩阵Hidden dynamic model 隐动态模型Hidden layer 隐藏层Hidden Markov Model/HMM 隐马尔可夫模型Hierarchical clustering 层次聚类Hilbert space 希尔伯特空间Hinge loss function 合页损失函数Hold-out 留出法Homogeneous 同质Hybrid computing 混合计算Hyperparameter 超参数Hypothesis 假设Hypothesis test 假设验证Letter IICML 国际机器学习会议Improved iterative scaling/IIS 改进的迭代尺度法Incremental learning 增量学习Independent and identically distributed/i.i.d. 独⽴同分布Independent Component Analysis/ICA 独⽴成分分析Indicator function 指⽰函数Individual learner 个体学习器Induction 归纳Inductive bias 归纳偏好Inductive learning 归纳学习Inductive Logic Programming/ILP 归纳逻辑程序设计Information entropy 信息熵Information gain 信息增益Input layer 输⼊层Insensitive loss 不敏感损失Inter-cluster similarity 簇间相似度International Conference for Machine Learning/ICML 国际机器学习⼤会Intra-cluster similarity 簇内相似度Intrinsic value 固有值Isometric Mapping/Isomap 等度量映射Isotonic regression 等分回归Iterative Dichotomiser 迭代⼆分器Letter KKernel method 核⽅法Kernel trick 核技巧Kernelized Linear Discriminant Analysis/KLDA 核线性判别分析K-fold cross validation k 折交叉验证/k 倍交叉验证K-Means Clustering K – 均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base 知识库Knowledge Representation 知识表征Letter LLabel space 标记空间Lagrange duality 拉格朗⽇对偶性Lagrange multiplier 拉格朗⽇乘⼦Laplace smoothing 拉普拉斯平滑Laplacian correction 拉普拉斯修正Latent Dirichlet Allocation 隐狄利克雷分布Latent semantic analysis 潜在语义分析Latent variable 隐变量Lazy learning 懒惰学习Learner 学习器Learning by analogy 类⽐学习Learning rate 学习率Learning Vector Quantization/LVQ 学习向量量化Least squares regression tree 最⼩⼆乘回归树Leave-One-Out/LOO 留⼀法linear chain conditional random field 线性链条件随机场Linear Discriminant Analysis/LDA 线性判别分析Linear model 线性模型Linear Regression 线性回归Link function 联系函数Local Markov property 局部马尔可夫性Local minimum 局部最⼩Log likelihood 对数似然Log odds/logit 对数⼏率Logistic Regression Logistic 回归Log-likelihood 对数似然Log-linear regression 对数线性回归Long-Short Term Memory/LSTM 长短期记忆Loss function 损失函数Letter MMachine translation/MT 机器翻译Macron-P 宏查准率Macron-R 宏查全率Majority voting 绝对多数投票法Manifold assumption 流形假设Manifold learning 流形学习Margin theory 间隔理论Marginal distribution 边际分布Marginal independence 边际独⽴性Marginalization 边际化Markov Chain Monte Carlo/MCMC 马尔可夫链蒙特卡罗⽅法Markov Random Field 马尔可夫随机场Maximal clique 最⼤团Maximum Likelihood Estimation/MLE 极⼤似然估计/极⼤似然法Maximum margin 最⼤间隔Maximum weighted spanning tree 最⼤带权⽣成树Max-Pooling 最⼤池化Mean squared error 均⽅误差Meta-learner 元学习器Metric learning 度量学习Micro-P 微查准率Micro-R 微查全率Minimal Description Length/MDL 最⼩描述长度Minimax game 极⼩极⼤博弈Misclassification cost 误分类成本Mixture of experts 混合专家Momentum 动量Moral graph 道德图/端正图Multi-class classification 多分类Multi-document summarization 多⽂档摘要Multi-layer feedforward neural networks 多层前馈神经⽹络Multilayer Perceptron/MLP 多层感知器Multimodal learning 多模态学习Multiple Dimensional Scaling 多维缩放Multiple linear regression 多元线性回归Multi-response Linear Regression /MLR 多响应线性回归Mutual information 互信息Letter NNaive bayes 朴素贝叶斯Naive Bayes Classifier 朴素贝叶斯分类器Named entity recognition 命名实体识别Nash equilibrium 纳什均衡Natural language generation/NLG ⾃然语⾔⽣成Natural language processing ⾃然语⾔处理Negative class 负类Negative correlation 负相关法Negative Log Likelihood 负对数似然Neighbourhood Component Analysis/NCA 近邻成分分析Neural Machine Translation 神经机器翻译Neural Turing Machine 神经图灵机Newton method ⽜顿法NIPS 国际神经信息处理系统会议No Free Lunch Theorem/NFL 没有免费的午餐定理Noise-contrastive estimation 噪⾳对⽐估计Nominal attribute 列名属性Non-convex optimization ⾮凸优化Nonlinear model ⾮线性模型Non-metric distance ⾮度量距离Non-negative matrix factorization ⾮负矩阵分解Non-ordinal attribute ⽆序属性Non-Saturating Game ⾮饱和博弈Norm 范数Normalization 归⼀化Nuclear norm 核范数Numerical attribute 数值属性Letter OObjective function ⽬标函数Oblique decision tree 斜决策树Occam’s razor 奥卡姆剃⼑Odds ⼏率Off-Policy 离策略One shot learning ⼀次性学习One-Dependent Estimator/ODE 独依赖估计On-Policy 在策略Ordinal attribute 有序属性Out-of-bag estimate 包外估计Output layer 输出层Output smearing 输出调制法Overfitting 过拟合/过配Oversampling 过采样Letter PPaired t-test 成对 t 检验Pairwise 成对型Pairwise Markov property 成对马尔可夫性Parameter 参数Parameter estimation 参数估计Parameter tuning 调参Parse tree 解析树Particle Swarm Optimization/PSO 粒⼦群优化算法Part-of-speech tagging 词性标注Perceptron 感知机Performance measure 性能度量Plug and Play Generative Network 即插即⽤⽣成⽹络Plurality voting 相对多数投票法Polarity detection 极性检测Polynomial kernel function 多项式核函数Pooling 池化Positive class 正类Positive definite matrix 正定矩阵Post-hoc test 后续检验Post-pruning 后剪枝potential function 势函数Precision 查准率/准确率Prepruning 预剪枝Principal component analysis/PCA 主成分分析Principle of multiple explanations 多释原则Prior 先验Probability Graphical Model 概率图模型Proximal Gradient Descent/PGD 近端梯度下降Pruning 剪枝Pseudo-label 伪标记Letter QQuantized Neural Network 量⼦化神经⽹络Quantum computer 量⼦计算机Quantum Computing 量⼦计算Quasi Newton method 拟⽜顿法Letter RRadial Basis Function/RBF 径向基函数Random Forest Algorithm 随机森林算法Random walk 随机漫步Recall 查全率/召回率Receiver Operating Characteristic/ROC 受试者⼯作特征Rectified Linear Unit/ReLU 线性修正单元Recurrent Neural Network 循环神经⽹络Recursive neural network 递归神经⽹络Reference model 参考模型Regression 回归Regularization 正则化Reinforcement learning/RL 强化学习Representation learning 表征学习Representer theorem 表⽰定理reproducing kernel Hilbert space/RKHS 再⽣核希尔伯特空间Re-sampling 重采样法Rescaling 再缩放Residual Mapping 残差映射Residual Network 残差⽹络Restricted Boltzmann Machine/RBM 受限玻尔兹曼机Restricted Isometry Property/RIP 限定等距性Re-weighting 重赋权法Robustness 稳健性/鲁棒性Root node 根结点Rule Engine 规则引擎Rule learning 规则学习Letter SSaddle point 鞍点Sample space 样本空间Sampling 采样Score function 评分函数Self-Driving ⾃动驾驶Self-Organizing Map/SOM ⾃组织映射Semi-naive Bayes classifiers 半朴素贝叶斯分类器Semi-Supervised Learning 半监督学习semi-Supervised Support Vector Machine 半监督⽀持向量机Sentiment analysis 情感分析Separating hyperplane 分离超平⾯Sigmoid function Sigmoid 函数Similarity measure 相似度度量Simulated annealing 模拟退⽕Simultaneous localization and mapping 同步定位与地图构建Singular Value Decomposition 奇异值分解Slack variables 松弛变量Smoothing 平滑Soft margin 软间隔Soft margin maximization 软间隔最⼤化Soft voting 软投票Sparse representation 稀疏表征Sparsity 稀疏性Specialization 特化Spectral Clustering 谱聚类Speech Recognition 语⾳识别Splitting variable 切分变量Squashing function 挤压函数Stability-plasticity dilemma 可塑性-稳定性困境Statistical learning 统计学习Status feature function 状态特征函Stochastic gradient descent 随机梯度下降Stratified sampling 分层采样Structural risk 结构风险Structural risk minimization/SRM 结构风险最⼩化Subspace ⼦空间Supervised learning 监督学习/有导师学习support vector expansion ⽀持向量展式Support Vector Machine/SVM ⽀持向量机Surrogat loss 替代损失Surrogate function 替代函数Symbolic learning 符号学习Symbolism 符号主义Synset 同义词集Letter TT-Distribution Stochastic Neighbour Embedding/t-SNE T – 分布随机近邻嵌⼊Tensor 张量Tensor Processing Units/TPU 张量处理单元The least square method 最⼩⼆乘法Threshold 阈值Threshold logic unit 阈值逻辑单元Threshold-moving 阈值移动Time Step 时间步骤Tokenization 标记化Training error 训练误差Training instance 训练⽰例/训练例Transductive learning 直推学习Transfer learning 迁移学习Treebank 树库Tria-by-error 试错法True negative 真负类True positive 真正类True Positive Rate/TPR 真正例率Turing Machine 图灵机Twice-learning ⼆次学习Letter UUnderfitting ⽋拟合/⽋配Undersampling ⽋采样Understandability 可理解性Unequal cost ⾮均等代价Unit-step function 单位阶跃函数Univariate decision tree 单变量决策树Unsupervised learning ⽆监督学习/⽆导师学习Unsupervised layer-wise training ⽆监督逐层训练Upsampling 上采样Letter VVanishing Gradient Problem 梯度消失问题Variational inference 变分推断VC Theory VC维理论Version space 版本空间Viterbi algorithm 维特⽐算法Von Neumann architecture 冯 · 诺伊曼架构Letter WWasserstein GAN/WGAN Wasserstein⽣成对抗⽹络Weak learner 弱学习器Weight 权重Weight sharing 权共享Weighted voting 加权投票法Within-class scatter matrix 类内散度矩阵Word embedding 词嵌⼊Word sense disambiguation 词义消歧Letter ZZero-data learning 零数据学习Zero-shot learning 零次学习Aapproximations近似值arbitrary随意的affine仿射的arbitrary任意的amino acid氨基酸amenable经得起检验的axiom公理,原则abstract提取architecture架构,体系结构;建造业absolute绝对的arsenal军⽕库assignment分配algebra线性代数asymptotically⽆症状的appropriate恰当的Bbias偏差brevity简短,简洁;短暂broader⼴泛briefly简短的batch批量Cconvergence 收敛,集中到⼀点convex凸的contours轮廓constraint约束constant常理commercial商务的complementarity补充coordinate ascent同等级上升clipping剪下物;剪报;修剪component分量;部件continuous连续的covariance协⽅差canonical正规的,正则的concave⾮凸的corresponds相符合;相当;通信corollary推论concrete具体的事物,实在的东西cross validation交叉验证correlation相互关系convention约定cluster⼀簇centroids 质⼼,形⼼converge收敛computationally计算(机)的calculus计算Dderive获得,取得dual⼆元的duality⼆元性;⼆象性;对偶性derivation求导;得到;起源denote预⽰,表⽰,是…的标志;意味着,[逻]指称divergence 散度;发散性dimension尺度,规格;维数dot⼩圆点distortion变形density概率密度函数discrete离散的discriminative有识别能⼒的diagonal对⾓dispersion分散,散开determinant决定因素disjoint不相交的Eencounter遇到ellipses椭圆equality等式extra额外的empirical经验;观察ennmerate例举,计数exceed超过,越出expectation期望efficient⽣效的endow赋予explicitly清楚的exponential family指数家族equivalently等价的Ffeasible可⾏的forary初次尝试finite有限的,限定的forgo摒弃,放弃fliter过滤frequentist最常发⽣的forward search前向式搜索formalize使定形Ggeneralized归纳的generalization概括,归纳;普遍化;判断(根据不⾜)guarantee保证;抵押品generate形成,产⽣geometric margins⼏何边界gap裂⼝generative⽣产的;有⽣产⼒的Hheuristic启发式的;启发法;启发程序hone怀恋;磨hyperplane超平⾯Linitial最初的implement执⾏intuitive凭直觉获知的incremental增加的intercept截距intuitious直觉instantiation例⼦indicator指⽰物,指⽰器interative重复的,迭代的integral积分identical相等的;完全相同的indicate表⽰,指出invariance不变性,恒定性impose把…强加于intermediate中间的interpretation解释,翻译Jjoint distribution联合概率Llieu替代logarithmic对数的,⽤对数表⽰的latent潜在的Leave-one-out cross validation留⼀法交叉验证Mmagnitude巨⼤mapping绘图,制图;映射matrix矩阵mutual相互的,共同的monotonically单调的minor较⼩的,次要的multinomial多项的multi-class classification⼆分类问题Nnasty讨厌的notation标志,注释naïve朴素的Oobtain得到oscillate摆动optimization problem最优化问题objective function⽬标函数optimal最理想的orthogonal(⽮量,矩阵等)正交的orientation⽅向ordinary普通的occasionally偶然的Ppartial derivative偏导数property性质proportional成⽐例的primal原始的,最初的permit允许pseudocode伪代码permissible可允许的polynomial多项式preliminary预备precision精度perturbation 不安,扰乱poist假定,设想positive semi-definite半正定的parentheses圆括号posterior probability后验概率plementarity补充pictorially图像的parameterize确定…的参数poisson distribution柏松分布pertinent相关的Qquadratic⼆次的quantity量,数量;分量query疑问的Rregularization使系统化;调整reoptimize重新优化restrict限制;限定;约束reminiscent回忆往事的;提醒的;使⼈联想…的(of)remark注意random variable随机变量respect考虑respectively各⾃的;分别的redundant过多的;冗余的Ssusceptible敏感的stochastic可能的;随机的symmetric对称的sophisticated复杂的spurious假的;伪造的subtract减去;减法器simultaneously同时发⽣地;同步地suffice满⾜scarce稀有的,难得的split分解,分离subset⼦集statistic统计量successive iteratious连续的迭代scale标度sort of有⼏分的squares平⽅Ttrajectory轨迹temporarily暂时的terminology专⽤名词tolerance容忍;公差thumb翻阅threshold阈,临界theorem定理tangent正弦Uunit-length vector单位向量Vvalid有效的,正确的variance⽅差variable变量;变元vocabulary词汇valued经估价的;宝贵的Wwrapper包装分类:。
遗传病(inherited disease,genetic disorder) 因遗传因素而罹患的疾病。
包括生殖细胞、受精卵内以及体细胞内遗传物质结构和功能的改变。
先天性疾病(congenital disease)是指婴儿出生时即显示症状如血友病、Down综合征等。
先天性疾病不一定是遗传病家族性疾病(familial disease) 是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人患同一种疾病。
点突变(point mutation)是指单个碱基被另一个不同的碱基替代而造成的突变。
又称为碱基替换(substitution)。
替换的方式:转换(transition)即同种碱基和颠换(transversion)即异种碱基。
同义突变(same sense mutation) 是指碱基替换后,一个密码子变成另一个密码子,但是所编码的氨基酸没有改变,未产生遗传效应。
这是由于遗传密码的兼并性。
同义突变通常发生在密码子的第三碱基。
如:UUU和UUC均编码苯丙氨酸。
错义突变(missense mutation) 是指碱基替换后使mRNA的密码子变成编码另一个氨基酸的密码子,改变了氨基酸的序列,影响蛋白质的功能。
错义突变通常发生在密码子的第一、二碱基。
无义突变(nonsense mutation) 是指碱基替换后,使一个编码氨基酸的密码子变为不编码任何氨基酸的一个终止密码子(UAG、UAA、UGA),致使多肽链的合成的提前终止,肽链缩短,成为没有活性的多肽片段。
如β地中海贫血移码突变(frame shift mutation) 是指在DNA编码序列中插入或缺失一个或几个碱基对,使在插入或缺失点下游的DNA编码全部发生改变,这种基因突变称为移码突变。
动态突变(dynamic mutation) 是指人类基因组中的短串联重复序列,尤其是基因编码序列或侧翼序列的三核苷酸重复,在一代代传递过程中重复次数明显增加,从而导致某些遗传病的发生。
高斯朴素贝叶斯训练集精确度的英语Gaussian Naive Bayes (GNB) is a popular machine learning algorithm used for classification tasks. It is particularly well-suited for text classification, spam filtering, and recommendation systems. However, like any other machine learning algorithm, GNB's performance heavily relies on the quality of the training data. In this essay, we will delve into the factors that affect the training set accuracy of Gaussian Naive Bayes and explore potential solutions to improve its performance.One of the key factors that influence the training set accuracy of GNB is the quality and quantity of the training data. In order for the algorithm to make accurate predictions, it needs to be trained on a diverse and representative dataset. If the training set is too small or biased, the model may not generalize well to new, unseen data. This can result in low training set accuracy and poor performance in real-world applications. Therefore, it is crucial to ensure that the training data is comprehensive and well-balanced across different classes.Another factor that can impact the training set accuracy of GNB is the presence of irrelevant or noisy features in the dataset. When the input features contain irrelevant information or noise, it can hinder the algorithm's ability to identify meaningful patterns and make accurate predictions. To address this issue, feature selection and feature engineering techniques can be employed to filter out irrelevant features and enhance the discriminative power of the model. Byselecting the most informative features and transforming them appropriately, we can improve the training set accuracy of GNB.Furthermore, the assumption of feature independence in Gaussian Naive Bayes can also affect its training set accuracy. Although the 'naive' assumption of feature independence simplifies the model and makes it computationally efficient, it may not hold true in real-world datasets where features are often correlated. When features are not independent, it can lead to biased probability estimates and suboptimal performance. To mitigate this issue, techniques such as feature extraction and dimensionality reduction can be employed to decorrelate the input features and improve the training set accuracy of GNB.In addition to the aforementioned factors, the choice of hyperparameters and model tuning can also impact the training set accuracy of GNB. Hyperparameters such as the smoothing parameter (alpha) and the covariance type in the Gaussian distribution can significantly influence the model's performance. Therefore, it is important to carefully tune these hyperparameters through cross-validation andgrid search to optimize the training set accuracy of GNB. By selecting the appropriate hyperparameters, we can ensure that the model is well-calibrated and achieves high accuracy on the training set.Despite the challenges and limitations associated with GNB, there are several strategies that can be employed to improve its training set accuracy. By curating a high-quality training dataset, performing feature selection and engineering, addressing feature independence assumptions, and tuning model hyperparameters, we can enhance the performance of GNB and achieve higher training set accuracy. Furthermore, it is important to continuously evaluate and validate the model on unseen data to ensure that it generalizes well and performs robustly in real-world scenarios. By addressing these factors and adopting best practices in model training and evaluation, we can maximize the training set accuracy of Gaussian Naive Bayes and unleash its full potential in various applications.。
空间天气学十问答一、 什么是空间天气学?(魏奉思中科院空间中心)二、 空间灾害性天气对人类航天活动有什么影响?(赵华中科院空间中心、朱文明航天工业总公司501部)三、 空间灾害性天气对人类通信、导航活动有什么影响?(郭兼善中科院空间中心、吴健信息产业部22所)四、 空间灾害性天气对人类地面技术系统(电力、输油(气)和资源等)和生态环境有什么影响?(汤克云中科院地质地球物理所、焦维新北京大学)五、 空间天气学的基本问题是什么?(魏奉思中科院空间中心)六、 如何监测空间天气的变化?(焦维新北京大学、王家龙北京天文台、万卫星武汉物理与数学所、徐寄遥中科院空间中心)七、 空间灾害性天气变化是如何发生的?(肖佐北京大学、王家龙北京天文台八、 目前关于空间灾害性天气变化的预报能力如何?(王家龙北京天文台、高玉芬国家地震局地球所)九、 国际空间天气研究的态势如何?(冯学尚中科院空间中心、张贵银总参大气所)十、 我国在推动空间天气学方面正在作出哪些努力?(于晟国家基金委地学部、朱志文国家基金委地学部)资料:重要的空间灾害性天气事件简介(冯学尚中科院空间中心)一、什么是《空间天气学》?魏奉思中国科学院空间科学与应用研究中心,空间天气研究实验室千百年来,人们就知道,狂风暴雨、电闪雷鸣、洪涝、水旱,地球上这些恶劣的天气变化给人们的衣、食、住、行和生产活动带来灾难。
地球20-30公里以上的高空,甚至千万公里的空间(或称太空),也存在恶劣的空间天气变化。
例如,当太阳上高温、高超音速的物质喷发所形成的太阳风暴吹过地球,有时会使卫星失效、提前陨落、通信中断、导航、跟踪失误、电力系统损坏以及人的健康与生命带来严重危害,却是近2-30年来才逐步认识到的新事实。
我们现在知道,从太阳到地球这个日地空间环境与人类生存和发展息息相关。
它由太阳大气、行星际介质、地球的磁层、电离层和中高层大气所构成。
这个空间环境自1957年人造卫星上天,人类的航天、通信、导航以及军事活动等从地表扩展到成百、上千公里的空间,成为人类活动的重要场所;它的高高度、高真空、微重力、强辐射、高电导率等独特的环境条件既为人类发展提供丰富的资源,又为航天、通信、资源探测、军事等活动提供地面不可能有的便利;它阻止和吸收来自太阳的X射线、紫外线、高能带电粒子以及超音速的太阳风暴对地球人类的直接轰击,是人类生存的重要保护层。
萨德勘的分析范式名词解释萨德勘的分析范式名词解释:在理解萨德勘的分析范式之前,我们首先要了解其中涉及的几个主要概念。
萨德勘(Saderkhani)是一种用于社会科学研究的理论框架,它旨在帮助研究者深入探讨社会问题的本质和根源。
它的核心思想是实证主义和理论构建的结合,允许研究者通过收集和分析数据来验证现有理论,并提出新的理论。
一、实证主义范式实证主义范式是应用于社会科学研究的一种方法论,在研究中强调使用客观、可验证的证据来支持或反驳假设。
实证主义是一种关注因果关系和可重复性的研究方法,试图通过观察和实验来验证假设。
二、理论构建理论构建是指根据实际观察和研究,建立起适用于特定领域的理论模型。
在社会科学领域,研究者通过理论构建来解释社会现象,提供深入的分析和解决问题的方法。
三、萨德勘的理论框架萨德勘的理论框架由实证主义范式和理论构建相结合,为研究者提供了一种全面深入地理解和分析社会问题的方法。
它强调实证研究和理论构建之间的相互关系,并通过研究数据来验证或修正现有理论。
在萨德勘的分析范式中,研究者首先使用实证的方法收集和分析数据,查明事实真相。
这些数据可以来自各种来源,如实地调查、问卷调查、文献研究等。
通过收集到的数据,研究者可以得出一系列规律和趋势,并对现有理论的有效性进行验证。
然后,在对现有理论进行验证的基础上,研究者可以进行理论构建的工作。
这意味着他们可以基于所得出的规律和趋势,提出新的假设或理论,用以解释实际问题。
萨德勘的分析范式具有以下几个特点:1. 综合性:该分析范式在理论构建和实证主义范式之间建立了密切联系,允许研究者综合运用两者优点,并提供更全面的研究视角。
2. 可验证性:通过实证主义范式,研究者可以通过收集和分析数据来验证或修正现有理论,使研究成果更具可信度和可靠性。
3. 创新性:理论构建的过程中,研究者可以根据实证研究的结果提出新的假设或理论,为特定领域的研究提供新的思路和解释。
综上所述,萨德勘的分析范式是一种综合实证主义和理论构建的研究方法,旨在通过实证研究验证或修正现有理论,并提供新的理论构建。
集成梯度特征归属方法-概述说明以及解释1.引言1.1 概述在概述部分,你可以从以下角度来描述集成梯度特征归属方法的背景和重要性:集成梯度特征归属方法是一种用于分析和解释机器学习模型预测结果的技术。
随着机器学习的快速发展和广泛应用,对于模型的解释性需求也越来越高。
传统的机器学习模型通常被认为是“黑盒子”,即无法解释模型做出预测的原因。
这限制了模型在一些关键应用领域的应用,如金融风险评估、医疗诊断和自动驾驶等。
为了解决这个问题,研究人员提出了各种机器学习模型的解释方法,其中集成梯度特征归属方法是一种非常受关注和有效的技术。
集成梯度特征归属方法能够为机器学习模型的预测结果提供可解释的解释,从而揭示模型对于不同特征的关注程度和影响力。
通过分析模型中每个特征的梯度值,可以确定该特征在预测中扮演的角色和贡献度,从而帮助用户理解模型的决策过程。
这对于模型的评估、优化和改进具有重要意义。
集成梯度特征归属方法的应用广泛,不仅适用于传统的机器学习模型,如决策树、支持向量机和逻辑回归等,也可以应用于深度学习模型,如神经网络和卷积神经网络等。
它能够为各种类型的特征,包括数值型特征和类别型特征,提供有益的信息和解释。
本文将对集成梯度特征归属方法的原理、应用优势和未来发展进行详细阐述,旨在为读者提供全面的了解和使用指南。
在接下来的章节中,我们将首先介绍集成梯度特征归属方法的基本原理和算法,然后探讨应用该方法的优势和实际应用场景。
最后,我们将总结该方法的重要性,并展望未来该方法的发展前景。
1.2文章结构文章结构内容应包括以下内容:文章的结构部分主要是对整篇文章的框架进行概述,指导读者在阅读过程中能够清晰地了解文章的组织结构和内容安排。
第一部分是引言,介绍了整篇文章的背景和意义。
其中,1.1小节概述文章所要讨论的主题,简要介绍了集成梯度特征归属方法的基本概念和应用领域。
1.2小节重点在于介绍文章的结构,将列出本文各个部分的标题和内容概要,方便读者快速了解文章的大致内容。
兴趣图谱interest graph大众分类法folksonomy分类法taxonomy流streamOGP开放图协议open graph protocol团分析clique analysis图谱 API 管理工具Graph API Explorer字段扩展和嵌套field expansion and nesting代码库repository布局算法layout algorithm档案字段profile field字段选择器field selector国防情报defense intelligence欺诈检测fraud detection统计地图cartogram地理聚合泡泡图Dorling Cartogram自然语言工具natural language toolkit NLKT编辑距离edit distance levenshtein聚合agglomerate聚类算法clusteringalgorithm层次聚类hierarchical clustering信息检索information retrieval IR非结构化数据分析Unstructured Data Analysis UDA 环聊hangouts动态activities生活片段moments句子切分sentence segmentation分词 tokenization单词组合word chunking实体检测entity detection搭配检测collocation detection停用词stop word解释器会话interpreter session向量空间模型vector space model原始频率raw frequency雅卡尔系数 Jaccard Index似然率likelihood ratio二项分布binomial distribution逐点互信息pointwise mutual information, PMI卡方检验Chi-square样板boilerplateGoogle知识图谱google ’sknowledge graph句子解析器sentence tokenizer交叉验证cross-validation标签云tag cloud文摘摘要自动生成 the automatic creation of literature abstracts “词袋”模型“Bag of Words ”model贝叶斯分类器Bayesian classifier广度优先搜索breadth-first search置信区间 confidence interval监督式机器学习supervised machine learning线程词 thread pool图灵测试turning test拉取请求pull request点度中心度degree centrality中介中心度 betweenness centrality接近中心度closeness centrality分页的开发者文档developer documentation for pagination 被加星的库列表list repositories being starred延迟迭代lazy iterator超图 hypergraph超边 hyperedges中心度量centrality measure社交图谱social graph轴辐式图hub and spoke graph最小生成树minimum spanning tree。
扩展巴科斯范式(转⾃维基)https:///wiki/%E6%89%A9%E5%B1%95%E5%B7%B4%E7%A7%91%E6%96%AF%E8%8C%83%E5%BC%8F扩展巴科斯范式[]维基百科,⾃由的百科全书扩展巴科斯-瑙尔范式(EBNF, Extended Backus–Naur Form)是表达作为描述计算机和的正规⽅式的的(metalanguage)符号表⽰法。
它是基本(BNF)元语法符号表⽰法的⼀种扩展。
它最初由开发,最常⽤的 EBNF 变体由标准,特别是 ISO-14977 所定义。
⽬录[隐藏]基本[],如由即可视字符、数字、标点符号、空⽩字符等组成的的。
EBNF 定义了把各符号序列分别指派到的:digit excluding zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;digit = "0" | digit excluding zero ;这个产⽣规则定义了在这个指派的左端的⾮终结符digit。
竖杠表⽰可供选择,⽽终结符被引号包围,最后跟着分号作为终⽌字符。
所以digit是⼀个 "0"或可以是 "1或2或3直到9的⼀个digit excluding zero"。
产⽣规则还可以包括由逗号分隔的⼀序列终结符或⾮终结符:twelve = "1" , "2" ;two hundred one = "2" , "0" , "1" ;three hundred twelve = "3" , twelve ;twelve thousand two hundred one = twelve , two hundred one ;可以省略或重复的表达式可以通过花括号 { ... } 表⽰:natural number = digit excluding zero , { digit } ;在这种情况下,字符串1, 2, ...,10,...,12345,... 都是正确的表达式。
spss常用统计词汇中英对照表统计词汇英汉对照Absolute deviation, 绝对离差Absolute number, 绝对数 Absolute residuals, 绝对残差Acceptable hypothesis, 可接受假设 Accumulation, 累积ccuracy, 准确度 Actual frequency, 实际频数Addition, 相加 Additivity, 可加性Adjusted rate, 调整率 Adjusted value, 校正值Admissible error, 容许误差 Aggregation, 聚集性Alternative hypothesis, 备择假设 Among groups, 组间Amounts, 总量 Analysis of correlation, 相关分析Analysis of covariance, 协方差分析 Analysis of regression, 回归分析Analysis of time series, 时间序列分析 Analysis of variance, 方差分析ANOVA (analysis of variance), 方差分析 ANOVA Models, 方差分析模型Arcing, 弧/弧旋 Arcsine transformation, 反正弦变换Area under the curve, 曲线面积 AREG , 评估从一个时间点到下一个时间点回归相关时的误差Arithmetic mean, 算术平均数rrhenius relation, 艾恩尼斯关系 Assessing fit, 拟合的评估Asymmetric distribution, 非对称分布 Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差 Attributable risk, 归因危险度Attribute data, 属性资料 Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数 Average confidence interval length, 平均置信区间长度 Average growth rate, 平均增长率Bar chart, 条形图 Bar graph, 条形图Base period, 基期 Bayes" theorem , Bayes 定理Bell-shaped curve, 钟形曲线 Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量 Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归 Binomial distribution, 二项分布Bisquare, 双平方 Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体 Biweight M-estimator, 双权 M 估计量 BMDP(Biomedical puter programs), BMDP 统计软件包 Bo_plots, 箱线图/箱尾图Canonical correlation, 典型相关 Caption, 纵标目Case-control study, 病例对照研究 Categorical variable, 分类变量Catenary, 悬链线 Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系 Cell, 单元Censoring, 终检 Center of symmetry, 对称中心Centering and scaling, 中心化和定标 Central tendency, 集中趋势Central value, 中心值 CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差 Chance variable, 随机变量Characteristic equation, 特征方程 Characteristic root, 特征根Characteristic vector, 特征向量 Chebshev criterion of fit, 拟合的切比雪夫准则 Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2 检验 Choleskey deposition, 乔洛斯基分解 Circle chart, 圆图Class interval, 组距Class mid-value, 组中值 Class upper limit, 组上限Classified variable, 分类变量 Cluster analysis, 聚类分析Cluster sling, 整群抽样 Coefficient of contingency,列联系数Coefficient of determination, 决定系数 Coefficient of multiple correlation, 多重相关系数 Coefficient of partial correlation, 偏相关系数 Coefficient of production-moment correlation, 积差相关系数 Coefficient of rank correlation, 等级相关系数 Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数 Coefficient of variation, 变异系数Cohort study, 队列研究 Column, 列Column effect, 列效应 Column factor, 列因素bination pool, 合并 binative table, 组合表mon factor, 共性因子 mon regression coefficient, 公共回归系数 mon value, 共同值mon variance, 公共方差mon variation, 公共变异munality variance, 共性方差 parability, 可比性parison of bathes, 批比较 parison value, 比较值partment model, 分部模型 passion, 伸缩plement of an event, 补事件 plete association, 完全正相关plete dissociation, 完全不相关 plete statistics, 完备统计量pletely randomized design, 完全随机化设计 posite event, 联合事件posite events, 复合事件 Concavity, 凹性Conditional e_pectation, 条件期望 Conditional likelihood, 条件似然Conditional probability, 条件概率 Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限 Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confounding factor, 混杂因素Conjoint, 联合分析 Consistency, 相合性Consistency check, 一致性检验 Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Contour, 边界线Contribution rate, 贡献率 Control, 对照Controlled e_periments, 对照实验 Conventional depth, 常规深度Corrected factor, 校正因子 Corrected mean, 校正均值Correction coefficient, 校正系数 Correctness, 正确性Correlation coefficient, 相关系数Correlation inde_, 相关指数Counting, 计数 Counts, 计数/频数Covariance, 协方差 Co_ Regression, Co_ 回归Criteria for fitting, 拟合准则 Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域 Critical value, 临界值Cumulative distribution function, 分布函数 D test, D 检验Data acquisition, 资料收集 Data bank, 数据库Data capacity, 数据容量 Data deficiencies, 数据缺乏Data handling, 数据处理 Data manipulation, 数据处理Data processing, 数据处理 Data set, 数据集Data sources, 数据来源 Data transformation, 数据变换Data validity, 数据有效性 Data-in, 数据输入Data-out, 数据输出 Degree of freedom, 自由度Degree of reliability, 可靠性程度 Density function, 密度函数Density of data points, 数据点的密度 Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度 Derivative matri_, 导数矩阵Derivative-free methods, 无导数方法 Design, 设计Determinacy, 确定性 Determinant, 行列式Determinant, 决定因素 Deviation, 离差Deviation from average, 离均差Dichotomous variable, 二分变量Differential equation, 微分方程 Direct standardization, 直接标准化法 Discrete variable, 离散型变量 DISCRIMINANT, 判断Discriminant analysis, 判别分析 Discriminant coefficient, 判别系数Discriminant function, 判别值 Dispersion, 散布/分散度Downward rank, 降秩 Effect, 实验效应Eigenvalue, 特征值 Eigenvector, 特征向量Ellipse, 椭圆 Empirical distribution, 经验分布Empirical probability, 经验概率单位 Enumeration data, 计数资料Equally likely, 等可能 Equivariance, 同变性Error, 误差/错误 Error of estimate, 估计误差Error type I, 第一类错误 Error type II, 第二类错误Estimated error mean squares, 估计误差均方 Estimated error sum of squares, 估计误差平方和 Euclidean distance, 欧式距离Event, 事件 Event, 事件E_ceptional data point, 异常数据点 E_pected values, 期望值E_periment, 实验 E_perimental sling, 试验抽样E_perimental unit, 试验单位 E_planatory variable, 说明变量E_ploratory data analysis, 探索性数据分析 E_plore Summarize, 探索-摘要E_ponential curve, 指数曲线 E_ponential growth, 指数式增长E_SMOOTH, 指数平滑方法E_tended fit, 扩充拟合E_tra parameter, 附加参数E_trapolation, 外推法E_treme observation, 末端观测值 E_tremes, 极端值/极值F distribution, F 分布 F test, F 检验Factor, 因素/因子 Factor analysis, 因子分析Factor Analysis, 因子分析 Factor score, 因子得分Family of distributions, 分布族 Field investigation, 现场调查Field survey, 现场调查 Finite population, 有限总体Finite-sle, 有限样本 First derivative, 一阶导数First principal ponent, 第一主成分 First quartile, 第一四分位数Fitted value, 拟合值 Fitting a curve, 曲线拟合Fi_ed base, 定基 Fluctuation, 随机起伏Forecast, 预测 Four fold table, 四格表Fourth, 四分点 Fraction blow, 左侧比率Fractional error, 相对误差 Frequency, 频率Frequency polygon, 频数多边图 Frontier point, 界限点Function relationship, 泛函关系 Gamma distribution, 伽玛分布Gauss increment, 高斯增量 Gaussian distribution, 高斯分布/正态分布General census, 全面普查 GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Grand mean, 总均值Group averages, 分组平均 Grouped data, 分组资料Guessed mean, 假定平均数 Half-life, 半衰期Happenstance, 偶然事件 Harmonic mean, 调和均数Hazard function, 风险均数 Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法HILOGLINEAR, 多维列联表的层次对数线性模型 Hinge, 折叶点Histogram, 直方图 HOMALS, 多重响应分析Homogeneity of variance, 方差齐性 Homogeneity test, 齐性检验Huber M-estimators, 休伯 M 估计量 Hyperbola, 双曲线Hypothesis testing, 假设检验 Hypothetical universe, 假设总体Impossible event, 不可能事件 Independence, 独立性Independent variable, 自变量 Inde_, 指标/指数Indirect standardization, 间接标准化法 Individual, 个体Inference band, 推断带 Infinite population, 无限总体Infinitely great, 无穷大 Infinitely small, 无穷小Influence curve, 影响曲线 Information capacity, 信息容量Initial condition, 初始条件 Initial estimate, 初始估计值Initial level, 最初水平 Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法 Interquartile range, 四分位距Interval estimation, 区间估计 Intervals of equal probability, 等概率区间 Intrinsic curvature, 固有曲率Invariance, 不变性 Inverse matri_, 逆矩阵Inverse probability, 逆概率 Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式 Joint distribution function, 分布函数 Joint probability, 联合概率 Jointprobability distribution, 联合概率分布 K means method, 逐步聚类法Kaplan-Merier chart, Kaplan-Merier 图 Kendall"s rank correlation, Kendall 等级相关 Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验 Kruskal and Wallis test, Kruskal 及 Wallis 检验/多样本的秩和检验/H 检验 Kurtosis, 峰度Lack of fit, 失拟 Ladder of powers, 幂阶梯Large sle, 大样本 Large sle test, 大样本检验Latin square, 拉丁方 Latin square design, 拉丁方设计Least favorable configuration, 最不利构形 Least favorable distribution, 最不利分布 Least significant difference, 最小显著差法 Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合 Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L 估计量 L-estimator of location, 位置 L 估计量L-estimator of scale, 尺度 L 估计量 Level, 水平Life table, 寿命表 Life table method, 生命表法Light-tailed distribution, 轻尾分布 Likelihood function, 似然函数Likelihood ratio, 似然比 line graph, 线图Linear correlation, 直线相关 Linear equation, 线性方程Linear programming, 线性规划 Linear regression, 直线回归Linear Regression, 线性回归 Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性 Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换 Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布 Logit transformation, Logit 转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数 Low correlation, 低度相关Lower limit, 下限 Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应 Marginal density function, 边缘密度函数 Marginal probability, 边缘概率 Marginal probability distribution, 边缘概率分布 Matching of transformation, 变换的匹配Mathematical e_pectation, 数学期望Mathematical model, 数学模型Ma_imum L-estimator, 极大极小 L 估计量 Ma_imum likelihood method, 最大似然法 Mean, 均数 Mean squares between groups, 组间均方 Mean squares within group, 组内均方 Means (pare means), 均值-均值比较 Median, 中位数Median effective dose, 半数效量Median polish, 中位数平滑 Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量 Minimum distance estimation, 最小距离估计 Minimum variance estimator, 最小方差估计量 MINITAB, 统计软件包Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计 Models for outliers, 离群值模型Modifying the model, 模型的修正 Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple parison, 多重比较Multiple correlation , 复相关 Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归 Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应 Multi-stage sling, 多阶段抽样Multivariate T distribution, 多元 T 分布 Mutuale_clusive, 互不相容Mutual independence, 互相独立 Negative correlation, 负相关Negative linear correlation, 负线性相关 Negatively skewed, 负偏Newman-Keuls method, q 检验 NK method, q 检验No statistical significance, 无统计意义 Nominal variable, 名义变量Nonlinear regression, 非线性相关 Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验 Normal deviate, 正态离差Normal distribution, 正态分布 Normal ranges, 正常范围Normal value, 正常值 Nuisance parameter, 多余参数/讨厌参数 Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数 Observation unit, 观察单位Observed value, 观察值 One sided test, 单侧检验One-way analysis of variance, 单因素方差分析 Oneway ANOVA , 单因素方差分析Order statistics, 顺序统计量 Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基 Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件 ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Paired design, 配对设计Paired sle, 配对样本 Parallel tests, 平行试验Parameter, 参数 Parametric statistics, 参数统计Parametric test, 参数检验 Partial correlation, 偏相关Partial regression, 偏回归 Pearson curves, 皮尔逊曲线Percent bar graph, 百分条形图 Percentage, 百分比Percentile, 百分位数 Percentile curves, 百分位曲线Periodicity, 周期性 Permutation, 排列P-estimator, P 估计量 Pie graph, 饼图Pitman estimator, 皮特曼估计量 Point estimation, 点估计Poisson distribution, 泊松分布 Population, 总体Positive correlation, 正相关 Positively skewed, 正偏Posterior distribution, 后验分布 Power of a test, 检验效能Precision, 精密度 Predicted value, 预测值Principal ponent analysis, 主成分分析 Prior distribution, 先验分布Prior probability, 先验概率 Probabilistic model, 概率模型probability, 概率 Probability density, 概率密度Product moment, 乘积矩/协方差 Pro, 截面迹图Proportion, 比/构成比 Proportion allocation in stratified random sling, 按比例分层随机抽样 Proportionate sub-class numbers, 成比例次级组含量Pseudo F test, 近似 F 检验Pseudo model, 近似模型 Pseudosigma, 伪标准差Purposive sling, 有目的抽样 QR deposition, QR 分解Quadratic appro_imation, 二次近似 Qualitative classification, 属性分类Qualitative method, 定性方法 Quantile-quantile plot, 分位数-分位数图/Q-Q 图 Quantitative analysis, 定量分析Quartile, 四分位数 Quick Cluster, 快速聚类Radi_ sort, 基数排序 Random allocation, 随机化分组Random blocks design, 随机区组设计 Random event, 随机事件Randomization, 随机化 Range, 极差/全距Rank correlation, 等级相关 Rank sum test, 秩和检验Rank test, 秩检验 Ranked data, 等级资料Rate, 比率 Ratio, 比例Raw data, 原始资料 Raw residual, 原始残差Reciprocal, 倒数 Reducing dimensions, 降维Region of acceptance, 接受域 Regression coefficient, 回归系数Regression sum of square, 回归平方和 Relative dispersion, 相对离散度Relative number, 相对数 Reliability, 可靠性Reparametrization, 重新设置参数 Replication, 重复Report Summaries, 报告摘要 Residual sum of square, 剩余平方和 Resistance, 耐抗性 R-estimator of location, 位置R 估计量R-estimator of scale, 尺度 R 估计量Retrospective study, 回顾性调查 Rotation, 旋转Row, 行 Row factor, 行因素Sle, 样本Sleregression coefficient, 样本回归系数 Sle size, 样本量Sle standard deviation, 样本标准差 Sling error, 抽样误差SAS(Statistical analysis system ), SAS 统计软件包Scale, 尺度/量表Scatter diagram, 散点图 Schematic plot, 示意图/简图Second derivative, 二阶导数 Second principal ponent, 第二主成分SEM (Structural equation modeling), 结构化方程模型Sequential analysis, 贯序分析Sequential data set, 顺序数据集 Sequential design, 贯序设计Sequential method, 贯序法 Sequential test, 贯序检验法Sigmoid curve, S 形曲线 Sign test, 符号检验Signed rank, 符号秩 Significance test, 显著性检验Significant figure, 有效数字 Simple cluster sling, 简单整群抽样 Simple correlation, 简单相关Simple random sling, 简单随机抽样 Simple regression, 简单回归simple table, 简单表 Single-valued estimate, 单值估计Singular matri_, 奇异矩阵 Skewed distribution, 偏斜分布Skewness, 偏度 Slash distribution, 斜线分布Smirnov test, 斯米尔诺夫检验Spearman rank correlation, 斯皮尔曼等级相关 Specific factor, 特殊因子Specific factor variance, 特殊因子方差 Spherical distribution, 球型正态分布 SPSS(Statistical package for the social science), SPSS 统计软件包 Standard deviation, 标准差Standard error, 标准误 Standard error of difference, 差别的标准误 Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误 Standard normal distribution, 标准正态分布 Standardization, 标准化Starting value, 起始值 Statistic, 统计量Statistical control, 统计控制 Statistical graph, 统计图Statistical inference, 统计推断 Statistical table, 统计表Steepest descent, 最速下降法 Stem and leaf display, 茎叶图Step factor, 步长因子 Stepwise regression, 逐步回归Storage, 存 Strata, 层(复数)Stratified sling, 分层抽样 Stratified sling, 分层抽样Studentized residual, 学生化残差/t 化残差 Sufficient statistic, 充分统计量Sum of products, 积和 Sum of squares, 离差平方和Sum of squares about regression, 回归平方和 Sum of squares between groups, 组间平方和 Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查 Survival, 生存分析Survival rate, 生存率 Symmetry, 对称Systematic error, 系统误差 Systematic sling, 系统抽样Tags, 标签 Tail area, 尾部面积Tail length, 尾长 Tail weight, 尾重Target distribution, 目标分布 Taylor series, 泰勒级数Tendency of dispersion, 离散趋势 Testing of hypotheses, 假设检验Theoretical frequency, 理论频数 Time series, 时间序列Tolerance interval, 容忍区间 Total sum of square, 总平方和Total variation, 总变异 Transformation, 转换Treatment, 处理 Trend, 趋势Trend of percentage, 百分比趋势 Trial, 试验Trial and error method, 试错法 Two sided test, 双向检验Two-stage least squares, 二阶最小平方 Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析 Type I error, 一类错误/α错误Type II error, 二类错误/β错误 UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计 Unconstrained nonlinear regression , 无约束非线性回归 Unequal subclass number, 不等次级组含量 Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计 Upper limit, 上限Upward rank, 升秩 Validity, 有效性VARP (Variance ponent estimation), 方差元素估计Variability, 变异性Variable, 变量 Variance, 方差Variation, 变异 Varima_ orthogonal rotation, 方差最大正交旋转 W test, W 检验Weibull distribution, 威布尔分布 Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran 检验Weighted linear regression method, 加权直线回归 Weighted mean, 加权平均数Weighted mean square, 加权平均方差 Weighted sum of square, 加权平方和 Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W 估计量W-estimation of location, 位置 W 估计量 Width, 宽度Wilco_on paired test, 威斯康星配对法/配对符号秩和检验 Z test, Z 检验Zero correlation, 零相关 Z-transformation, Z 变换。
广告调查常用语简录AApplied research -------------------------------------应用型调查Attitude----------------------------------------------态度Allowable sampling error------------------------------允许抽样误差Analysis of variance (ANOVA)------------------------方差分析Attention span----------------------------------------注意力集中A priori segmentation---------------------------------先期市场细分Ad positioning statement tests------------------------广告定位宣传测试Ad concept testing------------------------------------广告概念测试Audience rating---------------------------------------收视率Ad tracking research----------------------------------广告跟踪调查BBasic research----------------------------------------基础性调查Balanced scales---------------------------------------平衡量表Bivariate techniques----------------------------------二元变量法Bivariate regression analysis-------------------------二元变量回归分析CConsumer orientation----------------------------------消费者导向Custom, or Ad hoc, marketingresearch firms----------------------------------------定制市场调查公司Causal studies----------------------------------------因果性研究Concomitant variation---------------------------------相随变化Cartoon tests-----------------------------------------漫画测试法Consumer drawings-------------------------------------消费者绘图Computer-assisted telephoneinterviewing(CATI)----------------------------------电脑辅助电话调查Content analysis--------------------------------------内容分析Causal research---------------------------------------因果调查Concomitant variation---------------------------------相关关系Contamination-----------------------------------------干扰Comparative scales------------------------------------比较性量表Constant sum scales-----------------------------------固定总数量表Closed-ended questions--------------------------------封闭式问题Call record sheets------------------------------------通话纪录单Census------------------------------------------------普查Cluster samples---------------------------------------整群抽样Convenience samples-----------------------------------便利抽样Central limit theorem---------------------------------中心极限定理Confidence level--------------------------------------置信度Coding------------------------------------------------编码Crosstablulation--------------------------------------交互分组表Coefficient of determination--------------------------可决系数Correlation analysis----------------------------------相关分析Collinearity------------------------------------------共线性Causation---------------------------------------------因果关系Cluster analysis--------------------------------------聚类分析Conjoint analysis-------------------------------------联合分析Consumer Satisfaction---------------------------------消费者满意度Communication-----------------------------------------沟通DDescriptive function----------------------------------描述功能Diagnostic function-----------------------------------诊断功能Descriptive studies-----------------------------------描述性研究Dependent variable------------------------------------因变量Database marketing------------------------------------数据库营销Database management system----------------------------数据库管理系统Discussion guide--------------------------------------讨论提纲Depth interview---------------------------------------深度访谈法Door-to-door interviewing-----------------------------入户访问Direct computer interviewing--------------------------电脑直接访问Disguised observation---------------------------------掩饰观察Dichotomous questions---------------------------------二项式问题Discriminate score------------------------------------判别分Discriminate coefficient------------------------------判别系数Downward communication--------------------------------下行沟通EExploratory research----------------------------------试探性调查Experiments-------------------------------------------实验Evaluative research-----------------------------------评估性调查Executive interviewing--------------------------------经理访谈Experiment--------------------------------------------实验法External validity-------------------------------------外在有效性Editing-----------------------------------------------编辑Error check routines----------------------------------错误检查程序Executive summary-------------------------------------执行性摘要Ethics------------------------------------------------伦理Field service firms----------------------------------实地调查公司Focus group interview(FGI)-------------------------焦点小组访谈法Focus group facility---------------------------------焦点小组测试室Focus group moderator--------------------------------焦点访谈主持人Frame error------------------------------------------抽样框误差Finite population correction factor------------------有限总体修正指数Factor analysis--------------------------------------因子分析Factor loadings--------------------------------------因子载荷GGoal orientation-------------------------------------目标导向Group dynamics---------------------------------------群体动力HHypothesis-------------------------------------------假设Humanistic inquiry-----------------------------------人文调查IIndependent variable---------------------------------自变量Internal database -----------------------------------内部数据库Interviewer error------------------------------------访问员误差Incidence rate---------------------------------------发生率Interval scales--------------------------------------等距量表Itemized rating scales-------------------------------列举评比量表Interviewer's instructions---------------------------调查员说明Interval estimates-----------------------------------区间估计Intelligent data entry-------------------------------智能数据录入JJudgment samples-------------------------------------判断抽样LLongitudinal study-----------------------------------纵向研究Likert scales----------------------------------------利克特量表Low ball pricing-------------------------------------虚报价格Marketing--------------------------------------------营销;行销Marketing concept------------------------------------市场营销观念Marketing mix----------------------------------------营销组合Marketing research-----------------------------------市场调查Marketing strategy-----------------------------------营销战略Marketing research problem---------------------------市场调查问题Marketing research objective-------------------------市场调查目标Management decision problem--------------------------管理决策问题Measurement------------------------------------------测量Measurement error------------------------------------测量误差Measurement instrument error-------------------------测量工具误差Mall intercept interviewing--------------------------街上拦截法Mail panels------------------------------------------固定邮寄样本调查Multidimensional scaling-----------------------------多维量表Multi-choice question--------------------------------多项选择题Machine cleaning of data-----------------------------数据自动清理Marginal Report--------------------------------------边际报告Mean-------------------------------------------------均值Median-----------------------------------------------中位数Mode-------------------------------------------------众数Multivariate analysis--------------------------------多变量分析Multiple regression analysis-------------------------多元回归分析Market segmentation----------------------------------市场细分NNonprobability samples-------------------------------非随机样本Nonresponses bias------------------------------------拒访误差Nominal scales---------------------------------------类别量表Nonbalanced scales-----------------------------------非平衡量表Normal distribution----------------------------------正态分布Noise------------------------------------------------噪音OObservation research---------------------------------观察调查法Open observation-------------------------------------共开观察One-way mirror observation---------------------------单向镜观察法Ordinal scales---------------------------------------顺序量表Open-ended questions---------------------------------开放式问题Optical scanning-------------------------------------光学扫描录入One-way frequency table------------------------------单向频数表On-air testing---------------------------------------实际播放测试PPredictive function----------------------------------预测功能Programmatic research--------------------------------计划性调查Probability samples----------------------------------随机样本Primary data-----------------------------------------原始资料Projective techniques--------------------------------投射法Photo sort-------------------------------------------照片归类法Population specification error-----------------------调查对象范围误差Processing error-------------------------------------处理过程误差People reader----------------------------------------阅读器Pupil meter------------------------------------------测瞳仪Purchase intent scales-------------------------------购买意向量表Paired comparison scales-----------------------------配对比较量表Pretest----------------------------------------------预先测试Population-------------------------------------------总体Proportional allocation------------------------------按比例分配Point estimates--------------------------------------点估计Population standard deviation------------------------总体的标准差Presentation software--------------------------------提案软件Profession-------------------------------------------职业Professionalism--------------------------------------专业水平Product positioning research-------------------------产品定位调查Post hoc segmentation--------------------------------后期市场细分Product prototype tests------------------------------产品原型测试Product pricing research-----------------------------产品定价研究Packaging tests--------------------------------------包装测试Product concept testing------------------------------产品概念测试QQualitative research---------------------------------定性调查Quantitative research--------------------------------定量调查Questionnaire----------------------------------------问卷Quota samples----------------------------------------配额抽样RResearch request-------------------------------------调查申请Response bias----------------------------------------回答误差Random error(random sampling error)----------------随机(抽样)误差Ratio scales-----------------------------------------等比量表Rule-------------------------------------------------规则Rank-order scales------------------------------------等级顺序量表Random digit dialing---------------------------------随机数字拨号Range------------------------------------------------全距Regression coefficients------------------------------回归系数Research management----------------------------------调查管理Reengineering----------------------------------------再造SSystem orientation-----------------------------------系统导向Syndicated service research firms--------------------辛迪加服务调查公司Strategic partnering---------------------------------战略伙伴关系Spurious association---------------------------------虚假联系Survey research--------------------------------------询问调查Selective research-----------------------------------选择性调查Secondary data---------------------------------------二手资料Sentence and story completion------------------------句子与故事完成法Self-administered questionnaire----------------------自我管理问卷Systematic error-------------------------------------系统误差Selection error--------------------------------------抽选误差Structured observation-------------------------------结构性观察Shopper patterns-------------------------------------购买者模式Shopper behavior research----------------------------购买者行为研究Simulated Test Marketing(STM)----------------------模拟市场测试Scaling----------------------------------------------量表Semantic difference----------------------------------语意差别法Staple scales----------------------------------------中心量表Survey objectives------------------------------------询问目标Screeners--------------------------------------------过滤性问题Scaled-response question-----------------------------量表式问题Supervisor's instructions----------------------------管理这说明Sample-----------------------------------------------样本Sample frame-----------------------------------------抽样框Simple random sampling-------------------------------简单随机抽样Systematic sampling----------------------------------等距抽样(系统抽样)Snowball samples-------------------------------------滚雪球抽样Stratified samples-----------------------------------分层抽样Sample distribution----------------------------------样本分布Sampling distribution of the sample mean-------------样本平均数的抽样分布Standard error of the mean---------------------------平均数的标准误差Sampling distribution of the population--------------比例抽样分布Standard normal distribution-------------------------标准正态分布Standard deviation-----------------------------------标准差Skip pattern------------------------------------------跳跃方式Selective perception----------------------------------选择性知觉Single-number research--------------------------------单一调查数据TTemporal sequence-------------------------------------时间序列Telephone focus groups--------------------------------电话焦点访谈法Two-way focus groups----------------------------------双向焦点访谈法Third-person techniques-------------------------------第三人称法UUnstructured observation------------------------------非结构性观察Unidimensional scaling--------------------------------一维量表Upward communication----------------------------------上行沟通Unstructured segmentation-----------------------------随意细分VVariable----------------------------------------------变量Variance ---------------------------------------------方差Validation--------------------------------------------确认WWord association tests--------------------------------语句联想法。
假数据的专业名词解释英文Pseudo Data: Unpacking the TerminologyIn today's digital age, data reigns supreme. It drives decision-making, enables personalization, and shapes our understanding of the world. However, not all data is created equal. In the realm of data analysis, we often encounter a lesser-known term called "pseudo data." But what exactly does it mean, and how does it differ from genuine data? Let's delve into the intricacies of this concept and explore its significance in various fields.To grasp the essence of pseudo data, we must first understand its etymology. The term "pseudo" originates from the Greek word meaning "false" or "deceptive." In the context of data, pseudo data refers to information that resembles real data, but is generated or manipulated for specific purposes, such as testing algorithms, simulating scenarios, or safeguarding privacy.One common application of pseudo data lies in algorithm development and testing. Software engineers and data scientists often need access to large datasets to train and refine their algorithms. However, acquiring authentic data can be challenging due to privacy concerns, legal restrictions, or limited resources. In such cases, pseudo data comes to the rescue by providing a substitute that exhibits similar statistical properties to real data. This allows algorithm developers to fine-tune their models without compromising sensitive information.Another area where pseudo data finds utility is in simulating scenarios. Whether it's designing traffic flow patterns, predicting stock market fluctuations, or testing the resilience of complex systems, researchers and engineers require realistic data that mimic real-world conditions. Pseudo data enables them to generate simulations that closely resemble the actual dynamics, aiding in scenario analysis and risk assessment.Pseudo data also plays a crucial role in protecting individual privacy. With the increasing concerns surrounding data breaches and identity theft, safeguarding personalinformation has become paramount. Organizations often find themselves in a challenging position of needing to share data with external partners or researchers while preserving individuals' confidentiality. Pseudo data offers a solution by substituting personally identifiable information (PII) with fictitious or anonymized data, ensuring privacy while maintaining the statistical integrity of the dataset.Now that we have explored the context and applications of pseudo data, let's examine some key terminologies that often accompany this concept.1. Pseudo-randomness: Pseudo-randomness refers to the generation of seemingly random numbers using deterministic algorithms. While true randomness is difficult to achieve through algorithmic means, pseudo-random numbers exhibit statistical properties akin to random sequences. These numbers are commonly employed in simulations, cryptography, and various statistical analyses.2. Pseudo-labeling: Pseudo-labeling entails assigning labels or categories to unlabeled data based on the predictions made by a pre-trained model. This technique is often employed in semi-supervised learning scenarios to expand the labeled dataset and improve model performance. Pseudo-labeling helps bridge the gap between labeled and unlabeled data, providing a cost-effective approach to leverage abundant unlabeled data in training machine learning models.3. Pseudo-environment: Pseudo-environment refers to the simulated environment created to mimic real-world conditions for testing and experimentation purposes. By generating a synthetic setting with representative characteristics, researchers and engineers can analyze system behavior, evaluate performance, and identify vulnerabilities without the risks and costs associated with conducting experiments directly in the real world.In summary, pseudo data serves as a reliable alternative to genuine data in various domains. Whether it's facilitating algorithm development, simulating scenarios, or ensuring privacy, pseudo data offers valuable solutions while minimizing risks and limitations. Understanding the terminology associated with pseudo data enables us toeffectively navigate the realm of data analysis, empowering us to make informed decisions and drive innovation.。
数据挖掘(知识图谱2019)领域二级分类三级分类 data mining(数据挖掘) time series analysis(时间序列分析) data streams(数据流)time series data(时间序列数据)real time(实时)time series(时间序列)complex dynamical networks(复杂动态网络)dynamic system(动态系统)nonlinear dynamics(非线性动力学)system dynamics(系统动力学)time frequency analysis(时频分析) association rule(关联规则) rule induction (规则归纳)rule learning (规则学习)sequential pattern(序列模式)frequent itemsets(频繁项目集)pattern mining(模式挖掘)pattern matching(模式匹配)pattern classification(模式分类)frequent pattern(频繁模式) algorithm(算法) algorithm design and analysis(算法设计与分析)upper bound(上界)prediction algorithms(预测算法)efficient algorithm(有效算法)computational modeling(计算模型)predictive models(预测模型)reinforcement learning(强化学习)neural networks(神经网络)computational complexity(计算复杂性)probabilistic logic(概率逻辑)structural risk minimization (结构风险最小化)constrained least squares (约束最小二乘)incremental learning(增量学习)pruning technique(修剪技术)matrix decomposition(矩阵分解)generative model(生成模型)hidden markov models(隐马尔可夫模型) big data(大数据) dynamic databases(动态数据库)heterogeneous data(异构数据)text data(文本数据)data models(数据模型)sensor data(传感器数据)data warehouses(数据仓库)query processing(查询处理)data structure(数据结构)data analysis(数据分析)data privacy(数据隐私)personal data(个人数据)cloud computing(云计算)user behavior(用户行为)parallel processing(并行处理)graph data(图形数据)data intensive computing(数据密集型计算)data stream(数据流)distributed databases(分布式数据库)data handling(数据处理)data center(数据中心)data management(数据管理)data warehouse(数据仓库)data security(数据安全)data warehousing(数据仓库)privacy preservation(隐私保护)database management systems(数据库管理系统)data generation(数据生成) web mining(网络挖掘) web search (网络检索)information retrieval(信息检索)link analysis (链接分析)image retrieval (图像检索)utility mining(效用挖掘)relevance feedback (相关反馈)recommender systems(推荐系统)mobile computing(移动计算)loclation based services(基于位置的服务)web pages(web 页面)collaborative filtering(协同过滤)social network(社交网络)social interaction(社交互动)social media(社交媒体)information filtering(信息过滤)social network analysis(社交网络分析)graph theory(图论)sentiment analysis(情感分析)opinion mining(意见挖掘)semantic web(语义网)social web(社交网页)online social network(在线社交网络)world wide web(万维网)web 2.0(网络 2.0)linked data(关联数据)social tagging system(社交标签系统)user generated content(用户生成内容)social tagging(社交标签)tag recommendation(标签推荐)link prediction(链接预测)web usage mining(web 使用挖掘)online community(网络社区)interaction network(交互网络)web forum(web 论坛) knowledgediscovery(知识发现) knowledgemanagement(知识管理) project management(项目管理)information technology(信息技术)information system(信息系统)database management(数据库管理)customer relationship management(客户关系管理)management system(管理系统) data management(数据管理) data integration(数据整合)data compression(数据压缩)data point(数据点)spatial database(空间数据库)time series data(时间序列数据)range query(范围查询) text mining(文本挖掘) text analysis(文本分析)text classification (文本分类)information retrieval(信息检索)natural language processing(自然语言处理)language model(语言模型)retrieval models(检索模型)feature selection(特征选择)text mining technique(文本挖掘技术)information retrieval models(信息检索模型)text data(文本数据)topic model(主题模型)recommender system(推荐系统)opinion mining(意见挖掘)feature extraction(特征提取)event detection(事件检测)information filtering(信息过滤)opinion analysis(舆情分析)sentiment analysis(情感分析)social media(社交媒体)disastrous event(灾难性事件)text summarization(文本摘要)query language(查询语言)query expansion(查询扩展)language modeling approach(语言模型方法)machine translation(机器翻译)biomedical text(生物医学文本) image mining(图像挖掘) image reconstruction(图像重建)image segmentation(图像分割)image classification(图像分类)object recognition(目标识别) information network(信息网络) information network mining(信息网络挖掘)heterogeneous information network(异构信息网络)graph theory(图论)online social networks(在线社交网络)recommender system(推荐系统)graph mining(图挖掘)location based service(基于位置的服务)network analysis(网络分析)link prediction(链接预测)graph data(图数据)factor graph(因子图)complex network(复杂网络)network topology(网络拓扑)homogeneous network(同构网络)information network analysis(信息网络分析)graph classification(图分类)graph clustering(图聚类)graph structure(图结构)random walk(随机游走)biological network(生物网络)computer networks(计算机网络)information integration(信息集成)graph database(图数据库)large graph(大图)heterogeneous network(异构网络)entity recognition(实体识别) graph mining(图挖掘) large graph(大图)graph classification(图分类)random graph(随机图)directed graph(有向图)undirected graph(无向图) health care(卫生保健) electronic health records(电子健康档案)gene expression(基因表达)biomedical research(生物医学研究)adverse drugs reactions(药物不良反应)genome wide association study(全基因组关联分析)patient care(病人医疗护理)computational biology(计算生物学)biological sciences(生物科学)medical research(医学研究) visualisation(可视化) information visualization(信息可视化)data visualization(数据可视化)visual analytics(可视化分析)data visualisation(数据可视化)data analysis(数据分析)network visualization(网络可视化)visualization technique(可视化技术)visual content(视觉内容)visualization tool(可视化工具)interactive visualization(交互式可视化)graph visualization(图形可视化)graphical user interfaces(图形用户界面)computer animation(计算机动画)visual representation(视觉表征) information system(信息系统) fuzzy data mining(模糊数据挖掘) fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy clustering (模糊聚类) expert systems(专家系统) knowledge management(知识管理)knowledge representation(知识表达)knowledge discovery(知识发现) similarity(相似性) kernel operator (核算子)similarity relationship (相似关系)nearest neighbor (近邻)dissimilarity (相异性)citation matching (引文匹配)similarity search(相似搜索)similar kernel function(相似核函数)earth mover's distance(EMD 距离)kernel function(核函数)search problems(搜索问题)string matching(串匹配)similarity measure(相似性度量)keyword search(关键字检索)semantic similarity(语义相似度) data structure(数据结构) data hierarchy (数据层次)complex data(复杂数据) unsupervised learning(无监督学习) clustering (聚类)document clustering (文档聚类)hierarchical clustering (层次聚类)image clustering (图像聚类)data clustering (数据聚类)fuzzy clustering (模糊聚类)collaborative filtering (协同过滤)nonnegative matrix factorization (非负矩阵分解)cluster-based retrieval (聚类检索)fuzzy clustering (模糊聚类)clustering algorithms(聚类算法)outlier detection(孤立点检测)topic modeling(主题模型)subspace clustering(子空间聚类)pattern recognition(模式识别)mixture of gaussians(混合高斯模型)gaussian processes(高斯过程)density estimation(密度估计)dimensionality reduction(降维)dimension reduction(降维)maximum likelihood estimation(最大似然估计)matrix decomposition(矩阵分解)nonnegative matrix factorization(非负矩阵分解)sparse representation(稀疏表示)sparse matrices(稀疏矩阵)probability distribution(概率分布)probabilistic model(概率模型)hidden markov model(隐马尔可夫模型) supervised learning (有监督学习) classification (分类)feature selection (特征选择)neural networks (神经网络)inductive learning (归纳学习)markov processes(马尔可夫过程)belief propagation(置信传播)decision tree(决策树)support vector machines(支持向量机)semi supervised learning(半监督学习)action recognition(行为识别)pattern recognition(模式识别)statistical analysis(统计分析)sparse coding(稀疏编码)object detection(目标检测)object recognition(目标识别)probabilistic logic(概率逻辑)regression(回归)manifold learning(流形学习)linear programming(线性规划)convex programming(凸规划)active learning(主动学习)random forest(随机森林)inference mechanisms(推理机制)bayes methods(贝叶斯方法)neural network(神经网络)classification algorithms(分类算法)bayesian methods(bayes 方法)random processes(随机过程)deep learning(深度学习)feature extraction(特征提取)recurrent neural network(递归神经网络) restricted boltzmann machines(受限玻尔兹曼机) hidden markov model(隐马尔可夫模型) boltzmann machine(玻尔兹曼机)bayesian inference(贝叶斯推断)convolutional neural networks(卷积神经网络) conditional random field(条件随机场模型) generative model(生成模型)probability distribution(概率分布) probabilistic model(概率模型)deep belief network(深度信念网络)logistic regression(logistic 回归) network analysis (网络分析) social network(社交网络)social media(社交媒体)graph theory(图论)sensor networks(传感器网络)network analysis(网络分析)information diffusion(信息扩散)community detection(社区发现)network structure(网络结构)link prediction(链接预测)dynamic network(动态网络)network formation(组网)social learning(社会学习)social science(社会科学)information cascades(信息追随) communication networks(通讯网络)social influence(社会影响)complex network(复杂网络)network theory(网络理论)social interaction(社交互动)shortest path(最短路径)social behavior(社交行为)social life networks(社交生活网络) Decision analysis (决策分析) decision support systems (决策支持系统) decision making (决策)data envelopment analysis (数据包络分析) information resource management (信息资源管理)。
deception象限
欺骗性象限(Deception Quadrant)是一种用于分析网络安全威胁的方法。
这个概念主要是通过将攻击者的意图和能力与组织的防御措施进行对比,从而帮助企业识别潜在的安全漏洞和提高安全防护能力。
欺骗性象限主要包括四个区域:
1. 合法区域:这部分包含了来自可信来源的数据,通常包括组织内部的数据和公开可用的数据。
这些数据对组织来说是安全的,因为它们来源于可信赖的来源。
2. 模糊区域:这部分数据既不是完全安全的,也不是完全危险的。
它们可能包括一些可疑的迹象,如来自未知来源的数据或异常行为。
这些数据可能表明存在一定程度的网络安全风险,但不足以触发警报。
3. 危险区域:这部分包含了明确表明恶意意图和行为的数据。
这些数据通常来自已知的攻击源,如恶意软件、黑客或其他敌对势力。
组织需要对这部分数据保持高度警惕,并及时采取措施防止潜在的攻击。
4. 不可知区域:这部分数据代表了尚未被识别或理解的网络安全风险。
它们可能包括新的未知威胁,或者是已知威胁的变异。
组织需要
加强对这部分数据的分析,以发现潜在的网络安全问题。
通过分析这四个区域,欺骗性象限方法可以帮助企业更好地了解网络安全风险,并针对性地制定安全防护策略。
这种方法强调了实时监控和分析网络安全数据的重要性,从而在第一时间发现并应对潜在的威胁。
自然语言处理中的实体消歧技术解析自然语言处理(Natural Language Processing,NLP)是一门涉及计算机科学、人工智能和语言学的交叉学科,旨在使计算机能够理解和处理人类语言。
而实体消歧(Entity Disambiguation)则是NLP中的一个重要任务,其目标是确定文本中提及的实体的确切含义。
在日常生活中,我们经常会遇到实体消歧的问题。
例如,当我们在搜索引擎中输入“苹果”这个词时,到底是指水果还是科技公司?这个问题在文本处理过程中也同样存在。
实体消歧技术的出现正是为了解决这类问题。
实体消歧技术的核心是将文本中的实体链接到其相应的知识库中。
知识库是一种结构化的数据存储,其中包含了大量实体及其属性信息。
常见的知识库包括维基百科、Freebase等。
通过将文本中的实体与知识库中的实体进行匹配,我们可以确定实体的具体含义。
实体消歧技术的实现方法有很多种,下面我们来介绍几种常见的方法。
一种常用的方法是基于上下文的实体消歧。
这种方法通过分析实体周围的语境信息来确定其含义。
例如,在句子中出现的其他实体、动词、形容词等都可以提供有用的线索。
通过分析这些线索,我们可以更准确地消歧实体。
另一种方法是基于统计模型的实体消歧。
这种方法通过计算不同实体候选的概率来确定最有可能的含义。
统计模型可以利用大量的语料库数据进行训练,从而得出实体消歧的结果。
这种方法在大规模数据上表现良好,但对于少见的实体或特定领域的实体可能效果不佳。
还有一种方法是基于知识图谱的实体消歧。
知识图谱是一种以实体和实体之间的关系为基础的图形结构。
通过利用知识图谱中的关系信息,我们可以更准确地确定实体的含义。
例如,如果一个实体与某个领域的实体有多个关系,那么它很可能与该领域相关。
除了以上方法,还有一些其他的实体消歧技术,如基于机器学习的方法、基于规则的方法等。
这些方法各有优劣,可以根据具体的应用场景选择合适的方法。
实体消歧技术在很多领域都有广泛的应用。
自然语言处理中常见的命名实体识别工具自然语言处理(NLP)是一门研究如何让计算机理解和处理人类语言的学科。
在NLP中,命名实体识别(Named Entity Recognition, 简称NER)是一项重要的任务,其目标是识别文本中提及的具体实体,例如人名、地名、组织机构名等。
在本文中,我们将介绍一些常见的命名实体识别工具,以及它们的特点和应用场景。
1. Stanford NERStanford NER是斯坦福大学开发的一款开源命名实体识别工具,它使用了条件随机场(CRF)模型来识别文本中的命名实体。
Stanford NER支持多种语言,并且可以识别常见的命名实体类型,包括人名、地名、时间、组织机构名等。
由于其准确性和稳定性,Stanford NER被广泛应用于学术研究和工业界的NLP项目中。
2. SpaCySpaCy是一款流行的NLP工具库,它内置了命名实体识别功能。
SpaCy提供了简洁易用的API,用户可以轻松地对文本进行命名实体识别,并且支持自定义实体类型。
SpaCy的性能优秀,速度快,因此受到了众多NLP研究者和开发者的青睐。
3. OpenNLPOpenNLP是由Apache开发的一款开源NLP工具包,其中包含了命名实体识别器。
OpenNLP提供了丰富的功能和灵活的配置选项,用户可以根据自己的需求来调整模型的表现。
OpenNLP的社区活跃,用户可以从社区中获取支持和帮助。
4. NLTKNLTK是自然语言处理领域的另一款知名工具库,它同样提供了命名实体识别的功能。
NLTK的特点是易用性和教育性,它被广泛应用于教学和研究中。
虽然NLTK的性能可能不如其他工具库那么优秀,但它的文档和社区资源丰富,适合新手入门和学习。
5. BERTBERT是一种基于深度学习的预训练语言模型,它在命名实体识别任务上也取得了不错的表现。
通过微调BERT模型,研究者可以获得高质量的命名实体识别器,适用于特定领域的文本。